ALGEBRAIC THEORIES AND TREE REWRITING SYSTEMS

by
Mitchell Wand
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TECHNICAL REPORT NO. b6

ALGEBRAIC THEORIES AND TREE REWRITING SYSTEMS

MITCHELL WAND
JuLy, 1977

REVISED: JUNE, 1978

Research reported herein was supported in part by the National
Science Foundation under grant number MCS75-06678 AOL

Algebraic Theories and Tree Rewriting Systems

Mitchell Wand¥

Abstract: We show how operational semantics may be obtained
for algebraic definitions of data types. In an algebraic definition,
the axioms generate an equivalence relation on expressions to be
evaluated. Under an easily satisfied Church-Rosser condition,
the operational semantics consists of a tree rewriting system
which rewrites an expression into a normal form which is a repre-
sentative of its equivalence class. Recent results in tree re-
writing systems can be used to make the operational semantics
deterministic.

Key Words: Algebra semantics, initial algebra semantics,
operational semantics, tree rewriting systems, Church-Rosser
property, algebralc theories, data types.

CR Categories: 5.24, 5.21.

Research reported herein was supported in part by the National
Science Foundation under grant number MCS75-06678 A0l

¥Author's address: Computer Science Department, Indiana University,
Bloomington, Indlana 47401

1. Introduction

It is well-known [5] that there is a connection between
algebraic semantics [2, 4, 12] and tree-rewriting systems [7, 10].
The purpose of this note is to make that connection mathematically
precise.

We adopt the point of view of [2], that "abstract" data
types are algebraic theories, presented as a quotient of a free
theory i.e., by generators and relations.(*) One specifies a
computation in a data type by a morphism in the free theory; the
morphism is then mapped by the quotient map to its value. This
gives a denotational semantics for any computation.

To get an operational semantics, cne must deal with repre-
sentatives of the equivalence classes created by the relations.

Given an arbitrary morphism in the free theory, one must determine

(by computation) the representative of its equivalence class.

If representatives are chosen wisely (e.g. the class of computations
which evaluate to "2" ought to be represented by "2"), then a
computational procedure for computing representatives will serve
nicely as an operational semantics. This is a case of the
equivalence problem [1], except that the equivalence relations are
unchanging and infinite. Examples of this kind of computation are

given in [5].

%

(%) Alternatively, one may take the view that the generators and
relations present an algebra which is a quotient of an initial
algebra [4].

e

In this note we show how to bulild such an operational
semantics as a tree rewriting system. Under fairly weak
conditions, the tree rewriting system will have the Church-
Rosser property, and we can choose the normal forms (where
they exist) as representatives. This allows us to exploit
the growing knowledge about such systems [7,10] to obtain
additional insight.

Section 2 gives the requlred definitions. Section 3
presents the main result: given a set of relations A
we construct a tree rewriting system SMﬂ and show that
two morphisms t,t' are congruent modulo A 1ff one can be
transformed into the other via SMA . In Section 4 we pro-
vide conditions under which the tree rewriting system has the
Church-Rosser property, and show that under these conditions,

representatives may be computed by a deterministic rewriting

strategy. ©Section 5 gives some concluding remarks.

2. Preliminaries

We present algebraic preliminaries here. Definitions for
tree rewriting systems are deferred to Section 4. The reader is
referred to [6, 8] for tutorials on the concepts of categories and
algebraic theory.

If C is a category, C(a,b) denotes the set of arrows or
morphisms from object a to objeet b . If f e C(a,b) and
g € C(b,ec) , their composition, a member of C(a,c) , 1s denoted
gf. If f e C(a,b) then dom(f) = a and cod(f) =b . Sets
will denote the category whose objects are sets and whose mor-
phisms are the usual set-theoretic functions.

Let S be a set whose elements are called sorts. An S-sorted

operator alphabet @ 1is a map & K-»S¥xS for some set K.(l) I

seK, and Qs = (w,a), we say w 1s the domain of s and a is
the codomain of S. If S has only one element, and w = o
(where S = {a}), we say s 1is n-ary; & 1is then a ranked
alphabet. When no ambiguity results, we will write @ for K
and write "seQ". We use the categorical notation and write
Q(w,a) for {seK|Qs = (w,a)}. If we write AcQ 1f A is the re-

striction of © to KXK' for some K'cK.

