
STARFISH: A TABLE-CENTRIC TOOL FOR DESIGN

DERIVATION

by

Alexander W. Tsow

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

July 2007

Accepted by the Graduate Faculty, Indiana University, in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Steven D. Johnson
(Principal Advisor)

R. Kent Dybvig

Doctoral

Committee

Lawrence S. Moss

May 22, 2007 Amr Sabry

ii

c© Copyright 2007

Alexander W. Tsow

ALL RIGHTS RESERVED

iii

Acknowledgements

This thesis would not have been possible without the patience, insight and encourage-

ment of my supervisors, my colleagues, and my family. I would like to thank Steven

D. Johnson for his unflagging commitment to guiding and supporting me through

my graduate study. He has shared both his love of computer science and personal

wisdom with me. I am grateful for it. I thank R. Kent Dybvig, Lawrence S. Moss,

and Amr Sabry for their inspirational teaching, perspectives, and commentary on the

drafts of this work.

NASA’s Graduate Student Research Program fellowship supported the bulk of

Starfish’s software development. Thanks to Paul Miner, Ricky Butler, and the NASA

Langley Research Center for sustaining this research. I also want to thank Indiana

University, the NSF, Google and the I3P for their role in underwriting my graduate

education. I am further indebted to L. Jean Camp for pushing me through the finish

line of this very difficult process.

My parents, Dorothy and Bill, have given me the encouragement, means, and

opportunity to live a fulfilling life in all respects. My cherished wife, Amy Gold-

enberg, deserves far more than a simple acknowledgment for her role. I thank her

iv

here; however the best way to express my gratitude is by reciprocating her unerring

devotion.

v

Abstract

Behavior tables are a visual formalism for representing synchronous systems of com-

municating processes. Although behavior tables arose from hardware modeling meth-

ods, they operate on arbitrarily abstract data-types. Originally conceived as an aid

for imposing architecture on behaviorally oriented specifications, behavior tables in-

herited a structural algebra from the Digital Design Derivation (DDD) system. This

thesis extends the algebra in three ways. It incorporates a transformation for retim-

ing operations. It adds serialization by extending the notion of correctness to include

stuttering alignments. It introduces mechanisms for declaring and refining abstract

data types. This thesis further contributes serialization tables—a complementary

behavior table form—for assisting interactive construction of schedules. A proto-

type tool, Starfish, implements these technologies. Two medium-scale examples—an

SECD machine derivation and an abstract signal factorization for a hardware garbage

collector—demonstrate feasibility of these techniques in non-trivial systems.

vi

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Behavior Tables . 1

1.2 Type Management and Data Refinement 4

1.3 Scheduling and serialization . 5

1.4 Retiming . 7

1.5 Organization . 7

2 Related Research 9

2.1 Design Derivation . 9

2.2 Type Management . 11

2.3 Stream modeling and transformational synthesis 15

2.4 Tables in system development . 18

3 Design Derivation 22

vii

3.1 Modeling synchronous processes . 22

3.2 Terms and types . 24

3.2.1 Multisorted signatures and algebra 25

3.2.2 Adapting the mathematics for use in Starfish 29

3.3 Stream Systems . 41

3.4 An algebra for system refinement . 46

3.4.1 Correctness and trace comparison 46

3.4.2 Five correctness preserving transformations 48

3.4.3 Extending identification to sequential signals 52

3.4.4 Soundness of fold and unfold transformations 56

4 Behavior Tables 58

4.1 Behavior Table Expressions . 58

4.2 Behavior Table Algebra . 62

4.2.1 Notational conventions . 62

4.2.2 The rules . 63

5 Starfish 75

5.1 Computational Engine . 75

5.1.1 Language prerequisites . 76

5.1.2 Type system . 80

5.1.3 Component addressing . 83

5.1.4 Analysis . 86

5.1.5 Transformations . 88

viii

5.1.6 Command Interpreter . 97

5.2 Display . 99

5.3 Interprocess communication . 101

6 System Factorization and Decomposition 104

6.1 Single Function Factorization . 106

6.2 Factoring Multiple Functions . 111

6.3 Signal Factorization . 117

6.4 Increasing Automation . 123

7 Serialization 129

7.1 How it works . 131

7.2 How Starfish supports serialization 141

8 Data Refinement 150

8.1 One-to-one refinements . 151

8.2 One-to-many refinements . 159

8.3 Stateful refinement schema . 165

8.4 Starfish’s refinement provisions . 174

8.5 Putting it all together . 183

9 Case Studies 192

9.1 SchemEngine Garbage Collector . 192

9.1.1 Specification . 193

9.1.2 Factorization . 197

ix

9.1.3 Data Refinement . 198

9.2 The SECD Machine . 200

9.2.1 SECD machine specification 200

9.2.2 Specification Signature . 203

9.2.3 Derivation Strategy . 205

9.2.4 Introducing fetch . 208

9.2.5 Expanding functions . 209

9.2.6 Initial serialization and scheduling 209

9.2.7 Data refinement . 214

9.2.8 Re-serialization and re-scheduling 220

9.2.9 Comparing the derivation result with the WS 224

10 Conclusion 229

10.1 Achievements . 229

10.2 Future Work . 232

A SECD derivation details 249

x

Chapter 1

Introduction

Engineering is an interactive process that requires intelligent interaction at many

levels. This thesis advances an engineering discipline for high-level synthesis and

architectural decomposition that integrates perspicuous representation, designer in-

teraction, and mathematical rigor. Starfish, the software prototype for the design

method, implements a table-centric transformation system for reorganizing control-

dominated system expressions into high-level architectures. Based on the digital de-

sign derivation (DDD) system [60]—a designer-guided synthesis technique that ap-

plies correctness preserving transformations to synchronous data flow specifications

expressed as co-recursive stream equations—Starfish enhances user interaction and

extends the reachable design space by incorporating four innovations: behavior tables,

serialization tables, data refinement, and operator retiming.

1.1 Behavior Tables

Behavior tables express systems of co-recursive stream equations as a table of guarded

signal updates. Developers and users of the DDD system used manually constructed

1

Chapter 1. Introduction 2

behavior tables to help them decide which transformations to apply and how to spec-

ify them. These design exercises produced several formally constructed hardware

implementations: the FM9001 microprocessor [12, 11], an SECD machine for evalu-

ating LISP [103], and the SchemEngine, garbage collected machine for interpreting

a byte-code representation of compiled Scheme programs [16, 56]. Bose and Tuna,

two of DDD’s developers, have subsequently commercialized the design derivation

methodology at Derivation Systems, Inc. (DSI). DSI has formally derived and val-

idated PCI bus interfaces [13], a Java byte-code processor [9], and prototypes of

SPIDER [30]—NASA’s ultra-reliable communications bus.

To date, most derivations from DDD and DRS have targeted hardware due to its

synchronous design paradigm. However, Starfish expressions are independent of the

synchronization mechanism; there is no commitment to hardware or globally broad-

cast clocks. Though software back-ends for design derivation are limited to the DDD

stream-interpreter, targeting synchronous or real-time software is not substantively

different from targeting hardware.

The separation of concerns [95, 57]—e.g., architecture, behavior, data representa-

tion, and interface coordination—is standard engineering doctrine. In particular, it is

futile to expose all aspects equally well with a single language. Behavior tables repre-

sent a compromise between behavior and architecture: its rows roughly characterize

a specification’s control oriented aspects, while the columns represent its architec-

tural, or structural, aspects. Figure 1 shows two different, but equivalent behavior

tables. A degenerate table simply reformats stream equations to appear vertically,

rather than horizontally. The other table expands selector terms into the decision

Chapter 1. Introduction 3

Figure 1: Behavior tables for equivalent systems. The upper table is a degenerate
form, approximating stream equation expressions. The lower table enhances control
expression with the decision table which guards sets of simultaneous actions.

table, clarifying the control flow and aligning simultaneous actions. The behavior

table transformations—among other things—allow designers to trade between these

two axes, thereby balancing between the two aspects. It is no surprise, then, that be-

havior tables are well suited for deriving architectural components from behaviorally

oriented expressions.

Chapter 1. Introduction 4

1.2 Type Management and Data Refinement

Behavior tables operate on arbitrarily abstract data-types, not just bit-vectors and

bounded integers. In this respect, they are far more expressive than standard hard-

ware description languages. Starfish implements an explicit type system and a frame-

work for data refinement to support high-level specification with abstract data types.

Demand for explicit typing arose from several areas: the need to limit decision

expressions to finitely branching guards, the need to prevent incompatible signal

merging opportunities among unused slots in table columns, and the desire to increase

feedback by disallowing unsound transformations at earlier stages. The type system,

which is based on multisorted structures, takes on a second responsibility: it forms

a database of term-level identities. One of the core transformations, the replacement

rule (p. 51) applies algebraic identities (e.g., operator commutativity) to terms. While

many term rewrites in DDD are combinator expansions, each algebraic term rewrite

requires external validation. Starfish leverages the type system’s identity database to

confirm algebraic rewrites—only the identity pattern needs external verification.

Since the type system declares function symbols, signatures and identities, it pro-

vides a foundation for data refinement. At the simplest level, a system of identities

can express one-to-one homomorphisms between types. While such an identity sys-

tem transforms abstract terms into representation terms, the architectural algebra

preceding Starfish [61] could not transform abstract signals into representation sig-

nals in a general way. While the first attempts to impose signal-level refinement were

ad hoc, Starfish’s refinement process follows from the retiming transformation (p. 53)

Chapter 1. Introduction 5

and recursive identity expansion. In addition to refinement by one-to-one homo-

morphism, this thesis presents methods deriving two other implementation patterns:

one-to-many refinements, where there are multiple representations for each abstract

type, and stateful refinements, which represent multiple signals with references to a

shared store.

While behavior tables are not useful for defining data refinements, they are use-

ful for exploiting or managing their consequences. Data refinements lead to more

detailed specifications and consequently a wider transformation space. System de-

compositions, the problem for which behavior tables were invented, may “cut across”

a representation that implements an abstract type with a collection of signals. For

instance, suppose a refinement simulates abstract stacks with a pointer and array;

subsequent architectural organization may separate the array from the pointer. In

another case, a stateful refinement may impose serial access on the previously un-

constrained concurrency of abstract operations. Behavior tables and their scheduling

aid, serialization tables, provide an interactive method for integrating the serial re-

quirements into a system’s control and architecture by scheduling access before and

after stateful refinements—this is the principal challenge of the SECD derivation in

Chapter 9.2.

1.3 Scheduling and serialization

Starfish introduces serialization tables for scheduling the evaluation of complex action

terms over several steps. Like behavior tables, columns represent signals and rows

Chapter 1. Introduction 6

represent simultaneous actions which update the signals. Serialization tables are an

organizational aid that helps designers solve the NP-hard problems involved in high-

level synthesis [70, 19]; e.g., how to fit an evaluation sequence within a specified

number of registers and execution units. Serialization tables help specify evaluation

order and intermediate resource usage for compound actions in a behavior table. As

the schedule develops, the serialization tables display partial symbolic-evaluations of

the intermediate actions. This feedback mechanism helps designers specify actions

in the subsequent steps. Starfish validates correctness before integrating the actions

into behavior table expressions.

The DDD algebra views serialization as primarily a behavioral problem. Yet,

the goal of scheduling is often architecturally dictated. One must use a limited set

of resources. Register allocation, functional allocation, and timing are not fully ex-

posed in DDD’s behavioral representations. Serialization tables display these aspects

more clearly than DDD’s co-recursive stream equations, making them a better suited

medium for the schedule specification process.

In addition to specifying schedules for behavior table actions, serialization tables

may re-visit a sub-schedule of a previously serialized action. This is often necessary

after data-refinements expose more detail. For instance, a push onto a stack may

require incrementing the stack pointer and allocating extra memory. These operations

must conform to the architectural constraints—perhaps the memory or incrementing

functional unit are in use during the step where data-refinement has inserted these

actions. Re-serializing the local sub-schedule focuses attention on this task without

obfuscating it with other parts of the pre-existing schedule.

Chapter 1. Introduction 7

1.4 Retiming

Starfish supports retiming in two ways. One is with serialization tables and local

re-serialization, as introduced above. The other is with a transformation that con-

verts combinational signals to sequential signals and vice versa. In schematic terms,

the transformation pushes a functional unit from one side of a register to the other.

Although retiming is the critical step in transforming abstract signals to representa-

tion signals, the motivating example in Starfish was the stack-calculator introduced

in Example 3.17 (p. 46). The specification used a combinational top accessor for

the output signal. Any pseudo-realistic implementation would store the top value in

a register. The exercise of hand-specifying a stack-calculator with a registered top

signal was enough to see a generalizable pattern. Indeed, equivalent transformations

have been used in formal synthesis [23] and microarchitecture algebra [66].

1.5 Organization

The remainder of this thesis is organized as follows: Chapter 2 examines related

research. Chapter 3 presents the basic stream modeling formalism and stream trans-

formations that underlie behavior tables. The type system, based on multisorted

structures, is presented here. After setting context with DDD’s architectural algebra,

the chapter shows how the retiming transformation generalizes the combinational

identification rule to sequential signals. Chapter 4 introduces behavior table notation

Chapter 1. Introduction 8

and its transformation algebra. Chapter 5 gives an overview of the Starfish imple-

mentation, including the heavily used macros, the software organization, the compo-

nent addressing system, the table transformation commands, the display mechanism,

and the interprocess communication. Chapter 6 shows how to perform system fac-

torization with behavior tables. Higher level commands with exploration heuristics

facilitate this process. Chapter 7 defines serialization and the tabular worksheet that

helps the designer specify correct schedules of operations. Chapter 8 presents the

work on data refinement. It first presents the justification for the one-to-one case,

then generalizes to the one-to-many and stateful cases. The chapter ends with an

example that combines all previous techniques to transform a simple stack calculator

specification into an architecture with explicit controller, ALU, and memory. Chap-

ter 9 demonstrates Starfish’s feasibility on larger designs with two case studies. In

the first, a stop-and-copy garbage collector specification using abstract memory sig-

nals is factored into a controller and dual-ported memory process. A data refinement

replaces literal value “swapping” between abstract memory signals—an “old” and a

“new”—with a switch indicating which signal represents “old” and “new.” A second

case study derives a low-level specification for an SECD machine from a high-level

specification of LISP operational semantics. This case study complements the work

of Robert M. Wehrmeister [103], who used DDD to derive hardware from a low-level

architecture similar to the result of this case study. Chapter 10 concludes the thesis

with lessons learned and suggestions for future work.

Chapter 2

Related Research

2.1 Design Derivation

Johnson applies a functional modeling formalism to digital system synthesis [52, 51,

53]. His approach was motivated by early work of Friedman, Wand and Wise on

applicative programming for systems which developed a programming style where

computational processes are represented as recursive stream networks [28, 29, 50].

Johnson adopted the same programming dialect to model digital networks [26,

ch. 12], and extended standard program transformation strategies to target digital

implementations [102, 99, 51]. He extended Wand’s approach to compiler construction

[100, 101] which involved isolating lambda-combinators to identify primitive opera-

tions, and factoring the language semantics into a recursive compiler and an iterative

“machine” component expressed in terms of the primitives.

Specifying instruction set processors (ISPs) as first-order recursion equations,

Johnson developed formal constructions that translate the machine model to an ab-

stract, synchronous-sequential architecture, which is further transformed in a func-

tionally equivalent, realistic digital system description. Bose, Boyer, Rath, and others

implemented the formalism as the DDD transformation system [58, 62, 59]. DDD was

9

Chapter 2. Related Research 10

used to do a series of demonstration designs, including a garbage collector [58, 14],

an SECD computer [103], a byte-code interpreter for compiled Scheme [16], a derived

implementation of Hunt’s formally verified FM-9001 CPU [12, 11], a fault tolerant

clock sychronization circuit [72, 73].

DDD transformations operate on two different system representations: 1) a func-

tional (or behavioral) specification—modeled as a functional subset of the Scheme

programming language—that expresses behavior in a time-oblivious manner and 2)

an architectural specification that expresses linear tail-recursive functions as a syn-

chronous stream systems where evaluating each recursive call corresponds to a step

in the stream network. DDD’s algebra over behavioral specifications preserves the

time-oblivious semantics of Scheme, while its algebra over architectural specifications

preserves observable stream outputs—hence is time-sensitive. This form of architec-

tural equivalence is stricter than behavioral equivalence. In particular, the behavioral

algebra includes serialization transformations which stretch the resulting system’s

output timeline; the system takes more steps to produce its result.

Behavior tables (Starfish’s system representation) directly encode DDD’s architec-

tural language. Starfish’s core transformations begin with transliterations of DDD’s

architectural algebra. Starfish adds a retiming transformation and serialization. Re-

timing preserves the observational equivalence, however serialization breaks this prop-

erty by stretching the output timeline. Starfish’s serialization is consistent with

DDD’s behavioral equivalence. This thesis submits that the motivation for serial-

ization is to optimize architectural aspects (such as the number of execution units

in a circuit), and thus behavior tables—which exposes architecture—are a more apt

Chapter 2. Related Research 11

representation to serialize than DDD’s behavioral expressions.

2.2 Type Management

In DDD, function and constant symbols are declared in the top level scope and given

a specific interpretation using a functional subset of Scheme. This enables DDD to

simulate system descriptions by stepwise execution of the stream expressions, using

Scheme’s eval to interpret terms. A representation file consists of a flat list which

pairs symbol names with their Scheme interpretation. DDD evaluates type consis-

tency using an abstract interpretation [22] which replaces constant symbol interpre-

tations with the appropriate type token and function symbols with an expression

that checks the intended signature—a similar approach to that taken by O’Donnell’s

Hydra [75].

For example, the following file defines the terms and functions for a DDD blackjack

dealer case study [59].

(define tt (bit "1"))
(define ff (bit "0"))
(define ? (bvec "00000"))
(define zero (bvec "00000"))
(define one (bvec "00001"))
(define sixteen (bvec "10000"))
(define twentyone (bvec "10101"))
(define 10pace (bvec "01010"))
(define -10pace (bvec "10110"))

(define get (bvec "00"))
(define add (bvec "10"))
(define use (bvec "01"))
(define tst (bvec "11"))

Chapter 2. Related Research 12

(define cd-? (bvec "00000"))
(define out-? (bvec "00000"))

(define abs-add_inst-nop (bit "0"))
(define abs-add_inst-addto (bit "1"))
(define abs-add_port_a-? (bvec "00000"))
(define abs-add_port_b-? (bvec "00000"))

(define addto (lambda (x y) (nat-to-v (+ (v-to-nat x) (v-to-nat y)) 5)))

(define or? (lambda (x y) (b-or x y)))
(define >? (lambda (x y) (v-gtp x y)))
(define ace? (lambda (x) (v-eqp x one)))

Evaluating type consistency would use a representation file that redefines the con-

stants ?, zero, one, etc. as the symbol bvec, and the function >? as the error-

throwing lambda expression:

(define >?
(lambda (x y)
(if (and (eq? x ’bvec) (eq? y ’bvec))

’bit
(error ’>? "Type Mismatch: >?(~s,~s)" x y))))

Zhu and Johnson proposed leveraging multisorted structures as a basis for term

manipulation in DDD [107]. Their stack calculator example, which they develop over

abstract and implementation types, was a catalyst for the data-refinement mecha-

nisms that Starfish implements. Starfish declares function signatures and constant

types (precise details presented in Section 3.2) with multisorted structures [68], how-

ever it does not attach an interpretation to the symbols as DDD does. Since terms are

first-order, this static information suffices for type consistency checking. While auto-

mated type consistency checking is one benefit to Starfish’s type declaration regimen,

Chapter 2. Related Research 13

its primary purpose is to facilitate term-level algebraic reasoning via the replacement

rule in behavior tables (p. 68) and the ser-eval-ident substitution in serialization

tables (p. 142).

In addition to declaring symbol signatures, Starfish’s type declarations also include

identities. These identities constrain the space of interpretations; since Starfish does

not insist on a specific one, the terms are said to have loose semantics [34, 3]. Sort

identities are universally quantified over typed formal variables, and Starfish will

apply the identity to arbitrary terms that match either the left-hand-side pattern

or the right-hand-side pattern. This is in contrast to DDD, where each instance of

an algebraic rewrite generated a proof condition for the external theorem prover,

PVS [77].

Starfish’s facilities for type management and identity application borrow from a

large body of work known as algebraic specification [46, 32, 3]. In this approach

to formal program development, specifications are defined by multisorted structures

that are subject to axioms, while programs are defined by the algebras or models

that satisfy the structure and axioms. Stepwise refinement [105, 90] is the process

of embedding specifications—via structure preserving mappings—into successively

more restrictive structures. These restrictions add details about data representation,

algorithmic choices, interface methods, etc.

Several tools have been developed to promote the algebraic specification methodol-

ogy. CLEAR [18] was the first language to support algebraic specification. OBJ3 [31]

Chapter 2. Related Research 14

and later Maude [69] build on the CLEAR foundation by adding simulators, concur-

rency and a notion of objects. The Larch Shared Language [34] is an interface spec-

ification language that makes use of algebraic specifications with equational axioms

and loose semantics. Extended ML [89] augments the standard ML type system with

a facility for specifying behavioral requirements of code using axioms over higher-

order logic and equality. Common algebraic specification language (CASL) [2] is a

framework for algebraic specification and development which tries to integrate the

best aspects of previous efforts and serves as a common platform for the deployment

of algebraic techniques in subsequent languages.

Starfish is not a pure algebraic specification package. It combines the underly-

ing stream semantics of DDD for process specification with algebraic specification

techniques for term level manipulation. This hybrid approach to system specification

has been used by the language of temporal ordering specification (LOTOS) [8]—an

ISO-endorsed formal specification language for distributed systems, evolving alge-

bras [33] which acts upon an algebra or model for a given structural signature with

synchronous update rules—and CSP-CASL [87], which fuses the calculus of commu-

nicating sequential processes (CSP) [15] with the CASL system.

Chapter 2. Related Research 15

2.3 Stream modeling and transformational synthe-

sis

The evolving algebra or abstract state machine (ASM) [33, 7] formalism bears sev-

eral similarities with Starfish’s behavior tables. The formalism applies guarded syn-

chronous updates to a state represented as a multisorted algebra. The update may

define a distinguished constant or the result of a function (of the algebra) applied

to a specific input; for example, the expression f(ti, . . . , tn) = a assigns the value a

to the output of f applied to the inputs (ti, . . . , tn). Subsequent applications of f

respect this change. When updates are restricted to distinguished constants, they

behave very much like registered signals in Starfish. The guards in evolving algebras

are nested if-then-else statements keyed by boolean terms in the algebra. This

style of update specification parallels selection guards in Starfish to determine signal

updates. Just as compiler-machine derivations from language semantics motivated

several DDD derivations, ASMs have formulated many compiler-machine specifica-

tion and verification efforts. A formal definition of the Java language, compiler, and

virtual machine is given with ASMs and then proven sound by rigorous mathematical

discourse [94]; although the proof of compiler correctness spans 83 cases, they do not

acknowledge any mechanical assistance with their argument.

Like DDD, O’Donnell’s Hydra [75, 76] system describes hardware with recursive

stream equations. Hydra develops the idea that one can produce meaningful alter-

native interpretations of a recursive circuit specification by redefining or overloading

the primitive operations. One set of primitives simulates the circuit, while another

Chapter 2. Related Research 16

creates a netlist for fabrication, and yet another analyzes the circuit’s critical path.

Hydra is implemented in Haskell which has built-in facilities for equational reasoning.

Hydra contains built-in integer-parameterized libraries for several classes of regular

circuits (e.g., an n-bit adder).

Lava [20] is another functional hardware description language embedded in Haskell.

Like Hydra, it overloads circuit primitives to achieve multiple interpretations from the

same specification. Lava has well developed libraries for expressing regular connec-

tion patterns (e.g., tree and butterfly) that are common in digital signal processors.

One Lava study specifies highly parameterized layout generators for multipliers based

on (somewhat) regular tree connection structures [91]; parameters account for many

low-level details that are invisible to other functional modeling disciplines including

the wiring limits of target technologies and delay based on wire length. This focus

on low-level parameterization led to the development of a relational description lan-

guage, Wired [4], which provides accounts for all aspects of layout—including the

precise location of wires. Generally, the relational model represents architecture as

mathematical relations and architectural connection as relational composition. This

approach is embraced by Ruby [92], an earlier language for describing synchronous

circuits at the layout level. Also relevant to Starfish, Ruby developed a calculus for

retiming and slowdown of circuits.

HAWK is another hardware description language embedded in Haskell that ex-

ploits overloaded primitives for alternate semantics. Hawk descriptions are at the

register transfer level and higher, rather than the layout level. Hawk has successfully

Chapter 2. Related Research 17

specified superscalar microprocessors [21]. Hawk also includes a transformation alge-

bra targeted at microprocessor architectures [66]. In particular, their retiming trans-

formation is very similar to the one implemented by Starfish. Some general transfor-

mations have been implemented previously in DDD and other systems [82, 23], while

the remaining ones are domain specific (concerning pipeline hazard and forwarding

properties). They derived an unpipelined processor from a pipelined specification

with their algebra. This simplified design became the subject of a verification effort.

Their derivation was mechanized in the Isabelle [81] theorem prover.

The transformational approach to synthesis occurs outside of the stream modeling

contexts as well. The HASH [23] synthesizer builds on an automaton theory embedded

in HOL to represent systems. This approach, and others within the same research

group [24, 25], leverage high-level synthesis heuristics [19, 70] developed outside of

their formal framework to guide the formal transformation process within HOL. The

HASH system also implements a retiming transformation very similar to the one

Starfish implements.

Teica, Radhakrishnan, and Vemuri [82] combine control-flow and data-flow graphs

(CDFG) to represent systems. They investigate the use of formal transformations in

the verification of high-level synthesis algorithms. Their register merge and split

operators produce effects similar to Starfish’s serialization capability.

Chapter 2. Related Research 18

2.4 Tables in system development

Behavior tables were first proposed by Rath, Tuna, and Johnson [86] as an extension of

register transfer tables. Their formulation defines table semantics with state machines

rather than stream systems. The proposal includes a mechanism for bounded indirec-

tion over the table’s internal registers, a language feature that eliminates many sorts

of state transition redundancy [98]. The original proposal also served as a platform

to integrate Rath’s Interface Specification Language (ISL) [85, 84, 83] which defines

data exchange between processes with finite-state machine semantics. ISL introduces

the notion of protocol complement which specifies behavior of the state machine’s

environment. Composing a behavior table with an off-the-shelf component required

embedding the component’s protocol complement into the tabular expression.

Starfish’s implementation does not realize the full scope of this original proposal,

but corresponds closely to Johnson’s formulation in terms of stream systems [55].

This version neither includes language support for register indirection nor transfor-

mations for ISL environment insertion. Even without this support, behavior tables

can still express state indirection [98]. Moreover, Starfish’s serialization and type

translation facilities can insert linear protocol environments. Johnson and Tsow [61]

present a transformation algebra that operates directly on behavior tables rather than

some embedding inside another system (e.g., DDD). Tsow and Johnson [96] make a

case for implementing behavior tables directly by illustrating various system factor-

izations, including a garbage collector decomposition, in their tabular algebra. Later,

they extend the scope of factorizations by introducing algebraic data refinement [97].

Chapter 2. Related Research 19

Factorizations on the refined system could then cut across the implementation types—

e.g., separate counter and pointer registers from a heap.

Prior to Starfish, number of specification systems had adopted tables as formal

objects [49]. The first engineering tools to incorporate tables and other diagrams as

formal expressions appear in requirements specification—the first stage of software

engineering. Clarity at this stage is critical to both computer scientists and prob-

lem domain experts. The Requirements State Machine Language (RSML) [64, 38]

describes Mealy machines using statecharts [36, 37]—a hierarchical state-machine di-

agram schema—and AND/OR decision tables [78] to guard transitions. RSML has

extensive tool support and has been used to specify requirements for the Traffic

Collision Avoidance System 2 (TCAS II), a complex process control system for air-

craft collision avoidance. The specification was regularly reviewed by non-computer

scientist experts, whose feedback helped develop the particulars of both the RSML

language and specifications.

Software Cost Reduction (SCR) [44, 43], another formal method for requirements

specification, expresses requirements as collections of tables. The method was de-

veloped to document the flight software for the Navy’s A-7 aircraft. SCR reduced

the A-7’s prior software documentation—literally shelves of manuals—to a single 500

page document. Though clarified and compacted by tables, the original applica-

tion of the SCR technique still depended upon English specification. Parnas—one

of SCR’s founders—continued to develop the method, formalizing precise syntax and

semantics for 10 classes of table expressions in software documentation [78, 79]. The

requirements specification technique has subsequently been deployed in several high

Chapter 2. Related Research 20

assurance areas ranging from avionics to nuclear power. SCR* [39, 41] is a software

tool that supports the SCR specification method which includes an editor, simula-

tor, consistency checker, and a property verifier. The researchers contend that tool

support is a prerequisite for the practical application of formal methods [40, 80]— a

thesis that motivates Starfish’s development.

Tablewise [47, 48] formally specifies software with variants of Parnas’s decision

tables [78]. Although similar to SCR* in many respects, Tablewise generalizes deci-

sion variables to nonboolean types and does not decompose specifications into mode

classes—a hierarchical control mechanism in SCR*. The Tablewise toolkit includes

a table editor, a table consistency and completeness analyzer, and a code generation

module. Subsequent work by Hoover, Guaspari and Humenn [49] extends decision

tables with preconditions and recursive partitioning (a scheme for reducing redun-

dancy). Their report defines a function table which joins a decision table with output

behaviors. When Starfish’s behavior tables are limited to combinational output sig-

nals, they are semantically similar to these function tables. Moreover, the report calls

for merging decision tables with state—a central feature of Starfish’s behavior tables.

More recently, a specialized table-driven language has been developed for speci-

fying cache coherence protocols [93, 65]. Their tables encode Mealy machines where

the row labels vary over states, the column labels vary over events (input values), and

the entries encode state transition and output emission. Like developers of RSML,

SCR, and Tablewise, the authors praise tabular representation for combining mathe-

matical rigor with accessibility to less mathematically-inclined users. Although their

specifications could have been embedded in a mechanical theorem prover, they rely

Chapter 2. Related Research 21

on a paper proof to argue the specification’s correctness.

Chapter 3

Design Derivation

This chapter presents the underlying mathematical model for design derivation. The

first section shows how stream equations model synchronous systems and relates

stream equations to register-transfer diagrams. The next section develops the first-

order type system that Starfish implements, beginning with a background of mul-

tisorted algebras and then proceeding to the system’s type declarations, facilities

for parameterization, and special types. The next section formally defines stream

semantics. The last section examines definitions of equivalence and presents a trans-

formational algebra for manipulating stream systems—including the five core trans-

formations [54] that define the design space for DDD’s architectural exploration and

a sixth transformation which expands this space.

3.1 Modeling synchronous processes

Design derivation represents synchronous systems of computing processes as first-

order mutually co-recursive stream equations. Below is a simple co-recursive system

of equations, its solutions (streams over integers), and its schematic interpretation.

The suffix ∗ indicates the “lifting” of a term level function or constant to the stream

22

Chapter 3. Design Derivation 23

level: e.g., 1∗ is a stream of 1’s and +∗ is element-wise addition.

X = 0 ! X +∗ 1∗ X = (0, 1, 2, ...)
Y = −∗X Y = (0, −1, −2, ...)

Y

1

X

=0

+

-

(1)

X and Y are variables over the stream of integers. These streams split into two parts:

an integer head, and a stream-of-integers tail. The first equation specifies X’s head

as 0 and its tail as the stream-of-1’s added element-wise to X. The second equation

defines Y as the element-wise negation of X. These equations have unique solutions

displayed on the right-hand side. The schematic interpretation corresponds to an

abstract register-transfer system view. This interpretation motivates the name signal

for variables in the equations. Signals defined by explicit specification of their head

and tail (as with X) are registered or sequential. This naming reflects the use of the

register to delay the increment of X to the next cycle. Signals defined as element-wise

functions of other signals are combinational ; e.g., Y , the negation of X, is not delayed

by a register—its evaluation is visible in the present cycle.

There are many different systems of equations for any particular solution set. In

the schematic interpretation, there are many architectures that produce the same

Chapter 3. Design Derivation 24

output streams. For instance, replacing a term by an algebraically equivalent term

does not change the solution streams. If unary function inc : integer → integer is

λx.x+ 1, then the following system has the same solution as (1):

X = 0 ! inc∗(X) X = (0, 1, 2, ...)
Y = −∗X Y = (0, −1, −2, ...)

