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Abstract

In the database systems and systems engineering domains, the concepts of con-

straints and views are commonly and e�ectively used. Considered as highly distinct,

they stand as well-established notions in both domains' bodies of knowledge. Con-

straints may be expressed as \business rules" independent of underlying models. In

these situations, the correctness of the implementation of the constraint may be in

jeopardy and potential development ine�ciencies may result as well. Furthermore,

the modeler or designer may employ a model or methodology that does not support

natively the speci�cation of a particular constraint. As a result, such constraints only

manifest themselves in the information system, and consequently, one is only aware

when the constraint has been violated.

The focus of this research is that in fact a duality does exist between views and

constraints (hypothesis 1) and that this duality is a useful tool in the development of

information systems (hypothesis 2). Employing both proof and empirical evidence,

our investigation reveals that the accuracy with which the �rst hypothesis holds
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depends upon the degree to which the constraints can be formalized. In the case of

the relational data model, the constraints can be formalized. This is even true of the

semantic constraints that are expressible in relational algebra and relational calculus.

In the case of the other models that we explore, the constraints have a less formal

expression, and views prove to be a method for interjecting more formality into the

expression of the constraints.

Our results concerning the accuracy of the �rst hypothesis also hold for the second

hypothesis; that is, the accuracy with which the second hypothesis holds depends

upon the degree to which the constraints can be formalized. In the case of the

relational data model, the constraints can be formalized, and thus we can generate

general solutions for them. Nevertheless, uses of the duality outside the relational

domain may be possible, and this is a focus of future work.
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1

Introduction

In the database systems and systems engineering domains, the concepts of con-

straints and views are commonly and e�ectively used. Considered as highly dis-

tinct, they stand as well-established notions in both domains' bodies of knowledge.

The focus of this dissertation is that in fact a duality does exist between views and

constraints and that this duality is a useful tool in the development of information

systems.

As currently deployed, constraints may be expressed as \business rules" indepen-

dent of underlying models { the one notable exception being cardinality constraints

in Entity-Relationship (ER) models. Moreover, constraints generally have a local a-

vor, in that they are de�ned and evaluated with respect to a local context.1 In these

situations, the constraints typically �nd their �rst and only precise representation in

1As an example of the global-local distinction from the physical database realm, contrast tuples
{ which are local { with databases.

1



1. Introduction 2

the source code, and this ad hoc approach tends to jeopardize the correctness of the

implementation of the constraint.

Only slightly less troubling are the potential development ine�ciencies resulting

from the use of the ad hoc tactics. These ine�ciencies arise from the inability to

see commonly shared patterns and procedures, and this myopic perspective manifests

itself in solutions best described as one-o�. The ine�ciencies are not only in the

implementation time and e�ort but also in the performance of the implementation.

More speci�cally, we see the absence of the value gained by having and utilizing

common procedures that undergo heavy algorithmic scrutiny.

In general, the modeler and designer may be unable to fully and precisely express

constraints where they arise, so they are \baked" into the information system. That

is, the modeler or designer may employ a model or methodology that does not support

natively the speci�cation of a particular constraint, where the constraint itself is most

naturally expressed in the context provided by the model/methodology. For example,

consider the case where a functional constraint (that is, business rule) applies most

naturally to the entities in an ER model, but the conventional ER notation does

not support the speci�cation of such a constraint. As a result, such constraints

only manifest themselves in the information system, and consequently, one is only

aware when the constraint has been violated, in e�ect recording the failure rather

than catching the failure. We denote instances where constraints do not have native
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support as cases of constraint speci�cation displacement.

A View is an organized subset of a whole, where the subset is chosen according

to some criteria. Furthermore, the term \view" usually denotes an external repre-

sentation meant to conceal the internal structure of the whole and display only the

information pertinent to the intended viewer. Moreover, a view typically has a global

nature (that is, one usually de�nes them in a global manner). By virtue of this, views

often have a distinctly di�erent avor than that possessed by constraints.

However, although the modeling methodologies in the database systems and sys-

tems engineering domains share roughly the same notion of view, each naturally has

its own method for expressing views; and di�erences in these methods create a type

of impedance mismatch, as views expressed according to one methodology do not in-

teract naturally with views expressed according to another. For example, in the case

of database systems (speci�cally, relational database management systems), a well-

accepted method for expressing views does exist, but this Coddian mechanism tends

to have limited feasibility outside its provenance. A shared mechanism for expressing

views would certainly enable the expression of richer models.

The risky ad hoc implementation of constraints and the absence of a shared view

mechanism across the database systems and systems engineering domains present

compelling exigencies, and this research o�ers a solution to �ll these needs. The

remainder of this chapter describes a motivating example for this research and then
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provides an overview of the document, including an outline of the hypotheses central

to the research.

1.1 A Motivating Example

First consider a scenario involving truck assembly for the �ctional automobile

manufacturer Hanyoda Motors. Hanyoda's assembly process for its Farce trucks in-

cludes activities in the following physical areas on the assembly line: body shop, paint

shop, trim, chassis, and �nal line. In the body shop, the truck's assembly begins with

the assembly of its framework as well as its outer shell. Next, the assembly process

proceeds through the paint shop and trim area; the truck's cab, box, and chassis

remain separate. In parallel come the activities in the chassis area where the truck's

skeleton receives many critical components, including its transmission and previously

assembled engine. The entire process culminates in the joining of the cab and box to

the chassis in the �nal line.2

To help meet the informational needs related to the truck assembly process, Hany-

oda Motors' data modelers created entity-relationship (ER) models to depict the pro-

cess' data requirements. Figure 1.1 contains the ER model that strictly concerns the

parts needed by Hanyoda Motors in its truck assembly process.

2Please review [Cor] for a description of an actual truck assembly process; the process described
in this document loosely mirrors it.
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Figure 1.1: Hanyoda Motors Parts ER Diagram

A straightforward conversion of the ER diagram in Figure 1.1 to a relational design

populated with some example values, results in the relations in Figures 1.2, 1.3, and

1.4. Note that the SubpartI relationship is subsumed in the Part table.

Using views to express constraints (one of two aspects of the duality we examine),

we can specify two constraints that must hold in this scenario. The �rst of these

constraints is a canonical constraint from the core relational model, a foreign key.

We more formally introduce this constraint in Chapter 2; for now, we illustrate it by

referring to Figures 1.3 and 1.4. In the case of both columns (type ID and child type -

ID) in the SubpartS table, we naturally want to limit the values in both to the values

that also appear in type ID column in the Part Type table. We formally specify these

constraints using relational algebra in Examples 1.1.1 and 1.1.2.

Example 1.1.1 (type ID Foreign Key Constraint)
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part ID parent part ID type ID
T4655 NULL T1
T4656 NULL T2
E4888 T4655 E5
E1111 T4656 E3
B1234 E4888 B35
B5678 E1111 B35
C9876 T4655 C45
C9877 T4656 C32

...
...

...

Figure 1.2: Part Table

type ID description
T1 Full-Size Truck
T2 Compact Truck
E3 Turbo V8 Engine
E5 V8 Engine
E6 V6 Engine
B12 Small Block
B35 Big Block
C45 Extended Cab
C32 Cab
...

...

Figure 1.3: Part Type Table

type ID child type ID
T1 E3
T1 E5
T2 E3
T2 E5
T2 E6
T1 C32
T1 C45
T2 C32
E3 B35
E5 B35
E6 B12
...

...

Figure 1.4: SubpartS Table
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�type ID(SubpartS) � �type ID(Part Type)

Example 1.1.2 (child type ID Foreign Key Constraint)

�child type ID(SubpartS) � �type ID(Part Type)

Examples 1.1.1 and 1.1.2 are the formal descriptions of the foreign key constraints

that we wish to enforce on the SubpartS table. Foreign keys are well-understood,

and well-established techniques already exist for specifying them. However, other

classes of constraints (such as the aforementioned business rules) do not bene�t from

similarly proven methods; another constraint from our example illustrates this de�-

ciency. Speci�cally, we clearly do not want to allow the case where a part is related

to itself via the relationships established in the Part table, yet no mechanism in the

core relational model exists to preclude this case from occurring.

This example constraint provides a taste of the type of constraint that the view

$ constraint duality framework can easily express and we return frequently to the

Hanyoda Motors scenario throughout the remainder of this dissertation. For now,

we proceed to an overview of this document, including an outline of the hypotheses

central to the research.

1.2 Overview of Research

The principal hypotheses of this dissertation are the following:
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1. a view$constraint duality exists in database systems and systems engineering

domains and

2. the view$constraint duality is a conceptually tractable and useful tool in the

development of information systems.

In these hypotheses, duality refers to the ability of each to express the essence or mean-

ing of the other. Although de�nitions of \view" and \constraint" vary by context,

the fundamental premise of this research is the duality exists regardless of context.

To provide tractability, the context for the research is �rst the database systems and

systems engineering domains.

We begin in Chapter 2, where we discuss the necessary background information

and introduce the notational conventions that we employ. Included in these topics

are the Zachman Framework for Enterprise Architecture, the core relational model,

relational algebra, relational calculus, Structured Query Language (SQL), and object-

oriented analysis and design concepts.

We next expound on the view$constraint duality in Chapter 3. In this exposition,

we discuss the concepts foundational to our hypotheses and examine the di�culties

that we encounter in establishing the duality. We also prove the duality's existence in

a formal context (the core relational model) and then introduce additional contexts

where we �nd empirical evidence for the duality.
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To gather empirical evidence, it is necessary to probe these domains for instances

of the duality, where the instances themselves are representative of the sub-domains

in which they exist. To this end, we use the Zachman Framework for Enterprise

Architecture to organize and guide in this exploration.

The Zachman Framework for Enterprise Architecture de�nes an architectural

structure for organizing institutional artifacts and models; it is these artifacts and

models which we examine to validate our hypotheses. The framework utilizes a grid

structure with columns known as interrogatives and rows known as roles. The typical

labels for the columns are the interrogatives: What, How, Where, Who, When, and

Why. The rows commonly have role labels such as Specify, Design, and Build. Our

hypotheses validation process tends to focus on the Specify and Design roles, as the

Build role emphasizes the implementation-related representations that fall outside

our purview. Please refer to Figure 2.1 for a graphical depiction of the framework.

The interrogatives are questions whose answers represent di�erent abstractions of

the enterprise. For example, the answers to the How question include a description of

an enterprise's business processes. As for the roles represented by the rows, these are

largely perspectives found throughout an enterprise; an example includes the owner

stakeholder group naturally corresponding to the Owner role.

In the following, we move within the Zachman Framework from well-formalized

areas to those more descriptive and intuitive in nature. Worth noting is that as we
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make this shift, the �rst hypothesis becomes more di�cult to formally express, and

consequently, the validation itself becomes more descriptive. In general, the presence

of strong formalisms provides a rich backdrop against which to validate the duality.

In Chapter 4, we begin the process of �nding empirical evidence of the duality

by closely inspecting the database systems domain (in the Zachman Framework, the

What column). As the context in which we formally prove the duality is the core

relational model and the core relational model is well entrenched as the paradigm du

jour of the database systems domain, we establish in the previous chapter (Chapter 3)

the general case of the duality in the database systems domain. In contrast, we focus

in this chapter on speci�c instances of the duality in the database systems domain. We

do, though, still have at our disposal the formalisms provided by the core relational

model (namely relational algebra and relational calculus) as well as set containment

and set equality. These formalisms enable us to express formally the instances that

we address. We focus on the well-known constraints and dependencies found in the

core relational model, utilizing relational algebra and set operations to illustrate the

manner in which this facet of the duality holds. We also describe a set of extensions

(including aggregate functions, transitive closure, and metadata operations) to the

core relational model and investigate related classes of constraints. In these classes,

we use views to express constraints that others have only been able to do descriptively.
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In Chapter 5, we leave the data models and proceed to address models and

methodologies at the conceptual level that are less formal and more descriptive. Here,

we identify two archetypal elements that allow us to argue the existence of the duality

in other areas of the Zachman Framework and thus to continue validating our hy-

potheses. The set of archetypal framework components consists of the process model

and the time-based model. The process model resides in the How column and the

time-based model in the When column. In both cases, we o�er representations that

allow us to see the manner in which the duality holds. We then continue our exami-

nation by delving into the duality in an area that we entitle cross-column modeling;

we take this title from the manner in which modeling occurs across the columns of

the Zachman Framework.

Having validated the �rst hypothesis, we focus on the second hypothesis. Our

results from the �rst hypothesis grant us great exibility and expressiveness, and we

discuss the use of the duality as a tool in the development of information systems in

Chapter 6.

From the inspection of the duality and its uses, it follows that the duality per-

mits globally de�ned constraints that inhabit a sweet spot that is the conuence of

formalism and practicality. Furthermore, the duality lends a credible de�nition of

view that naturally ows across existing boundaries, granting a shared perspective

on views and thereby enabling richer methodologies and models. We then conclude
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with a summary of our results and a discussion of future work.



2

Background

This chapter provides background material and related work pertaining to the

view-constraint duality. We start with the notational conventions that we employ in

the remainder of the document. We then further investigate the Zachman Framework

for Enterprise Architecture to help categorize contexts for views and constraints.

We subsequently discuss the formal aspects of the relational model, as introduced

by Codd in [Cod70]. We also provide an overview of query languages, including

an introduction to relational algebra and calculus as well as the Structured Query

Language (SQL). Next, we explore dependencies, constraints, and the SQL VIEW and

TRIGGER mechanisms. We then conclude with a summary of the related work.

13



2. Background 14

2.1 Notational Conventions

In this section, we list the notational conventions that we employ in the remainder

of the document. Other conventions are introduced as necessary; such conventions

have a more limited scope than the ones listed here.

� R(A1; : : : ; An) and S(B1; : : : ; Bm) are relation schemas.

� r is an instance of R, and s is an instance of S.

� X, Y � fA1; : : : ; Ang.

� Z = fA1; : : : ; Ang � (X [ Y ).

� t, ti, tj, t1, t2, and t3 denote tuples.

� ti.W = tj.W denotes 8w2W (ti.w = tj.w).

� 8i, Xi � fA1; : : : ; Ang and [
m
i=1Xi = fA1; : : : ; Ang.

� � denotes the transitive closure operation.

� � denotes the relational composition operation.
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2.2 Zachman Framework for

Enterprise Architecture

In his IBM Systems Journal articles, John Zachman describes a Framework for In-

formation Systems which de�nes an architectural structure for organizing institutional

artifacts[Zac87, SZ92]. The expression of these artifacts reveals the interconnections

and abstractions among structural elements and thereby facilitates the understanding

of operational systems. In its latest form, \The Zachman Framework for Enterprise

Architecture" presents an architectural model that is currently seeing more frequent

use. The extensiveness and exibility of the Zachman approach is demonstrated in a

variety of applications from the design and construction of data warehouses[IZG97]

to its role in academics as shown in the development of textbooks[WBD03].

The framework utilizes a grid structure with columns known as interrogatives and

rows known as roles. The typical labels for the columns are the interrogatives: What,

How, Where, Who, When, and Why. The rows commonly have role labels such as

Specify, Design, and Build or equivalently Owner, Designer, and Builder. Please refer

to Figure 2.1 for a graphical depiction of the framework.1

The interrogatives are questions whose answers represent di�erent abstractions of

1This �gure is courtesy of the Zachman Institute for Framework Advancement (ZIFA). It is not
the most recent image from ZIFA, but it is the one that reproduces best in black and white.
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Figure 2.1: Zachman Framework for Enterprise Architecture

the enterprise. For example, the answers to the How question include a description of

an enterprise's business processes. The roles represented by the rows are largely per-

spectives found throughout an enterprise; an example includes the owner stakeholder

group naturally corresponding to the Owner role.
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2.3 Core Relational Model

At the heart of the relational model is a relation. A relation R is a name and a

�nite set of attribute names fA1; : : : ; Ang, known as the \schema" or \sort" of R.

We often write R to indicate only its name and sort(R) to indicate fA1; : : : ; Ang.

The arity of R is n.

A tuple t over R is a function mapping sort(R) to the domain dom; if necessary,

we distinguish the domains of the individual attributes as dom(Ai). If t(Ai) is not

de�ned, we extend t to map Ai to NULL, for some distinguished symbol NULL not in

dom. An instance of R, commonly denoted r, is then a �nite set of tuples over R.

Queries are another concept critical to the relational model. A query q is a map-

ping between relation instances. In the context of the relational model, the application

of a query mapping to an input instance results in another relation instance. This

extremely useful property is known as the property of relational closure.

2.4 Relational Query Languages

In this section, we discuss the relational query languages that we may use to

write queries against the relational model. Please consult [AHV95] for additional

information on the formal aspects of these query languages.
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Relational Algebra

The relational algebra is a declarative query language, with queries de�ned by the

composition of the following basic operations:

Selection: Written ��(R), the selection operator selects tuples from its input relation

R that satis�es the boolean condition �. The � expression is typically of the

form ��� where �, � 2 sort(R) [ dom(R) and � is a binary relation often

involving equality. � may also be a boolean expression with base terms of the

form ��� connected with the standard logical connectives.

Projection: Written �X(R) where X � sort(R), the projection operator projects a

subset of a relation's attributes, i.e., X, and thus creates a new relation with

attributes sort(X).

Renaming: Written �Q(R) or ���� ;A!B;���(R), the renaming operation allows the re-

naming of relations and individual attributes. In the case of �Q(R), � renames

R to Q, while in the case of ���� ;A!B;���(R), � renames the A attribute of the R

relation to B.