An S-sorted algebraic theory (or just theory) is a category

T whose objects are the elements of S*¥ and in which multiplication

in S¥* coincides with the categorical product. If T 1is a theory,

(1) S#* denotes the free monoid generated by S; we write |w]
for the length of w and A for the null string.

and f,e T(u,wi) (for 1 = 1,..,n), then the product morphism in
T(u, wl...wn) 1s denoted [fl,..,fn]. We write e for the
projection morphisms. This includes the case where the wi are
arbitrary objects (not just sorts); thus, if feT(w,a), we write
[lw,f] for the evident morphism in T(w,wa). We write 1 for

1w where no confusion results. A theory functor is a product-

preserving functor between theories. A subtheory of an S-sorted

theory T dis a subcategory T' of T which has the same obJects

of T and which is closed under the tupling operation [...] of T.
If © 1is an S-sorted operator alphabet, we may construct

the free theory F by the usual methods; if seQ, then

Q
SeFQ(dom(s), cod (8)). Fﬂ(w,a) consists of trees whose nodes
are elements of the operator alphabet, whose leaves are either
constant operators (i.e. whose domain is A) or projection operators
with domain w, whose root has codomain a, and in which domains
and codomalins match appropriately throughout the tree. Composition
in FQ is substitution of trees for leaves labelled by projection
operators.

For example, let S={a,4}, K={val,alt} Q@={(val,(adi,4)),

(alt,(adii,a))}. Then

alt[el,val[el,e2],val[el,e3]] € FQ(aLL,a)

[el,val[el,e3],val[el,e2]] e FQ(aii,aii)

and the composition of these two morphisms 1is

alt[el,val[el,val[el,e3]],val[el,val[el,ez]]] € FQ(aLL,a)

If T 1s an S-sorted theory, so is T2 , where
Tz(u,v) = {(f,g)|f, g eT(u,v)} , with composition given by
(f,g)(f',g') = (£f',gg') . An equation on T 1is an element

of Tz(w,a) for some aeS . A congruence on T 1is a subtheory

R of T2 such that for each u,ve3¥, R(u,v) 1is an equivalence
relation on T(u,v) . If R 1s a congruence on T , then we
can form the quotient theory T/R via T/R(u,v) = T(u,v)/R(u,v)
T/R 1is also an S-sorted theory; it is the coequalizer of the ev-
ident diagram R+TziT y

If A 1s a set of equations on T we can construct the
smallest A-containing congruence on T as the set of theorems
of a formal system EA . The formal objects of E& are the
morphisms of T2 . We write (f,f'):u»v for (f,f')eT2(u,V) s
and +~(f,f'):us»v if (f,f') is provable in E& . The axioms

and rules of E& are as follows:

Axioms: If (f,f'):w > a e A , then +f,f'):w +- a EA

For any f e T(u,v) , H(f,f):u +v ER
Rules: (fig)iu =+ v ES (Fag) s % [g:hl:u &> ¥ ET
(g,f):u > v (f,h):u >~ v

(g,g):w >y (f,£'):v>w (h,h):u >V g,
(gfh,ef'n):u + y

(fl,f‘l):u + a
{LE

l,...,(fn,f'n):u *a,

1 T -
.,fnJ,Lf l,..,f n_]).U. > ag..ay

B
1,.-

B

Let E&(u,v) = {(£,f")|~(f,f"):u>v} . Axiom scheme EA

ensures that every equation in A 1is in Ea sy rules ER, ES, and

ET ensure that each Ea(u,v) is an equivalence relation; rule
EC closes E& to a subcategory of T2 , and rule EP closes E&
under the product operation of T2 . Hence Eﬂ , With composition
inherited from T2 s 15 the smallest congruence on T containing
A .

A theory may be presented by (Q,A) where Q is an operator

alphabet (the generators) and A is a set of equations. (Q,A) pre-

sents the theory T where T(u,v) = FQ(u,v)/ E&(u,v) . The

functor F:TQ + T sending each morphism to its equivalence class

is a full theory functor.

Thus an operational semantics for the theory presented by
(Q,A) 1is an algorithm which, given a morphism f in FQ , finds
a representative f' of the E&—equivalence ¢lagss of £ , i.e.

an f' such that

(1) ft 1is a representative

(2) E,\-(£,£1)

EA is not a convenient deduction system in which to work. Our

first concern, therefore, is to find computationally convenient

deduction systems equilivalent to E& -

3. Equivalence of Deduction Systems

For this section, let T be an arbitrary S-sorted theory ,
and A be a set of equations on T. Elements of S will be denoted
by a,b,.., and elements of S* by u,v,w,..