Y

X

=0

inc

-

(2)

This straightforward substitution changes the architecture. A potentially less complex

one-input increment-function replaces the two-input adder. Johnson [54] summarizes

a logic that manipulates architecture while maintaining the solution streams. The

design derivation method is the intelligent guidance of this transformation algebra to

produce system refinements.

3.2 Terms and types

The semantics of stream equations and the semantics of its constituent term expres-

sions are orthogonal: the stream equations determine streams of uninterpreted terms,

while term semantics maps streams-of-terms to streams-of-values. Applying the first

Chapter 3. Design Derivation 25

stage to equation (2) produces:

X = 0 ! inc∗(X) X = (0, inc(0), inc(inc(0)), ...)
Y = −∗X Y = (−0, −inc(0), −inc(inc(0)), ...)

(3)

This section provides the framework for term syntax and semantics. It defines function

and constant symbols, rules of composition, and semantic constraints through the

declaration of term identities. The collection and enforcement of these rules constitute

the type system.

3.2.1 Multisorted signatures and algebra

First-order multisorted algebra forms the mathematical foundation for the type sys-

tem. A signature, denoted by Σ, prescribes term syntax. Σ is defined over a set

of sorts, I. The signature consists of a set of symbols labeled by ordered tuples

over I. For clarity, a symbol c labeled by a singleton i (denoted c : i) is a con-

stant of sort i. The other symbols are functions from i1 × . . . × in−1 to in (written

f : i1 × . . .× in−1 → in), when the sort label is (i1, . . . , in). For the remainder of the

text, “constant” and “function” replaces the mathematically concise labeled symbol.

Σ terms have the following form:

• c is a constant expression of type i where i is the sort of c

• f(t1, . . . , tn−1) is a function application of type in where f : i1× . . .× in−1 → in

and tm is an expression of sort im for 1 ≤ m ≤ n− 1.

Example 3.1: Let Σ be defined over a single-sort, nat with one constant, 0, and one

function succ : nat→ nat. This is the signature of the natural numbers.

Chapter 3. Design Derivation 26

Example 3.2: Let atom and list be sorts. To define a signature for a programmer’s

list facility, declare the following constants and signatures:

nil : list
cons : atom× list→ list
car : list→ atom
cdr : list→ list

(4)

A recursively defined valuation function specifies the semantics for Σ-expressions.

For each sort i, let Si be a carrier set. The valuation is higher order since it maps

function symbols into function spaces. Square brackets v[f] denote valuations applied

to functions and rounded parentheses v(t) denote valuations applied to terms. A

valuation, v, is recursively defined:

For each constant c : i,

v(c) := s where s ∈ Si

For each function f : i1 × . . .× in−1 → in,

v[f] := φ where φ ∈ Si1 × . . .× Sin−1 → Sin

For each function application f(t1, . . . , tm),

v(f(t1, . . . , tm)) := v[f](v(t1), . . . , v(tm))

The valuation’s third clause follows the form above, so it suffices to specify how v acts

on the Σ’s constants and functions. The evaluation of a term t is v(t). The carrier

sets together with v’s mapping of the constant and function symbols form a Σ-model,

more commonly known as a Σ-algebra.

Example 3.3: The standard algebra for Σnat := (0 : nat, succ : nat → nat) uses

N, the natural numbers, as its carrier set. It maps 0 : nat to 0 ∈ N and succ to

Chapter 3. Design Derivation 27

λx.(x+ 1).

Example 3.4: For Σnat, let {0, 1, 2} be the carrier set, let v(0 : nat) := 1, and let

v[succ] := {(0, 2), (1, 2), (2, 0)}. In this algebra, the expression succ(0) evaluates to 2,

the expression succ(succ(0)) evaluates to 0, and no application of succ evaluates to 1.

While the signature of these terms is the same as the natural numbers, the semantics

behave nothing like the natural numbers. The carrier set has only 3 elements, and

the function succ has no particular property in common with the usual +1 definition

of succ.

Identities constrain the space of algebras for a given signature Σ. The algebra

must satisfy a set of universally quantified equations in the signature language. For

each sort i, let Vi be a set of variable names such that Vi ∩ Vj = ∅ when i 6= j. A

variable in Vi has type or sort i. Let Σfunc and Σconst be the sets of function and

constant symbols for Σ. Identities and variable term expressions over Σ (ident and

varExp below) have the following form:

ident := varExp = varExp
varExp := const | var | func(varExp . . .)
func ∈ Σfunc

const ∈ Σconst

var ∈
⋃
i∈I

Vi

(5)

such that the sorts of the function parameters correspond to the sort of the function

signature.

Chapter 3. Design Derivation 28

Suppose a Σ-algebra has carrier sets Ci for i ∈ I and a valuation v defining the

mapping of constants and functions. An assignment α maps variables of a sort to

carrier sets of a sort. Valuations extend to variable term expressions with assignments

(written v(α, tvarExp)) by adding a variable term variant to the recursive definition in

(6):

v(α, x) := α(x) when x ∈
⋃
i∈I

Vi

v(α, c) := v(c) when c ∈ Σconst

v(α, f(t1, . . . , tn)) := v[f](v(α, t1), . . . , v(α, tn))

(6)

An algebra satisfys an identity, ϕ = ψ, when for every assignment α, v(α, ϕ) =

v(α, ψ).

Example 3.5: Extend the signature Σnat with the identity succ(succ(y)) = y for

variable symbol y. The standard natural numbers do not satisfy this identity because

the assignment defined by y 7→ 1 produces 3 6= 1. On the other hand, let R be the

carrier set with 0 7→ 0 ∈ R and succ 7→ λx.(−x). Then for all assignments y 7→ r ∈ R

v(α, succ(succ(y))) = λx.(−x)[v(α, succ(y))]
= λx.(−x)[λx.(−x)[v(α, y)]]
= λx.(−x)[λx.(−x)[r]]
= −(−r)
= r
= v(α, y)

(7)

thus satisfying the signature with identity.

Example 3.6: Recall the list signature Σlist = (nil : list, cons : atom × list →

list, car : list→ atom, cdr : list→ list) from Example 3.2. We further stipulate that

Chapter 3. Design Derivation 29

all algebras must satisfy the following identities:

car(cons(a, l)) = a
cdr(cons(a, l)) = l

(8)

Let Z and the set stacks over integers, be the carrier sets for atom and list. The

valuation is defined by:

nil 7→ emptyStack
cons 7→ λal.push(a, l)
car 7→ λl.top(l)
cdr 7→ λl.pop(l)

(9)

where pop(emptyStack) = emptyStack and top(emptyStack) = 0 ∈ Z. Defined as

above, the stack of integers satisfies the constructor-accessor identities for Σlist.

3.2.2 Adapting the mathematics for use in Starfish

Starfish declares its types as a multisorted signature with identities. The signature

declarations define the space of constant and function symbols, while the identities

define the term level equational logic. Thus the type system specifies syntactic form

and some semantic requirements. Term semantics are loose: there may be many

algebras that satisfy the declarative structure and equational constraints, but Starfish

does not commit to a particular algebra. As the derivation proceeds, the types are

refined by homomorphic mappings into more tightly restricted types.

Starfish partitions the declaration of signatures over single-sorted declarations,

parameterized signature declarations (i.e., signature schema), and inter-sort function

declarations. Each one specifies a signature fragment with their “sum” prescribing

Chapter 3. Design Derivation 30

the overall system signature. In addition to the user specified types, Starfish provides

extended support for two common system types: integers and bit vectors.

User defined signatures

The unbounded single-sorted signature declaration exactly matches the mathematical

development in Section 3.2.1. A declaration contains a sort name, a list of constants, a

list of functions, a list of variable names, and a list of identities. Since declarations are

single-sorted, constant and variable sort tags are redundant and function signatures

need only specify a number of inputs. Starfish does not supply a schema that specifies

infinite sets of symbols, thus all signature components declare a finite (and usually

small) number of symbols. Starfish uses the following syntax for unbounded single-

sorted signature declarations:

(define-term-alg <name>
(<const-sym> ...)
((<func-sym> <integer-arity>) ...)
(<var-sym> ...)
((’<ident-sym> <local-term-exp> <local-term-exp>) ...))

where <local-term-exp> is an s-expression in the language of the constants, func-

tions and variables inside the declaration.

Example 3.7: This is how Starfish declares group signature and axioms:

(define-term-alg group
(id)
((op 2) (inv 1))
(a b c)
((’associative (op (op a b) c) (op a (op b c)))
(’identity-left (op id a) a)
(’identity-right (op a id) a)
(’inverse (op a (inv a)) id)))

Chapter 3. Design Derivation 31

Enumerated types are a variant of single-sorted declarations. They share the same

specification form but their semantics are further constrained. Valuations between

constant symbols and carrier sets are bijections. There are no semantic values beyond

those represented by the constant symbols. In practice, this facility defines states,

data tags, and other control tags.

Example 3.8: Enumerated signature declarations can express booleans and their

common identities:

(define-enum-alg boolean
;; list of constants
(true false)
;; functions and arities
((conj 2) (disj 2) (inv 1))
;; identities over the variables x,y,z
(x y z)
;; commutative laws
((’conj-comm (conj x y) (conj y x))
(’disj-comm (disj x y) (disj y x))
;; associative laws
(’conj-assoc (conj (conj x y) z) (conj x (conj y z)))
(’disj-assoc (disj (disj x y) z) (disj x (disj y z)))
;; Distributive laws
(’conj-dist (conj x (disj y z)) (disj (conj x y) (conj x z)))
(’disj-dist (disj x (conj y z)) (conj (disj x y) (disj x z)))
;; DeMorgan laws
(’demorgan1 (inv (conj x y)) (disj (inv x) (inv y)))
(’demorgan2 (inv (disj x y)) (conj (inv x) (inv y)))
;; Misc laws
(’inv-def1 (inv true) false)
(’inv-def2 (inv false) true)
(’conj-def1 (conj true x) x)
(’conj-def2 (conj false x) false)
(’conj-def3 (conj x x) x)
(’disj-def1 (disj true x) true)
(’disj-def2 (disj false x) x)
(’disj-def3 (disj x x) x)))

Chapter 3. Design Derivation 32

This signature has a unique algebra (up to isomorphism) because the carrier set

is in one-to-one correspondence with the constant symbols. Alternatively, the above

example could have enumerated the function tables without the aid of variables x, y

and z:
...
(’andff (and false false) false)
(’andft (and false true) false)
(’andtf (and true false) false)
(’andtt (and true true) true)
...

The same unique algebra satisfies this definition, but such an approach prevents

identity application to terms with variables.

Parameterized signatures declare a specific sort, psort, in terms of a finite set of

sort variables, sv1, . . . , svj. We write this dependence psort{sv1, . . . , svj}. Starfish’s

declarative form for parameterized signatures extends the previous forms in two ways.

They specify lists of sort variables and consequently must specify types (e.g., psort,

sv0, sv1, ...) for functions and variables (constants have type psort).

(define-param-alg <name>
(<sort-var-sym> ...)
(<const-sym> ...)
((<func-sym> (<type-sym> ...) <type-sym>) ...)
((<var-sym> <type-sym>)...)
((’<ident-sym> <local-term-exp> <local-term-exp>) ...))

A paramaterized signature declaration is a schema. Schema instances specify concrete

types for each sort variable.

Example 3.9: The following declaration specifies a list schema parameterized by

the variable atom.

Chapter 3. Design Derivation 33

(define-param-alg list
(atom) ; sort parameters
(nil) ; constants
([cons (atom list) list] ; functions w/ explicit I/O
[car (list) atom]
[cdr (list) list])
([l list] [a atom]) ; typed formal variables

; identities
([’car-access (car (cons a l)) a]
[’cdr-access (cdr (cons a l)) l]))

list{boolean} is an instance of this parameterized signature. Its algebra has a cons

function that maps a boolean and a list of booleans to a list of booleans; each reference

to atom instantiates to boolean. In general a system signature may declare many

(possibly nested) instances of the list{atom} signature fragment; for example one

term’s type may be list{nat}, while another term in the same system expression is

type list{list{bool}}.

While parameterized declarations promote reuse and modularity, they complicate

uniqueness of symbols. Is the function symbol cons a mapping from bool× list{bool}

to list{bool} or a mapping from nat × list{nat} to list{nat}? Often there is a

unique answer within the constraint of being “well-typed.” Starfish employs a simple

type inferencing algorithm to resolve the signature of every prameterized function

and constant symbol. When the inferencer fails, the designer must disambiguate the

types.

Chapter 3. Design Derivation 34

Integers and bit vectors

Starfish has special support for integers and bit vectors. The enhanced functional-

ity includes: special constant recognition, limited facilities for evaluating constant

expressions, and built-in identities. While it is theoretically possible to define the

n-bit integers or vectors as a very large enumerated algebra, this task is infeasibly

cumbersome.

Integer constants are decimal strings beginning with a nonzero digit and may be

prefixed by a single −. Starfish evaluates constant integer expressions over the four

operations {+.−,×,÷} according to the 2’s complement encoding when n 6= 0 and

according to the standard initial model when n = 0. Within a particular design, there

is only one type of integers; e.g., there are not 32-bit and 64-bit integers in the same

design scope. This is largely a tool implementation decision that removes ambiguity

when parsing and evaluating integer expressions. One can still specify designs over

“integers” of varying bit-lengths with the bit-vector facility.

Bit vectors are parameterized by integer constants (rather than other types). A

derivation may include signals and terms of varying bit length; e.g., the SECD ex-

ample in Section 9.2 uses 24-bit vectors for memory addresses and 32-bit vectors

for data storage. Bit vector operators include the element-wise boolean functions

{and , or , not , nand , xor} as well as {lshift , rshift , parity}. Additionally, the designer

may declare functions on bit-vectors that follow the semantics of alternative integer

encodings (not just 2’s complement).

Chapter 3. Design Derivation 35

Tuples and projectors

Tuples and their accessors are an important sort schema that cannot be declared with

the define-param-alg facility. The schema has one constructor tuple, although

Starfish denotes tuple construction with square brackets: e.g., [1 2 false] is short

for (tuple 1 2 false). The constructor accepts an arbitrary number of arguments

with arbitrary type. Every input combination produces a different tuple sort. The

accessors to the tuple sort are 1st, 2nd, 3rd, etc.

Example 3.10: The define-param-alg signature declaration can define an ordered

pair or 2-tuple:

(define-param-alg 2-tuple
(t1 t2) ; parameter symbols
() ; constants
([2-tuple (t1 t2) 2-tuple] ; functions w/ explicit I/O
[1st (2-tuple) t1]
[2nd (2-tuple) t2])
([tup 2-tuple] [a t1] [b t2]) ; typed formal variables
([’1st-access (1st (2-tuple a b)) a]
[’2nd-access (2nd (2-tuple a b)) b]))

Starfish’s tupling facility is more general since it applies to any number of inputs.

Selectors

Starfish has polymorphic selectors that take an enumerated type or bit vector key,

and select over uniformly typed branch terms. The order of branch selection for

enumerated types corresponds to their order of declaration in define-enum-alg.

When selecting over a bit vector, the order of branch selection goes from 0b0 . . . 0. to

0b1 . . . 1. Paramaterized types and unbounded term types are not valid key types in

Chapter 3. Design Derivation 36

a selector. Term semantics are completely functional in Starfish, so there are no side

effects. Conditional expressions (if, for instant) often guard evaluation of branches

by the predicate expression, so that exactly one branching expression is evaluated.

This prevents side effects from evaluation of other branches. Since Starfish terms

have no side-effects, applicative order evaluation suffices for selector terms.

Example 3.11: Suppose state is an enumerated type defined by the signature

(define-enum-alg state
(wait add sub branch halt) ; constants
() () ()) ; no functions or identities

Then for terms t1, t2, t3, t4, t5 of all the same type, the following identities

hold:

sel(wait, t1, t2, t3, t4, t5) = t1
sel(add, t1, t2, t3, t4, t5) = t2
sel(sub, t1, t2, t3, t4, t5) = t3

sel(branch, t1, t2, t3, t4, t5) = t4
sel(halt, t1, t2, t3, t4, t5) = t5

(10)

Example 3.12: This next example shows the selector identities for the four constants

in bvec{2}:

sel(0b00, t1, t2, t3, t4) = t1
sel(0b01, t1, t2, t3, t4) = t2
sel(0b10, t1, t2, t3, t4) = t3
sel(0b11, t1, t2, t3, t4) = t4

(11)

Chapter 3. Design Derivation 37

Inter-signature function declarations and conditional identities

The declarative structures presented so far do not account for function signatures

between arbitrary sorts. The declare-funcs form fills this need. The functions

may optionally be parameterized. In case of parameters, the definition behaves as a

schema, overloading the names of the functions. Unlike previous declarations where

the only symbols “in scope” were those declared within itself, declare-funcs may

reference any previously declared constant, function or type symbols including inte-

gers, bit vectors, tuples, projectors, and selectors. Term and type expressions appear

in quotations marks, since the full term expression language makes slight departures

from s-expression syntax to include type annotation for subterms and the square

bracket tuple constructor. Figure 2 shows the full syntax for term and type expres-

sions.

(define-param-alg <name>
(<sort-var-sym> ...)
((<func-sym> (<type-str> ...) <type-str>) ...)
((<var-sym> <type-str>)...)
((’<ident-sym> <term-str> <term-str>) ...))

Example 3.13: As an example, consider these list utility functions parameterized

over a type variable atom. There is an empty-list predicate and a function that

measures the length of a list. Since the function signatures map between sorts that

do not share local scope in previous structures, they cannot be declared elsewhere.

Chapter 3. Design Derivation 38

termStr = annotatedTermStr | plainTermStr
annotatedTermStr = termStr:typeStr
plainTermStr = const | var | funcApp | sel | tuple | projector
constSym ∈ C
varSym ∈ V
funcApp = (funcSym termStr+)
funcSym ∈ F
sel = (sel termStr termStr+)
tuple = [termStr+]
projector = (projSym termStr)
projSym ∈ {1st, 2nd, 3rd, 4th, . . .}

typeStr = termSigSym | enumSigSym | paramTypeStr | tupleTypeStr
paramTypeStr = paramSigSym{typeStr+}
tupleTypeStr = [typeStr+]
termSigSym ∈ T
enumSigSym ∈ E
paramSigSym ∈ P

Figure 2: Grammar for type strings and term strings with type annotations. Let C,
F and V be the constant, function and variable symbols in the scope of the subject
string. Let T , E, and P be the sets of in-scope signature names for unbounded term
signatures, enumerated signatures, and parameterized signatures.

(declare-funcs list-utils
(atom);; var-type names
((nil? ("list{atom}") "boolean")
(list-depth ("list{atom}") "integer"))

((l "list{atom}") (a "atom") (i "integer"))
((’nil1 "(nil? nil:list{atom})" "true")
(’nil2 "(nil? (cons a l))" "false")
(’list-depth1 "(list-depth nil:list{atom})" "0")
(’list-depth2 "(list-depth (cons a l))" "(+ (list-depth l) 1)")))

In this example, list{atom} annotates nil to resolve type ambiguity; e.g., nil could

refer to stacks of integers instead of lists over the schematic variable atom.

Since identities in a declare-funcs clause range over selector terms, these blocks

may also express conditional identities. Some identities have a small number of special

Chapter 3. Design Derivation 39

cases that prevent their declaration in define-term-alg, define-enum-alg, and

define-param-alg, since identities in these contexts may use only locally declared

symbols.

Example 3.14: Consider the identity cons(car(l), cdr(l)) = l. This identity only

holds when l is not nil. The sel term enables a conditional form of this identity as

follows:

sel(nil?(l), l, cons(car(l), cdr(l))) = l (12)

Adding the following line to the declare-funcs identity block from Example 3.13

puts this conditional identity into Starfish.

(’cons-car-cdr (sel (nil? l) l (cons (car l) (cdr l))) l)

Starfish provides four declarations for defining signatures. Taken as a collection

of sort tags, labeled constants, function signatures, and identities, they form the

specification signature. For a given signature, E [V] denotes the set of term expressions

with variables in V . In particular, E [∅] is the set of constant terms.

Example 3.15: The following signature and sort declarations are a specification

signature for a stack calculator. The first declaration is an enumerated type for its

input instructions. The next enumerated type is an instruction classification type.

The function inst-cat from the declare-func block maps instructions to their in-

struction category; i.e., the four arithmetic tags map to alu-op. define-param-alg

specifies the standard stack signature using push, pop, top, and empty-stack. The

Chapter 3. Design Derivation 40

declare-func block expresses the conditional identity for popping followed by push-

ing (labeled ’pop-push). The signature for alu uses a 2 bit vector to specify arith-

metic on its two input integers. inst->op decodes the instruction into a 2 bit vector.

(define-enum-alg stack-calc-inst
(psh drp add sub mul div) () () ())

(define-enum-alg stack-calc-inst-cat
(psh-op drp-op alu-op) () () ())

(define-param-alg stack
(mem) ; parameterized over stack contents
(empty-stack)
([top (stack) mem]
[pop (stack) stack]
[push (stack mem) stack])

([s stack] [a mem])
([’push-top (top (push s a)) a]
[’push-pop (pop (push s a)) s]))

(declare-funcs stack-calc-helpers
(mem) ; parameterized over stack contents
([inst-cat ("stack-calc-inst") "stack-calc-inst-cat"]
[inst->op ("stack-calc-inst") "bvec{2}"]
[alu ("bvec{2}" "integer" "integer") "integer"]
[mt? ("stack{mem}") "boolean"])

([a "integer"] [b "integer"] [d "mem"] [s "stack{mem}"])
([’alu-add "(alu 0b00 a b)" "(+ a b)"]
[’alu-sub "(alu 0b01 a b)" "(- a b)"]
[’alu-mul "(alu 0b10 a b)" "(* a b)"]
[’alu-div "(alu 0b11 a b)" "(/ a b)"]
[’mt1 "(mt? empty-stack:stack{mem})" "true"]
[’mt2 "(mt? (push s d))" "false"]
[’pop-push "(sel (mt? s) s (push (pop s) (top s)))" "s"]))

The total signature includes the special built-in sorts bvec, integer, and boolean

two user defined enumerated types stack-calc-inst and stack-calc-inst-cat,

and one parameterized schema stack that is instantiated as many times as necessary.

Chapter 3. Design Derivation 41

In Example 3.17’s stack calculator specification below, there is only one instance,

stack{integer}.

3.3 Stream Systems

Stream systems have a few more features than indicated by the examples in Sec-

tion 3.1. First, stream systems accept a set of typed input streams Ivar ∈ I. The

stream system consumes one element from every input stream per step. Thus there

are three kinds of signals: input, sequential and combinational, I∪S∪C (these are dis-

joint sets of sort-labeled variables). The system specifies some subset of these signals

as observable or as output signals, the remaining signals are internal. Finally, a sort-

labeled metaterm character #, read unspecified, that serves as a don’t-care value when

used internally, and a don’t-know character when it appears in the input stream. The

syntax space in the presence of # is E [{#τ : τ is a sort label} ∪ I ∪ S ∪ C]. A stream

system has the following form:

λ (Ivar1 . . .) = Ovar1 . . .
where

Svar1 = Sini1 ! Stm1

...
...

Cvar1 = Ctm1

...
...

(13)

where Ivarj
∈ I, Svarj

∈ S, Cvarj
∈ C, Sinij

∈ E [#], Stmj
, Ctmj

∈ E [# ∪ I ∪ S ∪ C] and

Ovarj
∈ I ∪ S ∪ C

The principle of co-recursion uniquely defines functions into streams by specifying

Chapter 3. Design Derivation 42

the value of the stream’s head (a stream element) followed by a function on the

stream’s tail (another stream). It justifies this thesis’ formulation of stream system

semantics. The following theorem states (without proof) Barwise and Moss’s [5]

expression of the co-recursion principle for streams. The cons operator, ! , explicitly

shows a stream’s head and tail.

Theorem 3.1 (Co-recursion Principle for Streams). Let C be an arbitrary set. Given

functions G : C → A and H : C → C, there is a unique function F : C → A∞

satisfying the following, for all c ∈ C:

F (c) = G(c) ! F (H(c)) (14)

This formula is called the co-recursion equation for F .

Example 3.16: Let f : τ → τ ′ be a term function. The lifted stream function

f ∗ : τ∞ → τ ′∞ which applies f element-wise to stream elements is co-recursively

defined by

f∗(s) = f(head(s)) ! f∗(tail(s)) (15)

Definition 3.1. Let Cvar depend on Dvar, written Dvar ≺ Cvar, when Dvar is a sub-

term of Ctm. A system has combinational feedback when there is a cycle of dependence

among combinational signals: Cvar ≺ Dvar ≺ . . . ≺ Cvar.

Definition 3.2. A system is well-typed when every sequential signal variable has the

same type as its initial value and update term—i.e., τ(Svar) = τ(Sini) = τ(Stm)—and

Chapter 3. Design Derivation 43

every combinational variable has the same type as its update term—i.e., τ(Cvar) =

τ(Ctm).

A well-formed stream system is well-typed, devoid of combinational feedback, and

limited to combinational or sequential equations. Let

sub : E [# ∪ I ∪ S ∪ C]→ E [# ∪ I ∪ S]

recursively eliminate references to combinational variables. For constants, input vari-

ables, sequential variables, and unspecified terms, sub is the identity. For combina-

tional variables and function applications:

sub[Cvar] = sub[Ctm]
sub[f(t1, . . . , tn)] = f(sub[t1], . . . , sub[tn])

(16)

This function is defined on all combinational terms of a well-formed stream system

because there is no combinational feedback.

Semantics for the stream system in (13) are defined as follows: Let τ∞Ij
for 1 ≤ j ≤ l

be the type of the input streams. Let τSj
for 1 ≤ j ≤ n be the type of the terms

Svarj
, Sinij

, and Stmj
. Let τCj

for 1 ≤ j ≤ m be the type of the terms Cvarj
and Ctmj

.

Let Tr ∗ : τ∞I1 × . . .× τ
∞
Il
× τS1 × . . .× τSn → (τS1 × . . .× τSn × τC1 × . . .× τCm)∞ be

the signal trace function for the stream system in equation (13) which maps input

streams and a current state to a stream over the sequential and combinational signal

types. The defining co-recursive equation denotes repeated expressions E0, . . . , En by

the expression

i/n︷︸︸︷
Ei .

Chapter 3. Design Derivation 44

Tr∗(

i/l︷︸︸︷
Ii

j/m︷︸︸︷
sj) = (

j/m︷︸︸︷
sj ,

k/n︷ ︸︸ ︷
sub(Ctmk

)[

i/l︷ ︸︸ ︷
Ivar i/head(Ii),

j/m︷ ︸︸ ︷
Svarj/sj])

! Tr∗(

i/l︷ ︸︸ ︷
tail(Ii),

j/m︷ ︸︸ ︷
Svarj [

i/l︷ ︸︸ ︷
Ivar i/head(Ii),

j/m︷ ︸︸ ︷
Svarj/sj ,

k/n︷ ︸︸ ︷
sub(Ctmk

)[

i/l︷ ︸︸ ︷
Ivar i/head(Ii),

j/m︷ ︸︸ ︷
Svarj/sj]]

(17)

The stream system (13) produces the signal trace for input streams

i/l︷︸︸︷
I as defined by

Tr ∗(

i/l︷︸︸︷
I ,

i/l︷︸︸︷
Sinii

). When the system is labeled Sys—(13) is an anonymous component—

Tr ∗[Sys] denotes the trace of all input, combinational and sequential signals; Tr ∗X [Sys]

denotes the trace of signal X; Tr [Sys]
def
=Tr ∗O[Sys], the trace of the input and output

signals, defines the observable trace of Sys .

The signal trace function maps a set of input streams and beginning state into a

single stream over tuples that contain one element for every internal signal. Concep-

tually, it may be more natural to think of the trace as a collection streams (one for

each internal signal). However, bundling the signals into a tuple term makes Tr∗’s

definition easier to state because the co-recursion principle uniquely defines functions

into a single stream space, not collections of streams.

Example 3.17: Equation (18) below shows a stack calculator specification using

the type signature of Example 3.15. Its first input channel, instr, is an instruction

token in the enumerated type {psh, drp, add, sub,mul, div}. The other input chan-

nel supplies a stream of integers. Internally, the calculator maintains an abstractly

Chapter 3. Design Derivation 45

specified operand stack over the integers. The function instCat classifys the incom-

ing instructions as an element of the enumerated type {pshOp, drpOp, aluOp}. An

ALU instruction consumes the first two elements of the stack, and places the result

on the twice popped stack. The function alu(opCode, a, b) performs the arithmetic

operation according to the value of opCode, while instOp (written inst->op in the

declaration) extracts the ALU operation code from the incoming instruction. This

calculator makes no provisions for incorrect command sequences—e.g., stack under-

flow or division by 0. The system of stream equations follow:

StackCalc(instr, a) = res
where

s = push(mt, 0) !
sel(instCat(instr), push(s, a), pop(s),

push(pop(pop(s)), alu(instOp(instr), top(s), top(pop(s)))))
res = top(s)

(18)

Assume the standard term semantics for integers, stacks, and the expected interpre-

tation for alu : inst × integer × integer → integer. The signal trace function is

defined by

Tr∗(I, A, s) =(s, top(s)) !
Tr∗(tail(I), tail(A),

sel(instCat(head(I)), push(s, head(A)), pop(s),
push(pop(pop(s)), alu(instOp(head(I), top(s), top(pop(s))))))

(19)

Applying Tr ∗ with an initial state of push(mt , 0) and a specific set of input streams

(shown below) yields the following partial trace:

Chapter 3. Design Derivation 46

I = (push, push , push , add , drop , . . .)
a = (5 , 7 , 3 , 1 , 1 , . . .)
s = ({0} , {0, 5}, {0, 5, 7}, {0, 5, 7, 3}, {0, 5, 10}, {0, 5}, . . .)
res = (0 , 5 , 7 , 3 , 10 , 5 , . . .)

(20)

3.4 An algebra for system refinement

The intuitive example from Section 3.1 (p. 23) shows two stream systems that capture

the same behavior. They are linked by the observation that inc(x) = x + 1. Design

derivation generates correct system using a set of correctness preserving transforma-

tions like the one above. This section explores standards of correct implementation

using the framework put forth by Aagaard et al. [1]. The five architectural transfor-

mations that form the underpinnings of prior implementations are presented, followed

by a sixth transformation that is new to the algebra.

3.4.1 Correctness and trace comparison

Correctness in hardware synthesis is often determined by comparing specification

and implementation traces—i.e., the solution streams to the respective systems of

equations. In particular, the observable traces (p. 44) are the input streams and the

output streams, but not the internal signals. In the stack calculator—Example 3.17—

instr , a and res are observable, while s is an internal signal. For the purposes of

correctness, the collection of values at a particular trace index are the subjects of

comparison. The observable values for StackCalc at index 0 are {push, 5, 0}.

Aagaard et al. have proposed a classification matrix for correctness statements

Chapter 3. Design Derivation 47

concerning superscalar microprocessors [1]. The four axes of their taxonomy are

alignment, match, specification execution determinism, and implementation execution

determinism. All expressions in this thesis have deterministic execution leaving only

differences in the first two properties.

Alignment is the method specifying which trace indices to compare. In general, it

is a relation between specification and implementation trace indices. Pointwise align-

ment is the identity function, comparing every index of the specification to the same

index in the implementation. A stuttering alignment is function that is increasing

(i.e., speci < specj implies align(speci) < align(specj)). These two suffice for designs

generated by Starfish, although more involved relations based on pipeline flush points,

instruction fetch and retire are common in microprocessor verification.

Match is the method comparing values determined by alignment. Equality is the

simplest: two values match if and only if they are equal. Containment is slightly more

general: every term t is contained by the metaterm #, written t ⊂ #. The definition

builds recursively over term variants; t ⊆ s when t = s, or s = # and τ(t) = τ(s), or

t is a function, f(t1, . . . , tn) s = f(s1, . . . , sn), ti ⊆ si, 1 ≤ i ≤ n
t is a selector, sel(t1, . . . , tn) s = sel(s1, . . . , sn), ti ⊆ si, 1 ≤ i ≤ n
t is a tuple, [t1, . . . , tn] s = [s1, . . . , sn], ti ⊆ si, 1 ≤ i ≤ n
t is a projector, πi(t′) s = πi(s′), t′ ⊆ s′

(21)

The match procedure may also translate data representation. For example, a spec-

ification may define internal signals over abstract stacks, while its implementation

represents unobservable stack signals with a memory and pointer.

Starfish derives correct systems through a sequence of transformations. Each

transformation preserves correctness according to a particular alignment and match.