Join: Written R ./� S where � is a boolean condition, the join operator is actually a

Cartesian product operation followed by a selection operation, i.e., R ./� S =

��(R � S), that results in a new relation with attributes sort(R) [ sort(S). In

general, this only succeeds if sort(R) \ sort(S) = ;; renaming may be required
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to achieve this. A special type of join operation known as a natural join, R ./ S,

is a join that pairs tuples from R and S that agree on their common attributes,

sort(R) \ sort(S).

Set operations: Written [, \, and �, respectively, the union, intersection, and set

di�erence operations have their typical set semantics, with the added restriction

that all relations serving as operands must have the same schema.

By convention, unmatched attributes in projections and renamings are ignored. That

is, if A 62 sort(R), then ���� ;A;��� and ���� ;A!B;��� are interpreted as if the A and A !

B, respectively, were not present. In addition, to avoid concerns regarding operator

precedence, we assume that relational algebra expressions are fully parenthesized.

Also worth noting is that relational algebra may be characterized as a procedural

query language because it is possible to specify directly the evaluation tree used in

answering the query. This is in contrast to \more" declarative languages such as

relational calculus, which we discuss in the next subsection.

Relational Calculus

Relational calculus is based on �rst-order logic (i.e., predicate calculus), and in

fact, it is �rst-order logic using only �nite models and without function symbols, as
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Abiteboul, Hull, and Vianu discuss in [AHV95]. Because it is a logic, relational calcu-

lus is considered a declarative language; nevertheless, relational calculus and relational

algebra do have equivalent expressiveness when the relational calculus formulas are

safe. As Ullman discusses in [Ull88], the need for safety results from wanting to avoid

interacting with in�nite relations; for the reader interested in safety, we also suggest

[AHV95].

Relational calculus comes in two avors: tuple relational calculus and domain

relational calculus. As Elmasri and Navathe discuss in [EN06], these two avors

di�er in the types of variables that appear in their formulas. In the case of tuple

relational calculus, the variables have as their domains sets of tuples (i.e., relations),

and thus each variable is assigned an individual tuple. On the other hand, in the case

of domain relational calculus, each variable takes its value from the domain for the

attribute that it represents. A more substantive di�erence is in quanti�cation. That

is, tuple calculus is typically safe by syntax and domain calculus by semantics, i.e.,

by interpreting quanti�ers only over the active domain. Nevertheless, tuple relational

calculus and domain relational calculus have equivalent expressive power.
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Structured Query Language (SQL)

The Structured Query Language (SQL) is the query language employed in most

relational database management systems, and as Ullman discusses in [Ull88], SQL in-

corporates aspects of both relational algebra and relational calculus. In the following,

we briey describe the major components of interest; for a more detailed description,

please consult the most recent ANSI/ISO SQL standards (SQL-92 (SQL2) [Ame92]

and SQL-99 [Ame99]) or Connolly and Begg in [CB01].

As a query language, SQL manifests itself as SELECT statements. SQL also includes

other data manipulation commands as well as aspects that concern data de�nition

and data control. For our purposes, we focus on SELECT statements and the other

data manipulation commands, i.e., INSERT, UPDATE, and DELETE statements. We

begin by examining the INSERT, UPDATE, and DELETE statements before addressing

the SELECT statement.

The INSERT, UPDATE, and DELETE statements may operate on a single relation or

possibly multiple relations. We limit our perspective in this document to the single

relation case. As for the commands themselves, they perform the operations that

their names suggested: INSERT inputs new tuples into relations, UPDATE modi�es ex-

isting tuples, and DELETE removes tuples. One may consider the UPDATE statement

as an atomic combination of a DELETE statement and then an INSERT statement with
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implicit shared bindings. With each statement, it is possible to specify restrictive

criteria in a WHERE clause that limits the inuence of the command. As the SELECT

statement may also contain a WHERE clause, we discuss the WHERE clause in the fol-

lowing.

As for the SELECT statement, its general form is the following:

SELECT vi.Ak, : : :, vj.Al

FROM Ri AS vi, : : :, Rj AS vj

WHERE �

where � expresses a boolean condition and may incorporate the common logical con-

nectives (AND, OR, and NOT) as well as comparative binary relations, such as =, <, >,

etc. and the vi, : : :, vj are a set of variable names and thus disjoint.

It is possible to express relational algebra and calculus queries in SQL, and we

may express many but not all SQL queries in relational algebra and calculus. A

well-known example of this di�erence in expressiveness is aggregation, as discussed

by Libkin in [Lib01]. Henceforth, we denote this boundary as the core relational

model, in that relational algebra and calculus can express the core relational queries;

in Chapter 4, we revisit these limitations.
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2.5 Constraints, Triggers, and Views

In this section, we delve into the relational model's dependencies as well as the

constraints expressible by SQL. We also discuss the SQL TRIGGER and VIEW

mechanisms.

Dependencies

In this subsection, we explain the four main dependencies found in relational

databases. With each, we provide a brief description of the constraint and then give

its formal de�nition. We explore these dependencies again in Chapter 4, and one may

refer to [GMUW02] or [RG00] for additional information.

The �rst dependency is the functional dependency, and informally, a functional

dependency occurs when values for a set of attributes Y depend directly on values

for another set of attributes X. More formally, a relation instance r satis�es the

functional dependency X ! Y if 8t1, t2 2 r (t1.X = t2.X ) t1.Y = t2.Y ).

Another dependency from the relational model is the multivalued dependency.

Given a set of �xed attribute values, a multivalued dependency holds when a second

set of attribute values is entirely independent of a third set of attribute values. More

precisely, a relation instance r satis�es the multivalued dependency X !! Y jZ if 8

t1, t2 2 r (t1.X = t2.X ) 9 t3 2 r (t1.XY = t3.XY ^ t2.Z = t3.Z)).
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The join dependency is a third relational model dependency, and a relation in-

stance r satis�es the join dependency ./ [X1; : : : ; Xm] if r = (./mi=1(�Xi
(r))). Intu-

itively, a join dependency occurs when a relation is decomposed into multiple relations

and the join of these relations results in a relation that equals the original relation.

The decomposition is lossless in that no tuples were lost and no spurious tuples

were generated as a result of the aforementioned join. It is worthwhile to note that

functional dependencies and multivalued dependencies are special cases of the join

dependency.

The �nal dependency is the inclusion dependency. In an inclusion dependency, a

relation instance r satis�es the inclusion dependency R[X] � S[Y ] if �X(r) � �Y (s).

Each of these dependencies becomes a constraint on a schema R (or R and S for

an inclusion dependency) if it is required that every instance r of R (respectively r

and s) satisfy that dependency.

Integrity Constraints

In this subsection, we briey explore the constraints expressible by SQL. For a

detailed discussion of integrity constraints, please see [GGGM98].

The �rst constraint that we discuss speci�es a primary key. Intuitively, a primary

key is an attribute or set of attributes whose values for a particular tuple are unique
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across the entire relation. More formally, X is a primary key for r if 8 t1, t2 2 r (t1.X

= t2.X ) t1 = t2).

Foreign keys are another type of integrity constraint. A foreign key is a restriction

on an attribute from a relation that limits the values that the attribute may contain

to the values found in a primary key attribute from another relation. Formally, Ai 2

sort(r) is a foreign key that refers to Bj 2 sort(s) if 8t1 2 r, 9t2 2 s (t1.Ai = t2.Bj).

Yet another type of integrity constraint is the value-based constraint. Constraints

of this type serve to limit the values that an attribute may have. Ai 2 sort(r) satis�es

the value-based constraint C if �Ai
(r) � �C(�Ai

(r)) = ;.

Similar to the value-based constraints are tuple-based constraints. Instead of being

de�ned on an attribute as is the case with value-based constraints, the tuple-based

constraints are de�ned on relations. The relational instance r satis�es the tuple-based

constraint C if r � �C(r) = ;.

The �nal type of integrity constraint that we discuss is an assertion. As Garcia-

Molina, Ullman, and Widom indicate in [GMUW02], assertions are named boolean-

valued expressions stated using SQL and are de�ned against entire database schemas

as opposed to only attributes or relations. The view-based expressions that are the

focus of this document have a natural implementation in the form of assertions;

however, this aspect of the SQL standard is not widely implemented by the database

management system vendors.
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Views

An SQL VIEW is a named query that may be used as if it were a relation of the

same name, i.e., it may be queried and in some restricted cases, updated. A view {

whether de�ned as an SQL VIEW or some other expression { may be implemented by

recomputing the view as needed or as a precomputed and stored materialized view.

There are also unnamed views, such as query expressions contained in FROM clauses or

subqueries found in INSERT, UPDATE, and DELETE statements; naturally, an unnamed

view cannot be queried as if it were a relation.

In addition, a distinction needs to be made between the view expression and the

relation instance that results from the evaluation of the view expression. As \VIEW"

may be used to describe both, we make the distinction where it is necessary. As a

�nal consideration, the notion of sort is extended to SQL VIEW as the schema of the

relation de�ned by the view expression, that is, the schema of the relation instance

that results from the evaluation of the view expression.

Triggers

Relational Database Triggers are Event-Condition-Action (ECA) rules where an

occurrence of an event causes the evaluation of a condition and if the condition

is true, an action. An event is a data manipulation statement on a table (that
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is, an INSERT, UPDATE, or DELETE) with an added temporal characterization

(BEFORE, AFTER, or INSTEAD OF). As for the condition itself, any boolean-

valued query is acceptable. Finally, the action contains the procedural steps to execute

when the event is triggered and (if speci�ed) the condition evaluates to true. It is the

procedural nature of the action component that gives triggers their expressiveness.

Triggers are an extension of constraints, a powerful procedural alternative to the

declarative nature of constraints. As discussed in [RG00], a common use of triggers is

to enforce database consistency, a goal they obviously share with constraints; they are

also often utilized to enforce complex business rules that constraints cannot capture.

In fact, RDBMS allow the use of general purpose programming languages in the

action clauses of their trigger de�nitions. For instance, Oracle allows PL/SQL in its

action clauses; since PL/SQL is Turing-complete, this is indeed powerful but also

dangerous. On a �nal note related to triggers, they typically fall into a more general

area known as active databases.

2.6 Summary of Related Work

A well-understood property of SQL is that it may serve as a constraint speci�cation

language. Garcia-Molina, Ullman, and Widom discuss this in detail in [GMUW02].

Relational constraints and dependencies have been a frequent topic of research. Codd
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introduced functional dependencies in [Cod72], while multivalued dependencies were

studied individually by Fagin in [Fag77], Zaniolo in [Zan76], and Delobel in [Del78].

Very recently, Ceri, Di Giunta, and Lanzi in [CGL07] investigated the application of

data mining techniques to discovering pseudoconstraint violations, while in [LS06], Lu

and Scoggins explored the use of SQL extensions and the integration of satis�ability

(SAT) solvers (into the RDBMS) in the solving of boolean constraint problems within

a relational database.

Active databases are another area of substantial inquiry; this includes Ceri and

Widom in [CW90] where they derive triggers to repair the data causing the viola-

tion of a constraint. Ceri and Widom continue their work on active database in

[CW91] where they derive triggers based on SQL VIEWs to maintain incrementally

the materializations of such views and in [CW94] where they derive triggers based on

deductive database rules to maintain incrementally the deductive database's derived

(i.e., intensional) relations. Ceri carried on this work in [CFPT94] with Fraternali,

Paraboschi, and Tanca, in which they derive triggers from integrity constraints to

enforce the constraints. Additional work in the area of constraint maintenance has

been performed by Casanova, Tucherman, and Furtado in [CTF88] and Morgenstern

in [Mor83].

As for relational views, they too have received signi�cant attention, especially as

they concern maintenance (that is, the maintenance of materialized views when the
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base relations are updated) and update (that is, the translation of updates to views

into updates to base relations). Buneman and Clemons present pioneering work on

view maintenance in [BC79]. Other authors with work on view maintenance include

Koenig and Paige in [KP81]; Paige again in [Pai82]; Blakeley, Larson and Tompa in

[BLT86]; Gupta, Katiyar, and Mumick in [GKM92]; and Qian and Wiederhold in

[QW91]. One well-known property of view maintenance concerns its connection to

incremental maintenance of integrity constraints. In fact, this connection bolsters our

claims concerning the view-constraint duality, especially in the relational database

context; we delve into this in Chapter 3. Several authors discuss this connection,

including Bernstein, Blaustein, and Clarke in [BBC80], Henschen, McCune, and Naqvi

in [HMN82], and Ross, Srivastava, and Sudarshan in [RSS96].

As for the view update problem, it too has been the recipient of extensive research.

In [FC85], Furtado and Casanova provide a survey of this research. Furtado, Sevcik,

and dos Santos in [FSdS79], Rowe and Shoens in [RS79], Dayal and Bernstein in

[DB82], and more recently, Lechtenb�orger and Vossen in [LV03] all provide pioneering

work in this area.

Constraints and views have also been a topic of research in the object-oriented

analysis, design, and implementation areas, and several standards organization have

addressed them in their organizations' publications. Concerning views, Albin in

[Alb03] discusses them in the context of software architectures, while in [Wre98],
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Wrembel examines the notion of object views from an object-oriented perspective.

Signi�cant research has been conducted in the area of the relationship between ob-

jects and relational databases; this includes Keller in [Kel86] and several textbooks

[AHV95, Ull88, GMUW02, RG00, CB01, EN06]. In addition, Roberts, Berry, Isensee,

and Mullaly discuss a use of the view notion in the design of user interfaces in

[RBIM98].

As for constraints, a widely used set of object-oriented modeling techniques is the

Uni�ed Modeling Language (UML); see [FS00, PJ00] for additional information. An

extension to UML for specifying constraints on UML models is the Object Constraint

Language (OCL). Two useful OCL references are the OCL 2.0 speci�cation [OMG05]

and the book authored by Warmer and Kleppe [WK03]. As Beckert and Trentelman

examine in [BT05], OCL does allow recursion and can express properties of relations

(e.g., transitive closure) that �rst-order logic cannot.

As we mention earlier, standards organizations have given signi�cant attention

to views and constraints in their publications, albeit as independent concepts. For

instance, the Institute of Electrical and Electronics Engineers (IEEE) have formally

de�ned views in the software engineering context [IEE00]. In addition, in [ISO00],

the International Organization for Standardization (ISO) addresses the relationship

between views and constraints by acknowledging the role that views play in under-

standing models and their constraints.
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The View$Constraint Duality

In this chapter, we expound on the view$constraint duality and the hypotheses

that are the foci of this research. In this exposition, we discuss the concepts founda-

tional to our hypotheses by way of an examination of the di�culties that we encounter

in establishing the duality. We also begin the process of establishing the duality by

proving its existence in a formal context and then introducing the informal situa-

tions that provide additional contexts for our e�orts. We conclude this chapter with

a preliminary discussion of the duality as a tool in the development of information

systems.

We start with a restatement of our two hypotheses:

1. a view$constraint duality exists in database systems and systems

engineering domains and

31
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2. the view$constraint duality is a conceptually tractable and useful

tool in the development of information systems.

Duality refers to the ability of each to express the essence or meaning of the other.

Although the methods employed to express views and constraints vary by context, the

fundamental premise of this research is that this duality exists regardless of context.

To provide tractability, the context for the research is the database systems and

systems engineering domains.

3.1 Challenges in Establishing the Duality

Before we address the speci�c challenges we face, it's necessary to note that al-

though the duality holds equally well in each direction (as we see in the following),

constraints expressed by views are commonly more useful. Intuitively, this stems

from a couple of factors. The �rst of these factors concerns the richer data types that

are present in views. These richer types permit more expressive statements, and we

address this in the next subsection. As for the second factor, it concerns the indirect

role that constraints can play in expressing views, and we postpone discussing this

indirection until we establish the duality in a formal context.

Another point of emphasis concerns an aspect of the nature of constraints. More

speci�cally, constraints speci�ed at the model level constrain instances. For example,
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one speci�es primary keys on relational table schemas (i.e., the relational model) that

the relational database management system enforces on the instances of the tables.

Furthermore, although it is less commonly done, this characteristic extends to the

meta-model level; that is, one speci�es constraints on the meta-model that constrain

models based on the meta-model. As we investigate instances of the duality, we

observe this aspect of the nature of constraints.

Having discussed these general items, we now examine the aforementioned chal-

lenges:

1. the type mismatch between views and constraints, and

2. the degrees of formality in the contexts we investigate.

The remainder of this section concerns these challenges.

Type Mismatch

The type mismatch between views and constraints creates an impediment to the

formation of a precise statement of the �rst hypothesis, as views and constraints

are considered to be very distinct concepts. Constraints are either true (satis�ed)

or false (not satis�ed). For example, in the core relational model, constraints can

be expressed as closed �rst-order logic formulae that naturally evaluate to boolean



3. The View$Constraint Duality 34

values. On the other hand, as we briey discussed in Chapter 1, views are an organized

subset of a whole, where the subset is chosen by some criteria; both the \whole"

and the \organized subset" vary according to context. In the core relational model,

this whole is a database schema, and both relational algebra and relational calculus

can express views on said schema.1 Due to the property of relational closure, the

resulting organized subset is a relation. In general, bridging the gap created by this

type mismatch is critical to an e�ective characterization of the duality.