Definition: Let SM) s the operator alphabet of single

A-moves, be defined by:

sm&(w,a) = {(f[1,gh], f[1l,g'h])|for some w'eS¥,be3,heT(w,w'),

g8 eTlwT,b); LeTlwbsa); and ¥g.2')el}

This definition is motivated by the ideas of Rosen [10].
To explain the connection, consider the case in which T 1is a
free theory, and think of sm&(w,a) as a general replacement
system on T(w,a) . Then a typical element of smﬁ(w,a) is
shown in Figure 3.1. An occurrence of gh , attached to the
tree f by e/ (n = |w|+1) , is replaced by g'h . Thus,
smﬁ(w,a) corresponds to the subtree replacement system on
T(w,a) given by the rules {(gh,g'h)| (g,8")ehd, dom(h) = w}
(Rosen's component R [10, Def. 5.1]. If A 1is a set of rule-
schemata [10, Def. 6?1], then this set of ordered pairs is the
assoclated set of instances. Thus sma(w,a) allows rewriting of
any left-hand-side of A occurring anywhere in a tree in T(w,a)

The correspondence fails to be exact, however in two ways:

(1) e, may occur in f more than once. In that case,

multiple copies of gh are rewritten in one step. Clearly,
any single copy of gh can be rewritten by a suitable cholce
of f , and any multiple rewriting can be simulated by several
steps of the corresponding subtree replacement system. Thus
this difference is not crucial unless one is counting steps
[T, Sec. 4].

2. sm&(w,a) makes sense even 1if A 1is not a set of rule-
schemata in Rosen's sense; indeed the results of this section
hold even when T 1is not a free theory. Conversely, Rosen's
notion of the domain of a parameter is more general than ours.

We next construct a formal system SMA . The formal objects
of SM are the morphisms of 'I'2

A
as follows:

, and the axioms and rules are

Axioms: If (f,f') ¢ sm&(w,a) , then +(f,f'):w > a SMA
If f ¢ T(w,a) , then LR, E)ew = B MR

Rules: (f,g):w - a
(g,f):w » a

(f,g):w > a (g,h):w = a
e (f,h):w - a BE

(fl,gl):w Ay see.y (£ ,8)W > a

- MP
([fl,...,fn]:fgl,...,gnjj.w > aj...a
Let SMﬂ(u,v) = {(f,f")] SM, H(f,f'):u > v} . The main theorem

of this section is that for all u,ve3¥, SM&(u,v) = Eﬂ(u,v)

The proof proceeds by a series of lemmas.

e
Lemma 3.1. SM, (8% » v L for all 1, 1=i<g v,

1
SM& F(eif,eif i

Proof: If |v| =1, then the result is trivial. If |vi>1,

(f,f') can be deduced only by an application of rule MP.

Therefore (eif,eif') must already have been deduced. W

Lemma 3.2. If aeS and SMﬂ ~(f,f'):w = a, then there is a

derivation of (f,f') in SM& which does not use rule MP.

Proof: If MP is used in the derivation of (£,£7) and
n (the number of hypotheses of MP) is 1, then it may be eliminated,
since the hypothesis of the rule is the same as its conclusion. If
MP is used in the derivation of (f,f') and n>1, then 1t must
be the last step in the derivation, since no rule of SMa is
applicable to its conclusion. But this 1s impossible, since

la] = 1. W

Lemma 3.3. If SMA ~(f,f'):w > a, keT(u,w) heT(w,v), and
geT(av,b), then SIVIa ~(g[f,hlk,g[f',hlk):u + b

Proof: By induction on the proof of CE.F%y In SM& : I¥
(f,f') is an axiom in SM& , so is (g[f,hlk,g[f',hlk) , by easy

calculation. If the last step in the proof of (f,f') 1is

(f’fn) (f",_fr)
(T,T7) M

then, by the induction hypothesis, SM, Hglf,hlk,g[f",h]lk):w - b

-,

and SMﬂ F(glf",hlk,g[f',h]lk):w - b. Hence, by MT,
SM}Q "‘(%[fah:t: g[f'sh])-
MS is similar; occurrences of MP are trivial, since

lcod(f) | = 1. B

Theorem 3.1 E, = SM

A A
Progf (1) SMAEE&: Every axiom of SM& is provable in E,,
and every rule in SI#I,ﬂ is a rule in E&. Therefore SMAEE&.
(ii) E,sSM,. The proof is by induction on proof in
Eﬁ; we show infter alia how to convert a proof in Eﬂ into a proof in
SMﬂ. The base step is that every axiom of Eﬁ is an axiom of SM&.