Chapter 3. Design Derivation 48

The straightforward transformations are correct along pointwise alignment and term

equivalence (with respect to sort identities). Some instantiate #, weakening the match

to containment over equivalence. Serialization stretches the alignment to stuttering,

while data refinement methods change the match.

3.4.2 Five correctness preserving transformations

Johnson [54] presents five correctness preserving rules (under pointwise alignment)

for transforming stream systems. These rules and the formation of named combi-

nations constitute an algebra for architectural refinement. While lacking a formal

completeness or succinctness statement, these rules powered the following 15 years of

design derivation results including multiple hardware synthesis case studies. This sec-

tion reviews these first transformations, setting the stage for a sixth transformation

that extends the design space. They are the basis for the behavior table algebra in

the next chapter. Each of these transformations preserves alignment—i.e., compares

systems pointwise. All but one matches using equivalence, while the last drops to

containment over equivalence.

The transformations are formulated to exclude mal-formed systems in the results.

In particular, the transformations are only valid when their results are well-formed.

Transformation 1 (Signal Introduction and Elimination). The single equation Y =

T may be added to (or deleted from) a system description under the conditions 1 (or

2):

Chapter 3. Design Derivation 49

SD(v, V) = Z where
X1 = S1

...
Xn = Sn

(1)⇒
(2)⇐

SD(v, V) = Z where
X1 = S1

...
Xn = Sn

Y = T

(22)

For signal introduction (1), Y must be distinct from {V,X1, . . . , Xn} and must intro-

duce no combinational feedback. For signal elimination (2), the variables in Y must

not occur in any defining expression other than T .

This transformation eliminates unnecessary signals or adds signals in a well formed

manner. The resulting system in both cases is correct using pointwise alignment and

equals match.

Transformation 2 (Combinational identification). Combinational signal identifiers

can be exchanged with their defining expressions wherever these occur. Substitutions

may not introduce combinational feedback.

...
X = S
Y = T

...

⇔

...
X = S[T/Y]
Y = T

...

(23)

This is a basic substitution principle stemming from the equations. Prior imple-

mentations limit this kind of substitution to subexpressions defined in combinational

expressions. For example:

X = 1 ! inc(X) X = (1, 2, 3, ...)
Y = −X Y = (−1, −2, −3, ...)
Z = 1 ! Z × Y Z = (1, −1, 2, ...)

(24)

Chapter 3. Design Derivation 50

is equivalent to

X = 1 ! inc(X) X = (1, 2, 3, ...)
Y = −X Y = (−1, −2, −3, ...)
Z = 1 ! Z × (−X) Z = (1, −1, 2, ...)

(25)

using combinational substitution as prescribed by Y .

An equation where a variable reference expands into a sequential expression (i.e.,

a head value followed by a co-recursively defined tail) does not generally simplify to

either a sequential or combinational equation. Consider expanding the variable X in

the combinational signal Z:

X = 1 ! inc(X) X = (1, 2, 3, ...)
Y = 1 ! Y × 2 Y = (1, 2, 4, ...)
Z = X × Y Z = (1, 4, 12, ...)

(26)

expands to

X = 1 ! inc(X) X = (1, 2, 3, ...)
Y = 1 ! Y × 2 Y = (1, 2, 4, ...)
Z = (1 ! inc(X))× Y Z = (1, 4, 12, ...)

(27)

The resulting equation for Z does not simplify to a combinational or sequential form.

Alternatively, one could have expanded the variable X within X’s equation lead-

ing to two levels of delay in a single expression, X = 1 ! inc(1 ! X). These non-

combinational and non-sequential results motivated the decision to limit substitution

to combinationally defined variables.

Chapter 3. Design Derivation 51

As with the previous transformation, the results are correct in the strongest pos-

sible way: pointwise alignment and equal match.

Transformation 3 (Grouping). A subsystem is grouped by nesting its identifiers and

forming a tuple of their defining expressions.

...
Xi = Si

Xi+1 = Si+1
...

Xi+m = Si+m
...

⇔

...
[Xi Xi+1 . . . Xi+m] = [Si Si+1 . . . Si+m]

...

(28)

This provides grouping and splittling of related signals. While this appears to be mere

syntactic sugar, it extends signal introduction and elimination to sets of mutually

dependent equations by bundling signals into tuple elements. The result is correct

pointwise, but with a modified match. The matching criterion is satisfied when the

elements of the tuple are equal to the values of the individual signals.

Transformation 4 (Replacement). Any term may be replaced by an equivalent one.

...
X = R[S/Y]

...

S=T⇔

...
X = R[T/Y]

...

(29)

This is a second substitution principle. Term level identities from signature declara-

tion justify this transformation’s expression replacements. It’s results are pointwise

correct using algebraic equivalence as the matching criterion.

Chapter 3. Design Derivation 52

Transformation 5 (Collation). If signal expressions S and T are of the same type,

then X and Y can be combined over a compatible selector.

...
X = sel(P, S, #)
Y = sel(P, #, T)

...

τ(S)=τ(T)⇒

...
X = sel(P, S, T)
Y = X

...

(30)

This transformation is really a combination of # instantiation and identification: in-

stantiate # in X to T , instantiate # in Y to S, identify sel(P, S, T) in Y as X. Again

correctness employs pointwise alignment but uses containment as the matching prop-

erty (hence a one-way transformation ⇒). The resulting system implements one

possible behavior of the original system. Unlike the previous transformations, one

system implements the other but not vice versa.

3.4.3 Extending identification to sequential signals

As shown in (27) on page 50, unconstrained substitution of sequential signal defi-

nitions for sequential variable references can produce malformed systems. In some

circumstances, expanding sequential definitions lead to well-formed systems. The

equations below show the simultaneous identification of sequential variables X and Y

followed by the distribution of × over the two sequential subexpressions. The result

is a well formed system:

X = 1 ! inc(X) X = (1, 2, 3, ...)
Y = 1 ! Y × 2 Y = (1, 2, 4, ...)
Z = (1 ! inc(X))× (1 ! Y × 2) Z = (1, 4, 12, ...)

(31)

Chapter 3. Design Derivation 53

X = 1 ! inc(X) X = (1, 2, 3, ...)
Y = 1 ! Y × 2 Y = (1, 2, 4, ...)
Z = 1× 1 ! inc(X)× (Y × 2) Z = (1, 4, 12, ...)

(32)

This transformation turns a combinational signal into a sequential one. The result-

ing system is correct under pointwise alignment and equal matching. The following

transformation formulates this example’s transformation in a general context. It is

essentially a form of the Identification rule in the previous section, but has not been

used in design derivation prior to this.

Transformation 6 (Sequential Identification). Let I,X, Y be input, sequential and

combinational signals, respectively. Let Z be a combinational signal dependent only

on X. Let O be an output signal which is necessarily an internal signal. Then the

following systems have the same solution sets:

Sys(I) = O
where

X = X0 ! f(X, Y, Z, I)
Y = h(X)
Z = g(X, Y, I)

⇔

Sys(I) = O
where

X = X0 ! f(X, Y, Z, I)
Y = h(X0) ! h(f(X, Y, Z, I))
Z = g(X, Y, I)

(33)

Proof. We prove this co-inductively ([72] contains a full explanation of this technique)

by showing that the stream trace functions are equal when initialized with the proper

initial state. The trace functions for the left- and right-hand systems are:

Tr∗l (I, x) = (x, h(x), g(x, h(x), head(I))) !
Tr∗l (tail(I), f(x, h(x), g(x, h(x), head(I)), head(I)))

Tr∗r(I, x, y) = (x, y, g(x, y, head(I))) !
Tr∗r(tail(I), f(x, y, g(x, y, head(I)), head(I)),

h(f(x, y, g(x, y, head(I)), head(I))))

(34)

Chapter 3. Design Derivation 54

f

g Y

X
=x0

f

g Y

X
=x0

=g(x0)

Figure 3: Combinational to sequential signal transformation on schematic represen-
tation of the system fragment, X = x0 ! f(X), Y = g(X)

For every input stream I and state x the heads are equal:

head(Tr∗l (I, x)) = (x, h(x), g(x, h(x), head(I))
= head(Tr∗r(I, x, h(x)))

(35)

The tails are also equal by application of the co-inductive hypothesis between the

first and second lines:

tail(Tr∗l (I, x)) = Tr∗l (tail(I), f(x, h(x), g(x, h(x), head(I)), head(I)))
= Tr∗r(tail(I), f(x, y, g(x, y, head(I)), head(I)),

h(f(x, y, g(x, y, head(I)), head(I))))
= tail(Tr∗r(I, x, h(x)))

(36)

Grouping extends this transformation to multi-input functions. One can always group

all sequential signals to a single variable (X in this case) and combinational signals

to another (Z) after eliminating dependencies by combinational substitution. The

remaining signal Y depends only on sequential signals within the system.

Chapter 3. Design Derivation 55

Example 3.18: The stack calculator (Example 3.17) is a simple expression that

characterizes behavior without regard to efficiency. At the very least, a target im-

plementation needs a register to hold the stack’s top value. Sequential identification

produces this effect, however once the transformation takes place, the system no

longer implies the combinational identity res = top(s). So the designer must apply

such combinational identifications before transforming res into a sequential signal.

The following equations indicate modified terms with boldface:

First, replace instances of top(s) by res

StackCalc(instr, a) = res
where

s = push(mt, 0) !
sel(instCat(instr), push(s, a), pop(s),

push(pop(pop(s)), alu(instOp(instr), res, top(pop(s)))))
res = top(s)

(37)

Next, transform res into a sequential signal. The application of top distributes over
the selector’s branches.

StackCalc(instr, a) = res
where

s = push(mt, 0) !
sel(instCat(instr), push(s, a), pop(s),

push(pop(pop(s)), alu(instOp(instr), res, top(pop(s)))))
res = top(push(mt,0)) !

sel(instCat(instr), top(push(s,a)), top(pop(s)),
top(push(pop(pop(s)),alu(instOp(instr), res, top(pop(s))))))

(38)

Chapter 3. Design Derivation 56

Finally, apply instances of top(push(s, d)) = d to simplify terms.

StackCalc(instr, a) = res
where

s = push(mt, 0) !
sel(instCat(instr), push(s, a), pop(s),

push(pop(pop(s)), alu(instOp(instr), res, top(pop(s)))))
res = 0 !

sel(instCat(instr),a, top(pop(s)),
alu(instOp(instr), res, top(pop(s))))

(39)

3.4.4 Soundness of fold and unfold transformations

Fold and unfold transformations, part of a system of program transformations intro-

duced by Burstall and Darlington [17], alter recursive function definitions by replacing

function calls with instantiated function bodies and vice versa. Arbitrary applications

of fold and unfold recursive function definitions can weaken the definition so that it

no longer specifies a unique function. David Sands work on transforming functional

programs [88] illustrates this phenomenon with the following example:

f(x)
def
= x+ 42

f(0) = 0 + 42 = 42

f(x)
def
= x+ f(0)

(40)

One applies the primitive law, 42 = 0+42, and then folds 0+42 into a call to f on 0.

This fold operation has introduced recursion and weakens the definition. Any linear

function of the form f(x)
def
=x+ c satisfies the resulting recurrence relation.

Chapter 3. Design Derivation 57

Two of Starfish’s transformations, combinational (p. 49) and sequential identi-

fication (p. 53), are fold/unfold transformations on streams. The replacement rule

(p. 51) parallels the application of primitive laws in Burstall and Darlington’s system.

Starfish’s stream system transformations are all contingent on the well-formedness

(p. 43) of the resulting systems. Well-formedness—i.e., all equations are combina-

tional or sequential, all equations are well-typed, and no combinational cycles exist—

ensures unique solutions by the co-recursion principle for streams (p. 42). In par-

ticular, unconstrained folds and unfolds are not allowed because they can introduce

combinational cycles or create equations that are neither combinational or sequential

(as shown in Section 3.4.3, p. 52).

Chapter 4

Behavior Tables

Systems of co-recursive stream equations and its transformational logic are the formal

backbone of design derivation. These equations quickly become large, though well

structured, often spanning several pages to describe even moderately sized systems.

Realizing the need for a more comprehensible presentation, the developers of DDD

adopted an informal tabular notation that reduces pages of co-recursive equations to

a perspicuous 2-dimensional form. In practice, these tables guided their derivation

strategy more than the equations themselves. This chapter formalizes a tabular no-

tation of stream systems by presenting their syntax, semantics, and transformation

logic. Behavior table display and the execution of their algebra are the principle

functions of Starfish.

4.1 Behavior Table Expressions

Behavior tables are closed expressions composed of first order terms over user specified

algebraic structures. As with co-recursive stream equations, variables are input I,

sequential S or combinational C. Term evaluation follows the scheme presented in

Section 3.2 (p. 24). A behavior table has the form:

58

Chapter 4. Behavior Tables 59

Name : Inputs → Outputs
Conditions Registers and Signals

...
...

Guard Computation Step
...

...

(41)

Inputs is a list of input variables and Outputs is a subset of the sequential and

combinational variables. Conditions is a set of terms denoting values that range over

enumerated types and bit-vectors. The guards are tuples of constants denoting values

that the conditions can take. The conditions together with the guards form a decision

table. Each guard indexes a computation step or action. An action is tuple of terms,

each corresponding to a combinational or sequential variable. The actions and the

internal signal names (i.e. non input variables) compose the action table.

There is a precise mapping between behavior tables and stream equations that

fully captures behavior table semantics. Transforming a system of equations begins

with choosing a uniform selector for all equations. For example, let X = sel(k, a, b)

and Y = sel(l, c, d) be two equations in the system.

selk,l = λ(x1, x2, x3, x4).sel(k, sel(l, x1, x2), sel(l, x3, x4)) (42)

is a composition of the two selectors that evaluates conditions k and l sequentially.

Semantically, the key does not guard evaluation of branches (as the if statement of

the Scheme programming language). The two equations may be rewritten with the

selector composition: X = selk,l(a, a, b, b) and Y = selk,l(c, d, c, d). Assuming that

l and k range over bits, a behavior table characterizing these two equations uses k

Chapter 4. Behavior Tables 60

and l as the condition headings for the decision table, while the branches determine

simultaneous updates (or actions) to X and Y :

Table Fragment for X and Y

k l X:comb. Y:comb.

0 0 a c

0 1 a d

1 0 b c

1 1 b d

(43)

The following example illustrates this transformation on the stack calculator expres-

sion from Example 3.17.

Example 4.1: The stack calculator from Example 3.17 (p. 46) is shown below:

StackCalc(instr, a) = res
where

s =push(mt, 0) ! sel(instCat(instr), push(s, a), pop(s),
push(pop(pop(s)), alu(instr, top(s), top(pop(s)))))

res= top(s)

First we expand left hand side of res = top(s) to use the same selector as the equation

for s. The result is a system that uses homogeneous selectors:

StackCalc(instr, a) = res
where

s =push(mt, 0) ! sel(instCat(instr), push(s, a), pop(s),
push(pop(pop(s)), alu(instr, top(s), top(pop(s)))))

res= sel(instCat(instr), top(s), top(s), top(s))

(44)

A behavior table aligns signal updates in rows according to selector branches. In

this case there is only one level of selection that ranges over the enumerated type

StackCalcInstCat. The values pshOp, drpOp and aluOp index the possible signal

Chapter 4. Behavior Tables 61

updates. In every case, the combinational signal update res remains top(s). The

action table columns hold the signal updates. Column headings indicate signal kind

(sequential or combinational), and the table heading indicates input and output sig-

nals.

StackCalc(instr,a) = res

instCat(instr) s:Seq res:Comb

pshOp push(s,a) top(s)

drpOp pop(s) top(s)

aluOp push(pop(pop(s)),alu(instr,top(s),top(pop(s)))) top(s)

(45)

Like stream systems, behavior tables denote communicating processes, rather than

sub-procedures. Consequently behavior tables cannot themselves be entries in other

behavior tables. Instead, they are composed by interconnecting I/O ports—instr , a

and res in the case of (45). A connection map that is faithful to each component’s

arity specifies the composition. In the function-oriented modeling notation, such

compositions are expressed as named recursive systems of equations,

S(U1, . . . , Un) = (V1, . . . , Vm) where
(X11, . . . , X1q1) = T1(W11, . . . ,W1`1)

...
(Xp1, . . . , Xpqp) = Tp(Wp1, . . . ,Wp`p)

(46)

in which the defined variables Xij are all distinct, each Tk is the name of a behavior

table or other composition, and the outputs Vk and internal connections Wij are all

simple variables coming from the set {Ui} ∪ {Xjk}.

Chapter 4. Behavior Tables 62

4.2 Behavior Table Algebra

This section casts the transformations presented in Section 3.4.2 (p. 48) in terms

of behavior tables and their hierarchical composition. Like their stream-oriented

counterparts, the table algebra applies to architectural refinement. As before, this

set is not claimed to be complete nor is minimal in any mathematical sense. Rather,

this set of rules need only be robust enough to serve as a core rule set for tool

implementation.

4.2.1 Notational conventions

Defining these rules has led to some challenging notational issues. To reduce clutter,

we consider some novel conventions for expressing features, particularly for quantifi-

cation. For reasons of both typography and clarity, we want to limit use of ellipses,

columns, and subscripts to describe a table as, for example,

b : (I1, . . . , Ik)→ (O1, . . . , O`)
P1 · · · Pm S1 · · · Sp

1 g11 · · · g1m t11 · · · t1p
...

. . .
...

. . .
n gn1 gnm tn1 tnp

(47)

The table-scheme notation uses the table itself as a quantifier, and uses set ele-

ments as indexes rather than number ranges. Uppercase italic variables denote sets;

and differently named sets are always assumed to be finite and disjoint. Lowercase

italic variables denote indices ranging over sets of the same name. The form

Chapter 4. Behavior Tables 63

S

R xrs
(48)

represents a two-dimensional array (table) of items, {xrs | r ∈ R and s ∈ S}. A sans

seriff identifier denotes a fixed (throughout the scope of the rule) element from the

set of the same name. Thus, the form

s

R xrs
(49)

represents a column, {xrs | r ∈ R} and similarly for rows.

Under these conventions, the table-scheme from Section 4.1 looks like

g
n,p

t
n,s.

.

.

N

1

I O
P S

b:

(50)

The use of ellipses 1 · · ·N on the left is not necessary, but serves as an reminder

that the rows are typically numbered.

4.2.2 The rules

This section develops table-oriented counterparts to the stream-oriented rules of Sec-

tion 3.4 (p. 46). Some rules effectively define table semantics by asserting equivalence

between table structures and term expressions. This is most evident with the inter-

play between term selectors and the decision table. Similarly, the action grouping

and ungrouping presents the columns in the action table in terms of polymorphic

Chapter 4. Behavior Tables 64

tuples. The algebra of hierarchical lexical scoping is an assumption of the equational

presentation that we make more concrete here with the decomposition and flattening

rules.

Some structural rules subsumed by the semantics are not presented in this section,

but should be supported by a full implementation. For example, permuting columns

within the decision table is valid due to the commutativity and associativity of se-

lector composition. Similarly the ordering of rows (guarded actions) and action table

columns is a property of expression layout and irrelevant to evaluation. Their order

may consequently be arbitrarily permuted. Also, renaming variables is allowed under

the usual rules of α-substitution [27].

All transformations preserve pointwise alignment (p. 47). The match predicate is

term equivalence (e.g. modulo the term identities specified by data types) in all cases

except for subterm instantiation of output signals which uses containment.

Subterm Instantiation

b : I → O

P s

gnp tns

well formed
⇒

b : I → O

P s

gnp tns[u/#]
(51)

Unspecified subterms, #, of the action table may be arbitrarily instantiated to u

subject to the constraints of well formedness—i.e., identifiers must be in scope and

the subterm may not introduce combinational feedback.

Chapter 4. Behavior Tables 65

Signal introduction

b : I → O

P S

gnp tns

y fresh
well formed

⇒

b : I → O

P S y

gnp tns #ny

(52)

A new combinational or sequential signal of any type may be added. The initial

action values are typed #s. Together with subterm instantiation, this rule enables

the introduction of arbitrary well formed signals and actions to a behavior table; this

parallels the forward direction of Transformation 1 (p. 48).

Signal Elimination

b : I → O

P S R

gnp tns unr

r ∈ R unused
⇒

b : I → O

P S

gnp tns

(53)

Eliminating a set of signals, R, is allowed when no r is a subterm of tns, and r is

not an output signal. In summary, a set of signals may be removed when they are

collectively unused by the residual system.

Combinational identification

b : I → O

P s y : comb

gnp tns rns

well formed
⇒

b : I → O

P s y : comb

gnp tns[rns/y] rns

(54)

Chapter 4. Behavior Tables 66

Combinational Identification substitutes the defining expression of a combina-

tional signal for subterm instances of the signal’s variable. Only substitutions which

preclude combinational feedback are valid transformations.

Sequential identification

b : I → O

P S : tini
n C : comb y : comb

gnp tns unc rny

r has no subterms in I or C m

b : I → O

P S : tini
n C : comb y : r[s/tini

s]

gnp tns uns r[s/tns]ny

(55)

Sequential identification is the tabular version of Transformation 6 (p. 53). The

transformation requires identical action terms, r, throughout y’s column, and that

none of r’s subterms is an input or combinational signal. Constraining y to have iden-

tical action terms (indicated by r) is an expressive convenience; repeated applications

of the decision instantiation and decision identification rules (below) can always col-

lapse the decision table to a single row, trivially satisfying term uniformity. Similarly,

disallowing combinational subterms serves as a notational convenience; combinational

variables may always be eliminated by repeated substitution of their action updates

for their variable instances. The substantive constraint disallows access to input vari-

ables in r. Simultaneously substituting the defining actions for all the variables in r

Chapter 4. Behavior Tables 67

results in an equivalent sequential signal representation of y as in Transformation 6.

The initial value, represented in the column heading of sequential signals, is also the

simultaneous substitution of the initial values into r.

Action grouping

b : I → O

P G

gnp tng

g ∈ G uniformly
sequential or
combinational

⇔

b : I → O

P G : comb g

gnp nth(g) [tg]n

(56)

Columns can be grouped and ungrouped as long as the resulting columns are

purely sequential or purely combinational. The behavior table form does not allow

for structured signal identifiers. Grouping an ordered set of signals G produces a

new signal g whose actions are ordered tuples corresponding to the actions of G.

Remaining references to signals in G are resolved with combinational accessors to g.

This rule also characterizes ungrouping (⇐) in a general manner in context of the

other transformations. If the goal is to ungroup an arbitrary tupled signal g, then one

should first introduce a set of combinational signals G for each tuple component. The

action columns are uniformly initialized to access the appropriate tuple component.

In case an action update subterm tng to g is not a tuple constructor (e.g. the iden-

tity expression g), replace tng by the identical term [π1(tng) . . . πlength(g)(tng)]. Now

application of ⇐ produces a suitable ungrouping.

Chapter 4. Behavior Tables 68

Replacement

I O

pn
g

st

s

n

P
b:

n

` tns ≡ uns

⇒

I O

pn
g

sn

P
b:

n

s

u
(57)

An action table term can be replaced by another term that is (proven to be)

equivalent in the underlying structure (or theory). Recall that ` t ≡ u is a prov-

able equivalence in the underlying structure. This rule is the tabular version of last

chapter’s replacement rule. In practice, the identities from the data type declarations

suffice to prove most replacements, however more ingenious substitutions could be

established with external rewriting tools or proof assistants.

Decision introduction

b : I → O

P S

gnp tns

⇔

b : I → O

P q S

gnp #nq tns

(58)

Decision introduction adds another test to the decision table. The guard column

consists of entirely #s. By itself this introduction does not change architecture, how-

ever subsequent instantiation of guard terms (below) transforms selection terms in

the action table into explicit enumerations in the decision table. The guard term

q must have finite type, i.e. enumerated or bit-vector, so that subsequent expan-

sions can exhaustively list its values in the decision table. Moreover, arbitrary use of

variables in q can introduce combinational feedback; thus, the decision introduction

Chapter 4. Behavior Tables 69

rule constrains q to result in a well formed system. In practice, banning the use of

combinational variables in guard headings prevents feedback, though this rule is more

restrictive than necessary.

Decision instantiation

#

⇔

q

f q

g

q

s

t s

t

I O
P

b:
S

.

.

.

N+1

1

hp

hp

(59)

Having introduced a new test to a behavior table, instantiation is used to do case

splitting. In the subject column, the expansive direction replaces # with a row for

each possible value of q. This case enumeration duplicates the other guards hp and

actions ts for the remaining columns. Decision identification (below) permits the

subsequent propogation of test values to actions for term reduction.

The other direction (⇐) eliminates an unnecessary test by collapsing uniform

actions and guards over a subject test q. Repeated application of this rule prepares

a test for elimination from the decision table.

Decision identification

b : I → O

q s

gnq tns

⇔

b : I → O

q s

gnq tns[q/gnq]
(60)

Decision identification substitutes the case value gnq of a test q for instances of

Chapter 4. Behavior Tables 70

the test term in the row’s actions (and vice versa). This is analogous to replacing

instances of a selector key in a selector branch with the corresponding branch value:

e.g.,

sel(key, f(key), g(key)) = sel(key, f(0), g(1)) (61)

when the key is a single bit.

Decomposition

.

.

N

1

np
g. t tnt

I Ob:

ns

P S T
⇒

N

1

.

.
g

np
.

.

.
g

np
.

N

1

b : SO U

ns

1

t

T
I U

P
S

tnt

U TI
S P

b :2 T OU

(62)

Decomposition splits one table into two, both inheriting the same decision table.

The compose operator connects the two tables to maintain the original dependence

among the signals. Interpreting the tables as functions on streams—and reading ‘∪

and ‘∩ as list operations—B1 ◦ B2 yields the system

B(I)def=O where
(O ∩ S) = B1(I ∪ T)
(O ∩ T) = B2(I ∪ S)

(63)

Successive decompositions cause the connection hierarchy to deepen, often unneces-

sarily. Table editors should provide methods to flatten these connective structures.

Let C denote a connecting block instead of a behavior table. The following equation

expresses the flatten operation:

Chapter 4. Behavior Tables 71

B(I)def=O where
...

X = C(Y)
where

C(Y)def=X where
X0 = C0(Y0)

...
Xn = Cn(Yn)

...

⇒

B(I)def=O where
...

X0 = C0(Y0)
...

Xn = Cn(Yn)
...

(64)

The Xi are distinct from the B’s internal variables. X is the tuple of C’s signal visible

externally; after flattening, X becomes superfluous since all of C’s internal signals are

in scope of B’s connecting equations. Similarly, suppose that Y represents the set of

signals in B that is exported to C. After flattening, Y is superfluous since all of B’s

internal signals are in scope of C’s lifted equations. Assume that formal placeholder

variables represented by X and Y have the same name as the imported/exported

signal names so that no additional α-conversion is necessary

Useless signal elimination

Input and output signals may be added to behavior tables without concern so

long as the inputs and outputs of the encapsulating system remain the same. Simply

adding inputs or outputs to a table does not introduce combinational feedback. This

condition requires references to the new signals in the decision or action table, however

the instantiation rules explicitly disallow combinational feedback.

Conversely, an unused I/O signal qualifies for elimination. We can remove input

i ∈ I to a behavior table if no action or predicate contains i as a subterm. A behavior

table output may be removed when it neither supplies an input to another behavior

Chapter 4. Behavior Tables 72

table (as dictated by the functional interconnect expression) nor doubles as an output

of the encapsulating system.

Chapter 4. Behavior Tables 73

S
u
b
te

rm
In

st
an

ti
at

io
n

A
ct

io
n

G
ro

u
p
in

g
b

:I
→

O

P
s

g n
p

t n
s

w
el

l
fo

rm
ed

⇒

b
:I
→

O

P
s

g n
p

t n
s[
u
/
#
]

b
:I
→

O

P
G

g n
p

t n
g

g
∈

G
un

if
or

m
ly

se
qu

en
ti
al

or
co

m
bi

na
ti
on

al
⇔

b
:I
→

O

P
G

:c
om

b
g

g n
p

n
th

(g
)

[t
g
] n

S
ig

n
al

In
tr

o
d
u
ct

io
n

S
ig

n
al

E
li
m

in
at

io
n

b
:I
→

O

P
S

g n
p

t n
s

y
fr
es

h
w
el

l
fo

rm
ed

⇒

b
:I
→

O

P
S

y

g n
p

t n
s

#
n
y

b
:I
→

O

P
S

R

g n
p

t n
s

u
n
r

r
∈

R
un

us
ed

⇒

b
:I
→

O

P
S

g n
p

t n
s

S
eq

u
en

ti
al

Id
en

ti
fi
ca

ti
on

C
om

b
in

at
io

n
al

Id
en

ti
fi
ca

ti
on

b
:I
→

O

P
S

:t
in

i
n

C
:c

om
b

y
:c

om
b

g n
p

t n
s

u
n
c

r n
y

r
ha

s
no

su
bt

er
m

s
in

I
or

C
m

b
:I
→

O

P
S

:t
in

i
n

C
:c

om
b

y
:r

[s
/t

in
i

s
]

g n
p

t n
s

u
n
s

r[
s/

t n
s
] n

y

b
:I
→

O

P
s

y
:c

om
b

g n
p

t n
s

r n
s

w
el

l
fo

rm
ed
m

b
:I
→

O

P
s

y
:c

om
b

g n
p

t n
s[
r n

s/
y]

r n
s

F
ig

u
re

4:
T
ra

n
sf

or
m

at
io

n
su

m
m

ar
y

Chapter 4. Behavior Tables 74

R
e
p
la

ce
m

e
n
t

D
e
ci

si
o
n

In
st

a
n
ti

a
ti

o
n

I
O

p
ng

s
ts n

P
b:

n

`
t n

s
≡
u

n
s

⇒

I
O

p
ng

s
n

P
b:

n

s u
#

⇔

qf q

gq

s t st

I
O

P
b:

S

.. .

N
+

11

h p h
p

D
e
ci

si
o
n

Id
e
n
ti

fi
ca

ti
o
n

D
e
ci

si
o
n

In
tr

o
d
u
ct

io
n

b
:
I
→

O
q

s

g n
q

t n
s

⇔

b
:
I
→

O
q

s

g n
q

t n
s[
q/
g n

q
]

b
:
I
→

O
P

S

g n
p

t n
s

⇔

b
:
I
→

O
P

q
S

g n
p

#
n
q

t n
s

D
e
co

m
p
o
si

ti
o
n

. . N1

npg
.

t
t nt

I
O

b:

ns

P
S

T
⇒

N1 . .
g np

.
. .

g np
. N1

b
 :

S
O

U

ns

1

t

T
I

U

P
S

t nt

U
T

I
S

P
b

 : 2
T

OU

co
n
n
ec

te
d

by
B

(I
)d

ef =
O

w
he

re
(O
∩
S

)
=
B 1

(I
∪
T

)
(O
∩
T

)
=
B 2

(I
∪
S

)

U
se

le
ss

I/
O

S
ig

n
a
l
E
li
m

in
a
ti

o
n

F
la

tt
e
n

In
te

rc
o
n
n
e
ct

F
ig

u
re

5:
T
ra

n
sf

or
m

at
io

n
su

m
m

ar
y

(c
on

t.
)

Chapter 5

Starfish

Starfish is implemented as two communicating processes. The first process maintains,

transforms, and analyzes the behavior table data structures. The second process is the

user interface for table display and script execution. The two processes communicate

through Unix FIFOs using XML to encode the tables and commands destined for

the GUI, and the starfish command language to communicate transformations and

session commands to the computational back-end.

5.1 Computational Engine

The computational backend hosts the primary representation, analysis, and transfor-

mation of behavior table systems. Like DDD, this transformation package is written

in Scheme. However, Starfish represents systems directly as behavior tables, rather

than systems of stream equations. The major components of its computational back-

end have significant interdependencies, but are roughly classified into six categories

of functionality: table representation, type system, component addressing, transfor-

mations, property analysis, and command interpreter.

75

Chapter 5. Starfish 76

5.1.1 Language prerequisites

The code for the system makes extensive use of specially designed Scheme macros.

The first macro package, define-dt, extends the inductive data type schema devel-

oped by Friedman [27]. It lets programmers define sets of related data type variants,

each possessing multiple fields. The fields are subject to arbitrary programmer-defined

predicates, including the property of belonging to the general subject data type or a

specific variant. This paradigm is well suited for representing language expressions; for

example, the general data type, term, has variants constant, variable, function applica-

tion, etc. Function applications have two fields: function which satisfies the predicate

function?, and args must satisfy the compound predicate (list-of term?), ensur-

ing that the arguments belong to the inductive data type, term. All field properties

are verified at construction time. Starfish’s implementation of this facility departs

from the Friedman implementation by introducing predicate and accessor bindings

for each variant of the data type only into the scope where it is declared.