Throughout this research, we adhere to a set-theoretic approach for de�ning the

underlying whole, and thus, any language that we utilize to express views performs its

operations against sets. As a result of using set theory, we inherit the set operations

that we discuss in Chapter 2 (that is, union, intersection, and set di�erence) as well as

set containment and set equality. Set containment and set equality prove to be critical

in enabling us to use views to express constraints. By embedding view expressions

(which evaluate to sets) into expressions that utilize set containment and set equality,

we construct truth-valued expressions that are indeed constraints, and thereby, we

address the aspect of the mismatch that pertains to the expression of constraints

using views.

On the other hand, to address the aspect of the mismatch that concerns the expres-

sion of views using constraints, we need a mechanism that utilizes logical expressions

1Worth noting is that the languages for expressing views also vary according to context.
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to create sets. Thankfully, such a mechanism exists and is well-known { the notion

of set comprehension. De�nition 3.1.1 contains a general form of set comprehension;

see [AU94] for additional information on set comprehension.2

De�nition 3.1.1 (Set Comprehension)

Given a boolean predicate or property, P, the set comprehension of P, with respect

to some domain D, is fx j x 2 D and P (x)g.

This simple idea is in some sense too powerful, leading to Russell's paradox if

unrestricted set quanti�cation is allowed in P. This further motivates our desire to

limit the expressive power of languages.

As we saw in Section 2.4 pertaining to relational calculus, the concept of set

comprehension plays a major role in the expression of relational calculus queries, and

it is also critical in allowing us to use constraints to express views. More speci�cally, if

we cast a constraint as the property P in De�nition 3.1.1 and some underlying universe

as the domain D, then the resulting set is a view of that underlying universe. Hence,

through the notion of set comprehension, we are able to construct views by utilizing

constraints.

2The authors denote this as the de�nition of sets by abstraction.
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Degrees of Formality

Having employed solutions to remedy both aspects of the type mismatch, we now

deal with the di�culty stemming from the widely varying degrees of formality in the

contexts in which views and constraints occur. Whereas the type mismatch issue

concerned the precise stating of the �rst hypothesis, the di�culty arising from the

degrees of formality is chiey an issue that pertains to demonstrating that the �rst

hypothesis is indeed true. As we stated earlier, the context for the research is �rst

the database systems and systems engineering domains, and it is in these areas that

we demonstrate the validity of the �rst hypothesis.

As we proceed through this validation process and move from database systems

to the systems engineering domain, the �rst hypothesis becomes more di�cult to

express formally, and consequently, the validation itself becomes more descriptive. In

general, the presence of strong formalisms provides a rich backdrop against which

to validate the duality. However, this should not be construed as a weakness of the

duality; instead, it is a strong indicator of the pervasiveness of the duality, in that the

duality holds in both the highly formal cases as well as the informal and descriptive

cases.
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3.2 Formal Context

Our preceding discussion of set containment and set equality as well as set com-

prehension leads us to an outline of an approach for verifying the duality:

Case 1: Constraints expressed by Views

Construct constraints by the use of set containment and set equality in view

expressions, where the view expressions naturally evaluate to sets.

Case 2: Views expressed by Constraints

Construct views by the use of set comprehension, where the properties in the

set comprehension statements are constraints.

Building on this approach, Theorem 3.2.1 proves the duality in the formal context

of �rst-order logic. It is extremely important to note that references to �rst-order

logic throughout this dissertation concern the specialization of �rst-order logic found

in database theory, that is, the version that omits functions, includes equality, and

pertains to �nite models. Furthermore, it is equally important to emphasize that

since views and constraints can be expressed formally in �rst-order logic (FOL), we

may state and prove the �rst hypothesis as a formal theorem. In addition, we assume

in the following that the views are not inherently empty; that is, we assume that for

each view expression containing a relation R, there exists an instance r of R such

that the resulting view is not empty when the view expression is evaluated using r.
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For example, we disallow a view that speci�es an integer value a is greater than itself

(a > a) as a part of its condition. We extend this assumption to view expressions

that contain two or more di�erent relations; in these situations, we assume a set of

relational instances that generate a non-empty view.

Theorem 3.2.1 (View$Constraint Duality in First-Order Logic)

The view$constraint duality exists in �rst-order logic.

Proof:

Case 1: Constraints expressed by Views

A constraint is a closed FOL formula �.

Case 1.1: Let � = 9x (�
0

(x)).

De�ne view V = fx j �
0

(x)g, where x 2 D.

The expression of the constraint � is V 6= ;.

Case 1.2: Let � = 8x (�
0

(x)).

De�ne view V = fx j �
0

(x)g, where x 2 D.

The expression of the constraint � is V = D.

Case 2: Views expressed by Constraints

Let a view U = fy j �(y)g, where �(y) is a FOL formula that has no free

variables with the exception of possibly y.

The associated constraints are 9y (�(y)) and 8y (�(y)).
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Case 1 of Theorem 3.2.1 exhibits clearly the capacity of set containment/equality

to express the quanti�cation performed in the closed FOL formulae, i.e., constraints.

For instance, the existential quanti�er(s) (9) in a formula may be expressed by stating

that a view-based expression is not equal to the empty set (;). Moreover, in cases

involving constraints that are expressed by stating that a view-based expression is

equal to the empty set (in general, V = ; where V is a view-based expression), the

view-based expressions in isolation (that is, without the parts of the statements that

specify equality with the empty set) indicate the violators of the constraints; we see

instances of this observation in the subsequent chapters.

In addition, in case 2 of the theorem, we see an instance of the notion that we men-

tioned earlier concerning the indirect role that constraints can have in the expression

of views. By taking a constraint and removing its quanti�er, we create an expression

that, when augmented with set comprehension, is a relational calculus query by def-

inition, and since relational calculus queries can express views in the core relational

model, we can characterize the expression as a view. Consequently, we can utilize

constraints to express views in the core relational model. However, this utilization is

not direct; it's the result of trivially changing the closed formula to an open one.

First-order logic o�ers us a well-accepted formalism for demonstrating that the

duality holds. Other, less formal settings for the duality also exist, and in the next

section, we explore our methods for spanning this wide spectrum of contexts.
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3.3 Informal Contexts

As we stated in Chapter 1, we use the Zachman Framework for Enterprise Archi-

tecture to organize and guide our activities. By using the framework, we e�ectively

characterize the space (that is, the wide range of contexts) over which our activi-

ties range, and consequently, we reduce the di�culty of verifying the duality across

this space to demonstrating that the duality holds in the representative cases of the

framework. At �rst glance, extrapolating from the representative cases to the entire

population may seem faulty. However, we advance the notion that in spirit the rep-

resentative cases capture the essence of their peers, and thus while the syntax may

di�er, the semantics have commonality. As a result, we have an approach that is

thorough yet manageable.

It is necessary to state explicitly that in these discussions we see two di�erent

kinds of validation. In the case of FOL, the validation is a simple formal proof of the

duality. On the other hand, with the use of the Zachman Framework that spans a

wide range of contexts, we endeavor to observe empirical evidence of the duality {

that is, occurrences where the concepts of view and constraint appear together and

exhibit the duality { and thus validate empirically the duality.
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3.4 Uses of Duality

We now turn our attention briey to the second hypothesis. As the hypothesis

states, the duality is a conceptually tractable and useful tool in the development of

information systems. As we discuss in Chapter 6, the use of the duality as a tool

mainly involves the use of views to constrain. Furthermore, the tool is conceptually

tractable in that it utilizes a familiar medium, views, and useful in that it concerns

practical problems.

As was the case with the �rst hypothesis, the second hypothesis �nds its most

natural contexts for validation in the areas that are most formal. For example, the

relational database is a prime target for demonstrating that the duality has uses with

the virtues we listed.



4

Duality in Data Models

In this chapter, we present empirical evidence for the �rst hypothesis in the

database systems domain (in the Zachman Framework, the What column). In Theo-

rem 3.2.1, we proved the existence of the duality in the core relational model. Here, we

complement that formal result with empirical results for the well-known constraints

and dependencies found in the core relational model.

We concentrate �rst on the canonical dependencies and then discuss the well-

accepted constraints. For each constraint or dependency, we present �rst the classic

de�nition and then provide a de�nition that utilizes views to express the constraint

or dependency.

Additionally in this chapter, we discuss relational algebra extensions that permit

the expression of constraints that involve metadata, transitive closure, and aggre-

gation. These extensions yield a language capable of representing these types of

42
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constraints via views.

4.1 Relational Dependencies

We begin with the classic dependencies from the core relational model, as they

serve as the basis for the constraints in the next section. We use the conventions

speci�ed in Chapter 2.

Functional Dependency

The �rst dependency we investigate is the functional dependency. Its de�nition

appears in De�nition 4.1.1, and the de�nition using views to express a general func-

tional dependency is in De�nition 4.1.2.

De�nition 4.1.1 (Functional Dependency)

r satis�es the functional dependency X ! Y if the following holds:

8t1; t2 2 r (t1:X = t2:X ) t1:Y = t2:Y )

De�nition 4.1.2 (Functional Dependency Using Views)

�W
y2Y r:y 6=s:y(r ./Vx2X r:x=s:x �s(r)) = ;
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Multivalued Dependency

Having discussed functional dependencies, we now move to multivalued depen-

dencies. A de�nition for them appears in De�nition 4.1.3, and the corresponding

de�nition using views to express the general case of a multivalued dependency is in

De�nition 4.1.4.

De�nition 4.1.3 (Multivalued Dependency)

r satis�es the multivalued dependency X!!Y jZ if the following holds:

8t1; t2 2 r (t1:X = t2:X ) 9t3 2 r (t1:XY = t3:XY ^ t2:Z = t3:Z))

De�nition 4.1.4 (Multivalued Dependency Using Views)

r = (�XY (r) ./ �XZ(r))

De�nition 4.1.4 is already used in explanations of multivalued dependencies, pro-

viding evidence that the �rst hypothesis has been used in speci�c cases.

Join Dependency

Having discussed the functional and multivalued dependencies, next we address

the join dependency. We de�ne it in De�nition 4.1.5 and observe that this de�nition

is in fact view-based.

De�nition 4.1.5 (Join Dependency)
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r satis�es the join dependency ./ [X1; : : : ; Xm] if the following holds:

r = (./mi=1 (�Xi
(r)))

That the join dependency is most naturally stated using views lends additional

credibility to that part of the duality that we are addressing in this section, namely

using views to express constraints.

Inclusion Dependency

We conclude our look at dependencies with the inclusion dependency. De�ni-

tion 4.1.6 contains the de�nition for the inclusion dependency; we observe that this

de�nition is also view-based.

De�nition 4.1.6 (Inclusion Dependency)

r satis�es the inclusion dependency R[X] � S[Y ] if the following holds:

�X(r) � �Y (s)

The inclusion dependency's view-based de�nition stems from stating this depen-

dency using the subset notation. Taken in conjunction with the join dependency, we

see that the duality not only o�ers the ability to use views to express the relational

model's classic dependencies but also provides the mechanism for most naturally ex-

pressing some of them.
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4.2 Relational Constraints

We turn our attention to the canonical constraints from the relational model. As

we did with the dependencies, we present the de�nition before stating an expression

using views that captures the essence of the constraint.

Primary Key

The �rst constraint that we encounter is the primary key. Its de�nition appears

in De�nition 4.2.1, and De�nition 4.2.2 uses views to express the primary key in a

general manner that follows from the de�nition.

De�nition 4.2.1 (Primary Key)

X is a primary key for r if the following holds:

8t1; t2 2 r (t1:X = t2:X ) t1 = t2)

De�nition 4.2.2 (Primary Key Using Views)

�W
y2sort(r) r:y 6=s:y(r ./Vx2X r:x=s:x �s(r)) = ;

Foreign Key

Next, we investigate the foreign key. De�nition 4.2.3 states the de�nition for the

foreign key, and its view-based expression appears in De�nition 4.2.4.
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De�nition 4.2.3 (Foreign Key)

Ai in r is a foreign key that refers to Bj in s if the following holds:

8t1 2 r; 9t2 2 s (t1:Ai = t2:Bj)

De�nition 4.2.4 (Foreign Key Using Views)

�Ai
(r) � �Bj

(s)

Value-based Constraint

Having inspected primary and foreign keys, we proceed to a de�nition of value-

based constraints, as contained in De�nition 4.2.5. As for the view-based expression

of value-based constraints, this occurs in De�nition 4.2.6.

De�nition 4.2.5 (Value-based Constraint)

Ai in r satis�es the value-based constraint C if the following holds:

8t 2 r [C(t.Ai)]

De�nition 4.2.6 (Value-based Constraint Using Views)

�Ai
(r)� �C(�Ai

(r)) = ;

Tuple-based Constraint

We complete our look at constraints by tackling tuple-based constraints. We de�ne

tuple-based constraints in De�nition 4.2.7 and then state its view-based expression
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in De�nition 4.2.8.

De�nition 4.2.7 (Tuple-based Constraint)

r satis�es the tuple-based constraint C if the following holds:

8t 2 r [C(t)]

De�nition 4.2.8 (Tuple-based Constraint Using Views)

r� �C(r) = ;

Notice that we only address in this chapter that aspect of the duality that concerns

constraints expressed by views. This results from the absence of a set of canonical

set of views in the core relational model. Given that views are a general notion in

the core relational model (that is, any relational algebra expression can represent a

view1), the notion of a \canonical" view does not apply, and consequently, we omit

material pertaining to empirical evidence for views expressed by constraints.

4.3 Relational Extensions

Having previously discussed the duality of views and constraints in the relational

database context, it is natural to demonstrate instances in that context where the

duality enables facile constraint speci�cations that otherwise either require a prose de-

scription or only �nd representation in the implementation. In the sequel, we discuss

1The same holds for any relational calculus query.
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the concepts of metadata, transitive closure, and aggregation; for each, we describe

an operation that implements the concept in the relational database context. As we

see in the following, constraints in this context not only include those enumerated

earlier in this discussion but also encompass those that have a more semantic avor,

such as account balance restrictions and cardinality constraints. Also contained in

these classes of constraints are recursively de�ned constraints, such as bill of material

constraints, and constraints involving restrictions pertaining to metadata.

These constraints include concepts not expressible by �rst-order logic; conse-

quently, to satisfy them, we need to extend our relational faculties (that is, relational

algebra and calculus) to permit the expression of constraints that involve metadata,

transitive closure, and aggregation and thereby, to yield a language capable of repre-

senting these constraints via views. This makes an erstwhile covert theme more overt;

namely, that to suggest views as a means to express constraints, it is necessary to

introduce a language with su�cient power to express the constraints without falling

into the trap of allowing the language to be Turing-complete. For now, let us segue

to metadata constraints.

Metadata Constraints

We introduce metadata constraints by way of an example from the Hanyoda Mo-

tors scenario in Chapter 1. Hanyoda Motors relies on several suppliers to provide
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parts for its truck assembly process, and these suppliers store their part information

in many di�erent database schemas. As part of its e�orts to closely integrate its

supply chain, Hanyoda o�ers its suppliers the option to communicate their inventory

information electronically through such means as EDI or ebXML (Electronic Busi-

ness XML). For its largest suppliers, Hanyoda even allows the suppliers to integrate

directly into Hanyoda's inventory management information system through the use

of supplier-speci�c Part tables that in essence serve as the suppliers' interface into

the system.

To enable these suppliers to more easily integrate their own systems with the

Hanyoda inventory management system, Hanyoda does give them some autonomy

in determining the schemas for their Part tables; however, the suppliers must meet

certain schema requirements, such as column names. As a result, Hanyoda does not

have to build a custom interface to each table and instead can retrieve information

from the suppliers' Part tables in a standard fashion.

Two such suppliers, Bloomington Metalworks and Muskegon Tool, have vastly

di�erent table schemas for storing such data, but as we just indicated, Hanyoda gains

uniformity by enforcing Examples 4.3.2 and 4.3.3 on these suppliers' Part table2

schemas.

2Views may be used in place of tables to ensure uniformity. Using this approach, the suppliers
would create views based on their Part tables, and these views' schemas would match Hanyoda's
Part table schema. The constraints would then involve the views instead of the tables.
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In Examples 4.3.2 and 4.3.3, we utilize the � operation from De�nition 4.3.1.

In [WR05], Wyss and Robertson present a version of the � operation for federated

databases. We provide the de�nition before proceeding to the examples.

De�nition 4.3.1 (� Operation)

Let R(A1; A2; : : : ; An) be a relation schema. The � operation on R, �(R), is simply

sort(R); that is, �(R) = fA1; A2; : : : ; Ang.

Example 4.3.2 (Bloomington Metalworks Schema Constraint)

�(Part) � �(BloomingtonMetalworksPart)

Example 4.3.3 (Muskegon Tool Schema Constraint)

�(Part) � �(MuskegonToolPart)

As these examples illustrate, the capacity to specify constraints on the metadata

via views on the metadata is a powerful tool and exempli�es the value gained by

employing the duality. Furthermore, we utilize this example to illustrate the ability

of the \views expressing constraints" approach to easily indicate constraint viola-

tors in a natural way. To elucidate this point, we reformulate Example 4.3.2 into

Example 4.3.4.