We now have one case in the induction step for each rule of E&.
(BE8)z IF SM& ~(f,g):u = v, then for each i, l<ic<|v |,
SMﬁ P(eif,eig):u >V, (where v, 1s the i-th letter of v).

Hence by MS, SM, ~(e,g,e;f). Then by MP, SM, +(g,f).

(ET): Similar to ES

(EP): Rule EP 1s identical to rule MP; no change necessary

(EC): We must show that if SM, F(E,£'):v > w, geT(w,y), heT(u,v),
then SMA —(gfh, gf'h):u > y. By Lemma 3.1, we may assume without

loss of generality that |y| = 1.

T .

If Jcod(f)| = 1, then the result follows by Lemma 3.3. If

w| = n>1, then by Lemma 3.1 we have SMQ h(eif,eif') for 1<iszn.

Now construct morphisms qjsT(v,w) for each j,(0s)sn), so that

for each i (l<isn) ,

o

e.q, = eif by

14 Vel 13
1

Thus the qj have the property that exactly one component of the
product changes from eif to eif' between consecutive qj's.
Hence Lemma 3.3 applies, and for all Jj, 0<j<n,

SMﬂ P(gqjh, gqj+1h). By repeated applications of MT,

SM, ~(gq h, gqnh). But q, = f and gq = i

So SM, ~(gfh, gf'h). This completes the induction step. B

Note that by Lemma 3.2, SM&(w,a) is the reflexive,
symmetric, transitive closure of smﬁ(w,a). Thus (f,f') eE&(w,a)
iff there exist fo,..,fn € T(w,a) such that f = fo, fn = fr,

and for each i, either (fi, f) or (f f.) belongs to

s i i 5 8 I i

sm&(w,a).

In sm, only one node of the tree (plus copies) is rewritten
at each step. In dealing with tree rewriting systems, it is use-
ful to allow multiple, parallel rewriting at each step. For this
we define the operator alphabet of A-moves and a formal system

My~ -

-] A

Definition: The operator alphabet m, of A-moves 1s defined by

%
mﬂ(w,a) = {(f[1,k], f[1,k'])| for some u,v eS , k,k'eT(w,u),

feT(wu,a), and for each i, l<i<|u]|, there exist g,g' and h

s.t. e;k = gh, e;k' = g'h, and (8.8")e A}

Thus instead of a single rewriting (as in SMA)’ we have
rarallel rewritings in each component of k.

The formal system M ls defined in the same way as SMA

A

3

except that the axiom scheme SMﬂ is replaced by:
If (F,f') € m&(w,a), then ~(f,f'):w » a MA

Theorem 3.2: Mﬂ = SM& = EA

Proof: Every axiom in SMﬂ is an axiom in M every axilom

&5
in M, is provable (via rule MT only) in SM&. The rest is the
previous theorem. E

¥
Corollary 3.1: For any weS , aeS, E&(w,a) is the reflexive,

symmetric, transitive closure of mA(w,a) or of smﬁ(w,a).

Proof: Theorem 3.2 and Lemma 3.2. H

As a result, each mﬂ(w,a) may be treated as a separate
equivalence problem, without worrying about substitution instances

or any other morphism set.

SR

4., The Church-Rosser Property

In the previous section we showed how E&(w,a) could be
characterized as the reflexive, symmetric, transitive closure
of a set of instances. This characterization does not yield a
natural choice of representatives. If, however, we can avoid
the symmetric closure, then a natural choice appears: we choose
as representatives those morphisms on which no further rewrites
may be made. Such a plan is possible if m, (or sm&) has the
Church-Rosser property. We first show why this simplification is
possible, and then sketch conditions under which m, (or sm&)

has the Church-Rosser property.

Let A Dbe aset, R&€ A x A , and let R¥ be the reflexive

transitive closure of R. We say R has the Church-Rosser property

iff for every x,y,z ¢ A, if (x,y) ¢ R¥ and (x,z) ¢ R*¥, there
is a t ¢ A such that (y,t) ¢ R¥ and (z,t) ¢ R¥. We say ¢

is an R-normal form of x iff (x,t) ¢ R¥ and there is no u such

that (t,u) ¢ R. If R has the Church-Rosser property, then
every X e€ A has at most one R-normal form. Let R# denote the

reflexive, symmetric, transitive closure of R.