Nearly every internal data structure in Starfish is represented with define-dt.

For the most part, Starfish maintains a functional programming style in which data

structures are not modified after initialization. Results of table transformations are

always newly constructed tables rather than small mutations of the input system.

Since the data structures are deeply nested, and the programmer needs access to

large numbers of fields for analyzing transformations and constructing the new sys-

tem, Starfish distinguishes and binds arbitrary sets of data-tree nodes with a special

pattern matcher, match-dt. A polymorphic constructor change-dt leverages the

same branch specification method to define modifications to existing trees as sets of

Chapter 5. Starfish 77

branch substitutions.

Example 5.1: Starfish internally represents terms with the following data structure:

(define-dt term
([type type?])
((const ([name symbol?]))
(var ([name symbol?]))
(uspec ())
(app ([func func?] [exps (list-of term?)]))
(sel ([key term?] [exps (list-of term?)]))
(tuple ([exps (list-of term?)]))
(proj ([index integer?] [exp term?]))

The data type’s name is term and every variant has the field type, which must

satisfy the predicate type?—a predicate generated by a similar data type declaration

for type. The variant const has the mandatory type field and a symbolic name. The

sel variant adds key and exps, which are a term and list of terms respectively.

One well formedness check assures that they key term is a finite type. Given a sel

term one could apply a sequence of field accessors to assess the type. For example:

(finite-type? (term->type (sel->key t)))

This becomes tedious, particularly when a term has multiple subfields of interest.

The match-dt facility allows one to bind arbitrary subfields (including parent and

child nodes) of a specified pattern. In recognition that the name of a field is not

always a convenient binding name in a particular scope, the match-dt-form specifies

the pattern and binding variables with different expressions:

Chapter 5. Starfish 78

;; match-dt approximate form:
;; (match-dt <term>
;; ([<pattern> <binding-list>] <exp> ...) ...)

(match-dt t
([(sel (key :: const (type :: enum-type alg) name) exps)

((key :: (ktype :: kalg) cname) exps)]
(printf "The selector key’s enumerated algebra is ~s" alg))

([(sel (key :: const type name) exps)
((mykey :: ktype cname) myexps)]
(printf "This selector’s key is a constant ~s" cname))

([(sel key exps) (mykey myexps)]
(printf "This selector’s key is ~s" (term->text mykey))))

The branches of this match-dt expression are in decreasing order of complexity

since they match subsets of each other. The last clause matches t if it is a sel

variant of term. In case of a match, it binds the key and expressions to mykey and

myexps and evaluates printf expression in the context of these bindings. The second

branch further specifies that the selector’s key must also be a const. The binding list

assigns the key to mykey, the key’s type to ktype, the constant name to cname and the

selector expressions to myexps. This specification of subfields and subsequent binding

my apply arbitrarily deeply in the tree structure. The first clause further specifies that

the type is an enumerated type and binds the corresponding enumerated algebra to

the variable alg. There is no requirement to specify all fields of a particular variant,

only the ones of interest.

The change-dt constructor specifies branches in the same way, substituting new

expressions for the specified branches. The functional way to change the type of a

selector term, t, accesses all of reused the fields and applies the basic constructor to

make the new term with the newly specified type:

Chapter 5. Starfish 79

(make-sel new-type (sel->key t) (sel->exps t))

The change-dt accomplishes the equivalent action with

(change-dt (sel type) (new-type))

As with match-dt, only the fields of interest need specification and there may be

multiple substitutions. Substitution specifiers may not include fields where one is a

direct descendant of another. The following statement changes both the type and the

constant name of a matching selector:

(change-dt (sel type (key :: const name)) (new-type (new-cname)))

Another ubiquitous but non-standard form in the Starfish code base is poly-lambda.

This form allows programmers to “overload” a function to accept multiple input sig-

natures. The following code schema are equivalent:

(poly-lambda
[([arg0 pred0] ... [argn predn]) exp exp1 ...] ...)

(lambda args
(cond
[(and (eq? (length args) n*)

(let ([arg0 (list-ref args 0)]
...
[argn (list-ref args (- n 1))])

(and (pred0 arg0) ... (predn argn))))
(let ([arg0 (list-ref args 0)]

...
[argn (list-ref args (- n 1))])

exp exp1 ...)] ...))

Example 5.2: Define f as follows:

Chapter 5. Starfish 80

(define f
(poly-lambda
[((x integer?) (y symbol?)) (list x y)]
[((x integer?) (z integer?)) (+ x z)]
[() 0]
[() 2]
[fail f])) ;; reports "Error in f: ..."

Then we have the following behavior for f in an interactive session:

> (f)
0
> (f 1 2)
3
> (f 1 ’a)
(1 a)
> (f 1)
Error in f: incorrect argument structure (1).
Type (debug) to enter the debugger.

The poly-lambda form was particularly useful in adapting behavior table trans-

formations to new methods of specifying system components. As the argument spec-

ification methods changed, the original transformation and analysis could be reused

by adding another argument clause that translated the new specification method into

the old one and recursively called the original transformation.

5.1.2 Type system

Starfish’s type system is integrated with its representation of terms. As depicted in

Example 5.1, a term’s type is the only mandatory field for every term variant. The

type system’s declarative structures, introduced in Section 3.2.2, define the symbol

table for terms. A global object, alg-reg, stores function and constant symbols along

with their IO-signature or type and structure of declaration (e.g., push is part of the

Chapter 5. Starfish 81

stack declaration).

The symbol table is the foundation for parsing and type checking term expressions.

Term syntax indicates function application with parenthetical s-expressions, tuples

with square brackets, unspecified terms with #, and projectors with ordinals (e.g.,

1st, 2nd, 3rd). Valid constants and functions are specified in the symbol table, and

variables definitions come from the environment of the behavior table (i.e., the signal

names).

Ideally, a term string would have a unique type and the system could automatically

determine it. In this case, the user would never need to specify the type of a subterm

because the system would infer it from the types and signatures specifications in the

symbol table and environment. Since terms in this system are first order, the inference

problem is greatly simplified. However, parameterized types, integer-parameterized

bit vectors, polymorphic tuples, and unspecified terms introduce some ambiguity to

the system; for instance, assuming that stacks are parameterized over a content type,

what is the type of empty-stack? Worse yet, what is the input type requirement for

the projector 3rd?

Starfish takes a pragmatic approach to the inference problem. First, Starfish in-

ferences types with an algorithm that works “well enough.” This thesis makes no

claims to its completeness. The algorithm proceeds by recursive descent through

a term’s data structure. It begins with an estimate (possibly trivial) of the type

and branches according to subject’s term variant. In addition to the fully-specified

types arising from the augmented multisorted algebra type system presented in Sec-

tion 3.2.2, Starfish’s type-inferencing algorithm encodes type requirement information

Chapter 5. Starfish 82

with a number of partly defined types: unknown-type makes no requirements on the

type, unknown-bvec-type indicates a bit-vector of unknown size, unknown-key-type

indicates that the type is finite and has a certain size, unknown-tuple-type is a re-

cursive variant that indicates that the type is a tuple (of various unknown types)

and places a lower bound or exact specification on its length, unknown-param-type

is a recursive variant that indicates that the type belongs to a certain parameterized

algebra (e.g., stacks), but that its parameters are not fully specified.

The algorithm accepts a partially typed subject term and a type requirement ex-

pression (either an unknown type as above, or a fully specified type), and returns a

subject term where every subterm’s type field is a fully specified type. The algorithm

presumes that all types specified within the term’s structure are correct. When it en-

counters a constant, it looks up the constant’s declaration algebra and tries to merge

or unify the type requirements with the declaration. If the requirements are incom-

patible, the algorithm throws a type mismatch error, noting the difference between

requirements and declaration. If they are compatible but do not fully specify the type,

the algorithm throws a type ambiguity error (unless requested not to). Otherwise, a

type is fully specified and satisfies the requirements; the type inferencer returns the

labeled constant. A similar process works for variables. For recursive term variants,

the type inferencer is run on each of the subterms. The results are merged according

to the variant’s properties. For instance, a selector must have uniform types in its

branches. In this case, recursive calls on the branches do not fail when their result

is an ambiguous type. Instead, ambiguous types are accepted and unified across

branches.

Chapter 5. Starfish 83

The most complex case occurs when inferring the type of a function application

that returns a parameterized type. The type inferencer tries to evaluate the “simplest”

input parameters first. It classifies input parameter type complexity according to the

function’s input signature: non-schema inputs have fully defined types, flat-schema

input types are type variables, and deep-schema inputs have type structures with

type variable subtypes. The inferencer evaluates these three categories of subterms

in order, and merges the results into a type variable environment as it completes infer-

ences on each input argument. After inferring type values for the argument subterms,

the inferencer estimates the output type with variables from the type environment,

and the unifies estimates with the incoming requirements; mismatch and ambiguity

are handled as before.

Certainly there are cases where a term’s type is logically deducible, but exceed the

algorithm’s inferencing capability. For this reason, Starfish supports type annotation

in its term expressions (see Figure 2 from Section 3.2.2). In practice, this leads to

very few annotations. Even in the larger case studies, terms tend to have simple

structures and simple types. Annotation has been limited to identity specification in

data-refinement declarations.

5.1.3 Component addressing

Specifying transformations is challenging because the primary operand, the system

specification, is a deep tree structure with potentially duplicate branches. Thus spec-

ifying a subcomponent by value in many cases does not uniquely determine the target

of the transformation. Furthermore, this approach can be cumbersome when target

Chapter 5. Starfish 84

components are complex—e.g., an entire behavior table. To mitigate this problem,

an addressing system specifies each component by a sequence of branch numbers that

enumerate the component’s position in the data tree.

Generally, the address can be split into three : a subsystem node address, a node

component (such as a table column, cell, or output) and subterm node address. A

subsystem node address specifies a behavior table or connecting expression with lists

of non-negative integers that reference which child or sub-branch the path follows. In

command specification system paths are either specified with lists (e.g., ’(0 2 1 1))

or with the system path constructor (make-sys-path 0 2 1 1); the implementation

uses both methods, reflecting evolving design decisions throughout its development.

Within a table or connecting expression, a data type variant specifies the sub-

component in question and carries further specification data. For instance, there is

a variant for specifying a signal (column in the action table) in a behavior table,

sig-addr. It has two fields: sys a subsystem address which specifies the behavior

table in the behavior table hierarchy, and a non-negative integer specifying the action

table’s column. Another variant, act-subterm-addr specifies a subterm in a behav-

ior table’s action table. It has three fields: a sig-addr to identify the column, a row

number, and a subterm address.

Like system node addresses, subterm addresses are essentially a list of numbers

specifying a path to a node in the subterm tree. For example, the subterm address

(0, 1, 0) references the subterm f(1, c) in the term [sel(k, f(1, c), 2), g(x), 0] (the top-

level term is a 3-tuple), while the path (2) references the subterm 0, and the empty

path references the top-level 3-tuple.

Chapter 5. Starfish 85

This numerical addressing scheme gives a unique name to the components of a

behavior table hierarchy, however, using the full address for every transformation pa-

rameter results in clutter and redundancy. Most transformations have a high degree

of parameter locality and only reference components within the same node. Fur-

thermore, the subclass of node components are usually determined by context of the

transformation. For instance, a signal introduction or combinational identification

necessarily operate on the action table. Thus most transformation commands take

a sub-system path as their first argument and a collection of local references for the

following arguments—the system tree is part of the global state, and implicitly an

argument to each transformation.

Early versions of Starfish reference table cells with row and column numbers,

while subterms were further specified by a subterm path. Although this method

was sufficient for specifying transformations, it proved tedious to update when small

changes were made to derivations scripts—i.e., sequences of transformations. Many

transformations change the table dimensions and thus change the row and column

numbers of transformation parameters. Later versions of the many transformation

commands allow row and column specification by signal name (column heading in

the action table) and guard (the sequence of constants in the decision table). This

simple change greatly increased resilience to small changes in derivation scripts.

The numerical absolute addresses, though poorly matched for specifying scripts,

are returned by Starfish’s property matcher. The property matcher accepts a subnode

address and a term predicate (as a Scheme expression), and returns a list of numerical

addresses pointing to terms matching the property; for example, designers may want

Chapter 5. Starfish 86

to know the locations of all terms belonging a certain type. These addresses are too

crude for direct human evaluation, however Starfish uses them to specify colorization

points to the display interface.

5.1.4 Analysis

Starfish bundles most of its analytical activities with transformations. A transforma-

tion performs roughly three levels of analysis: parameter well-formedness, satisfaction

of transformation requirements, and heuristic analysis to produce the most mature

transformation result. Starfish has limited support for user directed analyses through

its context-free property matcher that returns references to all subterms of a specified

action table satisfying a specified predicate. The Starfish front-end colorizes lists of

action subterm addresses, and the resulting display is a decision making aid for the

designer.

Since the designer specifies transformations at the command line, they must guard

against incorrectly specified references. For example, the first argument to all trans-

formations is sub-system path that points to the node of interest. Every transforma-

tion checks that the path points to a node in the current state, since it is possible

to specify an undefined path—e.g., specify a child node in a flat system. Similarly,

transformations check signal name specifications, guard specifications, subterm paths,

and other references to assure that they map to actual system objects.

The next level of analysis confirms whether the specified system components meet

the transformation prerequisites. This analysis checks the conditions at the level pre-

sented in table algebra Section 4.2: some transformations only work on combinational

Chapter 5. Starfish 87

signals, others require the actions to have a certain form, etc. The conditions are gen-

erally straightforward—e.g., confirming that a signal is completely unspecified—and

are verified by the transformation function prior to the system update. Since these

properties simply validate transformation inputs, there has been little effort to sepa-

rate this pre-analysis from the transformation itself.

The most common non-trivial analysis is signal dependence: signal a immediately

depends upon signal b when an action subterm of a contains a variable reference to b.

Signal dependence is the transitive closure of immediate dependence. Signal depen-

dence is the foundation for combinational cycle detection, external signal elimination,

and identifying groups of unused internal signals.

Some transformations perform heuristics to automate transformation sequences

and decisions that could theoretically be left to the designer. For instance, decompo-

sition and hierarchy flattening result in signal sharing among components. A gross

transformation could simply make all signals available to all components without

regard for use. Starfish only provides components with the input signals necessary

to close the table expressions. The reduction requires a signal dependency analysis

over the subcomponents of the decomposition. The higher level system factorization

transformations (presented in Chapter 6), reduce the number of external component

operations with parameter ordering heuristics. It does not produce optimal results in

general but rather a plausible beginning for manual refinement.

Starfish implements an action subterm predicate matcher. It accepts a table

reference and a term predicate (written in Scheme), applies the predicate to each

subterm of the action table, and returns a collection of subterm addresses that satisfy

Chapter 5. Starfish 88

the predicate. The predicates are context-free in the sense that they can only evaluate

the data structure of the term itself; they are unaware of the term’s position in

the table. Common uses for this are to identify subterm types in the table or to

find instances of certain function applications. Once identified, the Starfish user

interface can color disjoint lists of subterms to display the results. These queries

aid factorization decisions where the goal is to encapsulate function applications or

abstract signals with architectural components.

5.1.5 Transformations

Starfish implements the core table transformations presented in Section 4.2, term

identities over the special term variants (i.e., selectors, tuples, and projectors), and

higher level transformations that automate more complex goals such as system fac-

torization (Chapter 6), serialization (Chapter 7) and data refinement (Chapter 8).

The details of these last transformations are covered in their respective chapters.

Once the type system and addressing scheme were established, the core transfor-

mations became straightforward to implement. The following is a quick summary of

the core forms and special term identities. Angle brackets enclose descriptive param-

eter names and required type—e.g., <name :type >. While almost all transformations

are polymorphic and accept a variety of input signatures, description is limited to

one input signature—usually the most general.

Subterm Instantiation

(specialize-term <table:sys-path> <sig-name:string>
<guard:list-of-strings> <new-term:string> <subterm:list-of-ints>)

Chapter 5. Starfish 89

confirms that table references a table in the system tree, that subterm references

a # in the action term determined by the row, guards, and column, sig-name, that

new-term is a well defined in the table scope, that instantiation of # by new-term

does not introduce combinational feedback, and finally commits the instantiation to

the system description.

Signal Introduction

(add-act-col <table:sys-path> <sig-name:symbol> <type:string> <src:string>)

confirms that table references a table in the system tree, sig-name is fresh in the

table scope, type is a declared type, src is comb or seq, and then augments the

specified table with a new signal of specified type and source (i.e., combinational or

sequential) where all action terms are #.

Signal Elimination

(remove-act-col <table:sys-path> <signals:list-of-symbols>)

confirms that table references a table in the system tree, signals is a list of signal

names in the table scope, no other terms are dependent upon the presence of the

specified signals, and then removes these signals from the action table of the specified

table.

Combinational Identification

(apply-comb-ident <table:sys-path> <guard:list-of-strings>
<sig-name:string> <subterm:list-of-ints> <comb-sig:string>)

confirms that table references a table in the system tree and that subterm is a valid

path is the action term determined by the row, guard, and column, sig-name. If

subterm references a variable instance of the signal comb-sig, then it substitutes

Chapter 5. Starfish 90

comb-sig’s action term for the variable instance. If subterm references comb-sig’s

action term, then the transformation substitutes a variable reference to comb-sig’s

for the action term.

Sequential Identification

(unroll-comb <table:sys-path> <sig-name:symbol>)

confirms that table references a table in the system tree, that sig-name is a com-

binational signal of uniform action over the column, and that the action term only

contains variable references to sequential signals. The result turns sig-name into

a sequential signal and replaces sequential variables in the signal’s actions by the

defining expressions (p. 66). Although the transformation is valid in both directions,

Starfish does not implement the inverse direction which transforms sequential signals

into combinational.

(eliminate-comb-refs <table:sys-path> <sig-indices:list-of-ints>)

is a helper that recursively replaces combinational variables with their defining ex-

pressions. Since unroll-comb requires exclusively sequential variable references in

the target’s update actions, designers can prepare the target signal by applying

eliminate-comb-refs. The transformation confirms that table references a table

in the system tree and that sig-indices reference a set of sequential signals before

expanding the actions.

Action Grouping

(group-act-cols <table:sys-path> <new-sig:symbol>
<sig-names:list-of-symbols>)

confirms that table references a table in the system tree, that sig-names are uni-

formly sequential or uniformly combinational, and that new-sig is an unused name in

Chapter 5. Starfish 91

the table scope. The transformation adds a new signal, new-sig, to the table whose

type is the order tuple of signal types specified by sig-names, and whose source

(combinational or sequential) aligns with that of sig-names. The new actions are

the tupled actions of sig-names. The signals specified in sig-names are retained as

combinational projections of new-sig, so that prior references to these signals are

still valid.

(split-act-col <table:sys-path> <sig-name:string>
<new-sig-names:list-of-symbols>)

confirms that table references a table in the system tree, that sig-name is a tu-

ple type, that new-sig-names are fresh in the table scope, and that the number of

new-sig-names is the same as the number of tuple components in sig-name. The

transformation creates new signals from each projected component of sig-name; they

have the projected type and share the sig-name’s source. Projections of tuple con-

structors are simplified in the resulting action terms. The table retains sig-name as a

combinational signal defined as a tuple over new-sig-names, so that prior references

to sig-name are still valid.

Replacement

(apply-alg-ident <table:sys-path> <guard:list-of-strings>
<sig-name:string> <subterm:list-of-ints> <id:symbol>)

confirms that table references a table in the system tree, that subterm is a valid path

in the action term determined by the row, guard, and column, sig-name, and that id

is a declared identity in the type database. The transformation logic automatically

determines which direction to apply the equivalence by pattern matching. In some

unusual cases, both directions may match the subterm; the default transformation

Chapter 5. Starfish 92

applies the left-to-right rewrite (as specified in the declaration). Another form of the

transformation forces the right-to-left rewrite.

Decision Introduction

(add-pred-col <table:sys-path> <test:string>)

confirms that table references a table in the system tree, that test is a well formed

term in the table scope of finite type, and that no variable references to combina-

tional signals are subterms of test—this constraint eliminates one potential source of

combinational feedback. The transformation adds a new column of # to the decision

table under the test heading.

(remove-pred-col <table:sys-path> <test-index:int>)

confirms that table references a table in the system tree, that test-index is inside

the column bounds of the decision table, and that the referenced column does not

specify any guards—i.e., that the column is uniformly #. If satisfied, the transforma-

tion removes the referenced column.

Decision Instantiation

(expand-row <table:sys-path> <guard:list-of-strings> <test:string>)

confirms that table references a table in the system tree, that test and guard are

valid, that the term corresponding by test in guard is #. Then the transformation

creates a guard for each constant of the finite type corresponding to test. The new

table actions duplicate the one referenced by guard. As a convenience, selectors in the

action row that branch over test are simplified according to the new guard constant.

(collapse-rows <table:sys-path> <test-index:int>
<guard-indices:list-of-ints>)

Chapter 5. Starfish 93

confirms that table references a table in the system tree, that test-index and

guard-indices are inside the column bounds of the decision table, that guards ref-

erenced by guard-indices are identical in all columns except the one referenced by

test-index, and that the guards exhaust the constants for the finite type—e.g., if

collapsing over a two-bit vector, the guard set must contain all four values (0b00,

0b01, 0b10, 0b11) in the test component. The resulting decision table replaces the

guarded rows with a single guard that has a # in the test component and the same

values for the other tests. The resulting action condenses the action set with a se-

lector keyed by test branching over the values of each element of the action set as

described in (59)

Decision Identification

(apply-pred-ident <table:sys-path> <guard:list-of-strings>
<sig-name:string> <subterm:list-of-ints> <test:string>)

confirms that table references a table in the system tree, that test, guard, sig-name,

and subterm are valid, and that subterm matches the expression test or the test

constant of guard. The transformation changes subterm into the test component of

guard or back to test.

Decomposition

(split <table:sys-path> ((<tname:string> . <tsignals:list-of signals>) ...))

A partition of a table’s signals and a name, tname, for each set of the partition,

tsignals, constitutes decomposition specification. The transformation confirms that

table references a table in the system tree, that the symbols reference signal names,

that the partition sets disjointly cover the action table, and that the tnames are

unique. The transformation replaces the table with a connecting node that minimally

Chapter 5. Starfish 94

closes—i.e., supplies exactly the input signals for all of the unbound variable references

in a table—the specified subtables. The subtables have the same decision table as

the target table but only the subset of internal signals as specified by tsignals.

(flatten-sys-node <gr-node:sys-path>)

confirms that gr-node references a node with at least one grandchild in the system

description. It removes the parents nodes of the grand children, and establishes

the minimal connections necessary to close the grandchild nodes in context of the

grandparent signals.

Useless Signal Elimination

(remove-input-signal <node:sys-path> <isig:string>)

confirms that node is a valid address in the system description, and that isig is

an unused signal in node. The transformation removes the input signal and, when

applicable, reflects this change in the connecting equations of the parent node.

(remove-output-signal <node:sys-path> <osig:string>)

confirms that node is a valid address in the system description, that osig is an output

signal in node, and that there are no references to osig in node’s parent.

“Named” Signal Manipulation

Starfish adds a convenience feature to behavior tables called a named signal. Com-

binational signals frequently have the same action in every row; for example, the sig-

nal might unconditionally project from a tuple (named signals perform this service

in group-act-cols). Rather than clutter the table, the designer can express these

combinational signals as unguarded equations (<name>=<term>), called named sig-

nals ; they are semantically equivalent to combinational signals with uniform action.

Chapter 5. Starfish 95

Starfish introduces named signals directly with add-named-signal, and converts form

with name->signal and comb-signal->name.

(name->signal <table:sys-path> <name:symbol>)

confirms that table references a table in the system tree and that name is a named

signal in the table scope. It creates a combinational signal in the action table with

name and type of name and with uniform action updates corresponding to the name’s

defining term.

(comb-signal->name <table:sys-path> <name:symbol>)

confirms that table references a table in the system tree and that name is a combi-

national signal of uniform action in the table scope. It removes the combinational

signal from the action table and creates a named signal defined by this unique action

term.

(add-named-signal <table:sys-path> <name:symbol> <term:string>)

confirms that table references a table in the system tree, that name is fresh identifier

in the table scope, that term is well defined in the table scope, and that term does not

introduce any combinational feedback. Once confirmed, it adds the proposed signal

to the table. This transformation is equivalent to introducing a new combinational

signal, instantiating all actions to the same term, and then converting to a named

signal.

Special Term Identities

The special terms variants (i.e., selectors, tuples, projectors, and uspecs) obey

identities that can not be expressed in Starfish’s type declaration facility. Starfish im-

plements these directly. The first two parameters to each of these are <table:sys-path>

Chapter 5. Starfish 96

and <subterm:subterm-addr>, which determine the subject action. The identities

confirm that these are valid references, and then perform the specific pattern match

as described below.

(eliminate-sel <table:sys-path> <subterm:subterm-addr>)
(expand-to-sel <table:sys-path> <subterm:subterm-addr> <c:string>)

These two transformation respectively implement the left-to-right and right-to-left

forms of the following identity:

sel(c, tc1 , . . . , tc, . . .) = tc (65)

eliminate-sel confirms that subterm references a selector with constant key, c, and

then replaces the term with the c-branch of the selector. After confirming that c is

a constant of finite type, expand-to-sel replaces the subject term with a selector

branching over c. The key branch contains the original term, while the other branches

are consistently typed # terms.

(eliminate-proj-tuple <table:sys-path> <subterm:subterm-addr>)
(expand-to-proj-tuple <table:sys-path> <subterm:subterm-addr>

<n:int> <type:string>)

These two transformations respectively implement the left-to-right and right-to-left

forms of the following identity:

nth([. . . , tn, . . .]) = tn (66)

eliminate-proj-tuple confirms that subterm references a projector over a tuple

constructor and then replaces it with the projection term. In the opposite direction,

expand-to-proj-tuple additionally specifies the projector with n and the tuple type

Chapter 5. Starfish 97

with type. The type must have at least n components. The result is a projection of

a tuple whose nth component is the original term and the remaining components are

correctly typed # terms.

(tuple-of-uspec-is-uspec <table:sys-path> <subterm:subterm-addr>)

This transformation implements the following identity:

[# : type1, ldots,# : typen]⇒ # : [type1, ldots, typen] (67)

It replaces a tuple of #-terms with a #-term of type tuple.

(proj-of-uspec-is-uspec <table:sys-path> <subterm:subterm-addr>)

This transformation implements the following identity:

nth(#) : [. . . , typen, . . .]⇒ # : typen (68)

It replaces a projection of a #-term with a #-term of the correct component type.

5.1.6 Command Interpreter

Starfish’s command interpreter provides a rudimentary command line interface for

loading system specifications, executing transformations, and derivation script man-

agement. The command interpreter follows the standard read-eval-print pattern. It

is an editor for the system state which is an implicit argument to every command.

The interpreter accepts s-expression style commands through a redirectable input

port. The command interpreter evaluates three classes of commands: file commands,

transformation commands, and history commands. After command evaluation, the

Chapter 5. Starfish 98

interpreter calls a display routine, implemented as a thunk, that converts the resulting

tool state into the XML display language accepted by the graphical user interface.

This string is sent over the display output port, implemented as a Unix FIFO, or

named pipe.

The command interpreter maintains three kinds of global state: the type registry,

the design state, and the command history. The load-spec command reads a file

containing type declarations followed by the system specification. It first populates

the type registry and then does a well-formedness check on the system specifica-

tion. Once validated and parsed, the command interpreter sets the specification data

structure as the initial state of the history stack and sets the redo command stack

to empty. A derivation script is a load-spec command followed by a sequence of

transformation commands. The load-session-script command opens derivation

scripts in two steps: first it loads the system specification with load-spec, then it

populates the redo command stack with the derivation’s transformation commands.

The save-session-script command saves derivation scripts by copying the initial

load-spec command and subsequent transformation commands from the history into

a specified file.

Transformation commands operate on the system state at the top of the history

stack. They apply the specified transformation, and push new a frame onto the history

stack. The history stack frame contains the transformation result, the transformation

command that produced the result from the previous state and the display thunk.

History commands let the user undo transformations by popping the history stack

frames. As frames are popped, Starfish pushes the commands (but not the remainder

Chapter 5. Starfish 99

of the stack frame) onto the redo-stack. Redo commands re-execute transformations

on the redo-stack; when executing multiple transformations serially, Starfish sends

only the last command’s output to the display interface.

5.2 Display

The display process renders the behavior table hierarchy, serialization tables, and the

current derivation script with the Java Swing API. Figure 6 shows the features of

Starfish’s behavior table rendering. The window is vertically split with a hierarchy

widget on the left hand side and the node contents on the right. The externally

visible input and output signals occupy the right-hand-side’s heading. When the node

connects subsystems, the body of the right hand side shows the defining equations

and internal signals. When the node is a leaf, the body of the right hand side is a

behavior table.

Figure 7 illustrates the mapping between the connective nodes and an architec-

tural block diagram. The parent block, Shift and Add Multiplier, connects two

subcomponents. It has three inputs that are internally labeled by go, a, and b.

The first subsystem, Shift and Add Multiplier 1, produces three internal signals:

inst, done and acc. The last two, done and acc, are made visible externally. Sim-

ilarly, Shift and Add Multiplier 2 produces the internally visible signals u and

v. Internal input and output names for each subsystem are indicated in the block

diagram, however Starfish’s hierarchical rendering only indicates these names in the

behavior table subnodes (Figure 6).

Chapter 5. Starfish 100

Figure 6: Starfish renders a system of behavior tables using the tree widget on the
left side to navigate the connection hierarchy while displaying node contents on the
right.

Chapter 5. Starfish 101

To save space, screenshots are generally limited to the behavior table hierarchy’s

most relevant components. Examples will usually omit the hierarchy tree on the right,

and sometimes the input and output signals. In large specifications, the number of

columns and rows can exceed the canvas size. A scroll bar provides access in the

tool. Since most transformations have a localized effect and do not sparsely change

the behavior table over a wide area, the exposition can illustrate transformations by

restricting the rendering to a few key cells.

5.3 Interprocess communication

Interprocess communication consists of the transformation engine’s command inter-

preter sending XML encoded commands to the display process through a FIFO, and

a display widget sending s-expression commands to the transformation engine com-

mand interpreter through another FIFO.

The display process interpreter accepts the following commands: DisplaySys, Se-

lect, SetProp, DisplaySer, CommitSer, DisplayCmds, and Batch. These commands

are encoded as XML documents. The display process listens on the command input

FIFO and parses incoming commands using the low-level SAX XML parser [67]. The

parser returns only after reaching the end-of-file character, so this communication

is synchronized by closing the input FIFO. The most common display command is

DisplaySys, which transmits the entire behavior table hierarchy as its argument. The

command causes the display to overwrite its existing representation of the system.

Starfish issues a DisplaySys command whenever the behavior table state changes.

Chapter 5. Starfish 102

Shift and Add

Multiplier 2

inst

a

b

u

v

Shift and Add

Multiplier 1

go

u

v

done

acc

inst

u

v

inst

doneacc

Shift and Add Multiplier go b a

Shift and Add

Multiplier

go

a

b

done

acc

Figure 7: The connective equations convey the same information as this architectural
block diagram. Each line is a labeled signal whose scope is determined by the enclosing
block. For instance, the go signal in the internal node, Shift and Add Multiplier,
is only visible inside the connective block; it is not visible inside of the leaf node
Shift and Add Multiplier 1, although this particular specification has used the
same name its reference to the incoming signal. Similarly, a, b, u, and v need not
maintain their names as they cross hierarchical blocks.

Chapter 5. Starfish 103

Select accepts a numerical system address as an argument; the display process high-

lights the referenced term in its current hierarchy with the color red. SetProp is

similar, but parameterizes the colorization. DisplaySer sends the contents of a se-

rialization table (defined in Chapter 7), but not the behavior table hierarchy, to the

display process. CommitSer eliminates the serialization table display. Batch packages

multiple commands together. DisplayCmd sends the current derivation script to the

display process; it displays transformations insides a list widget, allowing the user to

skip forward and backward in the derivation.

The display process sends only limited commands to the transformation process.

The derivation script list widget sends (undo i) and (redo i) requests to the trans-

formation back-end’s command interpreter. In practice, the derivation scripts are

assembled by hand in a text editor and tested using this display widget to step

through each transformation.

Figure 8: The script navigator lets the designer jump to an arbitrary stage of the
derivation script.