Example 4.3.4 (View Based on Bloomington Metalworks Schema Con-

straint)

�(Part)� �(BloomingtonMetalworksPart)
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The expression in Example 4.3.4 pinpoints any column name in the Part table that

does not have a matching column name in the BloomingtonMetalworksPart table. In

some sense, Example 4.3.4 is an evolution of Example 4.3.4, in that Example 4.3.4

both enforces the constraint (by employing ; as true) and indicates violators. This is

clearly an advantage of the declarative approach employed by the duality; a procedural

method not only has to determine if the constraint has been violated but also must

\remember" the instances that violated the constraint when such violations do occur.

We conclude this discussion of metadata constraints by returning to our origi-

nal examples concerning metadata. Figure 4.1 depicts graphically the constraints

speci�ed in Examples 4.3.2 and 4.3.3 by employing extensions to the standard ER

notation. These extensions include the following:

� encircled entities and relationships that participate as operands in operations;

� encircled operators whose operands are either entities, relationships, or other

operators; and

� directed edges that indicate the participation of entities, relationships, or oper-

ators in an operation.

Please note that the � operation naturally requires an ordering on its operands,

unlike union and intersection for instance. To account for this, the graphical notation
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Figure 4.1: ER Diagram with Metadata Constraints

using � must have a directed edge pointing to the node housing the � as well as a

directed edge pointing from that node.

As Figure 4.1 illustrates, introducing notation for the metadata extension into the

standard ER notation permits the easy speci�cation of metadata constraints in the ER

diagram. Moreover, by incorporating the metadata extension into the ER notation via

the aforementioned notational additions, we enable the modeler to specify metadata

constraints naturally as a part of the data modeling process, and consequently, we

satisfy the objective of minimizing constraint speci�cation displacement.
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Transitive Closure Constraints

Having illustrated the manner in which views can express metadata constraints,

we now turn our attention to another class of constraints, those involving transi-

tive closure. As we did with the metadata constraints, we initiate our discussion of

transitive closure constraints with an example. Consider the Hanyoda Motors Parts

entity-relationship diagram in Figure 1.1 from Chapter 1. As we discussed in that

chapter, we clearly do not want to allow the case where a part is related to itself via

the relationships established in the Part table, yet no mechanism in the core relational

model exists to preclude this case from occurring.

A convenient method for enforcing this constraint is to use transitive closure.

More speci�cally, taking the transitive closure of the relation created by projecting

the parent part ID and part ID from the Part table (ignoring the tuples where the

parent part ID is not speci�ed) and then selecting from the resulting relation (that

is, the one resulting from the transitive closure operation) any tuple whose parent -

part ID equals its part ID. If the relation that results from the selection is not empty,

then the constraint has been violated. A more concise representation of the constraint

appears in Example 4.3.5.

Example 4.3.5 (Acyclic Constraint)

�parent part ID=part ID(�(�parent part ID;part ID(Part))) = ;
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This example highlights the critical need for transitive closure to be available to

views that express constraints. In [Imm87], Immerman introduced Transitive Closure

Logic as an extension of First-Order Logic (FO) that includes the ability to de�ne

transitive closure; FO + TC denotes Transitive Closure Logic. To First-Order Logic,

it adds an operator � that de�nes the transitive closure of a particular FO formula

'. More formally, De�nition 4.3.6 contains the speci�cation of the syntax.

De�nition 4.3.6 (� Operator Syntax)

Given a First-Order formula ' with the free variables ~x = x1; : : : ; xn and ~y =

y1; : : : ; yn, as well as two n-tuples of terms, ~s = s1; : : : ; sn and ~t = t1; : : : ; tn. Then

[�~x;~y '(~x; ~y)](~s;~t) is a formula, where all free occurrences of ~x and ~y in ' are now

bound by the � operator.

As for the semantics of the � operator, De�nition 4.3.7 contains a detailed expla-

nation of them.

De�nition 4.3.7 (� Operator Semantics)

Given a relation3 R satisfying ' with arity 2n. Furthermore, let S and T denote

relations (both also with arity 2n) and (~x,~y), (~y,~z), and (~x,~z) denote 2n-tuples, where

~x = x1; : : : ; xn, ~y = y1; : : : ; yn, and ~z = z1; : : : ; zn. Also, interpret the operator :=

as assignment, and construe the comparison of ~x, ~y, and ~z for equality (e.g., ~x 6= ~y)

3Or more accurately a relational instance, to emphasize this refers to actual tuples.
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to be the pairwise comparison of elements, such as xi = yi where 1 � i � n. The

semantics of the � operator are as follows:

S := R

T := ;

While S 6= T do:

T := S

For each (~x,~y) 2 S do:

If ~x 6= ~y and 9~z such that (~y,~z) 2 S, add (~x,~z) to S

Return T

Having introduced the � operator, we can now proceed to a discussion of its formal

properties. As Gr�adel and McColm demonstrate in [GM96], FO + TC is equivalent

to strati�ed linear Datalog, and the data complexity of both is in QNLOGSPACE.

Thus, FO + TC o�ers a language that provides the necessary expressiveness in a safe

manner. Also, worth noting is that we continue to operate in the domain of relational

databases, since the � operator returns a relation.

Please note that, although we did previously introduce the � operator using a

logic-theoretic (namely FO + TC), it is an easy transition to formulate it alge-

braically, because of the relationship between Relational Calculus and Relational

Algebra. Because of their equivalence, Relational Algebra extended with the � op-

erator is equivalent to FO + TC. Henceforth, we largely prosecute the discussion in
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algebraic terms.

Now that we have discussed the pertinent formal properties that hold for our ex-

tension, it is bene�cial to mention some instances of constraints that utilize transitive

closure. Examples include constraints on bill of materials such as the one we described

earlier. In addition, a natural set of constraints that incorporate transitive closure

are those involving organizational hierarchies, such as limitations on an organization's

structure. For instance, one may wish to prevent a cyclic chain of command from

occurring. A similar situation may apply to another group of constraints requiring

transitive closure, genealogy. Here, one may again have the need to enforce acyclicity,

in this case to prevent a person from being his or her own ancestor (or descendant,

depending on perspective).

We conclude this discussion of transitive closure constraints by returning to our

original example. Figure 4.2 depicts graphically the constraint speci�ed in Exam-

ple 4.3.5 by employing extensions to the standard ER notation. These extensions

include a looping arrow to represent � and a dashed line (originating from the loop-

ing arrow) with an encircled 6= operator comparing parent part ID and part ID ; this

dashed line arrangement represents the restriction that permits only cases where par-

ent part ID and part ID are not equal.

As Figure 4.2 illustrates, introducing notation for the transitive closure exten-

sion into the standard ER notation mirrors the bene�t that the metadata extension
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Figure 4.2: ER Diagram with Extensions

provided, namely the easy speci�cation of transitive closure constraints in the ER di-

agram. Moreover, just as it did with the metadata extension, incorporating the tran-

sitive closure extension enables the modeler to specify transitive closure constraints

naturally as a part of the data modeling process, again satisfying the objective of

minimizing constraint speci�cation displacement.

Aggregation-related Constraints

Having seen metadata and transitive closure constraints, we now turn our atten-

tion to constraints involving aggregation. As we discuss earlier, constraints pertaining

to aggregation include account balance restrictions and cardinality constraints, and

as is the case with metadata and transitive closure constraints, we need an extension
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to relational algebra to permit the expression of aggregation-related constraints. Just

such an operation, the grouping or  operation, exists; Garcia-Molina, Ullman, and

Widom discuss this operator in [GMUW02], with its introduction coming in [GHQ95].

We de�ne the  operator in De�nition 4.3.8.

De�nition 4.3.8

Let R(A1; A2; : : : ; An) be a relation and L be a list of elements where each element is

either an attribute Ai or an expression !(Aj)! B with the following restrictions:

� 1 � i; j � n

� 8i; j, i 6= j

� ! 2 fSUM;AV G;MIN;MAX;COUNTg

� the SUM, AVG, MIN, MAX, and COUNT operations have their standard SQL

interpretation

� !(Aj)! B denotes its typical meaning, that is, the renaming of !(Aj) to B.

The L(R) operator is an operation on R with each attribute Ai 2 L serving as a

grouping attribute (with the set of grouping attributes denoted as GA) and each

!(Aj)! B representing the result of applying the ! operator to Aj relative to GA.

The process of constructing this result consists of the following:
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� Use the grouping attributes to segment the tuples in R into \groups" where for

each Ai 2 GA, each tuple tm in a particular group has the same value for Ai.

That is, for any two tuples tm and tn in a group, 8Ai 2 GA, tm(Ai) = tn(Ai).

� Then, for each group, do the following:

{ Perform the operations speci�ed by the !(Aj)! B expressions across all

of the tuples in the group and

{ Generate one tuple containing the values for the group's grouping at-

tributes and the results of all of the !(Aj)! B expressions.

As for an example of an aggregation constraint, we again utilize our Hanyoda

Motors scenario to illustrate the applicability of these types of constraints. Consider

a simple constraint on the number of tires that a truck has. While uncomplicated,

such a constraint is not expressible in the core relational model, and thus we naturally

have the need for the  operation.

To illustrate the usefulness of the  operation, we modify the Hanyoda Motors

Parts entity-relationship diagram in Figure 1.1 to include a quantity attribute with

the SubpartS relationship; Figure 4.3 contains this addition. In Figures 4.4, 4.5,

and 4.6, we have extended the tables found in Chapter 1 to include the quantity

column in the SubpartS table; additionally, we have added rows that concern tires.

Based on these tables, we can create an expression that reects the constraint that
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Figure 4.3: Revised Hanyoda Motors Parts ER Diagram

a truck must have exactly 4 tires; in fact, we can express a more general constraint

that restricts the part instances in the Part table to the quantities speci�ed in the

SubpartS table. Example 4.3.9 is this expression. It is worth noting that since

each part may have several child parts (i.e., subparts) but only one parent part, the

Part table contains the part/parent part combination instead of the more commonly

seen part/child part combination, and this accounts for the potentially unexpected

grouping in Example 4.3.9.

Example 4.3.9 (Part Quantities Constraint)

�type ID; subtype ID; quantity(PG) � SubpartS where PG results from the following ex-

pression:

�PG(Part ./ parent part ID!part ID; type ID!subtype ID; COUNT (part ID)!quantity(Part))
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type ID description
T1 Full-Size Truck
T2 Compact Truck
E3 Turbo V8 Engine
E5 V8 Engine
E6 V6 Engine
B12 Small Block
B35 Big Block
C45 Extended Cab
C32 Cab
W13 Steel Belted Radial Tire
...

...

Figure 4.4: Part Type Table

part ID parent part ID type ID
T4655 NULL T1
T4656 NULL T2
E4888 T4655 E5
E1111 T4656 E3
B1234 E4888 B35
B5678 E1111 B35
C9876 T4655 C45
C9877 T4656 C32
W3445 T4655 W13
W3446 T4655 W13
W3447 T4655 W13
W3448 T4655 W13
W3397 T4656 W13
W3398 T4656 W13
W3399 T4656 W13
W3400 T4656 W13

...
...

...

Figure 4.5: Part Table

type ID child type ID quantity
T1 E3 1
T1 E5 1
T2 E3 1
T2 E5 1
T2 E6 1
T1 C32 1
T1 C45 1
T2 C32 1
E3 B35 1
E5 B35 1
E6 B12 1
T1 W13 4
T2 W13 4
...

...
...

Figure 4.6: SubpartS Table
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Example 4.3.9 illustrates the utility of the  operation for specifying aggregation-

related constraints, and clearly, the opportunity to bring the  operation to bear on

this class of constraints stems from employing views to express constraints. Hence,

we have yet another class of constraints that bene�ts from the duality.

Summary of Relational Extensions

In the preceding, we described three extensions to relational algebra. These three

extensions take the form of three operations: � for metadata (speci�cally, attribute

names), � for transitive closure, and  for aggregation. Using these operations, we

de�ne the following:

De�nition 4.3.10 (Extended Relational Algebra (ERA))

The extended relational algebra (ERA) consists of relational algebra extended with

the following operations: �, � and .

ERA is QNLOGSPACE in the size of the instance; this follows from results in

[CM93]. Furthermore, ERA augmented with set equality/containment (ERAS) cap-

tures useful classes of constraints. We have seen these classes throughout this section;

as we have demonstrated, ERAS permits a limited form of recursion and allows for

the expression of constraints that involve aggregation, the testing of boundary con-

ditions, and schema restrictions. These classes are in addition to the classes that
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ERAS subsumes by using relational algebra as its foundation; in other words, ERA

can express any constraint expressible in relational algebra.

4.4 Chapter Summary

In this chapter, we present empirical evidence for the �rst hypothesis in the

database systems domain. We supplement Theorem 3.2.1 with empirical results for

the well-known constraints and dependencies found in the core relational model. In

addition, we discuss relational algebra extensions that permit the expression of richer

constraints.



5

Duality in Other Models

In this chapter, we explore models outside the Zachman Framework's What col-

umn. We identify two archetypal elements that allow us to argue the existence of the

duality in other areas of the framework and thus to continue our hypothesis validation

process.

The archetypal framework components that we explore are the process model and

the time-based model. The process model resides in the How column, and the time-

based model has its origin in the When column. In both cases, we o�er representations

that allow one to see the manner in which the duality holds.

We then continue our examination by exploring the duality in the cross-column

modeling context. The cross-column modeling context concerns modeling that oc-

curs across the columns of the Zachman Framework; in our case, we focus on the

interactions between process and time-based models.

65
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5.1 Process Models

We begin with the process model found in the How column and focus largely on

the Specify role. Examples of models in other roles in the How column include use

case diagrams for the Design role and class diagrams for the Build role[Sof].

Constraints Expressed with Views

We �rst tackle the capacity of views to express constraints in the process model

domain. A process consists of a set of related subprocesses or activities (that is,

individual atomic tasks)[Koc05]; the corresponding process model consists of a repre-

sentation depicting the subprocesses (or activities) as well as the connections between

the subprocesses (or activities, respectively). These connections depict control, data,

or material ow, and consequently, the literature (such as Pressman in [Pre04] or

DeMarco in [DeM79]) also uses \ow" to describe process connections. As ow is

directional, a process model is abstractly a directed graph where the direction of a

graph arc indicates a dependency of the head process on the tail process. A natural

representation of a directed graph is a binary relation, and throughout the remainder

of this chapter, we thus characterize process connections as relations and frequently

use \relation" in lieu of \process connection." In addition, we do not address the

typing of the connections; please review [Koc05] or [MC94] for discussions pertaining
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to such typing.

It is also helpful to discuss the nature of a \process view," as we of course are

addressing views on process models in this section. Elsewhere in the enterprise archi-

tecture literature ([Alb03] for instance), the process view describes at varying levels

of abstraction the process-related aspects of an enterprise. In [Zac87, SZ92], the pro-

cess view is indeed the entire How column. However, we are not discussing process

views in this sense; on the contrary, we are investigating views on process models.

These views on process models may be some subset of the existing subprocesses and

relations in a larger process model; they may also be transformations that create new

processes and relations from the existing processes and relations.

Furthermore, we represent views on process models as sets, and the sets them-

selves fall into two categories: sets of processes (graphically sets of nodes) and sets of

relations (graphically sets of edges). In the case of sets of processes, their elements are

strictly processes, and the sets carry no notion of relations. As for relations, because

relations pertain to processes, the views based on relations also have implicit sets of

processes associated with them.

At this juncture, it is useful to return to our Hanyoda Motors scenario from Chap-

ter 1. In Figure 5.1, we depict a high-level order management process that Hanyoda

Motors employs. In this process, Hanyoda performs its order entry subprocess upon
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Figure 5.1: Order Management Process

receiving an order, and after order entry, the order is sent to the accounting depart-

ment for authorization. In addition, production receives the order and manufactures

the truck. Once production has made the truck and accounting has authorized the

order, the truck can be shipped. Figures 5.2 and 5.3 model the authorization and

ful�llment subprocesses, respectively. In the �gures throughout this section, we delin-

eate dependencies with directed edges; for example, the directed edge from the \Enter

Order" subprocess to the \Authorize Order" subprocess indicates that the \Autho-

rize Order" subprocess depends on the \Enter Order" subprocess. In addition, note

that the directed edges (that is, ows) are labeled; these labels indicate the virtual

or physical items that ow from a process to one of its related processes.

One method for characterizing the Order Authorization subprocess is to specify
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Figure 5.2: Order Authorization Process

Figure 5.3: Order Ful�llment Process
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the relations that constitute it: Enter Order To Auth Order and Auth Order To -

Ship Truck. The Enter Order To Auth Order relation pairs \Enter Order" processes

with their corresponding \Authorize Order" processes; for example, Enter Order To -

Auth Order relates the \Enter Order 812-XYZ" process to the \Authorize Order 812-

XYZ" process. We abbreviate this example (that is, the preceding relation instance)

as (ORDER 812-XYZ, AUTH 812-XYZ), and following the same naming convention,

we also include (ORDER 317-XYT, AUTH 317-XYT) in Enter Order To Auth Or-

der. Example 5.1.1 formally states the elements in Enter Order To Auth Order.

Example 5.1.1 (Enter Order to Authorize Order Example)

Enter Order To Auth Order = f(ORDER 812-XYZ, AUTH 812-XYZ),

(ORDER 317-XYT, AUTH 317-XYT)g

As for the Auth Order To Ship Truck relation, it pairs \Authorize Order" pro-

cesses with their corresponding \Ship Truck" processes; for instance, Auth Order -

To Ship Truck pairs the \Authorize Order 812-XYZ" process to the \Ship Truck

T4655" process. We abbreviate this example as (AUTH 812-XYZ, SHIP T4655),

and use (AUTH 317-XYT, SHIP T4656) to represent the relation instance that pairs

the \Authorize Order 317-XYT" process with the \Ship Truck T4656" process. Ex-

ample 5.1.2 speci�es the members of the Auth Order To Ship Truck relation.