Theorem 4.1: If R has the Church-Rosser property, (x,y) € R#
and y d4s R-normal, then (x,y) e R¥. |
Proof: It is well-known that if R 1s Church-Rosser and
(x,y) ¢« R# , then there is a z such that (x,z) « R¥ and

(ys2) €« R* (e.B. [T Thit. 2.l.l)e. XX ¥ is R-normal, then

=14

In combination with Corollary 3.1, this gives us the basic
result connecting theories and rewriting systems:

Theorem 4.2: Let T be an S-sorted theory, let A be a

set of equations on T , weS¥ , and aeS . If m&(w,s) has
the Church-Rosser property and feT(w,a) 1s equivalent modulo
Eﬁ to some m&(w,a)—normal morphism f' , then (f,f') ¢ [mﬁ(w,a)]*.
Proof: Corollary 3.1 and Theorem 4.1. B
Therefore, if mﬂ(w,a) has the Church-Rosser property, we can

choose (w,a)-normal forms as representatives (when they exist),

A
and compute the representatives of an arbitrary morphism feT(w,a)
by rewriting, using mﬁ(w,a) . Morphisms without normal forms
yield non-terminating calculations. This 1s the mathematical result
which underlies the "direct implementation™ of [5].

The difference between this and Corollary 3.1 is that the
Church-Rosser property relieves the interpreter of the obligation
to consider symmetric closure. In the absence of the Church-
Rosser property, the interpreter, seeking to find an m&(w,a)-normal
form, would be obliged to apply the rules from right to left as

¥
well as left to right.()

The OBJ interpreter does just that; in
order to avoid repetitions it keeps a table of all trees obtained
during the current calculation [3]. By using theorem 4.2, we can

obtain an algorithm as follows:

(¥) Indeed, in the absence of the Church-Rosser property,
m&(w,a)—normal forms may not even be representatives: an

eguivalence class may contain more than one normal form.

B

Algorithm 4.1:

Step 1. Initialize a queue with the input tree f.

Step 2. Remove a tree from the front of the queue. Apply
all possible sm, (or mﬁ) moves to it. If any of the resulting
trees are normal, stop. Otherwise insert them at the rear of the
gueue and go to step 2.

Thus we trade generality for space. Luckily, if T 1is free
theory, and the morphisms of T(w,a) are just trees, then under
fairly weak conditions, each m&(w,a) has the Church-Rosser
property. The following definition and theorem are translations
of [101].

Definition. Let £ Dbe an S-sorted operator alphabet, and

let A Dbe a set of equations on FQ . We say A has property R
iff
(i) 4if (f£,f') € A, then f' has no variable symbols not

in £ , and f 1is not a projection.

(1i) 4if (f,f') e A, then f has no repeated variables.

(1ii) 1if (f,f'), (g,g8') € A, and for some h and h', fh =
gh', then f=g and f'=g' (no common substitution instances)
and (iv) if (f,f') € A and (k,k') € A and there exist h,p
s.t. fh = g[l,kp], then there exists an r s.t. g=fr. (non-

overlapping).

Theorem 4.3 (Rosen[10]) if A has property R, then

sma(w,a) has the Church-Rosser property for each weS¥ and aeS

Proof: Conditions (i) and (ii) assert that A 1is a set of

I [

rule-schemata [10, Def. 6.1]. Condition (iii) implies condition
(1) of [10, Thm. 6.5] and also implies that the set of instances
of A is unequivocal. Condition (iv) 1is our transcription of
condition (2) of [10, Thm. 6.5]. So the result follows by

Theorems 6.5 and 5.6 of [10]. W

Corollary 4.1, If A has property R, then ma(w,a) has
the Church-Rosser property for each we3S¥ and aeS. B

In fact, most sets of axioms, such as those arising from
metacircular interpreters [9], have property R. We may com-
bine these theorems to get:

Corollary 4.2. Let @ be an S-sorted operator alphabet,

and let A be a set of equations with property R. If feFQ(w,a)
is equivalent modulo Ea to some m&(w,a) - normal morphism f°',
then (f,f') ¢ [ma(w,a)]*. W

Thus, 1f A has property R, then Algorithm 4.1 may be
used to compute representatives for the theory presented by

(,A). In fact, we can state a stronger result.