Chapter 6

System Factorization and Decomposition

System factorization is the organization of systems into architectural components. In

the context of behavior tables this corresponds to their decomposition into a con-

nection hierarchy in which behavior tables are the leaves. Factorization objectives

include: isolating functions in need of further specification, encapsulating abstract

data types, grouping complementary functionality, targeting known components, and

separating system control from system data

A designer has three decisions to make when factoring a given system compo-

nent: which functions and signals to factor, how to group functionality in the pres-

ence scheduling conflicts, and allocating communication signals between components.

Behavior tables facilitate the process by collecting candidate terms into columns.

Enhanced implementations use colorization (though only minimal support exists in

Starfish) to further aid subject term selection. Some of these decisions are character-

ized as optimization problems; we can automate more of the process by solving these

problems.

Three examples illustrate system factorization through application of the core

table-algebra in Section 4.2.2 (p. 63). These examples decompose a behavior table

104

Chapter 6. System Factorization and Decomposition 105

go

zu

u := a
v := b
w := 0

F

T

(zero? u)T

F

done

(zero? v)

shift
u:=(* u 2)
v:=(/ v 2)

(even? v)

acc := acc + v

F

T

F

T

IDLE zv

i2

i1

i1x i2

go

a

b

done*

acc

MULT: (go,a,b) → (done,acc)

go state state u v acc done

0 idle idle \ \ acc 1

1 idle ztest a b 0 0

\ zu
(if (zero? u)

idle zv)
u v acc 0

\ zv
(if (zero? v)

idle shift)
u v acc 0

\ shift zv (* u 2) (/ v 2)
(if (even? v)

acc (+ acc v))
0

Figure 9: Algorithmic, protocol, and behavior table specification of a shift-and-add
multiplier

describing a “shift-and-add” multiplier corresponding to the ASM chart [104] and tim-

ing diagram in Figure 9. Since the specification operates on mathematical integers, it

“shifts” by division or multiplication by 2. The examples illustrate three broad classes

of decompositions: single function factorization, multiple function factorization, and

signal factorization. The core transformation rules affect system factorization at a

fine level of granularity, often requiring hundreds of steps to produce a target result.

The chapter ends with a description of higher level transformations and heuristics

that automate many of the rote details to make factorization accessible with a small

number of commands.

Chapter 6. System Factorization and Decomposition 106

6.1 Single Function Factorization

The simplest system factorization separates instances of one particular function f

from a sequential system S. The decomposition produces two tables: a trivial table F

that unconditionally applies f to its inputs, and a modified system S ′ where instances

of f are replaced with references to F ’s output signal and new combinational signals

have been created to carry the arguments of f to F .

We illustrate this type of factorization by isolating the function zero? from the

multiplier in Fig. 9. The block diagram view summarizes this architectural refine-

ment. The connections hierarchy is maintained using the lambda expression below:

go

a

b

done

acc

Multiplier
Shift and Add

MULT

go

a

b

Multiplier
Shift and Add

MULT
zout

done

acc

zin
Zero Tester

ZERO?
zin zout

x1

x2

go

a

b

done

acc

λ(go, a, b).(done, acc) where
(done, acc, x1) = MULT (go, a, b, x2)
(x2) = ZERO?(x1)

(69)

For the remainder of the examples, we assign I/O signals of separate blocks the same

name to imply connection.

The specification-set defines the function(s) to be factored; it is {zero?} for this

illustration. Guiding selection of subject terms, the instances of functions from the

specification-set the user intends to factor, the table below highlights all applications

of zero?. We make no refinement to this initial selection of subject terms.

Chapter 6. System Factorization and Decomposition 107

(70)

Tabular notation conveys scheduling information because the actions of each row

occur in the same step. Judicious choice of color scheme can identify scheduling

collisions (i.e., rows with multiple subject terms) by using different colors to render

the conflicting terms. This example has consistent scheduling because each use of

zero? occurs in a different row; we display these terms with a green background.

The factorization process has several subgoals:

Introduce “host signals” for inputs, outputs and internal signals of the zero

tester component. In this case there is only one kind of input, a single integer, and one

kind of output, a boolean. We introduce combinational signals to host the function

application zero? and its inputs, u and v.

(add-act-col (make-sys-path) ’z_in "integer" ’comb)
(add-act-col (make-sys-path) ’z_out "boolean" ’comb)

Chapter 6. System Factorization and Decomposition 108

(71)

Populate these signals with term instantiation. The goal is to separate

instances of zero? from the control specification. In this step, the instantiation

rule commits copies of the subject terms to the host columns. The inputs, u and v,

populate the input host, z in, and the terms, (zero? u) and (zero? v), populate

the output host, z out.

(specialize-term (make-sys-path) "z_in" ’("#" "zu") "u")
(specialize-term (make-sys-path) "z_in" ’("#" "zv") "v")
(specialize-term (make-sys-path) "z_out" ’("#" "zu") "(zero? u)")
(specialize-term (make-sys-path) "z_out" ’("#" "zv") "(zero? v)")

(72)

Rewrite subject terms using the newly instantiated host signals. References to

z out replace the subject terms in the third and fourth rows using the combinational

identification rule (folding). The inputs to zero? are replaced by references to z in.

Chapter 6. System Factorization and Decomposition 109

(apply-comb-ident ’() ’("#" "zu") "state" ’(0) "z_out")
(apply-comb-ident ’() ’("#" "zv") "state" ’(0) "z_out")
(apply-comb-ident ’() ’("#" "zu") "z_out" ’(0) "z_in")
(apply-comb-ident ’() ’("#" "zv") "z_out" ’(0) "z_in")

(73)

Split system into two tables. This derivation splits the z out signal from

the remainder of the table. The resulting tables share the same decision table, and

the minimal inputs necessary to bind all variable references in each behavior table.

Automatically generated labels, Shift and Add Multiplier 1 and Shift and Add

Multiplier 2, identify the controller (large table) and zero-unit (small table) respec-

tively.

(split-sys-table (make-sys-path) ’((0 1 2 3 4 5) (6)))

(74)

Chapter 6. System Factorization and Decomposition 110

Simplify decision table. The decision table in the zero? component obfuscates

its role as a functional component. This derivation eliminates the decision table

completely by instantiating the remaining #’s to match term instances, applying the

decision instantiation rule to collapse the rows, and removing decision columns that

contain only #’s. The transformations apply to the zero? behavior table, and the

changes are summarized below:

(collapse-rows (make-sys-path 1) 0 ’(0 1))
(remove-pred-col (make-sys-path 1) 0)
(specialize-term (make-sys-path 1) "z_out" ’("idle") "(zero? z_in)")
(specialize-term (make-sys-path 1) "z_out" ’("shift") "(zero? z_in)")
(collapse-rows (make-sys-path 1) 0 ’(0 1 2 3))
(remove-pred-col (make-sys-path 1) 0)

⇒ ⇒ ⇒

⇒ ⇒

(75)

Eliminate useless connecting signals. Now that the decision table has been

eliminated, the input signals go and state are no longer necessary to close the ex-

pressions of the zero? table. The useless signal elimination rule dispenses with these

two:

Chapter 6. System Factorization and Decomposition 111

(remove-input-signal (make-input-addr ’(1) 1))
(remove-input-signal (make-input-addr ’(1) 1))
(remove-output-signal (make-output-addr ’(0) 0))

(76)

This factorization encapsulates the function zero?, separating it from the initial

specification. The resulting tables represent a “controller” and an “arithmetic unit”.

As factorizations accumulate, the architecture becomes more explicit and the table

that began as a behavioral specification becomes a controller for the encapsulated

components.

6.2 Factoring Multiple Functions

We can generalize factorization to permit the encapsulation of several functions. Tac-

tically, this transformation follows the rule-application flow of the single function vari-

ant, but faces two important new issues: the desired function must be specified by

some method, and the functions need not have the same input or output signatures.

The first issue is easily solved by adding an instruction input to specify functional-

ity. The second issue is one aspect of the much larger interface specification problem

and requires guidance. In our factorization model, all the inputs are simultaneously

Chapter 6. System Factorization and Decomposition 112

transferred to the resulting component, and the principal concern is optimization of

input and output lines according to type; e.g., communication lines cannot be used

alternately for integers and then booleans. In general, data transfer between compo-

nents may occur serially through some multi-step protocol, as formulated by Rath’s

ISL [83]. However, protocol specification is a separate problem from architectural

decomposition and Starfish does not address it further in the factorization process.

Arithmetic units and libraries commonly bundle zero testing and addition in the

same components. This example’s two-function factorization removes functions zero?

and + from the initial specification. As specified, zero? returns a boolean and + re-

turns an integer, so they cannot share a return channel. However, both functions

accept integers, so they can share input channels; the designer specifies how to allo-

cate sharing. Here, two input signals in1 and in2 host the inputs for +. The first

signal, in1, carries inputs for zero?. Two separate output signals out + and out z

communicate the results of the two subject functions. An instruction token, hosted

by the signal inst, ranges over the enumerated type {add, zero}. Following the

same pattern as before, the signal introduction and instantiation rules produce the

input, output and subject signals for the factorization; combinational identification

enables rewrites of subject terms using host signals. The tables below color the zero?

subject terms and corresponding host signals in green, and the + subject term with

corresponding host signals in cyan.

Chapter 6. System Factorization and Decomposition 113

(add-act-col (make-sys-path) ’in1 "integer" ’comb)
(add-act-col (make-sys-path) ’in2 "integer" ’comb)
(add-act-col (make-sys-path) ’inst "f-sel" ’comb)
(add-act-col (make-sys-path) ’out_+ "integer" ’comb)
(add-act-col (make-sys-path) ’out_z "boolean" ’comb)
(specialize-term (make-sys-path) "in1" ’("#" "zu") "u")
(specialize-term (make-sys-path) "in1" ’("#" "zv") "v")
(specialize-term (make-sys-path) "in1" ’("#" "shift") "acc")
(specialize-term (make-sys-path) "in2" ’("#" "shift") "v")
(specialize-term (make-sys-path) "inst" ’("#" "zu") "zero")
(specialize-term (make-sys-path) "inst" ’("#" "zv") "zero")
(specialize-term (make-sys-path) "inst" ’("#" "shift") "add")
(specialize-term (make-sys-path) "out_z" ’("#" "zu") "(zero? u)")
(specialize-term (make-sys-path) "out_z" ’("#" "zv") "(zero? v)")
(specialize-term (make-sys-path) "out_+" ’("#" "shift") "(+ acc v)")

(77)

Combinational identification integrates the new signals out z, out +, in1, and in2

with the actions for state, acc, out z, and out +:

(apply-comb-ident ’() ’("#" "zu") "state" ’(0) "out_z")
(apply-comb-ident ’() ’("#" "zv") "state" ’(0) "out_z")
(apply-comb-ident ’() ’("#" "shift") "acc" ’(2) "out_+")
(apply-comb-ident ’() ’("#" "zu") "out_z" ’(0) "in1")
(apply-comb-ident ’() ’("#" "zv") "out_z" ’(0) "in1")
(apply-comb-ident ’() ’("#" "shift") "out_+" ’(0) "in1")
(apply-comb-ident ’() ’("#" "shift") "out_+" ’(1) "in2")

Chapter 6. System Factorization and Decomposition 114

(78)

At this point, the derivation script anticipates the decision table of the two oper-

ation table by encoding the decisions into selector terms. The target table uses the

inst signal and the tokens add and zero to either return (+ in1 in2) on the output

signal out + or (zero? in1) on the output signal out z, respectively. The algebraic

identities of selection over {add, zero} let us replace x with (sel add x #) or (sel

zero # x). Applying these identities to the terms of the subject signals yields the

table below. Once transformed, we instantiate the unspecified signals of the output

columns to create uniform entries.

Chapter 6. System Factorization and Decomposition 115

(expand-to-sel (make-act-subterm-addr ’() 9 2 ’()) "zero")
(apply-comb-ident ’() ’("#" "zu") "out_z" ’(0) "inst")
(expand-to-sel (make-act-subterm-addr ’() 9 3 ’()) "zero")
(apply-comb-ident ’() ’("#" "zv") "out_z" ’(0) "inst")
(specialize-term (make-sys-path)

"out_z" ’("false" "idle") "(sel inst # (zero? in1))")
(specialize-term (make-sys-path)

"out_z" ’("true" "idle") "(sel inst # (zero? in1))")
(specialize-term (make-sys-path)

"out_z" ’("#" "shift") "(sel inst # (zero? in1))")
(expand-to-sel (make-act-subterm-addr ’() 8 4 ’()) "add")
(apply-comb-ident ’() ’("#" "shift") "out_+" ’(0) "inst")
(specialize-term (make-sys-path)

"out_+" ’("false" "idle") "(sel inst (+ in1 in2) #)")
(specialize-term (make-sys-path)

"out_+" ’("true" "idle") "(sel inst (+ in1 in2) #)")
(specialize-term (make-sys-path)

"out_+" ’("#" "zu") "(sel inst (+ in1 in2) #)")
(specialize-term (make-sys-path)

"out_+" ’("#" "zv") "(sel inst (+ in1 in2) #)")

(79)

The next step splits the signals out + and out z from the main table. Since the

actions are identical across all rows for both of these signals, the decision table in-

herited from its parent description completely collapses through repeated application

Chapter 6. System Factorization and Decomposition 116

of the decision instantiation and decision elimination rules. With the decision table

headings gone, it is safe to remove the inputs go and state. These transformations

follow the last three steps of single function factorization.

(split-sys-table (make-sys-path) ’((0 1 2 3 4 5 6 7) (8 9)))
(collapse-rows (make-sys-path 1) 0 ’(0 1))
(remove-pred-col (make-sys-path 1) 0)
(collapse-rows (make-sys-path 1) 0 ’(0 1 2 3))
(remove-pred-col (make-sys-path 1) 0)
(remove-input-signal (make-input-addr ’(1) 3))
(remove-input-signal (make-input-addr ’(1) 3))
(remove-output-signal (make-output-addr ’(0) 0))

(80)

The factorization finishes by introducing inst as a decision table heading, and

instantiating along this term. This transformation transfers the work of the selectors

to explicit enumeration in the decision table.

(add-pred-col (make-sys-path 1) "inst")
(expand-row (make-sys-path 1) ’("#") "inst")

Chapter 6. System Factorization and Decomposition 117

⇒ ⇒
(81)

6.3 Signal Factorization

Factorization in the previous examples creates combinational signals to host subject

functions and inputs, and then splits them off into a table. Splitting off state holding

sequential signals is another way to elaborate architecture. Sometimes this is desirable

because the subject states operate on abstract data types, and the designer needs to

isolate the abstraction from the remainder of the system. Other times, a particular

signal is a natural target for an existing component implementation.

Beginning this example where the one from Sec. 6.2 ends, it encapsulates signals

u and v. Intuitively, factoring these signals yields a pair of shift registers, a common

component. The remaining component is the essence of a controller, containing no

function applications (except for even? which can be simplified to a boolean test).

This decomposition factors u and v, expands selectors into the decision table, and

then flattens the table hierarchy to place the three tables in the same level.

As before, the decomposition sends instructions through a new signal, inst1, to

manage operations on the state. The specification file declares an enumerated type,

{init, hold, shft} to reference the kinds of state changes that can occur. The

table below colors the three different operations on the state.

Chapter 6. System Factorization and Decomposition 118

(add-act-col (make-sys-path 0) ’inst1 "mshift-tok" ’comb)
(specialize-term (make-sys-path 0) "inst1" ’("true" "idle") "init")
(specialize-term (make-sys-path 0) "inst1" ’("#" "zu") "hold")
(specialize-term (make-sys-path 0) "inst1" ’("#" "zv") "hold")
(specialize-term (make-sys-path 0) "inst1" ’("#" "shift") "shft")

(82)

Like the previous examples, we anticipate the decision table of the new table

with uniform selection terms over the subject signals, u and v. This is done through

repeated application of selector identities keyed by the instruction type, instantiating

unspecified terms, and combinational identification.

Chapter 6. System Factorization and Decomposition 119

;; Prepping u column
(expand-to-sel (make-act-subterm-addr ’(0) 1 1 ’()) "init")
(expand-to-sel (make-act-subterm-addr ’(0) 1 2 ’()) "hold")
(expand-to-sel (make-act-subterm-addr ’(0) 1 3 ’()) "hold")
(expand-to-sel (make-act-subterm-addr ’(0) 1 4 ’()) "shft")
(specialize-term (make-sys-path 0) "u" ’("true" "idle") "u" ’(2))
(specialize-term (make-sys-path 0) "u" ’("true" "idle") "(* u 2)" ’(3))
(specialize-term (make-sys-path 0) "u" ’("#" "zu") "a" ’(1))
(specialize-term (make-sys-path 0) "u" ’("#" "zu") "(* u 2)" ’(3))
(specialize-term (make-sys-path 0) "u" ’("#" "zv") "a" ’(1))
(specialize-term (make-sys-path 0) "u" ’("#" "zv") "(* u 2)" ’(3))
(specialize-term (make-sys-path 0) "u" ’("#" "shift") "a" ’(1))
(specialize-term (make-sys-path 0) "u" ’("#" "shift") "u" ’(2))
(apply-comb-ident ’(0) ’("true" "idle") "u" ’(0) "inst1")
(apply-comb-ident ’(0) ’("#" "zu") "u" ’(0) "inst1")
(apply-comb-ident ’(0) ’("#" "zv") "u" ’(0) "inst1")
(apply-comb-ident ’(0) ’("#" "shift") "u" ’(0) "inst1")
(specialize-term (make-sys-path 0) "u" ’("false" "idle")

"(sel inst1 a u (* u 2))")

;; Prepping v column
(expand-to-sel (make-act-subterm-addr ’(0) 2 1 ’()) "init")
(expand-to-sel (make-act-subterm-addr ’(0) 2 2 ’()) "hold")
(expand-to-sel (make-act-subterm-addr ’(0) 2 3 ’()) "hold")
(expand-to-sel (make-act-subterm-addr ’(0) 2 4 ’()) "shft")
(specialize-term (make-sys-path 0) "v" ’("true" "idle") "v" ’(2))
(specialize-term (make-sys-path 0) "v" ’("true" "idle") "(/ v 2)" ’(3))
(specialize-term (make-sys-path 0) "v" ’("#" "zu") "b" ’(1))
(specialize-term (make-sys-path 0) "v" ’("#" "zu") "(/ v 2)" ’(3))
(specialize-term (make-sys-path 0) "v" ’("#" "zv") "b" ’(1))
(specialize-term (make-sys-path 0) "v" ’("#" "zv") "(/ v 2)" ’(3))
(specialize-term (make-sys-path 0) "v" ’("#" "shift") "b" ’(1))
(specialize-term (make-sys-path 0) "v" ’("#" "shift") "v" ’(2))
(apply-comb-ident ’(0) ’("true" "idle") "v" ’(0) "inst1")
(apply-comb-ident ’(0) ’("#" "zu") "v" ’(0) "inst1")
(apply-comb-ident ’(0) ’("#" "zv") "v" ’(0) "inst1")
(apply-comb-ident ’(0) ’("#" "shift") "v" ’(0) "inst1")
(specialize-term (make-sys-path 0) "v" ’("false" "idle")

"(sel inst1 b v (/ v 2))")

Chapter 6. System Factorization and Decomposition 120

(83)

The subsequent steps mirror the previous examples as well. The decomposition

rule splits the subject signals from the controller table. The decision generalization

(opposite of instantiation) elimination rules remove the legacy decision table, making

the input signals go and state defunct; they are subsequently removed. Decision

introduction and instantiation move the instruction-keyed selectors into the decision

table. The resulting hierarchy is two levels deep, one for each decomposition.

;; Splitting Table
(split-sys-table (make-sys-path 0) ’((0 3 4 5 6 7 8) (1 2)))

;; Collapsing old DT
(collapse-rows (make-sys-path 0 1) 0 ’(0 1))
(collapse-rows (make-sys-path 0 1) 1 ’(0 1 2 3))
(remove-pred-col (make-sys-path 0 1) 0)
(remove-pred-col (make-sys-path 0 1) 0)

Chapter 6. System Factorization and Decomposition 121

;; Eliminating defunct inputs and outputs
(remove-input-signal (make-input-addr ’(0 1) 4))
(remove-input-signal (make-input-addr ’(0 1) 3))
(remove-output-signal (make-output-addr ’(0 0) 0))

;; Expanding DT over ’inst1’
(add-pred-col (make-sys-path 0 1) "inst1")
(expand-row (make-sys-path 0 1) ’("#") "inst1")

(84)

The next transformation flattens this hierarchy to connect all three behavior tables

at the same level. The tables below show the complete system view after hierarchy

manipulation.

(flatten-sys-node (make-sys-path 0))

Chapter 6. System Factorization and Decomposition 122

(85)

The last step expands selector terms in the action table into the decision table. The

resulting form explicitly represents a Mealy machine. The decision table encodes the

next state function without any black-box functional logic; even? is just a projection

of an integer’s least significant bit in target implementations. Action updates are

all constant terms, with the sequential signal state holding the control state, the

combinational signals defining the output tokens, and the acc signal behaving as

part of the data path.

(add-pred-col (make-sys-path 0 0) "out_z")
(expand-row (make-sys-path 0 0) ’("#" "zu" "#") "out_z")
(expand-row (make-sys-path 0 0) ’("#" "zv" "#") "out_z")
(add-pred-col (make-sys-path 0 0) "(even? v)")
(expand-row (make-sys-path 0 0) ’("#" "shift" "#" "#") "(even? v)")

Chapter 6. System Factorization and Decomposition 123

(86)

6.4 Increasing Automation

Many of the rule transitions from the preceding factorization examples are entirely

predictable and automatable. For example, converting a column of actions to a uni-

form selector keyed to an instruction signal consumes repeated selector identities,

subterm instantiations, and combinational identifications. Other decisions, such as

allocation of input and output signals, are difficult to optimize in general, however

the interactive process benefits from suboptimal solutions. Starfish facilitates sys-

tem factorizations with three high level transformations that automate many of the

tedious details, heuristically solve the signal allocation problem, and encourage in-

teractive refinement of suboptimal solutions: expand-apps, permute-comb-signals,

and factor-signals.

The expand-apps transformation prepares a table for factorization by introducing

an initializing input and output host signals based on the specification-set. It employs

heuristics that appear to work reasonably well in most cases we have encountered. Of

course, the designer can manually intervene if the algorithm produces poor results.

Chapter 6. System Factorization and Decomposition 124

The purpose of this transformation is to create a plausible first result for further

refinement by designer interaction.

The set is specified by a list of function addresses and a list of signals—in case of

a signal factorization. In the case of pure function factorization the transformation

examines each function subterm according to the following procedure:

1. For each input parameter i to f

(a) Is there an input host signal of type τ(i)?

i. If yes, let argx be this open signal.
ii. If no, introduce a new combinational signal of type τ(i), argx.

(b) Instantiate the input host, argx to the value of i.

(c) Combinationally replace f(. . . , i, . . .) with f(. . . , argx, . . .).

2. Is there an open output host signal of type τout(f)?

(a) If yes, let appx be this open signal.

(b) If no, introduce a new combinational signal of type τout(f), appx.

3. Instantiate the output host, appx to the value of f(argi1 , . . . , argin).

4. Combinationally replace the original subject term f(argi1 , . . . , argin) with appx.

This is a very simple algorithm, and the quality of its results depend on the order

of subject term consideration and which of the eligible host signals is selected. Input

parameters are specified with subterm addresses. The specification list could become

stale, if the intermediate transformations executed by expand-apps alter the parent

term of a specification address prior to allocating an output register.

Consider one pathological case, where one subject term, g(x), is a subterm of

another subject term, f(g(x)). Suppose the address for f is given by the path ’(1

0 2) and the path for g is given by ’(1 0 2 0). Suppose the algorithm processes

Chapter 6. System Factorization and Decomposition 125

the reference to f first, placing g(x) into a host input signal, arg1, f(arg1) into host

output signal, app1, and then replaces f(g(x)) with app1. Now the reference ’(1 0

2 0) is stale because ’(1 0 2) is an address for the term app1 which no longer has

g(x) as a subterm. Either the subject term address must be updated to reference the

post allocation table, or the algorithm should have expanded the child term prior to

the parent term. Since expansion of child terms does not affect the validity of parent

references, the algorithm first sorts the function address by term depth.

When more than one correctly typed output host signal is available, the algorithm

chooses the “oldest” one; signal names, argi, reflect the time of their introduction, so

the algorithm chooses the one with the smallest i. Under this policy, there is some

benefit to considering subject terms in groups of functions. So within the child-to-

parent ordering, the subject terms are alphabetically ordered. Input host signals are

allocated using the oldest available signal.

The table below shows the effect of expand-apps on the shift and add multiplier.

It prepares the specification for factorization by expanding + and zero? into input and

output host signals. Rather than specify subject terms with their absolute addresses,

this command invokes search-term-action-table to return the addresses of all

applications of + or zero?.

Chapter 6. System Factorization and Decomposition 126

(expand-apps
’()
(search-term-action-table

(fish-state->sys (hist->state sess-log))
(make-sys-path)
(lambda (t)
(match-dt t

([(app (func :: func name)) ((name))]
(memq name ’(+ zero?)))
(else #f)))))

(87)

The permute-comb-signals transformation allows the designer to adjust alloca-

tion of host signals. Suppose that transposing the usage of arg0 and arg1 in app0’s

+ operation saves resources at lower levels because it reduces arg0’s input space from

{u,v,acc} to {u,v}. The permute-comb-signals transformation takes a list of ad-

dresses that reference similarly typed host input (or output) terms in the same row,

and performs a cyclic permutation on their usage following the order of the address

list; e.g., lists of length two transpose their subjects and also swap references to these

signals within the row, while lists of length greater than two move the term from one

signal in the list to the next, looping at the end of the list. The following table shows

its effect on the arguments to + in the bottom row (colorization added for emphasis):

Chapter 6. System Factorization and Decomposition 127

(permute-comb-signals
(list (make-act-subterm-addr (make-sys-path) 7 4 ’())

(make-act-subterm-addr (make-sys-path) 8 4 ’())))

(88)

After adjusting host signal allocation with permute-comb-signals, the table is

ready for decomposition. The factor-signals transformation takes a system address

pointing to a behavior table, and a list of signal names to encapsulate; names for the

resulting child nodes are also specified here. First it determines the number of unique

actions (ignoring rows composed of entirely unspecified terms) relative to the list of

signals. For example, when factoring the signals app0 and app1 from table (88), there

are two unique actions: {#, (zero? arg0)} and {(+ arg1 arg0), #}. Then the

transformation introduces a combinational instruction signal over a sufficiently large

bit vector to “key” the different actions. In this case, only one bit is necessary to

capture the two actions. In general, the number of actions is not a power of two, so

there will be some unassigned branches in the resulting selectors. The transformation

automates the remaining selector homogenization, decomposition, and decision table

simplification steps from the previous factorization examples.

(factor-signals (make-sys-path) ’(app0 app1) "Residue" "Simple ALU")

Chapter 6. System Factorization and Decomposition 128

(89)

Chapter 7

Serialization

Behavior tables often apply many functions in their update action terms. There

are several practical reasons why evaluating these actions as simultaneous events is

infeasible: the target architecture may not have enough functional units to support the

simultaneous computation, the data type implementation may only support one signal

access per clock cycle, or a cooperating process requires multiple steps to consume

and produce the necessary data. Serialization is one technique for specifying more

finely-grained updates to a behavior table.

Starfish’s serialization tables provide an interactive interface for producing a sched-

ule—the result of high-level synthesis (HLS) applied to data-flow graphs (Figure 10).

Given a graph, HLS algorithms attempt to fit the number of registers, functional

units and control steps within specified requirements by partitioning the graph nodes

into multisets—multiple nodes of the same operation may occupy a multiset. This

partition is linearly ordered such that all required inputs for a multiset are produced

by a preceding multiset. A controller simultaneously executes the nodes of each par-

tition in order. Values that cross partition boundaries must be held in registers; this

determines register allocation, the number of required registers for the schedule. The

129

Chapter 7. Serialization 130

Dataflow Representation of Behavioral Optimization
(push (pop (pop s))
(alu instr (top s)
(top (pop s))))

pop

pushtop

alutop

pop

pops

instr

pop

pushtop

alutop

pops

instr

Scheduling Register Allocation & Binding

pop

pushtop

alutop

pops

instr

pop

pushtop

alutop

pops

s
s

sss s

x

x

x x

y

instr

Figure 10: High-level synthesis objectives.

multiset union of partitions determines function-unit allocation, the required num-

ber of each kind of unit. Binding, the assignment of specific signals to registers or

functional units, is not completely determined by the schedule but is responsible for

communication costs (e.g., wires and fanout limits) in between registers and units.

Starfish facilitates the interactive specification of behavioral optimizations, schedul-

ing, allocation and binding with serialization tables (Figure 11). Starfish terms ex-

press a data-flow graph where its functions are functional units and its variables are

signals. The rows of a serialization table show signal updates (left) and their partial

linear evaluation (right); the columns represent sequential (but not combinational)

signals. The table’s last row specifies the evaluation requirements for each signal. Se-

rialization tables represent register allocation with their columns and register binding

Chapter 7. Serialization 131

Figure 11: Serialization table representing the same result as Figure 10.

with term placement inside a column. The rows of the serialization table form the

schedule or partition. Functional allocation is determined by the multiset union of

operators over the rows; subsequent system factorization makes the allocation explicit

by separating functions from term expressions.

7.1 How it works

Serialization specifies the evaluation order and storage of intermediate results for a

behavior table’s sequential signals. The result is a linear sequence of guards in the

decision table that govern the control flow and a corresponding sequence of actions in

the action table whose cumulative evaluation equals the pre-serialized signal actions.

Chapter 7. Serialization 132

Example 7.1: Figures 10 and 11 shows a valid serialization for the term:

(push (pop (pop s))
(alu instr (top s) (top (pop s))))

(90)

The stack calculator behavior table uses (90) to update s in case alu-op. The schedule

developed in Figure 11 performs one stack access per step in anticipation of a single

ported stack memory. The ALU operation is scheduled in parallel with the last pop.

The schedule introduces two registers (or sequential signals) x and y to hold the

intermediate integer values. Incorporating the schedule into the specification table

produces the following change:

⇒

The intuitive signal traces are shown below for this table:

inst= (psh, psh, add, Hold value of inst, psh, . . .)
a = (5, 7, #, Hold value of a, 25, . . .)
res = (0, 5, 7, 7, 5, 5, 0, 12, . . .)
s = ({0}, {0, 5}, {0, 5, 7}, {0, 5, 7},{0, 5},{0, 5},{0},{0, 12}, . . .)
x = (#, #, #, 7, 7, 7, 12, #, . . .)
y = (#, #, #, #, #, 5, #, #, . . .)

(91)

The first two streams are inputs. Vertical lines show externally observable synchro-

nization events. The first two steps proceed as usual. The third synchronization

step begins a sequence of “internal” transitions; only the last step in this sequence

is externally observable. The input values of the previous step event hold for first

Chapter 7. Serialization 133

4 internal transitions. The input stream resumes in the fifth and final step of the

schedule.

In illustrating the intuitive serialization semantics, Example 7.1 presents one pos-

sible accounting approach for stretched evaluation over multiple steps: assert that

only the last step is externally visible. This corresponds to the Milner’s weak bisim-

ulation [71] notion which conceals a process’s internal transitions.

The other approach is to make the new transitions externally visible and require

the external agents to change their timing expectations. This could be a problem

for agents expecting a result in a prescribed number of transitions. However, many

specifications abstract these timing variances with interface protocols; e.g., the shift-

and-add multiplier in Figure 9 indicates when it’s working and when the result is

ready with the done signal. Adding extra cycles to the to the non-idle states delays

the done flag; external agents adhering to the protocol will have no need to change.

In either approach, serialization and factorization complicate the accounting. If

one assumes that the transitions are invisible to external observers, what happens

when one wants to factor a serialized behavior table? Clearly the factored com-

ponents, such as ALUs and random-access storage, will be aware of the internal

transitions. The natural solution is to define a timing scope (Figure 12) which speci-

fies the boundary between visibility of internal and external transitions. In order to

make precise statements about which transitions fall in and out scope, this approach

requires a timing specification language. Furthermore, when the designer wants to

flatten a timing scope, the timing specifications must be reconciled in a consistent

Chapter 7. Serialization 134

manner—thus the operation demands a compositional logic.

Serialized

Component

A

Timing Scope A

Serialized

Control

Arch.

Unit

Arch.

Unit

Factorization

Figure 12: Defining transition visibility components with timing scopes.