Example 5.1.2 (Authorize Order to Ship Truck Example)

Auth Order To Ship Truck = f(AUTH 812-XYZ, SHIP T4655),
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(AUTH 317-XYT, SHIP T4656)g

The Order Ful�llment subprocess also consists of two relations: Enter Order -

To Make Truck and Make Truck To Ship Truck. Naturally, Enter Order To Make -

Truck relates the \Enter Order" process with the \Make Truck" process, while the

Make Truck To Ship Truck joins the \Make Truck" process with the \Ship Truck"

process. Following the conventions established in the preceding paragraphs, we ab-

breviate the instances in these relations as well; in Examples 5.1.3 and 5.1.4, we

use the orders and trucks found in the discussion regarding the Order Authorization

subprocess along with the aforementioned conventions to specify the elements in the

Enter Order To Make Truck and Make Truck To Ship Truck relations.

Example 5.1.3 (Enter Order to Make Truck Example)

Enter Order To Make Truck = f(ORDER 812-XYZ, MAKE T4655),

(ORDER 317-XYT, MAKE T4656)g

Example 5.1.4 (Make Truck to Ship Truck Example)

Make Truck To Ship Truck = f(MAKE T4655, SHIP T4655),

(MAKE T4656, SHIP T4656)g

We now employ the Enter Order To Auth Order, Auth Order To Ship Truck, En-

ter Order To Make Truck, and Make Truck To Ship Truck relations { in conjunction



5. Duality in Other Models 72

with relational composition { to create views de�ned on the process models in Fig-

ures 5.2 and 5.3. Notice that each of these relations is a binary relation, and thus

the composition of these relations is a natural operation[Tar41]. We begin by taking

the relational composition of Enter Order To Auth Order and Auth Order To Ship -

Truck. In doing so, we generate a Order Auth Ship relation that contains instances

of corresponding \Enter Order" and \Ship Truck" processes; Example 5.1.5 contains

this statement.

Example 5.1.5 (Order Authorization View)

Order Auth Ship = Enter Order To Auth Order � Auth Order To Ship Truck =

f(ORDER 812-XYZ, SHIP T4655), (ORDER 317-XYT, SHIP T4656)g

We also take the relational composition of Enter Order To Make Truck and

Make Truck To Ship Truck, creating a Order Make Ship relation that contains in-

stances of corresponding \Enter Order" and \Ship Truck" processes; Example 5.1.6

contains this statement.

Example 5.1.6 (Order Ful�llment View)

Order Make Ship = Enter Order To Make Truck � Make Truck To Ship Truck =

f(ORDER 812-XYZ, SHIP T4655),(ORDER 317-XYT, SHIP T4656)g

Examples 5.1.5 and 5.1.6 provide examples of nontrivial views de�ned on process

models, in that they restructure existing relations to create new ones. Implicitly
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present in these views are the processes that constitute the new relations; for example,

a view containing the relation instance (ORDER 812-XYZ, SHIP T4655) naturally

contains the process instances ORDER 812-XYZ and SHIP T4655 as well.

Now armed with the requisite views, we de�ne a constraint using these views.

As we discussed earlier, only after production has made the truck and accounting

has authorized the order can the truck be shipped. Example 5.1.7 expresses this

constraint using the views from Examples 5.1.5 and 5.1.6.

Example 5.1.7 (Shipment Authorization Constraint)

Order Make Ship � Order Auth Ship

We also graphically depict the constraint in Figure 5.4. In that �gure, we empha-

size the \Enter Order" and \Ship Truck" processes that are present in both views,

and in both sides of the �gure, we add edges between the aforementioned processes

to represent the Order Auth Ship and Order Make Ship relations.

Example 5.1.7 illustrates the capacity of views to express constraints in this new

context, process models. By continuing to utilize set containment and set equality and

capitalizing on the aspect of processes that has its natural representation in relations,

we have clear evidence of this facet of the duality in the process model domain.
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Figure 5.4: Order Process Constraint

Views Expressed with Constraints

As for the other case (views expressed with constraints) of the duality in the

process model context, let us begin with a restatement of Example 5.1.7, as expressed

in Example 5.1.8.

Example 5.1.8 (Restated Shipment Authorization Constraint)

Order Make Ship � Order Auth Ship = ;

Reformulating this constraint sets the stage for us to employ a technique similar

to the one that we used in the second case of Theorem 3.2.1. Recall that in the second

case of Theorem 3.2.1, we essentially removed the quanti�ers from the constraints to

create views, and in Example 5.1.9, we perform an equivalent action by removing the

empty set equality. The resulting expression is a view, pinpointing any order that

shipped without the proper authorization.
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Example 5.1.9 (Unauthorized Shipped Orders View)

Order Make Ship � Order Auth Ship

Another constraint to consider is that only ordered trucks are ready for autho-

rization. We express this constraint in Example 5.1.10 using �rst-order logic.

Example 5.1.10 (Ordered and then Authorized Constraint)

8a, 9 o, s (Auth Order To Ship Truck(a,s) ) Enter Order To Auth Order(o,a))

Based on Example 5.1.10, we can express a view that identi�es all authorized

trucks ready for shipment; we do so in Example 5.1.11.

Example 5.1.11 (Authorized Trucks View)

fa j 9 o, s (Auth Order To Ship Truck(a,s) ) Enter Order To Auth Order(o,a))g

Using the same methods that we employed in the core relational model context,

we move freely between views and constraints, and this naturally applies beyond

these examples to other process model constraints having similar constructions. In

the process model context, we thus have compelling evidence of the presence of the

facet of the duality that concerns views expressed by constraints.

In this and the preceding subsections, we establish that instances of the duality

exist in the cell of the Zachman Framework that is the intersection of the How column

and the Specify row, i.e., the conceptual process model context. In the next section,
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we transition to another column in the Zachman Framework and investigate the

existence of the duality in that context.

5.2 Time-based Models

In this section, we endeavor to discover instances of the duality in the When

column of the Zachman Framework. Examples of models in the When column include

data ow diagrams in the tradition of [WM91] as well as UML state and sequence

diagrams[Sof]; one may denote these as the processing structure and control structure,

respectively[fFA].

Constraints Expressed with Views

As we did in the previous section, we begin with constraints expressed with views.

The master schedule (or master production schedule) is the prototypical model from

the When-Specify cell1 identi�ed by Zachman in [Zac99]. As discussed in [PS05], a

master production schedule is an outline of the products that will be made in each

time period (e.g., a week) of a production plan; the APICS Dictionary[CB04] pro-

vides a similar de�nition, specifying that the master production schedule indicates

the planned production for individual end items (that is, �nished products) in terms

1The When-Specify cell is the cell at the intersection of the When column and Specify row.
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of dates and quantities. In addition, Portougal[Por06] indicates that the aggregate

capacity plan (that is, the planned production capacities for product lines), the in-

ventory levels, and the short-term demand forecast provide the inputs for the master

production scheduling process. Table 5.1 shows a master production schedule for

Hanyoda Motors. We refer to the period of time covered by a particular master

production schedule as its planning period or time horizon; in Hanyoda's master

production schedule, this period is 26 weeks.

WEEK WEEK WEEK WEEK WEEK WEEK
PRODUCT 1 2 3 : : : 24 25 26

T1 300 120 190 : : : 90 80 85
T2 450 260 310 : : : 240 370 320

Table 5.1: Hanyoda Motors Master Production Schedule

To meet the goals established in the master production schedule, Hanyoda Motors

naturally needs more detailed scheduling that addresses daily production. As the

authors of [RT06] discuss, several steps follow the creation of the master production

schedule in the general scheduling process before actual manufacturing occurs, and

the process varies based on the methods used by the parties that are responsible for

scheduling.

After the requisite materials and capacity planning[RT06], Hanyoda Motors then

arrives at its daily production schedule. This speci�es for a particular date and time

when each task in the assembly of a particular truck occurs; the schedule also tracks
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the part type identi�er for the truck involved in each task. In Table 5.2, we list a

portion of Hanyoda Motors Daily Production Schedule for August 19, 2006.

DATE TIME TASK TYPE ID
...

...
...

08/19/2006 8:44 Assemble Chassis T2
08/19/2006 8:52 Assemble Chassis T1

...
...

...
08/19/2006 9:15 Add Trim T2
08/19/2006 9:17 Add Trim T1

...
...

...
08/19/2006 10:43 Finalize Truck T2
08/19/2006 10:48 Finalize Truck T1

...
...

...

Table 5.2: Hanyoda Motors Daily Production Schedule for August 19, 2006

To track its progress toward its goals, Hanyoda Motors naturally wants to correlate

its daily production to its master production schedule and constrain its e�orts to

meet its planned output. An e�ective approach to de�ning the desired constraint is

to create views on the schedules and then use these views to specify the constraint.

As the daily production schedule and the master production schedule have grossly

di�erent levels of detail, we need a mechanism to bridge this gap, and to borrow a

phrase from the relational database realm, the mechanism we employ is an aggregate

view. As its name implies, this type of view utilizes aggregation, and in our case, we

limit the aggregation to count (that is, the cardinality of a given set).

We base the �rst view that we de�ne on the master production schedule; in this
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case, we only want our view to pertain to one type of truck and not both types listed

in the schedule. For our example, we use the T1 (Full-Size Truck) product, but the

same applies to the T2 (Compact Truck) product. Furthermore, we limit the view to

only one week in the schedule; for generality, we refer to this as \WEEK n."

We are now prepared to express the view on the master production schedule. In

the following, we represent the master production schedule as a two-dimensional array

MPS with p rows (one row for each product type in the master production sched-

ule) and n columns (one column for each week in the master production schedule).

Example 5.2.1 contains MPS.

Example 5.2.1 (Master Production Schedule Example)

MPS=

0
BB@

300 120 190 . . . 90 80 85

450 260 310 . . . 240 370 320

1
CCA

To create a view based on MPS, we simply provide row and column indices for the

array. Since the T1 product corresponds to row 1, we use p = 1. As for the column,

we use \WEEK 2" as an example and thus specify n = 2. Using these indices, we

provide Example 5.2.2 to illustrate the resulting view.

Example 5.2.2 (View of Master Production Schedule)

MPS [1,2] = 120

Example 5.2.2 returns a value from the master production schedule for the T1

product for the second week in the schedule. We want to now compare that value to
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the appropriate information from the daily production schedules. Naturally, we need

a week of the daily production schedules; more speci�cally, we need the schedules for

all of the dates that fall in the second week of the master production schedule.

To accomplish this, we choose from the entire collection of daily production sched-

ules the subset of daily production schedules that fall in the week speci�ed in the

master production schedule view (in our example, the second week). Furthermore,

we specify that the \Finalize Truck" task indicates when a truck has been produced,

and we look speci�cally for the \Finalize Truck" tasks that pertain to the T1 product

line. Naturally, an e�ective method for capturing this information is a view, and as

a result, we employ the Weekly Production view. This view ranges over all of the

daily production schedules and for a particular product type and week, creates a set

containing \Finalize Truck" tasks. In Example 5.2.3, we create the Weekly Produc-

tion view for the T1 product type and \WEEK 2." The general expression of the

Weekly Production view is in Example 5.2.4 and contains a variable T that represents

a TYPE ID value.

Example 5.2.3 (Example of Weekly Truck Production Instances View)

Weekly Production(\T1",2) = f\Finalize Truck",: : :,\Finalize Truck"g

Example 5.2.4 (Weekly Truck Production Instances View)

Weekly Production(T,w) where 1�w�n and T = \T1"j\T2"

Consequently, by taking the total number of instances of \Finalize Truck" in the
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Weekly Production view, we have an aggregate view on the daily production sched-

ule that enables us to make the aforementioned comparison. We use the COUNT

operation to determine that number, and in Example 5.2.5, we add COUNT to Ex-

ample 5.2.4 to create this aggregate view. COUNT simply determines the cardinality

of a set.

Example 5.2.5 (Weekly Truck Production Totals View)

COUNT (Weekly Production(T,w))

We now have the two views that we need to create the desired constraint. Exam-

ple 5.2.7 contains the expression that speci�es that the daily production schedules for

a particular product and week must meet the master production schedule's planned

production for that same product and week. We �rst de�ne the TYPE ID ARRAY

array that contains the TYPE ID values in the order in which they appear in the

master production schedule; De�nition 5.2.6 contains this de�nition.

De�nition 5.2.6 (TYPE ID ARRAY De�nition)

TYPE ID ARRAY = (\T1" \T2")

Example 5.2.7 (Daily Truck Production Schedule Constraint)

MPS [i,j ] = COUNT (Weekly Production(T,j )) where TYPE ID ARRAY [i ] = T,

1�i�p, and 1�j�n

We extend Example 5.2.7 to include all product types and weeks in the master
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production schedule. Example 5.2.8 speci�es this extension.

Example 5.2.8 (Daily Total Production Schedule Constraint)

81�i�p, 1�j�n, MPS [i,j ] = COUNT (Weekly Production(T,j )) where TYPE ID -

ARRAY [i ] = T

Examples 5.2.7 and 5.2.8 demonstrate the capacity of views to express constraints

in yet another context, time-based models. Previously, we have used set containment

and set equality, but in this context, we employ a di�erent technique { an aggregate

view { to calculate a number that we then use in a comparison with another number.

Views Expressed with Constraints

Regarding the other case (views expressed with constraints) of the duality in the

time-based model context, we build on Example 5.2.7, and from it, we create a series

of views. In this endeavor, we use the variables T and j (as in \WEEK j") that appear

in Example 5.2.7 to specify the contents of the �rst view. The view contains at most

one pair T and j, and it only contains this pair if the constraint is met. Example 5.2.9

holds this view expression.

Example 5.2.9 (View Based on Daily Truck Production Schedule Con-

straint)
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f(T,j ) j MPS [i,j ] = COUNT (Weekly Production(T,j )) where TYPE ID ARRAY [i ]

= T and 1�j�ng

In a sense, Example 5.2.9 corresponds to the second case of Theorem 3.2.1, in

that the variables in Example 5.2.7 are \bound" variables that become \free" in

Example 5.2.9. Alone, the view in Example 5.2.9 is su�cient evidence that views can

be expressed with the aid of constraints in the time-based context. However, we can

use Example 5.2.9 in another expression that serves to indicate instances where the

constraint fails; Example 5.2.10 contains this expression.

Example 5.2.10 (Violator Identifying View Based on Daily Truck Produc-

tion Schedule Constraint)

f(T,j ) j MPS [i,j ] 6= COUNT (Weekly Production(T,j )) where TYPE ID ARRAY [i ]

= T and 1�j�ng

If the constraint fails, Example 5.2.10 generates the violators; if the constraint

holds, it generates an empty set. The capacity to include Example 5.2.9 in another

view (Example 5.2.10) provides additional empirical evidence of the presence of the

duality in the time-based context. Example 5.2.10 also showcases yet another example

of the e�ectiveness of the duality in pinpointing constraint violators.
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5.3 Cross-column Models

In this section, we examine the duality in the cross-column modeling context,

and in this context, we focus on the interactions between process and time-based

models. As we did in previous sections, we begin with the use of views in expressing

constraints; in this particular section, we employ process and time-based model views

in time-based constraints. We then demonstrate the use of time-based constraints in

the construction of views on process and time-based models.

Constraints Expressed with Views

In this subsection, we investigate instances of the duality by utilizing process

and time-based model views in time-based constraints. We continue to employ our

Hanyoda Motors example. In Figure 5.5, we depict the truck assembly process and its

�ve major subprocesses. In that �gure, we delineate dependencies (that is, relations)

with directed edges, as is the accepted convention and the standard to which we

conform in this chapter; for example, the directed edge from the \Assemble Body"

process to the \Paint Body" process indicates that the \Paint Body" process depends

on the \Assemble Body" process. In addition, notice that the \Finalize Truck" process

depends on the \Add Trim" and \Assemble Chassis" processes.
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Figure 5.5: Process Flowchart
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In addition to the requisite materials and capacity planning[RT06], Hanyoda Mo-

tors generates a model that describes the temporal sequence that must be obeyed

during truck assembly. Known as an activity or task network diagram[Pre04], it

can range in detail from a high-level depiction such as the process model found in

Figure 5.5 to a diagram specifying the ordering of the atomic tasks in a particular

process. For our purposes, a high-level depiction is suitable, and thus we employ

Figure 5.5 as Hanyoda Motors' task network diagram. Henceforth, we refer to the

processes in Figure 5.5 as tasks.

The task network diagram impacts the daily production schedule in Table 5.2. In

Table 5.3, we revise the Hanyoda Motors Daily Production Schedule for August 19,

2006 (that is, Table 5.2) to include speci�c part identi�cation numbers for the trucks;

the tasks listed in Table 5.3 correspond to the tasks in Figure 5.5.

DATE TIME TASK TYPE ID PART ID
...

...
...

...
08/19/2006 8:44 Assemble Chassis T2 T4656
08/19/2006 8:52 Assemble Chassis T1 T4656

...
...

...
...

08/19/2006 9:15 Add Trim T2 T4656
08/19/2006 9:17 Add Trim T1 T4656

...
...

...
...