Definition Let & be an S-sorted operator alphabet and
let A be a set of equations. A move (f,f') e mA(w,a) is
outermost if each rewrite site has no proper ancestor which

is a rewrite site; it is parallel outermost if every outermost

rewrite site is rewritten.
Lemma 4.1 If A has property R, for each feFQ(w,a)

there exists at most one parallel outermost move (f,f') « ma(w,a).

sl P

Proof By condition (div). B
Let omr(f) denote this unique f' , if it exists.

Theorem 4.4 (O'Donnell [7]) Let Q be an S-sorted operator

alphabet, and let A be a set of equations with property R
If feFﬂ(w,a) is equivalent modulo EA to some m&(w,a)—normal
morphism f' , then f' 1is obtainable from f by some sequence
of parallel outermost moves.

Proof If A has property R , then A 1is outer [7, Def.
5.2.2]. Hence Theorems 5.2.2 and 3.4.1 of [7] apply. B

By Lemma 4.1, this gives a deterministic rewriting strategy

which is complete:

Algorithm 4.2 x:=f3 (the input morphism)

while ~ normal(x) do

x:=omr(x);

output x

Note that the theorems of substance occurred in Section 3.

Having reduced EA to the tree rewriting systems M& or

SMA , in this section we needed only to apply known results

on tree rewriting systems.

=

5. Concluding Remarks

We have shown how the equivalence problem for E& may
be reduced, in many useful cases, to a deterministic trans-
itive closure problem which may be solved using Algorithm
4.2, We believe that the reductions of Section 3 may be in-
dependently useful for proof-theoretic analyses of more compli-
cated algebraic systems.

It is also worth noting that from the point of view of
operational semantics, there 1s little difference between
single-sorted theories and many-sorted theories. Glven an
S-sorted presentation (Q,A) , one can obtain an l-sorted
presentation by identifying each object weS¥ with its length.
Rewriting in the two theories proceeds in exactly the same
fashion. The only difference is that there will be some trees
which are legal in the l-sorted theory, but are not morphisms
in the S-sorted theory (they give each operator the right
number of arguments, but some of the types are wrong). Re-
writing on these trees proceeds untll the type error is
discovered, at which time rewriting becomes blocked. The net
effect is that "compile-time" errors in the S-sorted theory

turn into "run-time" errors in the l-sorted theory.

=y [0

References

1.

10

Ll

22

Galler, B. A. and Fischer, M. J. An improved equivalence
algorithm. Comm. ACM 7 (1964), pp. 301-303.

Goguen, J. A. Correctness and equivalence of data types.
Mathematical Systems Theory, (Udine, 1975) (G. Marchesihi
and S. K. Mitter, eds.) Lecture Notes in Economics and
Maghematical Systems, Vol. 131, Springer, 1976, pp. 352-
350.

Goguen, J. A. Abstract errors for abstract data types.
Proc. IFIP Working Conference on Formal Description

of Programming Language Concepts (St. Andrew's, Canada,
1977} pp. 2l.d=2l, 32,

Goguen, J. A., Thatcher, J. W. and Wagner, E. G. An initial
algebra approach to the specification, correctness, and
implementation of abstract data types. IBM Research Report
RC 6487 (1977).

Guttag, J. V., Horowitz, E., and Musser, D. R. Abstract
data types and software validation. University of Southern
California, Information Scilences Institute Research Report
ISI/RR-T6-48 (August, 1976).

MacLane, S. Categories for the Working Mathematician Springer-
Verlag, New York, 1971.

O'Donnell, M. Subtree replacement systems: a unifying
theory for recursive equations, LISP, Lucid, and com-
binatory logic. Proc. 9th ACM Symp. on Theory of Computing
(Boulder, Co., 1977), pp. 295-305.

Pareigis, B. Categories and Functors Academic Press, New
York, 1970.

Reynolds, J. C. Definitional interpreters for higher-
order programming languages. Proc. ACM Nat'l. Conf. (1972),
pp. T17-ThO.

Rosen, B. K. Tree manipulating systems and Church-Rosser
theorems. J. ACM 20 (1973), pp. 160-187.

Vuillemin, J. Correct and optimal Implementations of
recursion in a simple programming language. J. Comp.
Sys. Sci. 9 (1974), pp. 332-354.

Wand, M. Final algebra semantics and data type extensions.
Indiana University, Computer Sclence Department, Technical
Report #65 (July, 1977).

— 20—

Figure 3.1

The single move

f[1,gh]>f[1,g'h]