Similarly, if all transitions are externally visible, what happens when one serializes

a behavior table in a multi-component system? A timing change—e.g., an ALU

that takes two steps instead of one step—could invalidate the timing expectations

external components. This is a problem that Rath’s Interface Specification Language

(ISL [83], p. 18) begins to address, however Starfish does not annotate behavior

tables with protocol specifications. Hypothetically, a transformation that changes

the timeline would only be allowed in behavior tables with an interface protocol that

tolerates changes. ISL, which specifies protocols with state machines, would have to

be extended to define which protocol states allow timing changes. This view is largely

equivalent to the timing scope view, except that scope flattening is mandatory; ISL

would define the internal and external transitions, while permissibility of serialization

constitutes the compositional logic.

Starfish does not attempt to solve this problem. Instead, it restricts factorization

and serialization to avoid these timing mismatches. Factorization may follow serial-

ization, but not the other way around. Serialization may only be applied to singleton

Chapter 7. Serialization 135

Functional

Specification

Serialized

Functional Spec.

Stream

Specification

Unfactorable

Stream Spec.

Behavior

to Stream

Architectural

Refinements

DDD’s State

Serialization

Serialized

Stream Spec.

Behavior

to Stream

Factorable

Stream Spec.

Architectural

Refinements

Starfish’s State

Serialization

Functionally

Equivalent

Stuttering

Alignment

Pointwise

Alignment

Pointwise

Alignment

Stuttering

Alignment

2.

1.

3.

2a.

3a.

1a.

Alignment

Oblivious

Alignment

Oblivious

Figure 13: When DDD reaches a factorization impasse, the designer backtracks to
the functional specification and introduces a serial control state; the workflow follows
1 → 2 → 3 → 1 → 1a → 2a → 3a. In contrast, Starfish only operates on stream
systems and directly serializes the “unfactorable” system, following the steps 2 →
3→ 3a.

behavior table systems; in particular, this disallows serialization after factorization

since factored systems contain multiple behavior tables. The designer must indepen-

dently reconcile the shift from pointwise alignment to stuttering alignment with the

system’s intended use.

DDD’s serialization facility saddles the designer with the same responsibility,

though it conceals the alignment shift inside its behavioral algebra. When opera-

tor collisions prevent efficient factorizations in DDD, the designer can backtrack to

the functional-behavioral representation and introduce a serial control state. After

the behavioral manipulation, the previous derivation is re-applied to the serialized

specification to produce a factorable system. Its result still contains the alignment

shift.

Chapter 7. Serialization 136

Starfish applies serializations directly to stream-oriented systems without back-

tracking. Serialization tables show the register-architecture and intermediate values

at the time of scheduling, improving the designer’s ability to reason about the impact

of scheduling possibilities when compared with DDD’s relatively indirect process.

Figure 13 summarizes the serialization workflow differences.

Definition 7.1. A serialized behavior table contains a distinguished column in the

decision table, ser, which ranges over a prefix of the natural numbers. The table

schema (Section 4.2.2, p. 63) for serialized behavior tables is:

b : I → O

P ser S

gnp tns

0 tns0

gnp
...

...
M tnsM

def=

b : I → O

P ser c c S

gnp s0 s0 tns

gnp # s0 s1 tns0

s1 s2 tns1
...

...
...

...
...

sM−1 sM tnsM−1

sM s0 tnsM

(92)

where s0, . . . , sM is an enumerated type specified by the user. The schema expression,

gnp, refers to a serialized guard, while gnp refers to the table’s other guards. The

schema shows that evaluation of a serialized guard with integers 0, . . . ,M in the ser

column is defined by a control state c that steps through actions 0, . . . ,M with states

s0, . . . , sM. A ser column containing only # has no impact, and is a candidate for

elimination in the same manner as other unspecified decision columns.

Example 7.2: This example translates the serialized stack calculator from Exam-

ple 7.1 according to Definition 7.1. Let s0, s1, s2, s3, s4 be an enumerated type

with no functions or identities.

Chapter 7. Serialization 137

Inputs: (instr, a)

Outputs:(res)

(instr-cat instr)c c:Seq.res:Comb.s:Seq. x:Seq. y:Seq.

psh-op s0 s0 (top s) (push s a)# #

pop-op s0 s0 (top s) (pop s) # #

alu-op s0 s1 (top s) s (top s) #

s1 s2 (top s) (pop s) x

s2 s3 (top s) s x (top s)

s3 s4 (top s) (pop s) (alu instr x y)#

s4 s0 (top s) (push s x)#

The semantics for this table match the streams in Example 7.1.

Definition 7.2 (Stuttering Map). Let B ∈ {0, 1}∞ be a bit-stream with infinitely

many 1s, called a stuttering mask. The stuttering output map Bout : A∞ → A∞

induced by B is equal to λx.StutOut(x,B), where Stut : {0, 1}∞ × A∞ → A∞ is

defined co-recursively by:

StutOut(a,B) =
if(head(B)
head(a)
head(StutOut(tail(a), tail(B))))

! StutOut(tail(a), tail(B)) (93)

The stuttering output map behaves as a mask or characteristic-function for its input.

The stuttering input map Bin : A∞ → A∞ induced byB is equal to λx.StutIn(x, head(x), B),

where StutIn : {0, 1}∞ × A∞ → A∞ is defined co-recursively by:

StutIn(a0, a, B) =
if (head(B)
a0

head(a))
!

if (head(B)
StutIn(head(a), tail(a), tail(B))
StutIn(a0, a, tail(B)))

(94)

The stuttering input map stretches the input by the number of 0s.

Example 7.3: The stack calculator serialization in Example 7.1 introduces four serial

transitions to the specification. The bit mask B = (1, 1, 1, 0, 0, 0, 0, 1, . . .) with the

Chapter 7. Serialization 138

maps Bin and Bout translate the inputs of the original system to serial-compatible

inputs and the serial outputs to match the original outputs, respectively.

inst = (psh, psh, add, psh, . . .)
a) = (5, 7, #, 25, . . .)
B = (1, 1, 1, 0 0 0 0 1, . . .)
Bin(inst)= (psh, psh, add, add, add, add, add, psh, . . .)
Bin(a) = (5, 7, #, #, #, #, #, 25, . . .)

(95)

res = (0, 5, 7, 7, 5, 5, 0, 12, . . .)
B = (1, 1, 1, 0 0 0 0 1, . . .)
Bout(res)= (0, 5, 7, 12, . . .)

(96)

Definition 7.3 (Correctness by Stuttering Alignment). Let S1 : I∞ → O∞ and

S2 : I∞ → O∞ be two stream systems. The S2 is a stuttering simulation of S1 if and

only if for every i ∈ I∞ there is a stuttering mask B such that

Tr[S1](I) = Bout(Tr[S2](Bin(I))) (97)

The serialization transformation produces a system that is a stuttering simulation

of the original. A modified machine produces the mask for a given input stream.

Simply add a boolean combinational signal B that is 0 on the guards that define the

serial transitions and 1 otherwise; make B the only output stream. For example,

the behavior table below produces a mask for the serialized stack calculator form

Example 7.2:

Chapter 7. Serialization 139

Inputs: (instr, a)
Outputs:(B)
(instr-cat instr)c c:Seq. res:Comb. s:Seq. x:Seq. y:Seq. B:comb
psh-op s0 s0 (top s) (push s a) # # 1
pop-op s0 s0 (top s) (pop s) # # 1
alu-op s0 s1 (top s) s (top s) # 0
s1 s2 (top s) (pop s) x # 0
s2 s3 (top s) s x (top s) 0
s3 s4 (top s) (pop s) (alu instr x y) # 0
s4 s0 (top s) (push s x) # # 1

(98)

Transformation 7 (Serialization). Let s0, . . . , sn−1 be an enumerated type, tauS. Let

InSer? : τS → Boolean be λx.¬(x ∈ {s1, sn}). Let NextSer : τS → τS be λsi.si+1(mod n).

Let EnterSer? : τI × τX → Boolean. Let F,G,H : τI × τX → τX . For a given i ∈ τI ,

let Hi(x) = H(i, x). Suppose that

EnterSer?(i, x)⇒ F (i, x) = Hn
i (x) (99)

H is a schedule for F at EnterSer?. Then

SerSys(I) = Y where
B = sel(EnterSer?(I, X) ∨ InSer?(S), 0, 1)
S = s0 ! sel(EnterSer?(I, X) ∨ InSer?(S),NextSer(S), s0)
X = X0 ! sel(EnterSer?(I, X) ∨ InSer?(S),H(I, X), F (I, X))
Y = G(I, X)

(100)

is a stuttering simulation for

Sys(I) = Y where
X = X0 ! F (I, X)
Y = G(I, X)

(101)

Moreover, signal B defines the stuttering mask for a given input stream I.

Proof. It suffices to show that the trace of state X is the same under the stuttering

Chapter 7. Serialization 140

mask; i.e., for all input streams I and states x:

Tr ∗X [Sys](I, x) = Bout(Tr ∗X [SerSys](Bin(I), x), s0) (102)

Proof is by co-recursion on the input stream I. The head case is trivial:

head (Tr∗X [Sys](I, x)) = x
= head (Bout(Tr∗X [SerSys](Bin(I), x, s0)))

(103)

For the co-inductive step, let =∗ denote justification by the co-inductive hypothesis.

There are two cases for the tail: Suppose EnterSer?(head (()i), x) = true.

tail (Tr∗X [Sys](I, x))
= Tr∗X [Sys](head (I), F (head (I), tail (x)))
= Tr∗X [SerSys](head (I), F (head (I), tail (x)))
= Tr∗X [SerSys](head (I), F (Bin(head (I)), tail (x)))
=∗ Bout(Tr∗X [SerSys](head (I), sel(. . . , (Bin(head (I)), tail (x)))))
= tail (Bout(Tr∗X [SerSys](I, x, s0)))

(104)

Suppose EnterSer?(head (()i), x) = false.

tail (Tr∗X [Sys](I, x))
= Tr∗X [Sys](head (I), F (head (I), tail (x)))
= Tr∗X [Sys](head (I),Hn

head (I)(tail (x)))
= Tr∗X [SerSys](head (I),Hn

head (I)(tail (x)), s0)
= Tr∗X [SerSys](headn(Bin(I)),Hn

head (I)(tail (x)), s0)
=∗ tail (Bout(H(head (Bin(I)), tail (x)) !

H(head2 (Bin(I)),H(head (Bin(I)), tail (x))) ! . . .
! Tr∗X [SerSys](headn(Bin(I)),Hn

head (I)(tail (x)), s0)

))

= tail (Bout(Tr∗X [SerSys](Bin(I), x, s0)))

(105)

The horizontal dots indicate facts that are proven by induction on n. The crucial

Chapter 7. Serialization 141

observations are that Bout delays its output for n steps and that Bin holds its input

for n steps so that head i(Bin(I))=head (I) for 1 ≤ i ≤ n. This is due to the n linear

control states defined by S.

7.2 How Starfish supports serialization

Starfish introduces serialization tables to help the designer produce sequence of table

terms whose cumulative sequential evaluation equals the serialization target. In terms

of the stream system transformation statement, Starfish supports the construction of

H such that Hn
i (x) = F (i, x) for an n-step serialization. Three additional facilities

make scheduling a more tractable task: serialization tables, retiming within a serial

flow, and equational logic within a serialization table’s evaluation display.

Like behavior tables, serialization tables are split into left and right halves. The

left side, or serial action table, displays sequential update expressions for each signal.

Since control flow is linear, no decision table is necessary. The right side contains the

evaluation table. Its cells contain the symbolic evaluation of each signal after execu-

tion of the corresponding action in the serial action table. The very last row contains

target expressions; i.e., the nested action terms that are the subject of serialization.

In table scheme notation, the serialization table for the actions f(S) is:

S S

h0(S) h0(S)
...

...
hi(S) hi ◦ . . . ◦ h0(S)

f(S)

(106)

Chapter 7. Serialization 142

The left-hand-side is called scheduling table. The right-hand side is called the eval-

uation table; it shows the cumulative symbolic evaluation of terms in the scheduling

table. The bottom row is the evaluation requirement. A schedule is valid when he

evaluation table’s last row equals the evaluation requirement.

Initial serialization

Serialization begins by specifying a subject action and a subset of sequential signals.

The begin-serialization command creates an initial serialization table with one

row. Both scheduling and evaluation tables have the chosen sequential signals as

their column headings. The initial values for the actions are chosen at this time. The

designer manipulates the serialization tables with the following commands:

• insert-col adds a new sequential signal into the table; the evaluation require-

ment is #:<type>.

• insert-row adds a step to the schedule beginning at a specified row and dis-

placing existing steps downward.

• new-ser-row appends a step to the schedule.

• set-cell overwrites the scheduling term at a specified signal and step.

• ser-eval-ident applies an algebraic identity to a term in the evaluation table.

• oblige-ser-eval-ident applies an arbitrary rewrite to a term in the evalu-

ation table. This rewrite becomes a condition for the derivation’s soundness,

and must be externally validated.

Chapter 7. Serialization 143

After the designer creates a valid schedule, the command insert-ser-tab incorpo-

rates it into the behavior table using the ser-column decision table notation from

Definition 7.1.

Example 7.4: This example shows how serialization tables facilitate schedule speci-

fication in Example 7.2’s stack calculator. The serialization process in Starfish begins

by specifying the target action via the corresponding guards (alu-op).

The initial serialization table holds the one sequential

signal s. Since s is a subterm of the serialization sub-

ject (push (alu inst ...) (pop ...)), the default

initial action holds s’s value.

The next two steps introduce two sequential signals for

holding intermediate values, x and y. They behave as

data buffers for the alu operation.

The first serialization step stores (top s) in the x.

When declaring new actions, the default is to hold values

for “live” registers and update # signals with #. Speci-

fying the example’s next action only requires declaration

that (pop s) updates s. Updates for x and y are au-

tomatically generated. This is also the first step where

evaluation table differs from the serial action table.

The following three tables declare the next three serial actions. The bottom row

displays the evaluation goals for each signal.

Chapter 7. Serialization 144

⇒

⇒

Rescheduling

In addition to serialization of actions, Starfish supports rescheduling or reserialization

within a subsequence of scheduled actions. The resume-serialization creates a

serialization table for contiguous set of serial actions in a behavior table. The symbolic

evaluation of this sub-schedule form the new evaluation requirements. After the

designer produces a valid rescheduling, the insert-ser-tab commits the new sub-

schedule into the behavior table. If the new result has a different number of steps,

the enclosing schedule is expanded or contracted to accommodate new size.

Rescheduling does not derive any system that could not be derived with serial-

ization alone. Why not simply undo the original serialization and specify the new

Chapter 7. Serialization 145

one? There are many cases where this strategy defies the principle of informed and

intelligent designer interaction. For instance, type translation of abstract pairs into

a register-heap representation can produce very large terms. A refine-data-then-

serialize strategy can lead to term explosion, pushing the behavior tables beyond

their utility as perspicuous system representations. However, the serialize-refine-

data-then-reschedule strategy exchanges term size for larger tables. In particular the

resume-serialization facility limits the size of target terms by only rescheduling a

portion of a schedule.

Example 7.5: The following behavior table implements stacks with a heap: stack

pointer s*, memory signal mem, and heap horizon pointer ptr. Full details of the

translation specification appear in next chapter’s Figure 15. The table below shows

the translation applied to the serialized stack calculator from Example 7.1.

Since the heap stores cells containing stack value and pointer to a stack’s tail, this rep-

resentation calculates the top and pop in one memory access. Rescheduling optimizes

the two read accesses of steps 1 and 2 to a single read access as follows:

Chapter 7. Serialization 146

Rescheduling begins guard and subrange specifi-

cation; in this case alu-op and steps 1 through 2.

The evaluation requirements show the sequential

evaluation of these two steps for each signal.

A new signal cell:[ind integer]

holds the result of a heap read. The

top and pop values are fields of this tu-

ple.

The schedule’s second step

transfers the fields of cell to

registers s* and x, satisfying the

evaluation requirements.

insert-ser-tab commits

the new sub-schedule to the

behavior table.

Chapter 7. Serialization 147

This table shows the result of

rescheduling steps 2 and 3 in a

similar way. The new schedule

takes one more step, since the

ALU must wait for the transfer

of the top out of cell and into

x.

Starfish only applies the schedule to a behavior table when the last row of the

evaluation table is syntactically equal the evaluation targets. If the terms are equal

through sequence of algebraic rewrites, the commitment is still valid. While Starfish

is does not determine equivalence with a rewriting algorithm, the designer can “ar-

gue” equivalence by applying algebraic identities to the evaluation table. Thus,

insert-ser-tab can incorporate schedules which produce outcomes that are seman-

tically equivalent to the evaluation requirements.

Example 7.6: Suppose that the memory of cells from Example 7.5 supports com-

ponentwise writing, so that the first and second fields of the memory cell may be

written separately; i.e.,

wr1(wr2(m, i, f2), i, f1) = wr(m, i, [f1 f2]) (107)

Then a further reserialization may write the stack cell in as the tail address and

new datum become available. This new schedule is proposed with the following

Chapter 7. Serialization 148

reserialization of steps 4 and 5:

Evaluating the schedule produces a different, but semantically equivalent outcome for

signal mem. Applying (107) rewrites the expression as follows:

⇒

The outcome matches the evaluation requirements for mem, validating the schedule.

Inserting the schedule into the behavior table completes the example:

The evaluation table rewrite could have been avoided by applying the identity to

the target term prior to reserialization. In theory this is always possible, however

Chapter 7. Serialization 149

it is more convenient to justify the rewrites as the schedule develops, rather than

anticipate all necessary rewriting in advance.

Chapter 8

Data Refinement

Data representation has deep consequences for the space of attainable architectures.

Since behavioral specifications frequently operate on abstract data types, a mecha-

nism which allows selective implementation of datatypes is critical for the top end

of top-down design methodologies. Starfish implements a data refinement facility

which expresses homomorphisms from abstract types to implementation types with

extensions. Refinement falls into two broad categories: when the refinement homo-

morphism is one-to-one, and when the refinement homomorphism admits multiple

representations of the same abstract object. This chapter presents definitions and re-

finement transformations for one-to-one homomorphisms, one-to-many refinements,

and stateful refinements. Abstract stacks—a time-honored vehicle [46] for presenting

refinement procedures—illustrate the software support for refinement. The chapter

concludes with an extended example that illustrates how data refinement, serializa-

tion, and factorization interact to impose a non-trivial high level architecture on a

behavior oriented specification.

150

Chapter 8. Data Refinement 151

8.1 One-to-one refinements

Data refinement changes system behavior. Consider the abstract stack signature

presented in Section 3.2.2. Common stack implementations represent stacks with

an array and a pointer to the top of the stack. In addition to a finer grained view

of the data representation, data refinement also exposes a finer grained view of data

operations. Now push is a multistep operation, first writing the value to the array and

then incrementing the horizon pointer. The approach developed here expresses this

duality by modifying term expressions, rather than term expressions and behavior.

Consequent control flow modifications are accessible via serialization.

The following theorem shows how to change a sequential equation over an ab-

stract type into an equivalent pair of equations - a sequential equation operating on

an implementation type and a combinational equation that recovers or coerces the

abstract type from the implementation signal. Functions ρ and α are refinement and

abstraction coercions.

Theorem 8.1 (One-to-one Refinement). Let A and R be two sorts with functions

ρ : A→ R and α : R→ A such that for all a ∈ A, α(ρ(a)) = a. Assume that there is

a consistent system of term-level identities such that ρ(T (a, i, s, c)) = Tρ(ρ(a), i, s, c).

Then the following systems are pointwise equivalent:

...
...

...
X = x0 ! T (X ′, I, S, C)
...

...
...

⇔

...
...

...
X = α(X ′)
X ′ = ρ(x0) ! Tρ(X

′, I, S, C)
...

...
...

(108)

Chapter 8. Data Refinement 152

Proof. This proof argues only by pointwise equivalent transformations to ensure that

the two systems are pointwise equivalent. First introduce a combinational signal X ′:

X = x0 ! T (X, I, S, C)
X ′ = ρ(X)

(109)

Expand the identity function on A into α ◦ ρ:

X = α(ρ(x0)) ! α(ρ(T (X, I, S, C)))
X ′ = ρ(X)

(110)

Rewrite ρ(T (X, I, S, C)) = Tρ(ρ(X), I, S, C).

X = α(ρ(x0)) ! α(Tρ(ρ(X), I, S, C))
X ′ = ρ(X)

(111)

Perform a combinational identification, replacing ρ(X) with X ′:

X = α(ρ(x0)) ! α(Tρ(X
′, I, S, C))

X ′ = ρ(X)
(112)

Convert X ′ to a sequential signal (Transformation 6, p. 53):

X = α(ρ(x0)) ! α(Tρ(X
′, I, S, C))

X ′ = ρ(α(ρ(x0))) ! ρ(α(Tρ(X
′, I, S, C)))

(113)

Reduce X ′ according to ρ(α(r)) = r when r is a valid representation value in R; i.e.,

r = ρ(a) for some a ∈ A or r = f(r′) for some valid representation value r′ ∈ R and

implementation function f : R− > R (given a valid representation f produces a valid

representation).

X = α(ρ(x0)) ! α(Tρ(X
′, I, S, C))

X ′ = ρ(x0) ! Tρ(X
′, I, S, C)

(114)

Convert X to a combinational signal based on the definition of X ′.

Chapter 8. Data Refinement 153

X = α(X ′)
X ′ = ρ(x0) ! Tρ(X

′, I, S, C)
(115)

This theorem requires a system of identities which can transform a the refinement

of a function applied to an abstract, ρ(f(a), into an implementation function applied

to the refinement of an abstract type, fρ(ρ(a)). Refinement declarations in Starfish

capture these assertions. Refinements declare type signatures for ρ and α, as well as a

system of homomorphic identities for functions with domain or range in the abstract

type. A complete set of homomorphic identities demonstrates the action of ρ on all

constants of the abstract type, all functions that consume the abstract type, and all

functions that produce the abstract type.

Sort label: ind memory

Signature Kind: Standard Parameterized over {addr data}
Constants: 0ind m0 : memory{addr data}

Functions:
inc : ind→ ind
dec : ind→ ind

wr : memory{addr data} × addr × data
→ memory{addr data}

rd : memory{addr data} × addr → data

ID Variables: i : ind
m : memory{addr data}
a : addr
d, e : data

Identities:
dec(inc(i)) = i
sel(eq?(0ind, i),

i, inc(dec(i))) = i

rd(wr(m, a, d), a) = d
wr(m,a, rd(m,a)) = m
wr(wr(m,a, d), a, e) = wr(m,a, e)

Figure 14: The ind signature instantiates the address parameter of the memory sig-
nature for our examples.

Example 8.1: Consider a parameterized type declaration for memory and the decla-

ration for ind in Figure 14. These signatures will implement the “array with pointer”

Chapter 8. Data Refinement 154

refinement of abstract stacks of integers. The following diagrams express the ho-

momorphism ρ that embeds abstract stacks into a tuple of an indexed memory and

index. Let s be an abstract stack, d be a stack value, m = π0(ρ(s)) and i = π1(ρ(s)).

S
push(s,d)−−−−−−→ S

ρ

y yρ

M × I −−−−−−−−−−−→
[wr(m,i,d) inc(i)]

M × I

S
pop(s)−−−−→ S

ρ

y yρ

M × I −−−−−−−−−−−−−−→
[wr(m,dec(i),0) dec(i)]

M × I

S
top(s)−−−−→ Z

ρ

y ∥∥∥
M × I −−−−−−−→

rd(m,dec(i))
Z

(116)

The diagrams show how the refinement type implements functions from the ab-

stract type, but conventional equational expressions better capture the identities’ role

as rewrite rules:

ρ(push(s, d)) = [wr(π0(ρ(s)), π1(ρ(s)), d) inc(π1(ρ(s)))]
ρ(pop(s)) = [wr(π0(ρ(s)), dec(π1(ρ(s))), 0) dec(π1(ρ(s)))]
top(s) = rd(π0(ρ(s)), dec(π1(ρ(s))))

(117)

The refinement procedure combines sequential identification (Transformation 8.1)

followed by homomorphic rewrites. The system below shows the refinement theorem

applied to signal s in the stack calculator from Example 3.17.

Chapter 8. Data Refinement 155

StackCalc(instr, a) = res
where

s∗ = ρ(push(mt,0)) !
ρ(sel(instCat(instr), push(s, a), pop(s),

push(pop(pop(s)), alu(instr, top(s), top(pop(s))))))
s = α(s∗)
res = top(s)

(118)

The following sequence of rewrites show how the refinement identities above and the

rewrite rule s∗ = ρ(s) from Transformation 8.1 change abstract stacks into memories

and pointers.

1. ρ(push(mt, 0)) = [wr(π0(ρ(mt)), π1(ρ(mt)), 0)inc(π1(ρ(mt)))]
2. = [wr(π0([m0, 0ind]), π1([m0, 0ind]), 0) inc(π1([m0, 0ind]))]
3. = [wr(m0, 0ind, 0) inc(0ind)]
4. ρ(sel(instCat(instr), push(s, a), pop(s), push(pop(. . .))))

= sel(instCat(instr), ρ(push(s, a)), ρ(pop(s)), ρ(push(pop(. . .))))
5. ρ(push(s, a)) = [wr(π0(ρ(s)), π1(ρ(s)), a) inc(π1(ρ(s)))]
6. = [wr(π0(s∗), inc(π1(s∗)), a) inc(π1(s∗))]
7. ρ(pop(s)) = [wr(π0(ρ(s)), dec(π1(ρ(s))), 0) dec(π1(ρ(s)))]
8. = [wr(π0(s∗), dec(π1(s∗)), 0) dec(π1(s∗))]

Line 1 begins the rewrite of s∗’s initial value by applying the push identity. Line 2

rewritesmt as the zero-memorym0 and zero pointer 0ind. Line 3 applies the projectors

to the tuple, producing a simplified expression. Line 4 continues by applying a selector

identity to the sequential update term: functions distribute over the branches of

a selector. Line 5’s rewrite focuses on the selector’s push branch by applying the

corresponding homomorphic identity. Line 6 eliminates the refinement operator by

replacing ρ(s) with s∗. Similarly Line 7 rewrites the pop branch with the pop identity,

and Line 8 replaces ρ(s) with s∗.

Chapter 8. Data Refinement 156

Adding the combinational equations

m = π0(s∗)
i = π1(s∗)

(119)

to the system enables further simplification of the rewritten terms, resulting in more

intuitive expressions: e.g., ρ(pop(s)) = [wr(m, dec(i), 0) dec(i)] In this context, we

continue the rewrite of the final selector branch:

9. ρ(push(pop(pop(s)), ALUinst(top(s), top(pop(s)))))
10. = [wr(π0(ρ(pop(pop(s)))), π1(ρ(pop(pop(s)))), ALUinst(top(s), top(pop(s))))

inc(π1(ρ(pop(pop(s)))))]
11. = [wr(π0([wr(π0(ρ(pop(s))), dec(π1(ρ(pop(s)))), 0) dec(π1(ρ(pop(s))))]),

π1([wr(π0(ρ(pop(s))), dec(π1(ρ(pop(s)))), 0) dec(π1(ρ(pop(s))))]),
ALUinst(top(s), top(pop(s))))

inc(π1([wr(π0(ρ(pop(s))), dec(π1(ρ(pop(s)))), 0) dec(π1(ρ(pop(s))))]))]
12. = [wr(wr(π0(ρ(pop(s))), dec(π1(ρ(pop(s)))), 0), dec(π1(ρ(pop(s)))),

ALUinst(top(s), top(pop(s))))
inc(dec(π1(ρ(pop(s)))))]

13. = [wr(wr(π0([wr(π0(s∗), dec(π1(s∗)), 0) dec(π1(s∗))]),
dec(π1([wr(π0(s∗), dec(π1(s∗)), 0) dec(π1(s∗))])), 0),

dec(π1([wr(π0(s∗), dec(π1(s∗)), 0) dec(π1(s∗))])),
ALUinst(top(s), top(pop(s))))

inc(dec(π1([wr(π0(s∗), dec(π1(s∗)), 0) dec(π1(s∗))])))]
14. = [wr(wr(wr(π0(s∗), dec(π1(s∗)), 0), dec(dec(π1(s∗))), 0), dec(dec(π1(s∗))),

ALUinst(top(s), top(pop(s))))
inc(dec(dec(π1(s∗))))]

15. = [wr(wr(wr(m, dec(i), 0), dec(dec(i)), 0), dec(dec(i)),
ALUinst(top(s), top(pop(s))))

inc(dec(dec(i)))]
16. = [wr(wr(m, dec(i), 0), dec(dec(i)), ALUinst(top(s), top(pop(s)))) dec(i)]

In the above sequence, Lines 9-14 are rote applications of the homomorphic identities

and tuple projection identities: Line 10 expands the homomorphic identity for push,

Line 11 expands the homomorphic identity for pop, Line 12 simplifies projections of

Chapter 8. Data Refinement 157

tuples, Line 13 expands the homomorphic identity for pop, Line 14 simplifies pro-

jections of tuples. Line 15 replaces instances of ρ(s) with s∗. Line 16 exploits two

identities from the ind and memory declarations (Figure 14): inc(dec(i))) = i, and

wr(wr(m, a, d), a, e) = wr(m, a, e).

The remaining stack references are a result of top accesses. These terms do not

have a coercion operator, however the homomorphic identity,

top(s) = rd(π0(ρ(s)), dec(π1(ρ(s)))) (120)

does not require one.

17. ALUinst(top(s), top(pop(s)))
18. = ALUinst(rd(π0(ρ(s)), dec(π1(ρ(s)))), rd(π0(ρ(pop(s))), dec(π1(ρ(pop(s))))))
19. = ALUinst(rd(π0(s∗), dec(π1(s∗))),

rd(π0([wr(π0(s∗), dec(π1(s∗)), 0) dec(π1(s∗))]),
dec(π1([wr(π0(s∗), dec(π1(s∗)), 0) dec(π1(s∗))]))))

20. = ALUinst(rd(π0(s∗), dec(π1(s∗))),
rd(wr(π0(s∗), dec(π1(s∗)), 0), dec(dec(π1(s∗)))))

21. = ALUinst(rd(m, dec(i)), rd(wr(m, dec(i), 0), dec(dec(i))))

Lines 17-20 follow the same homomorphic identity, projection identity, replace-ρ(s),

recurse pattern of the previous rewritings. Line 21 simplifies the terms with the

combinational signals m and i, as before.

The following identities can further reduce the term in Line 21. Introduce a index

equality predicate eq? such that

rd(wr(m,a, d), b) = sel(eq?(a, b), d, rd(m, b))
eq?(i, dec(i)) = false

(121)

Chapter 8. Data Refinement 158

These identities require external validation, but are clearly true for a number of

plausible models; e.g., ind as the integers, and memory as an association list of

integers keyed by integers.

21. = ALUinst(rd(m, dec(i)), rd(wr(m, dec(i), 0), dec(dec(i))))
22. = ALUinst(rd(m, dec(i)), sel(eq?(dec(i), dec(dec(i))), 0, rd(m, dec(dec(i)))))
23. = ALUinst(rd(m, dec(i)), sel(false, 0, rd(m, dec(dec(i)))))
24. = ALUinst(rd(m, dec(i)), rd(m, dec(dec(i))))

The following system is the result of all these rewriting steps:

StackCalc(instr, a) = res
where

s∗ = [wr(m0, 0ind, 0) inc(0ind)] !
sel(instCat(instr),

[wr(m, i, a) inc(i)]
[wr(m, dec(i), 0) dec(i)]
[wr(wr(m, dec(i), 0), dec(dec(i)),

ALUinst(rd(m, dec(i)), rd(m, dec(dec(i))))) dec(i)]
res = rd(m, dec(i))
m = π0(s∗)
i = π1(s∗)

(122)

Note that the final system safely eliminates the equation s = α(s∗) since no term

reference to s exists.

This example shows how data refinement in stream systems combines the se-

quential signal translation (Transformation 8.1) and term rewriting according to the

refinement homomorphism. The rewriting steps are rote and tedious, therefore eas-

ily automated. Starfish automates the application of the homomorphic identities,

projector identities, and ρ(s) replacements.

Chapter 8. Data Refinement 159

8.2 One-to-many refinements

Most interesting data refinement schemes do not uniquely represent an abstract type.

For instance, the previous section’s pop representation not only decrements the stack

pointer, but overwrites the memory with the initial value 0. The common implemen-

tation of stacks simply decrements the pointer. This complicates the formalization,

because there are now arbitrarily many array-pointer pairs that represent a particular

stack; i.e., there may be arbitrary junk in the array beginning at the horizon pointer.