08/19/2006 10:43 Finalize Truck T2 T4656
08/19/2006 10:48 Finalize Truck T1 T4656

...
...

...
...

Table 5.3: Revised Hanyoda Motors Daily Production Schedule for August 19, 2006
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A simple constraint on the daily production schedule is that for each product (that

is, a truck), no task that follows another task in the task network diagram can precede

that same task in the daily production schedule. For example, since the \Finalize

Truck" task follows the \Add Trim" task in the task network diagram, it cannot

precede the \Add Trim" task in the daily schedule. Obviously, this constraint does

not have to hold for di�erent products (e.g., trucks T4655 and T4656); in fact, given

the nature of activities on an assembly line, it is very likely optimal that the constraint

does not hold. However, for an individual product, the constraint is mandatory.

The �rst step in using views to express this constraint involves the task network

diagram. In this section, of primary importance is the order of the abstract tasks in

the task network diagram (i.e., the tasks speci�ed in the model); the use of abstract

tasks in this case is in sharp contrast to earlier in this chapter when our focus was

on process instances. Toward that end, we create a Depends On relation that cap-

tures the order of the abstract tasks. Table 5.4 provides the Depends On relation for

the tasks found in Figure 5.5. Notice that the tuples in the Depends On relation in

Table 5.4 contain the abstract tasks, not instances. Furthermore, we use the PRE-

CEDING TASK and SUCCEEDING TASK attributes in the Depends On relation to

distinguish between the tasks involved in a particular dependency.

We next take the transitive closure of the Depends On. Following the convention
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employed throughout this document, we represent transitive closure with the � oper-

ation; consequently, we express the transitive closure of Depends On as �(Depends -

On). Taking the transitive closure of this relation is necessary to create explicit

dependencies between all of the tasks in the task network diagram.

We also utilize the daily production schedule from Table 5.3, representing it as

the DPS relation with attributes DATE TIME, TASK, TYPE ID, and PART ID.

We then employ domain relational calculus notation to express a view that utilizes

the DPS relation. This expression appears in Example 5.3.1, and we refer to the

expression as BEFORE.

Example 5.3.1 (Task Succession View)

BEFORE = f(ap, as) j (dp,ap,ip,pp)2DPS ^ (ds,as,is,ps)2DPS ^ pp = ps ^ dp < dsg

We are now prepared to express the constraint. It appears in Example 5.3.2 and

uses the expression in Example 5.3.1 as well as �(Depends On).

Example 5.3.2 (Task Succession Constraint)

BEFORE � �(Depends On)

Simply stated, the constraint speci�ed in Example 5.3.2 aims to eliminate the

case where a task in the schedule disobeys the task network diagram. Moreover,

Example 5.3.2 illustrates the capacity of views to express constraints in yet another
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context, cross-column models. We next address the other aspect of the duality { the

ability to express views with constraints { in this same context.

Views Expressed with Constraints

In this subsection, we endeavor to discover instances of the duality by utilizing

time-based constraints in the construction of views on process and time-based models;

an instance of this quickly follows from the example in the previous subsection. Let

us begin with a restatement of Example 5.3.2, as expressed in Example 5.3.3.

Example 5.3.3 (Task Succession Constraint Using Empty Set)

BEFORE � �(Depends On) = ;

We next repeat our actions from earlier in this chapter and remove the empty set

equality. The resulting expression is a view that pinpointing the pairs of tasks that

do not obey the task network diagram. We state this view in Example 5.3.4.

Example 5.3.4 (View Based on Task Succession Constraint)

BEFORE � �(Depends On)

Example 5.3.4 serves as a clear illustration of a cross-column modeling situation

where one uses a constraint in the construction of a view. However, it has limited

utility as a mechanism to identify the constraint violators; this limitation stems from
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its inability to determine to which truck a pair of tasks belongs. In turn, this inability

results from the abstract nature of the Depends On relation. That is, the Depends -

On relation has as its domain the abstract tasks of Figure 5.5, and an abstract task

does not pertain to a speci�c truck. Consequently, the Depends On relation has no

notion of pairs of tasks for a speci�c truck (e.g., truck T4655); it simply contains the

abstract dependencies.

Because of the nature of the Depends On relation and the manner in which we

specify the constraint (Example 5.3.2), the BEFORE view only contains pairs of

tasks, and consequently, the information that matches tasks with trucks is lost. This

motivates us to �nd another method for expressing this constraint, and we o�er an

alternative in Example 5.3.6. This example utilizes the EARLY view from Exam-

ple 5.3.5.

Example 5.3.5 (Violator Identifying View Based on Task Succession In-

stances)

EARLY = fS j S2DPS ^ 9P2DPS, 9D2Depends On(P.PART ID = S.PART -

ID ^ P.TASK = D.PRECEDING TASK ^ S.TASK = D.SUCCEEDING TASK ^

P.DATE TIME > S.DATE TIME)g

Example 5.3.6 (Task Succession Instances Constraint)

EARLY = ;

In the EARLY view, we utilize tuple relational calculus to identify the set of tuples
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from DPS (i.e., tasks in the daily production schedule) that disobey the constraint;

adding the empty set equality in Example 5.3.6 seeks to enforce the constraint. More-

over, we overcome the limitations of Example 5.3.2 by using the tuple variable S that

contains date/time, task, type identi�er, and part identi�er information; consequently,

we are able to identify the actual truck-task pairs that violate the constraint.

5.4 Chapter Summary

In this chapter, we explore models outside the Zachman Framework's What col-

umn and identify two archetypal elements (process and time-based models) that allow

us to argue the existence of the duality in other areas of the framework. We then con-

tinue our investigation of the duality in the cross-column modeling context. We focus

on the interactions between process and time-based models and provide evidence of

the existence of the view$constraint duality in this context as well.
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PRECEDING TASK SUCCEEDING TASK
Assemble Body Paint Body
Paint Body Add Trim
Add Trim Finalize Truck

Assemble Chassis Finalize Truck

Table 5.4: The Depends On relation



6

Duality Use in Practical Contexts

In this chapter, we delve into the second hypothesis: the view$constraint duality

is a conceptually tractable and useful tool in the development of information systems.

As a tool, the duality is conceptually tractable in that it utilizes a familiar medium,

views. As for its usefulness, this stems from the capacity of the duality to provide

solutions to practical problems. We return to the relational database context, where

formal mechanisms are available. The conventions that we employ throughout this

chapter follow.

Conventions 6.0.1 (Chapter 6 Conventions)

We assume the following:

V (R1; : : : ; Rk) � W (S1; : : : ; Sl) is a constraint expression where V and W are

views, fR1; : : : ; Rkg are the relation occurrences in V , and fS1; : : : ; Slg are the

relation occurrences inW . This is a syntactic convention, in that we use relation

93
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occurrence to indicate that a relation may occur more than once in R1; : : : ; Rk

or S1; : : : ; Sl. The order of the Ri or Sj is that found in a left to right scan of

the expressions for V orW , respectively. In Section 6.1, we assume without loss

of generality that no attribute name is of a form that conicts with renaming

done in that section.

V 0 and W 0 are views whose de�nitions will be provided when necessary.

Given instances r1,: : :, rk, and s1,: : :, sl ofR1,: : :, Rk, S1,: : :, and Sl, respectively;

rV , sW , rV 0 , and sW 0 are instances resulting from the evaluation of V , W , V 0,

and W 0, respectively. Note that, if Ri and Rj have the same relation name,

then ri = rj and similarly for the si; if Ri and Sj have the same name, then ri

= sj.

V (R1; : : : ; Rk) � W (S1; : : : ; Sl) may be expressed as V � W if the relation

occurrences are understood. Furthermore, V � W denotes that rV � sW , and

this extends to all expressions involving views and the � operation.

We extend � to operate on individual tuples. That is, f�X(t)g = �X(ftg).
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6.1 Recovering Constraint Violators

In this section, we investigate the general case where the boolean nature of a view-

based constraint expression results in the loss of information that otherwise would be

useful in rectifying violations of the constraint. When a constraint M � N fails, we

assume that the failure is due to violators in M , that is, elements of M � N .

We start by restating Example 4.3.9 { the constraint that restricts the part in-

stances in the Part table to the quantities speci�ed in the SubpartS table { in Exam-

ple 6.1.1.

Example 6.1.1 (Part Quantities Constraint)

�type ID; subtype ID; quantity(PG) � SubpartS where PG results from the following ex-

pression:

�PG(Part ./ parent part ID!part ID; type ID!subtype ID; COUNT (part ID)!quantity(Part))

Example 6.1.1 does not permit the identi�cation of potential constraint violators,

as that level of detail is lost when projecting into a schema that matches the schema

of the SubpartS relation. However, we can directly transform the expression into

one that allows the quick identi�cation of the constraint violators; we provide this

transformed expression in Example 6.1.2.

Example 6.1.2 (Part Quantities Constraint with Violators Identi�ed)

The rewritten constraint is:
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�part ID; type ID; subtype ID; quantity(PG) � (�part ID; type ID; subtype ID(PG) ./ SubpartS)

The violators are:

�part ID; type ID; subtype ID; quantity(PG) � (�part ID; type ID; subtype ID(PG) ./ SubpartS)

A natural question arises from Example 6.1.2 that concerns generality. Speci�cally,

is it possible to express a general rule for rewriting view-based constraints that allows

the constraints in their modi�ed forms (through the techniques employed throughout

this document such as removing the empty set equality) to identify explicitly the

tuples that violate the constraints? As we see in Example 6.1.1 and in other instances

throughout this document, using views to express constraints can create situations

where information1 is lost that otherwise would be important in leveraging the views

to identify the violators, and we seek to eliminate this information loss. As this loss

is a product of the manner in which one speci�es the constraint, we use Constraint

Speci�cation Loss (CSL) to denote instances when this information loss occurs.

In the pursuit of CSL elimination, it is crucial to the inquiry that the views

participating in a constraint expression have schematic conformity. We formally

de�ne schematic conformity in De�nition 6.1.3; this de�nition assumes the named

perspective on the attributes of a relation as discussed by Abiteboul, Hull, and Vianu

in [AHV95] as opposed to one based on attribute types. Schematic conformity permits

1We do not use information in its formal, entropy-based meaning. An investigation of the ap-
plication of information-theoretic measures such as entropy to this problem is warranted. However,
such an inquiry is not germane to the current discussion, and thus we do not pursue it at this time.
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the set comparison operations that are at the core of our framework and follows

the standard named relational algebra conventions for union, intersection, and set

di�erence.

De�nition 6.1.3 (Schematic Conformity)

V and W have schematic conformity i� sort(V ) = sort(W ).

To assist in recovering constraint violators, we introduce Theorem 6.1.4.

Theorem 6.1.4 (RA View-based Constraint Rewriting)

Let V (R1; : : : ; Rk) � W (S1; : : : ; Sl) be a constraint expression where V and W have

schematic conformity and are relational algebra (RA) expressions. Then, there exists

V 0 and W 0 such that the following are true for all instances of R1, : : :, Rk, S1, : : :,

and Sl:

� V 0 and W 0 have schematic conformity,

� the attributes of V 0 cover the primary keys of R1; : : : ; Rk (possibly renamed)

with the exception of any primary key that appears only on the right-hand side

of a \�" operation,

� V = �sort(V )(V
0), and

� V � W i� V 0 � W 0.

Proof:
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Construct V 0 as follows:

(a) With the exception of any subexpression of V that appears on the right-

hand side of a \�" operation, replace each projection in V with a renaming

operation that renames the attributes that are dropped in the projection.

Speci�cally, replace the expression �X(E) where E is a subexpression and

X is the set of attributes in the original projection with the expression

�Y1!R�(i1) Y1;:::;Yn!R�(in) Yn(E) where sort(E) � X = fY1, : : :, Yng, �(x)

indicates the decimal representation of x, and im is the least value v such

that

� Rv is in the scope of E,

� Rv contains attribute Ym and

� that occurrence of Ym has not been renamed or shielded by a \�"

operation in a subexpression within E.

(b) Resolve all schematic conformity discrepancies between set operations cre-

ated by the removal of projections; handle these discrepancies recursively

in the following manner. In each case, consider a subexpression E 0 4 F 0

that is constructed from the subexpression E 4 F of V where 4 2 f\
S
",

\
T
", \�"g and E 0 and F 0 are respectively E and F rewritten recursively.

� When 4 = \
S
" and for each attribute B in sort(E 0) - sort(F 0) or in

sort(F 0) - sort(E 0), use Cartesian product to add the attribute B to
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F 0 or E 0, respectively such that B has a NULL value in all tuples (also

known as an OUTER UNION operation[EN06]). Note that any such B is

of the form R�(ij) Yk in accordance with the earlier renaming.

� When4 = \
T
", replace

T
by a natural join. Since renamed attributes

are unique to either E 0 or F 0, only attributes appearing in E (and F

by symmetry) occur in equality conditions implied by the natural join.

� When 4 = \�", F 0 is simply F . There are no attributes in F 0 that

do not also occur in E and hence in E 0. Attributes in E 0 but not in F

are handled by de�ning F 0 as E 0 ./ F .

Next, construct W 0 by joining V 0 to W using a natural join: W 0 = V 0 ./ W .

As a result of V 0 ./ W , sort(V 0) = sort(W 0). Thus W 0 conforms to V 0. As for

the attributes of V 0 covering the primary keys of R1; : : : ; Rk with the exception

of any primary key that appears on the right-hand side of a \�" operation, the

construction of V 0 dictates that sort(V 0) consists of all attributes in sort(R1)

[ : : : [ sort(Rk) (with appropriate renaming as described in the preceding)

excluding attributes that appear on the right-hand side of a \�" operation.

Thus sort(V 0) must contain the primary key attributes of R1; : : : ; Rk with the

exception of primary key attributes involved in the right-hand side of a set

di�erence operation.

It thus remains to prove V = �sort(V )(V
0) and V � W i� V 0 � W 0. Henceforth,
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without loss of generality, we use rV , sW , rV 0, and sW 0 as instances representative

of the evaluation of V , W , V 0, and W 0, respectively across all instances of R1,

: : :, Rk, S1, : : :, and Sl. We begin by stating that if rV = ;, then V � W i�

V 0 � W 0 is vacuously true. Otherwise, we proceed by specifying Lemmas 6.1.5

and 6.1.6.

Lemma 6.1.5

V is algebraically equivalent to �sort(V )(V
0) and hence rV = �sort(V )(rV 0)

Proof:

Because only rewritten variables are dropped in the projection �sort(V ), that

projection may be distributed over operations in V 0 until the appropriate

renamings are found and the renamings removed. Thus �sort(V )(V
0) is

algebraically equivalent to V .2

Lemma 6.1.6

�V (sW 0) = �V (rV 0) \ sW , hence �V (sW 0) � �V (rV 0) and �V (sW 0) � sW .

Proof:

By the construction of W 0 (W 0 = V 0 ./ W ), the lemma must hold.

2The algebraic rule is �X(�A!B(r)) = �X(r) when B 62 X .
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Lemma 6.1.5 proves that V = �sort(V )(V
0). We now must demonstrate that the

set containment/equality relationships may be inferred in both directions.

Case 1: rV � sW ) rV 0 � sW 0

By Lemma 6.1.5, any t0 2 rV 0 corresponds to t 2 rV such that ftg = �sort(V )(ft
0g)

and by the case hypothesis, t 2 sW . Thus t joins with t0 in the expression

V 0 ./ W and hence t0 2 sW 0.

Case 2: rV � sW ( rV 0 � sW 0

By Lemma 6.1.5, rV = �sort(V )(rV 0). By Lemma 6.1.6 and the case hypothesis,

rV 0 = sW 0, and hence �sort(V )(rV 0) = �sort(V )(sW 0). Again by Lemma 6.1.6,

�sort(V )(sW 0) � sW , and the case is proved.

By virtue of Theorem 6.1.4, we have the capacity to recover constraint violators

in view-based constraint expressions when the views themselves are relational algebra

expressions. Thus, when encountering CSL involving views consisting of relational

algebra expressions, we have an e�ective mechanism for eliminating the loss of infor-

mation.

When the constraint is V = W , violators may appear on either side of the ex-

pression. Thus, we must separate V = W into two cases, V � W and V � W . We

then apply Theorem 6.1.4 to each case to get V 0 � W 0 and V 00 � W 00, respectively.

The conjunction of these is equivalent to V = W , but it is more e�ective to look for
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violators independently.

An additional observation regarding Theorem 6.1.4 is helpful. Our construction

for E 0 � F 0 is very ine�cient, in that it inates a set merely to create the di�erence.

A form equivalent to E 0 � (E 0 ./ F 0) that does not expand F 0 is E 0 ./ (E � F ).

Moreover, we may simplify this to E 0 ./ (�sort(E)(E
0) � F ), thus avoiding the need to

compute both E and E 0.3

It is also helpful to consider views whose expressions use aggregation and transitive

closure in addition to the core relational algebra. As a matter of tractability, we

must treat the relations resulting from aggregate and transitive closure operations as

atomic; that is, for rewriting purposes, we do not descend into the subexpressions

dominated (as described by Zanibbi, Blostein, and Cordy in [ZBC02]) by aggregation

and transitive closure operations. We designate the relations that result from the

aggregate and transitive closure operations as intermediate relations, and henceforth,

we focus on the schemas for the intermediate relations.