Thus the coercion operator ρ cannot be a function from the abstract type to the

refinement type.

A slight modification of the homomorphism rules yields a workable solution.

Starfish adds another parameter to multi-representation refinements that specifies

the particular representation.

Definition 8.1. A multi-representation refinement function from A to R, ρ : A×R→

R and its abstraction function α : R→ A satisfy the following identities, for all r ∈ R,

a ∈ A, fA : A→ A, gA : X → A, and hA : A→ X:

α(ρ(fA(a), r)) = α(fR(ρ(a, ρ(a, r)))) (123)

α(ρ(gA(x), r)) = α(gR(x)) (124)

hA(a) = hR(ρ(a, r)) (125)

α(ρ(a, r)) = a (126)

Chapter 8. Data Refinement 160

where fR : R→ R, gR : X → R, and hR : R→ X are functions in the implementation

type.

Example 8.2: The conventional stack implementation that only decrements the

stack pointer on pop is a multi-representation refinement. Let ρ : Stack{data} ×

[mem{ind data} ind]→ [mem{ind data} ind] be defined by:

ρ(s, [m i]) = [wr(wr(. . . wr(m, 0, top(s))), inclen−1(0ind), top(pop len−1(0ind))) len(s)]
(127)

Similarly, let the abstraction function be defined by α : [ind mem{ind data}] →

Stack{data}

α([m i]) = push(push(. . . push(mt, rd(m, 0ind)) . . .), rd(m, inclen−1(0ind))) (128)

The homomorphic identities corresponding to requirements (123), (124), and (125)

are:

ρ(mt, [m i]) = [m 0ind]
ρ(push(s, a), [m i]) = [wr(m∗, i∗, a) inc(i∗)]

where [m∗ i∗] = ρ(s, [m i])
ρ(pop(s), [m i]) = [m∗ dec(i∗)]

where [m∗ i∗] = ρ(s, [m i])
ρ(top(s), [m i]) = rd(m∗, dec(i∗))

where [m∗ i∗] = ρ(s, [m i])

(129)

A one-to-many refinement provides a choice of representations for each abstract

Chapter 8. Data Refinement 161

value. Shifting from one representation to another produces an equivalent system un-

der pointwise alignment. For instance, in the stack representation, the “junk” values

after the pointer have no impact on abstraction operator. More interestingly, garbage

collection on a heap trades one representation for a more compact representation of

the same abstract type; e.g., lists or stacks. The following transformation formalizes

the equivalence of stream systems under a re-embedding of the abstract type into the

representation type.

Transformation 8 (Re-embedding). Let ρ : A × R → R and α : R → A be multi-

representation coercion operators. The following are equivalent systems by pointwise

alignment for all choices of IR ∈ R∞:

Sys0 (I) = O where
... =

...
X = α(XR)
XR = xR ! F (XR, I)
... =

...

⇔

Sys1 (I, IR) = O where
... =

...
X = α(XR)
XR = xR ! ρ(α(F (XR, I)), IR)
... =

...
(130)

Proof. It suffices to show that the trace of X is equal in both systems. Proof is by

co-recursion on I, IR. For all a ∈ A:

head (Tr∗X [Sys0](I, a)) = α(x)
= head (Tr∗X [Sys1](I, IR, a))

(131)

Let =∗ denote justification by the co-inductive hypothesis.

Chapter 8. Data Refinement 162

tail (Tr∗X [Sys0](I, a)) = Tr∗X [Sys0](tail (I), α(F (a, head (I))))
=∗ Tr∗X [Sys1](tail (I), tail (IR), α(F (a, head (I))))
= Tr∗X [Sys1](tail (I), tail (IR), α(ρ(α(F (a, head (I))), head (IR))))
= tail (Tr∗X [Sys1](I, IR, a))

(132)

The one-to-many refinement process mirrors the proof steps of the one-to-one

refinement theorem, except that the re-embedding transformation (rather than inverse

relationship of the coercion operators, ρ and α) justifies step 6 (below). The following

steps refine the signal X = x0 ! F (X, I, S, C) in a stream system:

1. First introduce the combinational signal XR, and a sequential signal to hold the

next refinement parameter to ρ:

X = x0 ! F (X, I, S, C)
XR = ρ(X, R)
R = r0 ! ρ(X, R)

(133)

2. Using the term identity α(ρ(a, r)) = a, expand the definition of X:

X = α(ρ(x0, r0)) ! α(ρ(F (X, I, S, C), R))
XR = ρ(X, R)
R = r0 ! ρ(X, R)

(134)

3. Rewrite the head and tail terms of X using the homomorphic identities. It

is mathematically necessary to perform the rewrites at this stage, since the

homomorphic identities are wrapped by the abstraction operator, α:

Chapter 8. Data Refinement 163

X = α(ρ(x0, r0)) ! α(FR(ρ(X, R), I, S, C))
XR = ρ(X, R)
R = r0 ! ρ(X, R)

(135)

4. Apply combinational identification to X, replacing ρ(X,R) with XR:

X = α(ρ(x0, r0)) ! α(FR(XR, I, S, C))
XR = ρ(X, R)
R = r0 ! ρ(X, R)

(136)

5. Apply Transformation 6 to convert XR to a sequential signal:

X = α(ρ(x0, r0)) ! α(FR(XR, I, S, C))
XR = ρ(α(ρ(x0, r0)), r0) ! ρ(α((FR(XR, I, S, C))), R)
R = r0 ! ρ(X, R)

(137)

6. Simplify head (XR) with α(ρ(x, r)) = x and its tail with the re-embedding trans-

formation.

X = α(ρ(x0, r0)) ! α(FR(XR, I, S, C))
XR = ρ(x0, r0) ! FR(XR, I, S, C)
R = r0 ! ρ(X, R)

(138)

7. Convert X to a combinational signal acting on XR:

X = α(XR)
XR = ρ(x0, r0) ! FR(XR, I, S, C)
R = r0 ! ρ(X, R)

(139)

8. Eliminate R since it is no longer in use.

Chapter 8. Data Refinement 164

X = α(XR)
XR = ρ(x0, r0) ! FR(XR, I, S, C)

(140)

Example 8.3: This example re-visits the stack calculator refinement with the non-

mutating-memory pop, and identities defined as in Example 8.2. The one-to-many

refinement process produces a system for rewriting. The zero memory m0 seeds the

representation selection signal.

StackCalc(instr, a) = res
where

s∗ = ∗ρ(s, r)
s = α(ρ(push(mt,0), r)) !

α(ρ(sel(instCat(instr), push(s, a), pop(s),
push(pop(pop(s)), alu(instr, top(s), top(pop(s))))), r))

res = top(s)
r = m0 ! ρ(s, r)

(141)

Rewriting of s proceeds in the manner illustrated by Example 8.1. In particular, the

pop branch does not zero-out the memory after a decrement:

α(sel(. . . , ρ(pop(s), r), . . .) =
α(sel(. . . , [π0(ρ(s, r)) dec(π1(ρ(s, r)))], . . .)

(142)

All of the leaves of the rewrite have the form ρ(s, r), which get replaced by the

refinement signal s∗, following its conversion to sequential form:

Chapter 8. Data Refinement 165

StackCalc(instr, a) = res
where

s∗ = ∗ρ(s, r)
s∗ ≡ [wr(m0, 0ind, 0) inc(0ind)] !

sel(instCat(instr),
[wr(π0(s∗), π1(s∗), a) inc(π1(s∗))]
[π0(s∗) dec(π1(s∗))]
[wr(π0(s∗), dec(dec(π1(s∗))),

ALUinst(rd(π0(s∗), dec(π1(s∗))),
rd(π0(s∗), dec(dec(π1(s∗)))))) dec(π1(s∗))]

s = α(s∗)
res = rd(π0(s∗), dec(π1(s∗)))
r = m0 ! ρ(s, r)

(143)

The final system eliminates the combinational invariant for s∗ and the unused signals

{s, r}, then splits the tupled sequential signal s∗ into its components, named m and

i:

StackCalc(instr, a) = res
where

m = wr(m0, 0ind, 0) !
sel(instCat(instr), wr(m, i, a),m,

wr(m, dec(dec(i)), ALUinst(rd(m, dec(i)), rd(m, dec(dec(i)))))
i = inc(0ind) ! sel(instCat(instr), inc(i), dec(i), dec(i))
res = rd(m, dec(i))

(144)

8.3 Stateful refinement schema

One important class of one-to-many representations are heap schemas which repre-

sent arbitrary objects as linked trees in a random access store. Tree nodes typically

correspond to a data type, such as a LISP pair or atom—e.g., boolean or empty-list.

Chapter 8. Data Refinement 166

The heap is a linearly ordered random access store which references the first unused

cell of the store with a horizon pointer. Each time a new object is created the horizon

pointer is incremented by an appropriate amount. In real implementations, the store

eventually runs out of space and frees up cells in the garbage collection process—a

re-embedding into a different representation instance that no longer uses cells to rep-

resent discarded objects. However, the representations presented here simplify the

problem by assuming an unlimited store. This assumption is commonplace in system

design and verification [35, 6].

A system defined over abstract data types is often refined into a system which op-

erates on heap implementations of these objects. When the system carries a only one

abstract signal, the one-to-many refinement process suffices for a reduction to heap

representation. Figure 15 shows a heap representation of stacks. The implementation

type is a 3-tuple containing a heap reference, memory of list cells (i.e., tuples of value

and address), and a heap horizon pointer. The implementation of push writes the

input value and the address of input stack the into the cell referenced by the heap

horizon; the resulting stack reference is the heap horizon pointer, and finally the heap

pointer is incremented. The implementation of pop does not alter the heap or hori-

zon, but dereferences the tail of the input stack reference. The implementation of top

works similarly, dereferencing the value half of the cell referenced by the input stack

reference.

Heap implementations of abstract types can simulate multiple signals. While

the heap representation of a stack seems wasteful compared to the array-pointer

implementation, the same heap may contain multiple independent stacks. Given

Chapter 8. Data Refinement 167

Label: stack → heap

Functions:
ρ : stack{integer} × [ind memory{ind [integer ind]} ind]

→ [ind memory{ind [integer ind]} ind]
α : [ind memory{ind [integer ind]} ind]→ stack{integer}

ID Variables:
s : stack{integer}, d : integer
i, r : ind, m : memory{ind [integer ind]}

Identities:

let[r∗ m∗ i∗] = ρ(s, [r m i])
α(ρ(push(s, d), [r m i])) = α([i∗ wr(m∗, i∗, [d r∗]) inc(i∗)])
α(ρ(pop(s), [r m i])) = α([π0(rd(m∗r∗)) m∗ i∗])
top(s) = π0(rd(m∗, r∗))
ρ(mt, [r m i]) = [0ind m ∗ i∗]
α(ρ(s, [r m i])) = s

Figure 15: Stack-to-heap refinement declaration.

a schema for how a heap implements one abstract type, one may manipulate the

schema to embed many abstract signals into the heap. For example, Figure 15 shows

how to implement one stack as a reference to a persistent heap. The heap is append-

only (the referenced objects in the heap never change), so the same refinement applies

element-wise to a tuple of two stacks—or n in general—where heap access is serialized.

Refining the two-stack tuple reduces to refining both elements independently. In this

case, assume that stack access goes from left to right: refining the second component

begins with the heap resulting from the first component’s accesses. The following

example shows the serialization setup:

X = mt ! push(X, d1)
Y = mt ! push(Y, d2)

m
X = ρ(mt , [m0 0]) ! ρ(push(X, d1), [M I])
Y = ρ(mt , ρh(mt , [m0 0])) ! ρ(push(Y, d2), ρh(push(X, d1), [M I]))
[M I] = ρh(mt , ρh(mt , [m0 0])) ! ρh(Y, ρh(X, [M I]))

(145)

Chapter 8. Data Refinement 168

where [ρs [ρm ρi]] = [ρs ρh] = ρ, the hierarchical element structure of the refine-

ment operator. The homomorphic identity declarations for push guide the rewriting

process. Stateful refinements are formalized below:

Definition 8.2. A stateful refinement of an abstract type A has a reference com-

ponent R and a state component M . The coercion operators have all the properties

of a one-to-many refinement, and that the reference component is irrelevant in the

refinement selection—i.e.,

∀(a ∈ A)(m ∈M)(r0, r1 ∈ R)ρ(a, [r0 m]) = ρ(a, [r1 m]) (146)

Thus the refinement coercion drops R from its signature, ρ : A×M → R×M .

Definition 8.3. Given a stateful coercion operator, ρ : A ×M → R ×M , define a

partial order m1 ≺′ m2 if and only if π1(ρ
′(a,m1)) = m2 for some choice of a ∈ A.

The transitive closure, ≺, of ≺′ defines state-extension; m2 extends m1. Let m be a

valid state when m = m0 or m0 ≺ m. Let r ∈ R be valid in m, written r ← m, when

[r m] = π1(ρ
′(a,m′)) for some valid state m′. Then ρ′ preserves prior references when

r ← m1 and m1 ≺ m2 imply α(r,m1) = α(r,m2).

Heap representations are stateful refinements: The store and horizon pointer

completely determine the implementation of abstract types. Heaps preserve prior

references since they are append-only—they are not garbage collected in the model

presented here.

Definition 8.4. A function in a stateful representation G : Rn ×M × T → Rn ×M

is referentially independent when

Chapter 8. Data Refinement 169

α(G(r1, . . . , rn,m, t)) = α(G(r′1, . . . , r
′
n,m′, t)) (147)

where α(ri,m) = α(r′i,m
′) for 1 ≤ i ≤ n. Referential independence in a stateful

implementation function asserts that abstractions of its output are independent of

the input representations (since there are many).

The general case of multiple signal refinement is difficult to argue because of the

exploding number of nested and repeated relevant terms. However, the two signal

case uses the same core justifications and is much more illuminating. To further

simplify matters, we assume that there is only one abstract function, and it takes

inputs from the abstract type. There is little loss of generality since this function

may be parameterized by a token which calls an arbitrary one or two input function

in the signature.

Proposition 8.1. (Two signal Stateful Refinement) Let ρ : A ×M → R ×M and

α : R×M → A×M be stateful coercion operators that preserve prior references. Let

[ρR, ρM] = ρ. Assume that the refinement’s identities can affect the following rewrite

for 1 ≤ i ≤ n:

α(ρ(F (A1, A2, I, S, C),M)) = α(G(ρR(A1,M), ρR(A2, ρR(M)),M, I, S, C)) (148)

where G is referentially independent. The right-hand-side serializes access to the

store in a left-to-right manner. The function operates on the two references, resulting

store, and non-subject-type values. The following are equivalent systems by pointwise

Chapter 8. Data Refinement 170

alignment:

Sys0 (I) = O where
... =

...
A1 = a1 ! F (A1, A2, I1, S1, C1)
A2 = a2 ! F (A1, A2, I2, S2, C2)
... =

...
m

Sys1 (I) = O where
... =

...
A1 = α(R1,M)
A2 = α(R2,M)
R1 = ρR(a1,m0) ! πR(G(R1, R2,M, I1, S1, C1))
R2 = ρR(a2, ρm(a1,m0)) ! πR(G(R1, R2,M

∗, I2, S2, C2))
M = ρM (a2, ρM (a1,m0)) ! πM (G(R1, R2,M

∗, I2, S2, C2))
M∗ = πM (G(R1, R2,M2, I1, S1, C1))
... =

...

(149)

Proof. Introduce signals A∗1, A
∗
2,M0, [R1 M1], [R2 M2],M3,M4. Store operations are

serialized, so that M0 ≺ M1 ≺ M2 ≺ M3 ≺ M4. Move sequential updates for A1, As

into A∗1, A
∗
2:

A1 = a1 ! A∗1
A2 = a2 ! A∗2
A∗1 = F (A1, A2, I1, S1, C1)
A∗2 = F (A1, A2, I2, S2, C2)
M0 = m0 ! M4

[R1 M1] = ρ(A1,M0)
[R2 M2] = ρ(A2,M1)
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(150)

Chapter 8. Data Refinement 171

Expand A1 by the abstraction identity, alpha(ρ(a,m)) = a:

A1 = a1 ! A∗1
A2 = a2 ! A∗2
A∗1 = α(ρ(F (A1, A2, I1, S1, C1),M2))
A∗2 = F (A1, A2, I2, S2, C2)
M0 = m0 ! M4

[R1 M1] = ρ(A1,M0)
[R2 M2] = ρ(A2,M1)
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(151)

Rewrite A1 according to homomorphic assumption (148):

A1 = a1 ! A∗1
A2 = a2 ! A∗2
A∗1 = α(G(ρR(A1,M2), ρR(A2, ρR(A1,M2)), ρM (A2, ρR(A1,M2)), I1, S1, C1))
A∗2 = F (A1, A2, I2, S2, C2)
M0 = m0 ! M4

[R1 M1] = ρ(A1,M0)
[R2 M2] = ρ(A2,M1)
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(152)

Since M0 ≺M2 (hence α(ρ(A1,M2)) = α(ρ(A1,M0))) and G is referentially indepen-

dent, replace ρR(A1,M2) in A∗1 with ρR(A1,M0) and then with R1 by combinational

identification. Similarly M2 ≺ ρR(A1,M2) justifies replacing G’s second argument

Chapter 8. Data Refinement 172

with R2.

A1 = a1 ! A∗1
A2 = a2 ! A∗2
A∗1 = α(G(R1, R2,M2, I1, S1, C1))
A∗2 = F (A1, A2, I2, S2, C2)
M0 = m0 ! M4

[R1 M1] = ρ(A1,M0)
[R2 M2] = ρ(A2,M1)
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(153)

The same logic transforms A∗2:

A1 = a1 ! A∗1
A2 = a2 ! A∗2
A∗1 = α(G(R1, R2,M2, I1, S1, C1))
A∗2 = α(G(R1, R2,M3, I2, S2, C2))
M0 = m0 ! M4

[R1 M1] = ρ(A1,M0)
[R2 M2] = ρ(A2,M1)
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(154)

Prepare [R2 M2] for conversion to sequential signals by expanding combinational

reference to M1:

A1 = a1 ! α(G(R1, R2,M2, I1, S1, C1))
A2 = a2 ! α(G(R1, R2,M3, I2, S2, C2))
M0 = m0 ! M4

[R1 M1] = ρ(A1,M0)
[R2 M2] = ρ(A2, ρM (A1,M0))
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(155)

Chapter 8. Data Refinement 173

Convert [R1 M1], [R2 M2] to sequential signals:

A1 = a1 ! α(G(R1, R2,M2, I1, S1, C1))
A2 = a2 ! α(G(R1, R2,M3, I2, S2, C2))
M0 = m0 ! M4

[R1 M1] = ρ(a1,m0) !
ρ(α(G(R1, R2,M2, I1, S1, C1)),M4)

[R2 M2] = ρ(a2, ρM (a1,m0)) !
ρ(α(G(R1, R2,M3, I2, S2, C2)), ρM (A1,M4))

M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(156)

Apply re-embedding transformation.

A1 = a1 ! α(G(R1, R2,M2, I1, S1, C1))
A2 = a2 ! α(G(R1, R2,M3, I2, S2, C2))
M0 = m0 ! M4

[R1 M1] = ρ(a1,m0) ! G(R1, R2,M2, I1, S1, C1)
[R2 M2] = ρ(a2, ρM (a1,m0)) ! G(R1, R2,M3, I2, S2, C2)
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(157)

Expand head terms in A1, A2:

A1 = α(ρ(a1,m0)) ! α(G(R1, R2,M2, I1, S1, C1))
A2 = α(ρ(a2, ρ(a1,m0))) ! α(G(R1, R2,M3, I2, S2, C2))
M0 = m0 ! M4

[R1 M1] = ρ(a1,m0) ! G(R1, R2,M2, I1, S1, C1)
[R2 M2] = ρ(a2, ρM (a1,m0)) ! G(R1, R2,M3, I2, S2, C2)
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(158)

Chapter 8. Data Refinement 174

Convert A1, A2 to combinational signals:

A1 = α([R1 M1])
A2 = α([R2 M2])
M0 = m0 ! M4

[R1 M1] = ρ(a1,m0) ! G(R1, R2,M2, I1, S1, C1)
[R2 M2] = ρ(a2, ρM (a1,m0)) ! G(R1, R2,M3, I2, S2, C2)
M3 = πM (G(R1, R2,M2, I1, S1, C1))
M4 = πM (G(R1, R2,M3, I2, S2, C2))

(159)

Since M1 ≺M2, replace M1 with M2 in A1. Ungroup [R1 M1], [R2 M2], then eliminate

M0,M1,M4:

A1 = α([R1 M1])
A2 = α([R2 M2])
R1 = ρR(a1,m0) ! πR(G(R1, R2,M2, I1, S1, C1))
R2 = ρR(a2, ρM (a1,m0)) ! πR(G(R1, R2,M3, I2, S2, C2))
M2 = ρM (a2, ρM (a1,m0)) ! πM (G(R1, R2,M3, I2, S2, C2))
M3 = πM (G(R1, R2,M2, I1, S1, C1))

(160)

Renaming signal M2 as M and M3 as M∗ completes the proof.

As the resulting expression shows, even the two-signal stateful refinement can

accumulate deeply nested store expressions. The problem is mitigated by using com-

binational signals as temporary bindings.

8.4 Starfish’s refinement provisions

Starfish supports refinement with declarations for coercion operators and related iden-

tities, application of the signal refinement transformation to behavior tables, and

Chapter 8. Data Refinement 175

automatic rewriting of terms with respect to the refinement homomorphism. Re-

finement declarations enumerate the abstract and refinement types, homomorphic

identities for each function that produces or consumes the abstract type, and the

mapping of abstract constant terms. Starfish’s refinement transformation applies the

signal refinement theorem, rewriting the coercion terms according to the homomor-

phic identities. In the case of stateful refinement schema, the declarations additionally

define state types, and initial state values. Starfish uses the following syntax for re-

finement declarations:

(declare-refinement <src-sym> => <tar-sym>
(<param-sym> ...)
<src-type-str>
<tar-type-str>
((<state-sym> <type-str> <state-inital-value-str>) ...)
((<formal-sym> <type-str>)...)
((<binding-sym> <exp-str>) ...)
((<hom-id-src-str> <hom-id-tar-str> <hom-id-state-update-str> ...) ...)
((<hom-id-label-sym> <hom-id-src-str> <hom-id-tar-str>) ...)
((<id-label-sym> <id-src-str> <id-tar-str>) ...))

The <src-sym> and <tar-sym> symbols create a shorthand name for the refinement

(<src-sym>=><tar-sym>), and names for the coercion operators—<src-sym>=><tar-

-sym> for refinement and <src-sym><=<tar-sym> for abstraction. If the refinement

is for an uninstantiated parameterized type, the parameter symbols are listed by

(<param-sym> ...). The fields <src-type-str> and <tar-type-str> specify the

abstract and refinement types. When defining a multiple reference to state schema

((<state-sym> <type-str> <state-inital-value-str>) ...) defines the state

labels, types, and intial values (e.g., heap states consist of a memory and a pointer

with initial values of m0 and 0ind). The remaining sections specify homomorphic

identities using the typed formal variables in ((<formal-sym> <type-str>)...)

Chapter 8. Data Refinement 176

The homomorphic declarative form focuses on term expressions which define the

abstract and implementation functions. Bindings in ((<binding-sym> <exp-str>)

...) assist the functional description for the identity list, (<hom-id-src-str>

<hom-id-tar-str>). For example, a homomorphic identity α(ρ(f(a))) = α(g(ρ(a)))

might be expressed as ((f a) (g r)) in context of the binding (r (src=>tar a)).

Stateful rewriting rules explicitly decompose into references and stores. Since the

store is often a tuple of types, the declarative form permits component expression of

state rather than forcing obfuscation with a single tupled state. Heaps, for instance,

track state with a linearly ordered random access store and a horizon pointer. The

homomorphic identity which serialized effects on the store

α(ρ(f(a), [mem ptr])) = α(g(ρR(a), [h(ρmem(a, [mem ptr])) inc(ρmem(a, [mem ptr]))]))
(161)

is expressed as
...
; Bindings
((r (src=>tar a mem ptr))
(mem* (src=>tar.mem a mem ptr))
(ptr* (src=>tar.ptr a mem ptr)))
; Homomorphic Identities
(...
[(f a)
(g r) (h mem*) (inc ptr*)] ...)

...

The binding list ((<binding-sym> <exp-str>) ...) is similar to Scheme’s let*,

where each bound symbol is in the scope of the following expression. In this declar-

ative form for homomorphic identities, the state arguments and coercion operator is

implied on the left-hand side; e.g., f(a) specifies (src=>tar f(a) mem ptr). All of

Chapter 8. Data Refinement 177

the rewrites occur inside of an abstraction operator, where they are valid.

Starfish automates rewriting in data refinement. It attempts to match each coer-

cion subterm with one of the identities from the list

(<hom-id-src-str> <hom-id-tar-str> <hom-id-state-update-str> ...)

The declaration should have a unique left-hand-side for each function which produces

the abstract type. The identities should be “homomorphic” in the sense that the

right-hand-side is an expression that only applies the refinement operator to the

abstract arguments of left-hand-side’s function. The leaves of the rewrite apply the

refinement operator to the sequential signal variable of the abstract type. As shown

in the refinement proofs, replacing these with the refinement type’s signal variable

produces a bisimilar system.

The next clause of the declaration,

((<hom-id-label-sym> <hom-id-src-str> <hom-id-tar-str>) ...)

expresses identities on functions that consume, but do not produce abstract types.

They are also in scope of the binding list. For example, the declaration
...
; Bindings
((r (src=>tar a mem ptr))
(mem* (src=>tar.mem a mem ptr))
(ptr* (src=>tar.ptr a mem ptr)))
; Homomorphic Identities
(...
[(f a t)
(g r mem* ptr* t)] ...)

...

expresses the identity f(ρ(a, [mem ptr]), t) = g(ρ(a, [mem ptr]), t) Starfish automates

rewriting for these terms as well.

The last list of the declaration

Chapter 8. Data Refinement 178

((<id-label-sym> <id-src-str> <id-tar-str>) ...)

holds auxiliary labeled identities in equational form. There are no implied opera-

tors on left- or right-hand sides; <id-src-str> is the left-hand-side, <id-tar-str>

is the right-hand-side. This last set of supplemental identities are not used in au-

tomated term rewriting. The designer applies them manually, specifying them with

<id-label-sym>.

Example 8.4: The following syntax expresses the optimized array-with-pointer stack

refinement to Starfish.

(declare-refinement stack => array
() ; no parameters
"stack{integer}"
"[memory{ind integer} ind]"
() ; no state
;; Formals
([s "stack{integer}"]
[d "integer"])

;; Bindings
([m "(1st (stack=>array s))"]
[i "(2nd (stack=>array s))"])

;; Homomorphic identities for functions that produce stacks
(["(push s d)" "[(wr m i d) (inc i)]"]
["(pop s)" "[m (dcr i)]"]
["empty-stack:stack{integer}" "[m0:memory{ind integer} 0_ind]"])

;; Homomorphic identities for functions that consume
;; but do not produce stacks
([’stack=>array:top "(top s)" "(rd m (dcr i))"])
;; Supplemental identities
())

Although stacks are a parameterized type, this refinement declaration is for stacks of

integers; consequently, the list of type parameters is empty. The declaration specifies

stack{integer} as the abstract type and [memory{ind integer} ind] as the re-

finement type. This is not a reference-to-state schema, so the list of state labels, types

Chapter 8. Data Refinement 179

and initial values is empty. Two formal variables express the homomorphic identities:

stack s and stack datum d. The symbols m and i expand to the memory component

and pointer component respectively of s’s refinement. The clause after the bindings

shows the homomorphic identities for the stack producing functions push and pop.

The next clause specifies rewrites for top which returns an integer instead of a stack.

No supplemental identities are listed here.

Example 8.5: The following syntax expresses the multi-reference heap refinement

schema for integer stacks to Starfish:

(declare-refinement stack => heap
() ; no parameters
"stack{integer}"
"ind" ; reference type
; state symbol, type, and initial values
([mem "memory{ind [integer ind]}" "#:memory{ind [integer ind]}"]
[ptr "ind" "0_ind"])

; Formals
([s "stack{integer}"]
[d "integer"])

;; Bindings
([s* "(stack=>heap s mem ptr)"]
[mem* "(stack=>heap.mem s mem ptr)"]
[ptr* "(stack=>heap.ptr s mem ptr)"])

;; Homomorphic identities for functions that produce stacks
(["(push s d)"

"ptr*" "(wr mem* ptr* [d s*])" "(inc ptr*)"]
["(pop s)"
"(2nd (rd mem* s*))" "mem*" "ptr*"]
["empty-stack:stack{integer}" "0_ind" "mem*" "ptr*"])

;; Homomorphic identities for functions that consume
;; but do not produce stacks
([’stack=>heap:top "(top s)""(1st (rd mem* s*))"])
;; Supplemental Identities
())

In the reference-state schema the <tar-type-str> defines the reference type, ind.

Chapter 8. Data Refinement 180

The next clause expresses state labels (for reference in identity declarations), state

types, and each state signal’s initial value. When developing the state schema in

Section 8.3, the state component is a single signal. In pratice the state signal is

often a tuple. This declarative form facilitates state expression by listing tuple com-

ponents as separate signals. For heaps, the state consists of a memory and a heap

pointer. These components are declared separately with labels mem and ptr, rather

than as a single tupled state. The functions stack=>heap, stack=>heap.mem, and

stack=>heap.ptr with input signatures ind×memory{ind [integer ind]}× ind pro-

duce the three components of the refinement—i.e., the reference, the memory, and

the heap pointer, respectively; the refinement automatically generates these operators

using the <src-sym>, <tar-sym>, and <state-sym> fields.

The binding convention indicates the components of s’s implementation with *-

suffixed labels. m* and ptr* represent the components of the post-s refinement state.

Intuitively, this is the current state in the subsequent identities. Identity declaration

for the non-stack-producer, top, eliminates the expressions for state update. The

declarative form disallows state effects when no new stack is produced.

Starfish’s refinement transformation combines the system level signal introduc-

tions from the refinement theorem, automatic rewriting of terms to elimiate coercion

operators, and specialization of non-equals refinement signals to equals stream equa-

tions. The rewriting algorithm recursively applys the homomorphic identities from

the refinement declaration, simplifies projections, and replaces ρ(a) with r where a is

the abstract target signal and r is the refinement signal.

Chapter 8. Data Refinement 181

Example 8.6: The following behavior tables show the action of the stack=>array

refinement from Example 8.4 on the stack calculator specification. This is the be-

havior table version of the stream system refinement in Example 8.3. The refinement

command specifies the abstract signal s, the name of the refinement signal s*, that

the automatic rewriting should extend to the subterms of res, and refinement decla-

ration stack=>array:

⇒

Since the implementation type is a tuple of memory and index, the resulting projectors

obfuscate the terms. Splitting the implementation signal into components named m

and i simplifies the update terms:

⇒

Chapter 8. Data Refinement 182

Example 8.7: The following behavior tables show the action of the stack=>heap

refinement from Example 8.5 on the stack calculator specification.

Prior to stack refinement, this example adds a combina-

tional signal tl to hold the term (pop s).

The update actions for s simplify using the combinational

identity tl=(pop s).

The next step transforms tl from a combinational signal

to a sequential signal.

The stack identity pop(push(s, d)) = s simplifies the ac-

tions for tl in the psh-op and alu-op cases.

The data refinement represents s and

tl with two reference signals, s* and

tl*, and two shared state signals, m and

i.

The multi reference refinement command specifies the table in the tree hierarchy (top

level in this case), the abstract signals s and tl, names for the reference signals s*

Chapter 8. Data Refinement 183

and tl*, names for each of the shared state signals mem and ptr, that the auto-

matic rewriting should extend to the subterms of res, and the refinement declaration

stack=>heap:

(apply-data-refinement (make-sys-path)
’((tl . tl*) (s . s*)) ’(mem ptr) ’(res) ’stack=>heap)

The order of abstract signal specification also prescribes the order of state access. In

this example, tl updates the state before s.

8.5 Putting it all together

This derivation combines factorization, serialization, data refinement, and retiming

to produce a high level architecture for the abstract stack calculator specification.

The target architecture represents stacks with a heap. It has several registers: stack

top value, reference to stack tail, reference to stack, reference to heap horizon, and a

ALU result buffer. The derivation factors out the memory and ALU. The controller

is a collection of register transfers between inputs and its internal registers. The

controller applies only trivial functions—i.e., those implementable with bit-vector

masks in the target medium. Figure 16 illustrates the specification and decomposition

with architectural diagrams.