As a consequence of treating the intermediate relations as atomic, it is paramount

that their schemas already contain the relevant primary key attributes for the relations

that appear in the expressions that serve as input to the aggregation and transitive

closure operations. Otherwise, recovering the identity of a constraint violator is not

3E0 ./ (�sort(E)(E
0) � F ) is an instance of the OUTER DIFFERENCE operation, signi�ed as � and

de�ned as P � Q = P ./ (�sort(Q)(P ) � �sort(P )(Q)) where P and Q are relations. Since E and F
have the same schema in our example, only the �sort(E) projection is necessary.
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possible when relevant primary key attributes missing from the intermediate relations'

schemas.

On this topic, consider a constraint that all active classes must have at least 10

students enrolled. In this case, the constraint has violations associated with classes,

not individual students. It is likely that the underlying relational database schema

implements the relationship between students and classes by utilizing a table whose

primary key is a composite consisting of a student identi�er and a class identi�er.

Assuming we indeed implement the table in this manner, the constraint violators

would be class identi�ers, not the entire primary key.

As an additional example, consider a constraint that all active classes must have

enrollments that do not exceed the seating limits of their assigned classrooms. This

constraint has violations that are associate with classes if the constraint is checked in

batch mode (that is, the constraint is checked against the entire database instance).

However, if the constraint is checked in transaction mode (that is, the constraint is

checked when a new tuple is inserted), the student who puts the count over the limit

would be the violator.

In general, one would expect that the relevant keys would be among the grouping

(i.e., GROUP BY) attributes, at least in batch mode. Thus, we add to this discussion

a notion of relevant primary keys. For rewriting according to Theorem 6.1.4 to occur,

we naturally must determine the relevant primary keys. As relevance is a semantic
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consideration and depends in some sense on the meaning of the expressed constraint,

it becomes di�cult to stipulate an automated procedure, and thus we see the need

for user intervention in this determination process. In a transaction mode context,

strength reduction provides another approach, as we discuss in the next section.

We can also apply this approach in cases where a view contains both aggregation

and transitive closure; in these cases, we treat the least nested aggregation or transi-

tive closure operation as creating an intermediate relation and then determine if the

intermediate relation contains the relevant primary keys. We then can utilize the re-

sults from Theorem 6.1.4 to enable the recovery of violators in view-based constraints

that utilize the extended relational algebra under the assumption that the views have

the relevant keys in their schemas.

This same technique applies when constraints involve self-referential relationships,

as implemented by parent part ID in the Part relation of Example 6.1.1. A self-

referential relation has a primary key attribute (part ID in the example) and a foreign

key attribute (e.g., parent part ID) that refers to the primary key. If the foreign key

is a grouping attribute of the aggregation, then it may be possible to recover the

constraint violators. In e�ect, we treat the self-referential foreign key as a primary

key and thus proceed to use the means established in Theorem 6.1.4. Nevertheless,

this is another circumstance truly needing user intervention to ensure correctness.

The naturalness of this process is seen in Examples 6.1.1 and 6.1.2, where the
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derived relation PG encapsulates the aggregate operation (and an additional join to

provide the proper type ID). The process actually results in the expression stated in

Example 6.1.7.

Example 6.1.7 (Part Quantities Constraint Resulting from Theorem 6.1.4)

PG � (PG� SubpartS)

In place of the expression from Example 6.1.7 that the aforementioned proce-

dure dictates, we utilize the expression from Example 6.1.2 that refrains from joining

the quantity columns from PG and SubpartS. This is a slight optimization, and

certainly other optimizations may be applicable. In fact, we can leverage the well-

known heuristics and optimizations of the relational model by utilizing view-based

constraints. In addition, it is worthwhile to state explicitly that the set of violators

consists of PG � (PG� SubpartS).

6.2 Triggers

In this section, we discuss a use of the duality involving triggers. As we saw

in Chapter 2, the mechanism for implementing triggers is typically powerful, per-

mitting use of general purpose programming languages that are Turing-complete.

Considering the powerful expressiveness of triggers, it is di�cult to posit views as a



6. Duality Use in Practical Contexts 106

mechanism that can e�ectively express all triggers. However, triggers that are compu-

tationally tractable can be often derived from view-based constraints using strength

reduction[ASU86], a notion that has long been used in view maintenance[KP81]. Sev-

eral authors, including [CW90, CFPT94, TG01], have explored the automated gener-

ation of triggers from constraints; Ceri et al.[CFPT94] even discuss the use of views in

their constraint speci�cations. Using strength reduction in the context of the duality,

though, is novel.

To prepare for our discussion of view-based constraints in the context of triggers,

we must appeal to the database management system in which we implement the

trigger. In commercial database management systems, there are often methods for

the trigger to inspect the tuple before its insertion; Oracle provides the OLD and

NEW pseudorecords for these occasions[UM04]. The OLD pseudorecord represents the

existing tuple that we are deleting or updating (in the case of DELETE or UPDATE,

respectively), while the NEW pseudorecord represents the new tuple that results from

an INSERT or UPDATE.

We begin by examining the components of triggers (that is, events, conditions,

and actions) individually and discussing the manner in which views may address

them. We �rst discuss events; unfortunately, views certainly do not possess a faculty

for representing events' temporal aspects. Furthermore, events concern data manip-

ulation operations (such as insert, delete, and update) while views are declarative.
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Consequently, directly specifying the event component of triggers falls outside the

scope of views. We can, however, capture the result of these events by virtue of the

limited number of event types: insert, update, and delete. Consider r and r0 as the

pre-event and post-event instances of a relation R on which a trigger resides, with

tuples NEW 2 (r0 � r) and OLD 2 (r � r0). In this context, we characterize each of the

event types as follows:

INSERT: r0 = r [ fNEWg

DELETE: r0 = r � fOLDg

UPDATE: r0 = r � fOLDg [ fNEWg

In the sequel, we assume a constraint holds prior to the occurrence of an event.

We characterize this as a precondition on the trigger.

As for conditions, views can naturally express boolean-valued queries, and con-

sequently, views can account for the conditions present in triggers. In the case of

actions, their procedural nature creates some di�culty for using views to express

them. However, when the result of a action is a single relation, a view can obviously

express this type of result. The result of an action may also impact multiple rela-

tions, and this case naturally calls for multiple views. Hence, views can express the

result(s) obtained from a trigger's action, but such an approach may require employ-

ing multiple views, depending on the composition of the action. Furthermore, while
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a view (or views) can capture the �nal result of an action (or actions), the action

itself may utilize non-relational structures or control statements (such as for loops)

in the intermediate steps of its procedure, and such entities are naturally beyond the

purview of views.

In some cases, one can derive conditions and actions from the view-based con-

straints using the aforementioned strength reduction. For example, consider the for-

eign key constraint that Ai in r is a foreign key that refers to Bj in s. As noted in

Chapter 4, the view form is �Ai
(r) � �Bj

(s), or equivalently, �Ai
(r) � �Bj

(s) = ;.

Now consider the e�ect of inserting a single tuple NEW into r (the TRIGGER's event).

The constraint may be rewritten to compensate for this new tuple, resulting in the

following:

�Ai
(r [ fNEWg)� �Bj

(s) = (�Ai
(r) [ �Ai

(fNEWg))� �Bj
(s)

= (�Ai
(r)� �Bj

(s)) [ (�Ai
(fNEWg)� �Bj

(s))

= ; [ (�Ai
(fNEWg)� �Bj

(s)) (6.1)

Requiring Equation 6.1 to be equal to ; is equivalent to mandating that �Ai
(NEW) 2

�Bj
(s). This is the natural and e�cient statement of the TRIGGER's condition.

Now consider the impact of deleting a tuple OLD from s, which replaces s by s0 =

s � fOLDg. It is not generally possible to distribute � in �Bj
(s � fOLDg), since this
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expression is �Bj
(s) when OLD.Bj occurs more than once in s, and �Bj

(s)��Bj
(fOLDg)

when OLD.Bj occurs exactly once.

However, since Bj is a key for s (and thus OLD.Bj occurs exactly once), �Bj
(s �

fOLDg) may be rewritten to �Bj
(s) � �Bj

(fOLDg), and the constraint then becomes

�Ai
(r) � (�Bj

(s) � �Bj
(fOLDg)). This is equivalent to �Ai

(r) \ �Bj
(fOLDg) = ;.

The reasoning of the preceding example may be generalized into the following fact.4

We envision a library of such facts as part of a future implementation that leverages

view-based constraints; see Chapter 7 for additional information.

Fact 6.2.1 (Set Containment involving Disjoint Sets)

Given sets S1, S2, and S3 with S1 � S2.

S1 \ S3 = ; , S1 � (S2 � S3)

There are two options for satisfying the foreign key constraint: not removing

OLD from s or removing every tuple OLDr from r where �Ai
(fOLDrg) = �Bj

(fOLDg),

i.e., a cascading delete. In the former case, not performing an operation is always a

possibility, as the operation's impact on the constraint would then be negated; this is

handled in the TRIGGER's action by terminating the operation. In the latter case, we

essentially derive the TRIGGER's action as well; namely, r becomes r 0 = r � fOLDr:

�Ai
(OLDr) = �Bj

(OLD)g.

4The use of fact denotes that the statement is well-understood and widely accepted.
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More complex constraints, including in some cases those requiring ERA for their

expression, can be handled similarly. We can extend strength reduction to more

general cases as a result of the limited number of event types that we discussed

earlier. Given a view-based constraint V � W where R 2 sort(V ), it is natural to

consider V � W as the TRIGGER's condition in that the constraint must continue to

hold even after the event occurs. Writing V (�) to indicate substitutions for R with

instances for other relation schemas in V held �xed, V (r) represents V before the

trigger �res, and V (r0) represents V as a result of the event occurring. In these cases,

we assume that R 62 sort(W ). If we further restrict V to having only one instance

of R in its expression and containing only the �, �, ./, [, and \ operations, we then

may use strength reduction to address each event type. In fact, these restrictions

{ especially disallowing the set di�erence operation { allow us to focus only on the

INSERT and UPDATE events, as a DELETE event on r does not impact the V � W

constraint under the current stipulations. That is, if a delete on r occurs, V (r0) �

V (r) � W if V only contains �, �, ./, [, and \ operations. For the same reason,

we only have to consider the aspect of an UPDATE event that concerns the addition

of a new tuple, i.e., the INSERT aspect. Thus, we combine the INSERT and UPDATE

events into one case. It is worth noting that in some circumstances involving UPDATE

events, we may be able to eliminate completely the need to check the constraint. For

instance, there is no need to check �A(NEW) 2 �B(S) if �A(OLD) = �A(NEW), since this
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implies membership in �B(S) by our precondition assumption.

We now present a series of facts and reductions in Reduction 6.2.2; these too will

be part of the aforementioned implementation.

Reduction 6.2.2 (Core Relational Algebra Strength Reduction)

Based on the facts established in Table 6.1, the resulting strength reductions are

captured in Table 6.2. For these facts and reductions, let V � W be a view-based

constraint where R 62 sort(W ) and V has only one instance of R in its expression

and contains only the �, �, ./, [, and \ operations. In addition, S 2 sort(V ),

with s an instance of S. Enforcement of the constraint consists of performing the

reduction on V and then determining if W contains the reduced result. The cases in

table 6.2 represents the simple expressions involving individually the �, �, ./, [, and

\ operations. More complicated expressions may be built from the composition of

these operations and then reduced based on the cases in Table 6.2.

As for the more advanced ERA operations of importance (i.e., aggregation and

transitive closure), we can apply strength reduction in restricted cases involving ag-

gregation on a single relation. Consider a scenario involving bank account balances

and transactions that impact the balances. This example uses two tables: ACCT

and TRANS; their schemas are greatly simpli�ed but nevertheless easily obtained

by projections on tables from actual databases. The ACCT table represents bank

accounts with a column A NUM containing account numbers and a column BAL



6. Duality Use in Practical Contexts 112

OPERATION FACT
� �(r0) = �(r [ fNEWg) = �(r) [ �(fNEWg)
� �(r0) = �(r [ fNEWg) = �(r) [ �(fNEWg)
./ r0 ./ s = s ./ r0 = s ./ (r [ fNEWg) = (s ./ r) [ (s ./ fNEWg)
[ r0 [ s = s [ r0 = s [ (r [ fNEWg) = (s [ r) [ fNEWg
\ r0 \ s = s \ r0 = s \ (r [ fNEWg) = (s \ r) [ (s \ fNEWg)

Table 6.1: RA Facts Table

OPERATION INSERT/UPDATE
� �(fNEWg) � W

� �(fNEWg) � W

./ (s ./ fNEWg) � W

[ fNEWg � W

\ (s \ fNEWg) � W

Table 6.2: RA-Event Strength Reduction Table

containing account balances, and the TRANS table represents bank transactions

with a column T NUM containing transaction numbers, a column A NUM contain-

ing account numbers, and a column T AMT containing transaction amounts. An

expected constraint is that each account balance must match the sum of the trans-

actions on the account and must be greater than or equal to zero. In Example 6.2.3,

we provide a view-based ERA expression that enforces this constraint.

Example 6.2.3 (Account Balance Constraint)

ACCT = A NUM;SUM(T AMT )!BAL(TRANS) AND �BAL<0(ACCT ) = ;

Using the convention employed earlier, consider TRANS 0 as the table that results

from inserting a tuple NEW into TRANS and ACCT 0 as the table that results from the
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updating of the account balance in accordance with NEW. Momentarily ignoring the

portion of the constraint that speci�es �BAL<0(ACCT ) = ;, we have Example 6.2.3.1.

Example 6.2.3.1 (Post-INSERT Account Balance Constraint)

ACCT 0 = A NUM;SUM(T AMT )!BAL(TRANS 0)

To assist in the explication, we introduce Example 6.2.3.2 wherein we reconstitute

the constraint into a form that uses aspects of relational calculus and the unnamed

perspective, as discussed by Abiteboul, Hull, and Vianu in [AHV95]. In the following

examples, we utilize the expression �(v) to represent �A NUM=v(TRANS) and �0(v)

to represent �A NUM=v(TRANS 0).

Example 6.2.3.2 (Account Balance Constraint Restated)

Since A NUM is the primary key for ACCT ,

ACCT = A NUM;SUM(T AMT )!BAL(TRANS) ,

8 a 2 ACCT:A NUM [ACCT (a,BAL) = (a,
X
t2�(a)

t.T AMT )]

We can then express Example 6.2.3.1 as Example 6.2.3.3.

Example 6.2.3.3 (Post-INSERT Account Balance Constraint Restated)

8 a 2 ACCT 0:A NUM [ACCT 0(a,BAL) = (a,
X
t2�0(a)

t.T AMT )]

As we presume that the constraint was true before we inserted NEW, we can then

remove the una�ected portion of the constraint that does not concern the account
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number present in NEW. Since the NEW pseudorecord functions as a variable, we can

utilize it to compare the values in the new tuple to the values in the corresponding

columns in the ACCT and TRANS tables. Furthermore, due to the distributive

nature of addition, we can apply an additional optimization on the summation. This

results in the expressions in Example 6.2.3.4.

Example 6.2.3.4 (Post-INSERT Account Balance Constraint Using NEW)

ACCT 0(NEW.A NUM ,BAL)

= (NEW.A NUM ,
X

t2�0(NEW:A NUM)

t.T AMT )

= (NEW.A NUM ,
X

t2�(NEW:A NUM)

t.T AMT + NEW.T AMT )

Naturally, we may express Example 6.2.3.4 algebraically, as we do in Exam-

ple 6.2.3.5. The SUM(T AMT ) (�TRANS:A NUM=NEW:A NUM(TRANS)) expression in

Example 6.2.3.5 is in e�ect the right-hand side of the �rst part of Example 6.2.3

constrained to only the rows in TRANS that matches NEW.A NUM . Thus, we may

replace it with �BAL(�ACCT:A NUM=NEW:A NUM (ACCT )). This expression is of course

the natural implementation for managing account balances; the signi�cance lies in

the fact that the implementation is formally deduced and thus proved correct by

construction.

Example 6.2.3.5 (Rewritten Post-INSERT Account Balance Constraint)
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�BAL(�ACCT 0:A NUM=NEW:A NUM (ACCT 0))

= SUM(T AMT ) (�TRANS:A NUM=NEW:A NUM(TRANS)) + �T AMT (fNEWg)

= �BAL(�ACCT:A NUM=NEW:A NUM(ACCT )) + �T AMT (fNEWg)

As a �nal step, consider that the right-hand side of Example 6.2.3.5 must be

greater than or equal to zero (from �BAL<0(ACCT ) = ;). Leveraging Example 6.2.3.5,

we arrive at Example 6.2.3.6.

Example 6.2.3.6 (Final Version of Account Balance Constraint)

�BAL(�ACCT:A NUM=NEW:A NUM(ACCT )) � ��T AMT (fNEWg)

The reduction of Example 6.2.3 to Example 6.2.3.6 always applies because the

grouping attribute is a primary key in the corresponding relation (e.g., A NUM is the

primary key of ACCT ). Example 6.2.3 demonstrates the capacity to apply strength

reduction to aggregation involving summation on a single relation where the event

type is an INSERT, and we can extend this application to include all aggregation

functions that can distribute over the union of the original relation (that is, the

relation before the event occurred) and the set containing the new tuple. These

aggregation functions are SUM, COUNT, MIN, and MAX, and with each of them, we

arrive at the same result by �rst evaluating the function with regard to the original

relation and then factoring in the new tuple as we would if we evaluated the function

using the relation that would result from the occurrence of event. We now present a
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series of reductions in Reduction 6.2.4; these too will be part of the aforementioned

implementation.

Reduction 6.2.4 (Aggregation Strength Reduction)

The strength reductions are captured in Tables 6.3, 6.4, and 6.5. For these reductions,

given a view-based constraint V � W and recalling De�nition 4.3.8 from Chapter 4,

let V be !(Ai)!�;X(r) where fAig [ X � sort(R), Ai 62 X, and ! 2 fSUM, COUNT,

MIN, MAXg. In addition, let � = ��(!(Ai)!�;X(r)) where � is de�ned in the following

for each event. Enforcement of the constraint consists of performing the reduction

on V and then determining if W contains the reduced result. As we saw in Ex-

ample 6.2.3.6, additional reductions may be possible. In addition, notice that some

cases conditionally have a reduction; if the condition is not met, then no reduction is

possible.

INSERT event: In the case of the INSERT event, let � select the tuple from V whose

values for all attributes from X match those from NEW (that is, NEW's attribute

values from X).

DELETE event: In the case of the DELETE event, let � select the tuple from V whose

values for all attributes from X match those from OLD (that is, OLD's attribute

values from X).

UPDATE event (1): In the case of the UPDATE event where OLD and NEW match on X
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(denoted �X(OLD) = �X(NEW)), let � select the tuple from V whose values for all

attributes from X match those from OLD (that is, OLD's attribute values from

X).

UPDATE event (2): In the case of the UPDATE event where OLD and NEW do not match

on X (denoted �X(OLD) 6= �X(NEW)), reduce to the INSERT and DELETE cases

for the appropriate �s.

AGGREGATION
EVENT SUM COUNT

INSERT �.� + NEW.Ai �.� + 1
DELETE �.� � OLD.Ai �.� � 1

UPDATE (1) �.� + (NEW.Ai � OLD.Ai) �.�

Table 6.3: Event-Aggregation (SUM and COUNT) Strength Reduction Table

EVENT MIN

INSERT
NEW.Ai � �.� ) NEW.Ai

NEW.Ai > �.� ) �.�
DELETE OLD.Ai 6= �.� ) �.�

UPDATE (1)
NEW.Ai � �.� ) NEW.Ai

NEW.Ai > �.� ^ �.� 6= OLD.Ai ) �.�

Table 6.4: Event-Aggregation Strength (MIN) Reduction Table

EVENT MAX

INSERT
NEW.Ai � �.� ) NEW.Ai

NEW.Ai < �.� ) �.�
DELETE OLD.Ai 6= �.� ) �.�

UPDATE (1)
NEW.Ai � �.� ) NEW.Ai

NEW.Ai < �.� ^ �.� 6= OLD.Ai ) �.�

Table 6.5: Event-Aggregation Strength (MAX) Reduction Table
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In this section, we have illustrated the capacity of the duality to serve as a tool

that enables the application of strength reduction to the de�nition of triggers. In the

examples that we discuss, the perspective granted by the duality helps to provide sim-

ple, computationally inexpensive conditions for use in the trigger de�nitions. These

conditions contrast sharply with the ones that a naive approach likely suggests. For

instance, in Example 6.2.3.1, computing each side of the expression and then com-

paring the resulting sets is a simple method for determining the satisfaction of the

constraint; however, this expensive computation is not necessary, as we have shown.

Furthermore, consider the approach possibly taken if the only speci�cation pro-

vided were the prose description. In this scenario, one may have chosen more pro-

cedurally oriented techniques that use for loops and the like. However, the practice

of programming involves trial and error, and in the interest of delivering the de-

sired functionality correctly and expediently, it is preferable to precisely describe the

desired results and have the correct implementation derived.

An additional observation concerns the global nature of views, as discussed in

Chapters 1 and 2. Throughout this section, we obviously use the aspect of the duality

that concerns the use of views in expressing constraints, and thus we have de�ned the

constraints at a global level. However, as we have seen in cases involving insertions,

deletions, and updates, the enforcement of the constraints often entail items at the

local level, i.e., tuples. This discrepancy between global and local actually highlights
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a potential bene�t of using views to express constraints.

To illustrate this point, consider the examples from earlier in this section. In both

examples, we isolate the local element { the newly inserted, deleted, or updated tuples

{ from the globally de�ned constraint (that is, a constraint expressed using views),

and based on an assertion that the constraint held before the action (the insertion,

deletion, or update), we then remove the original constraint from the expression. As a

result, we only have to examine the newly inserted, deleted, or updated tuples and not

the entire relation, and in each case, this follows quickly from de�ning the constraint

globally. We thus observe the value of de�ning globally and enforcing locally.

6.3 Tree Conformity

In this section, we investigate the impact of view-based constraints on tree con-

formity. As the name suggests, a tree conformity constraint occurs when the data

encodes two trees that must have the same structure. The most natural example

of tree conformity concerns the relationship between the speci�cation of parts and

their subparts and the actual part instances. As the speci�cation of parts and their

subparts involves the establishment of hierarchical relationships between parts and

their subparts, we can characterize these relationships as parent-child relationships

and thus represent the relationships as a tree with the product (e.g., truck) serving
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Figure 6.1: ER Diagram for Tree Conformity

as the root. Since each product instance should follow its speci�cation's hierarchy,

we may represent the product instances as trees as well. Ensuring that product in-

stances meet the product speci�cation then becomes a matter of ensuring that the

instance trees conform to the speci�cation tree; we denote this as an example of the

tree conformity constraint.

To assist in this explication, we reprint Figure 1.1 from Chapter 1 in Figure 6.1.

From this �gure, a natural expression of an example of the tree conformity constraint

is Example 6.3.1; recall that � is the transitive closure operation.

Example 6.3.1 (Speci�cation-Instance Tree Conformity Constraint Exam-

ple)

Type to Part � �(SubpartI) � �(SubpartS) � Type to Part

To understand the constraint speci�ed in Example 6.3.1, imagine beginning with



6. Duality Use in Practical Contexts 121

some root part type � , and then construct the type tree rooted at � using �(SubpartS).

In addition, �nd all corresponding parts of type � using the Type to Part relation,

make certain that these parts are roots (i.e., �nished products), and then construct an

instance tree from each of these roots using �(SubpartI). Then the structure of each of

the instance trees must match the speci�cation tree's structure, with the Type to Part

relation providing a mapping from type to part that enables the veri�cation of the

matching. The constraint speci�ed in Example 6.3.1 satis�es this imperative.

While Example 6.3.1 does specify an example of the tree conformity constraint, it

also involves transitive closure on each of the expression, and from a computational

perspective, it is certainly better to write the constraint without transitive closure if

that is possible. This leads to Theorem 6.3.2.

Theorem 6.3.2 (Tree Conformity Theorem)

Let A, B, and C be binary relations over X � Y , Y � Y , and X � X, respectively

where A is a function from Y into X. If A � B � C � A, then A � �(B) � �(C) � A.

Proof:

By the de�nition of transitive closure involving �nite binary relations, both

�(B) and �(C) must eventually reach �xpoints where their cardinalities do not

increase. Let n be the maximum of the number of compositions that �(B) per-

forms to reach its �xpoint and the number of compositions that �(C) performs
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to reach its �xpoint. In the following, we utilize Bi to represent B � � � � �B| {z }
i

and

Cj to represent C � � � � � C| {z }
j

. Thus, Bn = �(B) and Cn = �(C) by the choice of

n.

Basis: A � B � C � A

This is the theorem hypothesis.

Induction: If A � Bn�1 � Cn�1 � A, then A � Bn � Cn � A

By the de�nition of relational composition, A � Bn = A � (Bn�1 � B).

Since relational composition is associative, A � (Bn�1 � B) = (A � Bn�1)

� B.

By the inductive hypothesis, A � Bn�1 � Cn�1 � A, and thus (A � Bn�1)

� B � (Cn�1 � A) � B.

By associativity, (Cn�1 � A) � B = Cn�1 � (A � B), and using the Basis,

Cn�1 � (A � B) � Cn�1 � (C � A).

Since relational composition is associative, Cn�1 � (C � A) = (Cn�1 � C)

� A.

By the de�nition of relational composition, (Cn�1 � C) � A = Cn � A.
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Therefore, we have the following:

A �Bn = A � (Bn�1 �B)

= (A �Bn�1) �B

� (Cn�1 �A) �B

� Cn�1 � (A �B)

� Cn�1 � (C � A)

� (Cn�1 �C) �A

� Cn � A

As a result, A � Bn � Cn � A.

We can then use Theorem 6.3.2 to simplify Example 6.3.1 to Example 6.3.3. That

is, if Example 6.3.3 is true, then by Theorem 6.3.2, Example 6.3.1 must be true.

Example 6.3.3 (Final Version of Speci�cation-Instance Tree Conformity

Constraint Example)

Type to Part � SubpartI � SubpartS � Type to Part

The simpli�cation found in Example 6.3.3 is an artifact of using the view-based

constraint approach to specify constraints.
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6.4 Chapter Summary

In this chapter, we investigate the second hypothesis in the database systems

domain. We demonstrate the usefulness of view-based constraints in recovering con-

straint violators. In addition, we establish the manner in which view-based constraints

enable the application of strength reduction as well as the simpli�cation of complex

expressions that involve tree conformity.



7

Conclusion and Future Work

In this chapter, we begin with a summary of the previous chapters. We then

present the major results from this work and plans for future work.

7.1 Summary

In this section, we summarize the previous chapters. We begin in Chapter 1 where

we present a motivating example and an outline for the remainder of the document..

In Chapter 2, we next discuss the necessary background information and introduce

the notational conventions that we employ. Included in these topics are the Zachman

Framework for Enterprise Architecture, the core relational model, relational algebra,

relational calculus, and Structured Query Language (SQL) as well as a discussion of

related work.

125
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In Chapter 3, we then discuss the concepts foundational to our hypotheses and ex-

amine the di�culties that we encounter in establishing the duality. We also prove the

duality's existence in a formal context (FOL) and then introduce contexts that pro-

vide empirical evidence for the duality, using the Zachman Framework for Enterprise

Architecture to organize and guide in this exploration. Our hypotheses validation

process tends to focus on the Specify and Design roles, as the Build role emphasizes

the implementation-related representations that fall outside our purview.

In Chapter 4, we begin the process of �nding empirical evidence of the duality

by closely inspecting the database systems domain (in the Zachman Framework, the

What column). We focus, in this chapter, on speci�c instances of the duality in the

database systems domain. In particular, we concentrate on the well-known constraints

and dependencies found in the core relational model, utilizing relational algebra and

set operations to illustrate the manner in which this facet of the duality holds. We

also describe a set of extensions (including aggregate functions, transitive closure,

and metadata operations) to the core relational model and investigate related classes

of constraints.

We then leave the data models and proceed to address models and methodologies

at the conceptual level that are less formal and more descriptive. Here, we identify two

archetypal elements that allow us to argue the existence of the duality in other areas

of the Zachman Framework and thus to continue our hypothesis validation process.
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We continue our examination by delving into the duality in an area that we entitle

cross-column modeling.

After we validate the �rst hypothesis, we address the use of the duality as a tool

in the development of information systems in Chapter 6. Speci�cally, we demonstrate

instances in the context of relational database management systems where the duality

has great utility.

7.2 Results

In this section, we provide a synopsis of the major results from this research.

Please recall our hypotheses stated in Chapters 1 and revisited in Chapter 3:

1. a view$constraint duality exists in database systems and systems

engineering domains and

2. the view$constraint duality is a conceptually tractable and useful

tool in the development of information systems.

In the following, we divide our results into those associated with the �rst hypoth-

esis and those associated with the second hypothesis.
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First Hypothesis: Existence of View$Constraint Duality

For purposes of demonstrating that the �rst hypothesis holds, we employ two

techniques. The �rst technique is the canonical direct proof, and in Theorem 3.2.1,

we formally establish the view$constraint duality in the context of FOL. The other

technique is empirical evidence, and we utilize this approach in the relational database

domain to discuss instances of views expressing constraints. In this domain, though,

we are still able to leverage the relational model and thus express the evidence in

a formal manner using relational algebra and relational calculus. We augment our

presentation of the duality in the relational database domain by extending the core re-

lational algebra to include operators for transitive closure, aggregation, and metadata

and demonstrating the manner in which views express constraints in these extensions.

We continue to employ the empirical evidence technique as we investigate in-

stances of the duality outside the relational database domain. As we conduct this

investigation in the more abstract and less formal Specify and Design roles of the

Zachman Framework, we are driven to use examples to help indicate the manner in

which the duality holds in these other areas, and to lend structure to the discussion,

we utilize concepts such as relations, relational operations, and arrays.

As we see throughout the process of investigating the �rst hypothesis, the accuracy

with which the hypothesis holds depends upon the degree to which the constraints
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can be formalized. In the case of the relational data model, the constraints are well-

understood and can be formalized. This is even true of the semantic constraints

that are expressible in relational algebra and relational calculus. In the case of the

other models, the constraints from the Specify and Design roles have a less formal

expression, and views prove to be a method for interjecting more formality into the

expression of the constraints.

Second Hypothesis: Usefulness of View$Constraint Duality

To demonstrate that the second hypothesis holds, we again turn toward the re-

lational model to exhibit examples of the duality having practical uses. In Theo-

rem 6.1.4, we see the manner in which view-based constraints may be e�ectively

rewritten to remove ambiguity and indeterminism in the constraints and thereby to

identify the violators of the constraints. We also document the method by which view-

based constraints enable the application of strength reduction to the enforcement of

the constraints. Moreover, we prove in Theorem 6.3.2 the capacity of view-based tree

conformity constraints to be transformed into much simpler expressions that avoid

potentially computationally expensive transitive closure operations.

As the uses of the duality that we investigate are entirely in the relational model

domain, this suggests that our comments regarding the accuracy of the �rst hypothesis

also hold for the second hypothesis; that is, the accuracy with which the second
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hypothesis holds depends upon the degree to which the constraints can be formalized.

In the case of the relational data model, the constraints that we explore in Chapter 6

can be formalized, and thus we can generate general solutions for them. Uses of the

duality outside the relational domain is a focus of future work. We also observe that

views furnish a method for specifying constraints at a global level instead of a local

(that is, instance) level, and this is very useful when constraints must hold across all

possible instances. There is also a psychological bene�t. Speci�cally, users often have

di�culty with quanti�ers, but the global nature of view-based constraints may make

them more conceptually tractable.

7.3 Future Work

In this section, we discuss future work that leverages the aspects of the duality

that we have discussed throughout this document. This work primarily focuses on

using view-based constraints.

View-based Constraint Implementation

Our plans include an implementation that natively supports view-based con-

straints in relational databases, as discussed in Chapter 6. As stated in Chapter 2,

currently the SQL ASSERTION as outlined in [Ame99] is not widely implemented by
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the database management system vendors, but in our implementation, an open source

database management system will be extended to natively support view-based con-

straint expressions via the SQL ASSERTION statement.

This implementation will also contain the library of facts and reductions that we

present in Chapter 6. These optimizations in conjunction with the use of the database

management system's existing query optimizer will result in optimized expressions

that enforce the semantic constraints speci�ed by the user. These optimized expres-

sions may prove helpful in the typically query processing performed by the DBMS, and

thus the implementation may involve an investigation of the database management

system's query processing mechanism to ascertain whether that mechanism would

bene�t from utilizing the optimized view-based constraint.

Visual Speci�cation

In addition to providing a means to implement the view-based constraints within

the DBMS, it is equally important to create an e�ective method for users to express

the view-based constraints. Our plans involve the development of a user interface

that enables the user to visually specify constraints on models; this user interface

will be in the spirit of the extensions to the standard ER notation that we see in

Figures 4.1 and 4.2.

In light of our hypotheses, this user interface will be founded on a facility to
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specify and connect SQL VIEWs visually. This will allow us to target application

domains where the view-based constraints may be particularly useful and serve to

guide discovery. Furthermore, this enables us to leverage view-based constraints to

e�ectively manage aggregation and transitive closure, as the handling of aggregation

and transitive closure is a major challenge in existing solutions.

Analysis and Design Aid

To build on the planned implementation e�orts discussed in the preceding, we

endeavor to suggest a new perspective on information systems analysis and design

that leverages the capacity of views to express constraints. The key idea that view-

based constraints enable users to utilize a familiar yet precise medium to express

business rules. As we have discussed previously, a view is generally an external

representation or schema of some underlying structure or entity; examples include

relational database VIEWs, object views, reports, XML �les, text �les (extracted from

another source), and user interfaces.

In short, views allow the user to see a familiar, consistent \face" while permitting

the designer or developer to change the internal representation. Naturally, this does

require a mapping from the view to the underlying model, but as we have seen, this

already exists in many cases. Furthermore, this has the potential for application

in a wide range of areas. For instance, one may envision this approach as being an
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important tool in the migration to a new system from a legacy system. In this context,

the users likely already have a great familiarity with the legacy user interface, and

as this interface provides an operational view of data and processes, the designer or

developer may utilize it with the users to determine the organization's business rules.

Another context is in the area of computer forensics where the well-known security

bene�ts of relational database VIEWs may prove helpful in forensic investigations; an

exploration of the application of view-based constraints to evidentiary speci�city is

forthcoming.

The evaluation of this new perspective begins with the aforementioned implemen-

tation e�orts. The outcomes of these e�orts will be instructive as to the viability

of the view-based constraints as a general information systems analysis and design

tool.
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