Step 1

⇒ ⇒

Chapter 8. Data Refinement 184

S

push

pop

top
ALU

top
top pop

pop

pop

push

instr a

res

Controller

Memory

ALU

res
instr

a

Figure 16: The top diagram is an architectural view of the specification behavior
table. The bottom diagram is the resulting decomposition, where the controller is a
register-transfer machine.

The first step is to introduce a combinational signal tl that constantly holds the value

(pop s). The derivation simplifys the action terms of s by replacing (pop s) and

(top s) with tl and res, respectively. It is critical to make these substitutions now,

because translation to sequential signals eliminates Starfish’s access to the invariants

tl = (pop s) and res = (top s).

Chapter 8. Data Refinement 185

Step 2

⇒

The signals res and tl are candidates for register conversion because their actions do

not use either of the input signals. Unrolling the combinational signals opens many

opportunities for term simplification; immediate top and pop accesses after a push

recover the push value and old stack respectively. These simplifications are applied

to produce the table on the above, right. Recall that the solution streams for res

and tl are unaltered. So the invariants tl = (pop s) and res = (top s) still hold.

Since the combinational representation of the signals is replaced, the behavior table

algebra does not retain these invariants.

Step 3

⇓

⇒

The above sequence develops the serialization table for the action guarded by alu-op.

The subject signals are res, s, and tl. The above left is the initial table. Recall that

the lhs contains the proposed serial sub-actions, the rhs holds the serial symbolic

Chapter 8. Data Refinement 186

evaluation of the lhs, and that the last row shows the evaluation targets in the rhs

(and nothing in the lhs). The next table introduces a new registered signal, x, to

temporarily hold the value of res. The final table shows the rest of the serialization

proposal. Since the result of symbolic evaluation matches the evaluation targets, this

is a valid serialization.

Step 4

The left table below inserts the schedule in the behavior table.

⇒

The right table (above) shows the result of data refinement from abstract stacks to

heaps. The two stack signals s and tl are refined to reference signals s* and tl*,

using the refinement identities defined by Figure 15. The signal mem is the infinite

heap and ptr points to the next free cell. This is an example of the many-to-one

stateful refinement schema from Section 8.3.

Step 5

The ptr signal has type ind. This is an attractive signal for integer refinement

becuase the inc operation could make use of alu evaluation. One of the derivaiton

goals is to factor out a separate ALU; using this apparatus to aid stack management

is a desirable optimization. The refinement simply embeds ind into the non negative

integers as follows:

Chapter 8. Data Refinement 187

(declare-refinement ind => int
() ; unparameterized
"ind" "integer" ; src and target types
() ; no state
([i "ind"]) ; formal variable decls
([i* "(ind=>int i)"]) ; bindings
(["(inc i)" "(+ 1 i*)"] ; implementation of inc
["(dec i)" "(sel (= 0 i*) (- i* 1) 0)"] ; of dec
["0_ind" "0"]) ; implementation of 0_ind

()
([’ind=>int:inv "(ind<=int i*)" "i"]))

The above table shows the result of applying this refinement to ptr. The new

signal, ptr*, is an integer. Since this is a local refinement, consumers of the original

ptr now accept (ind<=int ptr*) in its place. At a low level, this type coercion may

simply be projection out of a bit vector; e.g., the address space is 24-bit while the

integers are 32-bit. Thus the overhead of coercion need not be high.

Step 6

Chapter 8. Data Refinement 188

To prepare for memory factorization the above table introduces a combinational signal

cell to hold the common subterm (rd mem tl*) for actions [# drp-op] [1 alu-op]

in signals tl* and res. Also, note the rewriting of + applications as instances of alu

in anticipation of ALU factorization. The signals mem and cell are the subjects of

memory factorization. Uniform signal and function usage reduces the interconnects

and instructions resulting from factorization.

Step 7

The next derivation subgoal is to produce uniform arguments for applications of wr

in signal mem by serializing psh-op.

⇓

⇓

Chapter 8. Data Refinement 189

The top table (above) shows the two step serialization proposal for the register

actions guarded by psh-op. The first step stores a in res and s* in tl*. The

subsequent call to wr now operates on [res tl*] as its companion does in the action

guarded by [3 alu-op] (middle table). Also, the first step places the constant 1 into

the temprary register x to anticipate a more uniform application of alu in the next

step. Finally, this alu homogenization extends to a reserialization of alu-op, steps

2 & 3 (bottom table); as before, the temporary register x holds the constant 1. As a

result all three alu applications carry x in the second argument.

Step 8

The above system of tables decompose the stack calculator into a memory and a

controller. This decomposition cuts across the signals that implement abstract stacks:

the free cell pointer ptr*, and stack reference signals s* and tl* remain in the

controller, while the abstract memory becomes a separate component.

Chapter 8. Data Refinement 190

Step 9

The table above expands applications of alu and their arguments into combinational

host signals. The combinational signals alu-instr and alu-arg1 leverage the de-

cision table guards to switch the inputs to alu. Since x is the second argument for

every application, there is no need to provide a separate argument host signal. Note

that rescheduling alu-op or psh-op could produce a completely uniform application

of alu (as with wr and rd in the memory factorization) at the cost of some extra

register transfers and a temporary alu-decode register for the instructions. As with

the coercions from integer to ind, the “alu-decode” (inst->op) may be as simple

as projecting the right bits out of the instruction’s bit vector.

Step 10

Factoring the alu produces the above system.

Chapter 8. Data Refinement 191

Step 11

The derivation finishes by expanding the ALU component (below). The input alu-

-instr is the soul gaurd (first and second tables). Once the guard identities are

instantiated (third table), the alu identities recover the four basic operations (final

table).

⇒ ⇒ ⇒

Summary

This derivation develops high level architecture from an architecture agnostic spec-

ification. While the specification has just one abstractly typed register to hold the

stack, the resulting architecture uses reference and integer registers to hold the cur-

rent stack reference s*, the popped stack reference tl*, the stack top res, reference,

the next free cell reference ptr*, and a temporary register x. Each of the three com-

ponents plays a role in stack implementation. The controller holds all of the reference

registers, and delegates updates to the ALU and memory. The memory stores and

retrieves the stack content. The ALU computes the increment for the next-free-cell

pointer as well as the arithmetic demands of the calculator’s user - a nice reuse of

necessary architecture.

Chapter 9

Case Studies

9.1 SchemEngine Garbage Collector

This study factors a heap garbage collector; the example first appears in [96]. Wehrmeis-

ter’s LISP virtual machine derivation [103] used a primitive version of this garbage

collector. Later, Burger enhanced the specification into the form presented here for his

Scheme-machine derivation [16]. Both derivations resulted in working hardware. The

factorization shows the feasibility of behavior-table-oriented derivation on real-world

designs.

This specification follows a functional modeling approach and represents mem-

ory with abstract data-types. The stop-and-copy algorithm literally “swaps” the

two memory signals, new and old, the end of collection. The derivation factors

the abstract memory signals and operations from the control algorithm, and uses

data refinement to implement memory swapping with a switch that indicates which

of two memories is new. The resulting memory component is well suited for im-

plementation with two single-ported random-access memories and a switch flag or

xor-gate. The controller’s remaining term functions either increment values, add

two values, mask bit-vectors or embed bit-vectors. Subsequent factorization on

192

Chapter 9. Case Studies 193

the add/increment/decrement functions (not performed here) would produce a pure

register-transfer controller.

9.1.1 Specification

The garbage collector specification uses two enumerated types: one for control state

and another for classifying of heap elements. 32-bit vectors encode heap elements,

while 24-bit vectors define memory addresses. Memory is a parameterized type over

address and data, instantiated to 24-bit and 32-bit vectors respectively. Garbage

collection follows a modified stop-and-copy approach.

The specification uses two sequential signals old and new to represent streams

of memory half-spaces. After all reachable heap elements are copied from old to

new, the control state preceding transition into idle swaps the two abstract memory

values; see signals old and new in the action table of Figure 18 at the row guarded by

(driver, #, true, #, . . . , #). The scan register holds the address of the heap value in

new whose children are to be copied over from old. The next register holds the address

of next available free cell in new. The collection loop ends with the convergence of

scan and next. Register H holds the word (in new) indexed by scan. When H is a

pointer type (i.e., not an immediate value), D is the word (in old) that H references.

C is a count register for copying contiguous cell blocks (as with a vector or a fixed

length object). Finally, the ak signal indicates when collection is finished.

Chapter 9. Case Studies 194

(define-enum-alg gc-state
(idle driver next-obj obj-type vec copy) () () ())

(define-enum-alg type-class
(fixed vector byte-vec) () () ())

(define-param-alg memory
(addr data)
()
((wr (memory addr data) memory)
(rd (memory addr) data))

((m memory) (a addr) (d data) (e data))
((’mem1 (rd (wr m a d) a) d)
(’mem2 (wr m a (rd m a)) m)
(’mem3 (wr (wr m a d) a e) (wr m a e))))

(declare-funcs gc-help
() ;; no parameters
((+val ("bvec{24}" "bvec{24}") "bvec{24}")
(+1val ("bvec{24}") "bvec{24}")
(-1val ("bvec{24}") "bvec{24}")
(+1cell ("bvec{32}") "bvec{32}")
(=val ("bvec{24}" "bvec{24}") "boolean")
(pointer? ("bvec{32}") "boolean")
(bv-head? ("bvec{32}") "boolean")
(fw-tag? ("bvec{32}") "boolean")
(tclass ("bvec{32}") "type-class")
(cell->val ("bvec{32}") "bvec{24}")
(b->w ("bvec{24}") "bvec{24}")
(size ("bvec{32}") "bvec{24}")
(mk-cell-1 ("bvec{32}" "bvec{32}") "bvec{32}")
(mk-cell-2 ("bvec{32}" "bvec{24}") "bvec{32}")
(mk-fw-cell ("bvec{24}") "bvec{32}")
) () ())

Figure 17: Datatype declarations for GC

Chapter 9. Case Studies 195

⇒
⇒

F
ig

u
re

18
:

G
C

’s
b
eh

av
io

r
ta

b
le

sp
ec

ifi
ca

ti
on

(t
op

);
re

su
lt

of
ex

p
an

d
in

g
w
r
,
r
d
,
an

d
th

ei
r

ar
gu

m
en

ts
in

to
co

m
b
in

a-
ti

on
al

si
gn

al
s

(b
ot

to
m

le
ft

);
re

su
lt

of
p
er

m
u
ti
n
g
a
r
g
X

si
gn

al
s

fo
r

u
n
if
or

m
it
y

(b
ot

to
m

ri
gh

t)
.

In
b
ot

h
b
ot

to
m

ta
b
le

s,
th

e
v
ie

w
is

li
m

it
ed

to
th

e
si

gn
al

s
th

at
ch

an
ge

d
;
th

e
d
ec

is
io

n
ta

b
le

is
th

e
sa

m
e

th
ro

u
gh

ou
t.

Chapter 9. Case Studies 196

new

old

wr

rd

Heap

command

data-in

rd-addr

wr-addr

data-out

Figure 19: The GC specification uses abstract memory signals and operations; fac-
toring them from the controller encapsulates the abstraction with a separate process.
Details are shown with the tabular representation.

Chapter 9. Case Studies 197

9.1.2 Factorization

This process depends on the heuristically guided factorization assistants, expand-apps,

permute-comb-signals, and factor-signals, explained in Chapter 6.4. The garbage

collector specification uses two abstract memories as internal signals. The first goal is

to decompose this specification into a controller that interacts with an external mem-

ory. In addition to isolating the memory signals themselves, it is further necessary

to separate its accessors; i.e., the rd function. The first step is to expand applica-

tions of rd and wr into host signals using expand-apps. This tactical transformation

automatically creates combinational signals app0 and app1, instantiates them to rd

and wr respectively, and places their arguments into new combinational signals arg0,

arg1 and arg2. The automatic argument allocation lacks uniformity, with rd tak-

ing arg2 as its input in some places but arg0 in other places. Another convenience

transformation permute-comb-signals permutes actions among same-typed combi-

national signals and updates their client terms. It homogenizes parameter content

for arg0 (address input to rd), arg1 (data input to wr) and arg2 (address input to

wr). Argument permutation reduces the number of instructions inside the factored

component; (wr old arg1 arg0) and (wr old arg1 arg2) would generate differ-

ent commands. Applying factor-signals to the target signals old, new, app0 and

app1 extracts distinct actions on the four signals, assigning each action to a unique

bit-vector code. This indexed table of actions forms the behavior table for the ab-

stract memory. A combinational signal, which specifies instructions to the abstract

memory, replaces the four memory signals from controller. Figure 19 shows the result

of this factorization.

Chapter 9. Case Studies 198

9.1.3 Data Refinement

The next step eliminates explicit memory swapping (instruction 00) in favor of state

tracking. Let gcm be the tuple [m1 m2]. A collection of wrapper functions (defined in

the code below) wr-new, wr-old, rd-new, rd-old, and swap, packages the actions on

individual signals m1 and m2 as operations the tuple gcm. The old and new versions

access the first and second tuple components respectively, while swap exchanges their

values.

;; Formals
((m1 "memory{bvec{24} bvec{32}}")
(m2 "memory{bvec{24} bvec{32}}")
(a "bvec{24}")
(d "bvec{32}"))

;; Identities
(’wr-old-def "(wr-old [m1 m2] a d)" "[(wr m1 a d) m2]")
(’wr-new-def "(wr-new [m1 m2] a d)" "[m1 (wr m2 a d)]")
(’rd-old-def "(rd-old [m1 m2] a)" "(rd m1 a)")
(’rd-new-def "(rd-new [m1 m2] a)" "(rd m2 a)")
(’swap-def "(swap [m1 m2])" "[m2 m1]")

The following data refinement represents this bundled type as a triple with two

memories and a boolean switch. The switch determines which memory to access, and

swap exchanges memory half-spaces by inverting the switch. The identities below

show how the wrapper functions map to switch-guarded read and write accesses.

Chapter 9. Case Studies 199

⇒

⇒

⇒

Figure 20: Elimination of memory swapping by switch refinement

;; Formals
([gcm "[memory{bvec{24} bvec{32}} memory{bvec{24} bvec{32}}]"]
[a "bvec{24}"]
[w "bvec{32}"])

;; Bindings
([m1 "(1st (2mem=>bit gcm))"]
[m2 "(2nd (2mem=>bit gcm))"]
[sw "(3rd (2mem=>bit gcm))"])

;; Refinement mappings
["(wr-old gcm a w)" "[(sel sw (wr m1 a w) m1)

(sel sw m2 (wr m2 a w)) sw]"]
["(wr-new gcm a w)" "[(sel sw m1 (wr m1 a w))

(sel sw (wr m2 a w) m2) sw]"]
["(swap gcm)" "[m1 m2 (inv sw)]"]
["(rd-old gcm a)" "(sel sw (rd m1 a) (rd m2 a))"]
["(rd-new gcm a)" "(sel sw (rd m2 a) (rd m1 a))"]

Chapter 9. Case Studies 200

Figure 20 shows the three steps in the switch derivation: The first step bundles the

two memories into one value gcm (garbage collected memory). The second applies

the switch-guarded refinement to gcm, and splits the implementing tuple into m1, m2,

and sw. The last step expands the switch into the decision table.

9.2 The SECD Machine

SECD is an abstract machine that defines operational semantics for LISP[63]. The

name comes from its four “registers”—stack, environment, control, dump—which use

abstract pairs to hold an argument stack, a binding environment, the nested byte code

program, and a function call stack (dump). LISP machines have been the subject

of many formal verification and design efforts, including the VLISP project [35], a

SECD hardware verification in HOL [6], and the SchemEngine derivation [16, 56].

Independently of VLISP and the HOL verification of SECD, Wehrmeister derived a

hardware implementation for a SECD specification with DDD [103]. Wehrmeister’s

starting specification is far more detailed than any machine used for operational

semantics. The purpose of this study is to take a high-level SECD specification and

derive a good approximation of Wehrmeister’s starting point.

9.2.1 SECD machine specification

The SECD machine interprets structured lists of byte-codes (control). Primitive

functions and control flow operations have their own byte-code, while user-defined

functions are lists of byte-codes. The machine adheres to the following invariant: Let

Chapter 9. Case Studies 201

(define secd
(lambda(exp)
(letrec
((exec
(lambda (s e c d)
(case (car c)
(’RTN (exec (cons (car s)(car d)) (cadr d) (caddr d) (cdddr d)))
(’DUM (exec s (cons () e) (cdr c) d))
(’AP (exec nil (cons (cadr s)(cdar s))

(caar s) (cons (cddr s)(cons e (cons (cdr c) d)))))
(’RAP (exec nil (set-car! (cdar s)(cadr s)) (caar s)

(cons (cddr s)(cons (cdr e)(cons (cdr c) d)))))
(’SEL (exec (cdr s) e (if (car s)(cadr c)(caddr c))

(cons (cdddr c) d)))
(’JOIN (exec s e (car d) (cdr d)))
(’CAR (exec (cons (caar s)(cdr s)) e (cdr c) d))
(’CDR (exec (cons (cdar s)(cdr s)) e (cdr c) d))
(’CONS (exec (cons (cons (car s)(cadr s))(cddr s)) e (cdr c) d))
(’LD (exec (cons (locate (cadr c) e) s) e (cddr c) d))
(’LDC (exec (cons (cadr c) s) e (cddr c) d))
(’LDF (exec (cons (cons (cadr c) e) s) e (cddr c) d))
(’ATOM (exec (cons (atom? (car s))(cdr s)) e (cdr c) d))
(’EQ (exec (cons (eq? (car s)(cadr s))(cddr s)) e (cdr c) d))
(’LEQ (exec (cons (<=? (car s)(cadr s))(cddr s)) e (cdr c) d))
(’ADD (exec (cons (+ (car s)(cadr s))(cddr s)) e (cdr c) d))
(’SUB (exec (cons (- (car s)(cadr s))(cddr s)) e (cdr c) d))
(’STOP (exec s e c d))
(else (exec s e c d))))))

(exec nil nil exp nil))))

Figure 21: A high-level SECD s-expression specification (HS) to which Wehrmeister
attributes the design intent of his machine.

Chapter 9. Case Studies 202

the control register hold a valid program in its initial segment. After execution of the

program, the machine state has the same environment and dump prior to execution,

and the stack is expanded by one to include the result of the program, and the control

register’s initial segment has been removed. Figure 21 shows a high-level specification

of SECD. This code is a variant of the Henderson’s formulation of SECD [42] for the

operational semantics of LISP.

While the SECD machine gives a more detailed semantics than the interpreter

based semantics, still has ambiguities. rplaca is a pseudofunction which is evaluated

for its effect and not its value. To functionally specify the action of rplaca, one must

define its “effects” and interplay with cons, car, and cdr over a more concrete data

type that fully exposes the “effects” in their domain and range. Understanding the

SECD machine depends upon its core data type, mutable s-expressions.

Because the construction of circular lists with side-effects can not be characterized

algebraically, I have chosen to drop the rap and set instructions from the high-level

specification. These would be added to the specification after refining s-expressions

into memory accesses (alloc, setcar!, setcdr!).

While the high-level specification can draw its atoms from an infinite symbol space,

implementations need to precisely define this data-type. Wehrmeister’s specification

supports characters and symbols. Characters are an atomic data-type, but symbols

are implemented as lists of characters where the first pair bears the “symbol” tag

rather than the “pair” tag. Thus, our derivations’s starting point adds characters to

the atoms as well as primitives that transform symbols to lists of characters and vice

versa. Numbers are ultimately bounded bit-vector representations, but this derivation

Chapter 9. Case Studies 203

treats them as ideal mathematical entities throughout.

Because of the necessary side-effects in the high-level specification, Wehrmeister

chose to specify over a heap data-type. This eliminated the need for side-effects, but

resulted in a far more detailed specification. His specification serializes access to the

heap and contains some non-trivial retimings. Moreover, the specification interfaces

with a garbage collector and processes input and output. For the remainder of this

chapter, WS refers to the specification of Wehrmeister’s SECD machine, while HS

refers to the high-level operational semantics specification.

Our approximation of the WS does not include the garbage collector interface or

the I/O handling. Like the side-effect necessary for the recursive apply operation

(rap), these features may be added on to the result of our derivation. The study

justifies transition from nested abstract pairs to references over a heap of cells, WS’s

particular scheduling of intermediate operations, and the storage of intermediate re-

sults in new registers. The initial behavior table (Figure 22) for this derivation is a

by-hand translation of the s-expression in Figure 21.

9.2.2 Specification Signature

The core type declaration is lt, for LISP type. The signature’s intended model is

the collection of atoms and pairs over model elements. The declaration does not

prescribe particular atoms or the behavior of most of its functions, but mandates

some minimal well-formedness conditions (i.e., function signatures) and identities for

the term’s equational logic. The constants nil, tru and fls, represent the LISP

Chapter 9. Case Studies 204

Figure 22: SECD behavior table specification

empty-list and boolean values. Functions cons, car and cdr are a binary construc-

tor with accessors as shown by the access1 and access2 identities. The functions

eq?, <=?, plus, minus, nil?, atom?, num?, sym?, and pair? have the standard in-

terpretations in the intended model, but are unconstrained by the identities because

the derivation does not reason about the application of these functions. Similarly,

the functions locate, sym-list, list-sym, and char2int, are not explicitly rewrit-

ten in the derivation and consequently are not accompanied by identities. However,

their anticipated implementation is unclear. They will be factored out in the end

result. WS expresses the predicates atom?, num?, sym?, and pair? with a parame-

terized function test? that specifies the desired predicate with input instructions;

Chapter 9. Case Studies 205

the declarative block secd-helpers makes this connection explicit. The enumer-

ated type declaration secd-state behaves as a label-set that corresponds to decoded

byte-codes from the control signal, c.

Since lt can only declare signatures and identities over type lt, the declare-funcs

block secd-helpers completes the identities over the specification types. dcd takes a

lt and produces an instruction token in secd-state. This is necessary to mimic the

specification’s case structure. The declarative block also registers predicate identities

for test?. The function test-inst? defines the behavior for test? when its first

agrument decodes to atom-t, num-t, sym-t, or pair-t. true? maps lts to booleans

so that (if k a b) may be defined by (sel (true? k) a b).

9.2.3 Derivation Strategy

The high-level derivation strategy consists of five steps: introducing fetch register

and update, rewriting function applications in the high-level specification to match

those in WS, serializing the memory access operations cons, car and cdr, refining

HS’s lt data-type into WS’s heap (lmem) over cells (lc), and rescheduling the imple-

mentation of cons (a term that entails three memory accesses). The serialize/refine-

data/reserialize order of tasks prevents the excessive term size resulting from serial-

store access imposed by stateful data refinement. Had data refinement preceded

serialization, the terms would have become impractically large as in Figure 24.

Chapter 9. Case Studies 206

(define-enum-alg secd-state
(rtn-t dum-t ap-t sel-t join-t car-t cdr-t cons-t ld-t

ldc-t ldf-t atom-t eq-t leq-t add-t sub-t sl-t ls-t
ci-t num-t sym-t pair-t exec-t pop-t stop-t) () () ())

(define-term-alg lt
;; Constants
(nil err tru fls)
;; Functions with arity
((cons 2) (car 1) (cdr 1)
(nil? 1) (atom? 1) (num? 1) (pair? 1) (sym? 1)(eq? 2)
(test? 2)
(<=? 2) (plus 2) (minus 2)
(if 3)
(sym-list 1) (list-sym 1) (char2int 1)
(locate 2))

;; Formals
(key a b)
;; Identities
((’access1 (car (cons a b)) a)
(’access2 (cdr (cons a b)) b)))

(declare-funcs secd-helpers
() ; no paramerters
;; Function signatures
([dcd ("lt") "secd-state"]
[test-inst? ("secd-state" "lt") "lt"]
[true? ("lt") "boolean"])

;; Formals
([a "lt"] [b "lt"] [k "lt"] [tst "boolean"])
;; Identities
([’if-def "(if k a b)" "(sel (true? k) a b)"]
[’test?-def "(test? a b)" "(test-inst? (dcd a) b)"]
[’test-inst?-def-atom "(test-inst? atom-t b)" "(atom? b)"]
[’test-inst?-def-num "(test-inst? num-t b)" "(num? b)"]
[’test-inst?-def-sym "(test-inst? sym-t b)" "(sym? b)"]
[’test-inst?-def-pair "(test-inst? pair-t b)" "(pair? b)"]))

Figure 23: SECD specification data-types

Chapter 9. Case Studies 207

(setcar!*
(setcdr!*

(setcar!*
(setcdr!*

(setcar!*
(setcdr!*
(setcar!*

(setcdr!* mem (alloc* mem) (cdr* mem (car* mem s*)))
(alloc* mem)
(car* mem (cdr* mem s*)))

(alloc*
(setcar!*
(setcdr!* mem (alloc* mem) (cdr* mem (car* mem s*)))
(alloc* mem)
(car* mem (cdr* mem s*))))

d*)
(alloc*
(setcar!*

(setcdr!* mem (alloc* mem) (cdr* mem (car* mem s*)))
(alloc* mem)
(car* mem (cdr* mem s*))))

(cdr* (setcar!*
(setcdr!* mem (alloc* mem) (cdr* mem (car* mem s*)))
(alloc* mem)
(car* mem (cdr* mem s*)))

c*))
(alloc*
(setcar!*
(setcdr!*

(setcar!*
(setcdr!* mem (alloc* mem) (cdr* mem (car* mem s*)))
(alloc* mem)
(car* mem (cdr* mem s*)))

(alloc* ...

Figure 24: The first 15% of the memory term from branch ap-t had refinement been
applied prior to any serialization

Chapter 9. Case Studies 208

⇒

Figure 25: The first table fragment introduces a combinational signal i that if uni-
formly equal to (car c). Intuitively, deriving the second table entails combinational
identification to replace the guard (dcd (car c)) with (dcd i) followed by con-
verting i to a sequential signal. However well-formedness disallows combinational
signals from guard expressions, thus the derivation follows the more arcane sequence
described in Section 9.2.4.

9.2.4 Introducing fetch

WS places, or fetches, each instruction into a register i. HS guards its actions with

(dcd (car c)). The goal is to guard it with (dcd i) where i is a register. To

do this: collapse the guard, so that there is only one action row. The collapse

replaces table rows with a single sel(dcd(carc))...) whose branches are the specification

table’s row terms. Then introduce a combinational signal i that equals (car c).

Use combinational substitution to replace the selector key (dcd (car c) by (dcd

i). Transform i into a sequential signal, and finally expand back to a table over the

selection key (dcd i). The update actions for i mirror those for c, except that they

additionally car-access the expressions. After serialization, this additional access

becomes the fetch step at the tail of every case (Figure 25).

Chapter 9. Case Studies 209

9.2.5 Expanding functions

HS uses the functions atom?, num?, sym?, and pair?. The target expression consoli-

dates these predicates with the parameterized function test?, which uses the current

instruction (from register i) to select the operation. Using the identities from the

secd-helpers declaration (Figure 23) and the guard identity, the derivation replaces

atom? with test? (case atom-t, signal s):

(atom? (car s)) = (test-inst? atom-t (car s))
= (test-inst? (dcd i) (car s))
= (test? i (car s))

Similar reasoning allows replacement of the other three predicates by test? in cases

num-t, sym-t, and pair-t. The pre-serialization strategy also converts if to its sel

counterpart (case sel-t, signal c):

(if (car s) (sel (true? (car s))
(car (cdr c)) = (car (cdr c))
(car (cdr (cdr c)))) (car (cdr (cdr c))))

(car
= (sel (true? (car s))

(cdr c)
(cdr (cdr c))))

9.2.6 Initial serialization and scheduling

The next task schedules cons, car and cdr, to apply at most one instance per step. A

second sequential signal, j, combined with i hold most intermediate results. Schedul-

ing matches WS as closely as possible. Since WS operates on the heap representation,

cons applications could not be split up in the same manner—as it is a sequence of

alloc, setcar! and setcdr!.

Chapter 9. Case Studies 210

(exec
(lambda (s e c d mem i j do_gc donesecd sio)

(case i
(RTN-t (rtn1 ? ? ? d mem (car* mem s) ? (bit nil)(bit nil) sio))
...
)))

(rtn1 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn2 ? ? ? d mem i (alloc* mem) (bit nil)(bit nil) sio)))

(rtn2 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn2.4 j ? ? d mem i ? (bit nil)(bit nil) sio)))

(rtn2.4 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn2.5 s ? ? d mem i (car* mem d) (bit nil)(bit nil) sio)))

(rtn2.5 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn2.8 s ? ? d (setcar!* mem s i) ? j (bit nil)(bit nil) sio)))

(rtn2.8 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn3 s ? ? d (setcdr!* mem s j) ? ? (bit nil)(bit nil) sio)))

(rtn3 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn3.5 s ? ? d mem ? (cdr* mem d) (bit nil)(bit nil) sio)))

(rtn3.5 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn4 s ? ? d mem (car* mem j) j (bit nil)(bit nil) sio)))

(rtn4 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn4.5 s ? ? d mem i (cdr* mem j) (bit nil)(bit nil) sio)))

(rtn4.5 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn5 s i ? d mem ? j (bit nil)(bit nil) sio)))

(rtn5 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn6 s e ? d mem (car* mem j) j (bit nil)(bit nil) sio)))

(rtn6 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn6.5 s e i d mem ? j (bit nil)(bit nil) sio)))

(rtn6.5 (lambda (s e c d mem i j do_gc donesecd sio)
(rtn7 s e c d mem (cdr* mem j) ? (bit nil)(bit nil) sio)))

(rtn7 (lambda (s e c d mem i j do_gc donesecd sio)
(fetch s e c i mem ? ? (bit nil)(bit nil) sio)))

(fetch (lambda (s e c d mem i j do_gc donesecd sio)
(if (need_2_gc)
(init_gc1 s e c d mem (alloc* mem) ? (bit nil)(bit nil) sio)
(exec s e c d mem (car* mem c) ? (bit nil)(bit nil) sio))))

Figure 26: The WS schedule of rtn-t splits the execution of a cons (alloc*,
setcar!*, setcdr!* corresponding to steps rtn1, rtn2.5 and rtn2.8) over stor-
age in s (rtn2) computation of (car* mem d) (rtn2.4).

Chapter 9. Case Studies 211

Figure 27: This approximates the WS schedule of rtn-t (Figure 26); the level of
granularity requires atomic execution forcons.

For example, WS’s schedule of rtn-t (Figure 26) first allocates heap space in

state rtn1, then moves the referencing address to register s and computes (car* mem

d) in j, prior to the initialization of the heap cell. Interleaving the execution of cons

applications with address transfers and (car* mem d) is not possible in the lt data-

type. The approximation of this schedule in lt (Figure 27) computes (car d) in j

prior to (cons i j) directly in register s. After translating to heap representation,

reserialization obtains WS’s schedule. Similar judgement calls are needed for other

cons applications.

WS’s schedule uses a microcode style compression of same-control suffixes. For

instance, the schedules of car-t and cdr-t are identical except for the second step

where car returns one element of the pair, while cdr returns the other. Rather than

duplicate the shared code, cdr1 transitions to the state car2. Similarly the end of the

car schedule shares a control suffix with other schedules as indicated by the transfer

to state next1 (Figure 28). It is not possible to express this kind of suffix sharing

with the serialization tables, thus the Starfish derivation enumerates each schedule in

Chapter 9. Case Studies 212

(exec
(lambda (s e c d mem i j do_gc donesecd sio)

(case i
(CAR-t (car1 s e c d mem (car* mem s) ? (bit nil)(bit nil) sio))
(CDR-t (cdr1 s e c d mem (car* mem s) ? (bit nil)(bit nil) sio))
...
)))

(car1 (lambda (s e c d mem i j do_gc donesecd sio)
(car2 s e c d mem (car* mem i) ? (bit nil)(bit nil) sio)))

(car2 (lambda (s e c d mem i j do_gc donesecd sio)
(car3 s e c d mem i (alloc* mem)(bit nil)(bit nil) sio)))

(car3 (lambda (s e c d mem i j do_gc donesecd sio)
(car4 s e c d (setcar!* mem j i) ? j (bit nil)(bit nil) sio)))

(car4 (lambda (s e c d mem i j do_gc donesecd sio)
(car5 ? e c d mem (cdr* mem s) j (bit nil)(bit nil) sio)))

(car5 (lambda (s e c d mem i j do_gc donesecd sio)
(car6 ? e c d (setcdr!* mem j i) ? j (bit nil)(bit nil) sio)))

(car6 (lambda (s e c d mem i j do_gc donesecd sio)
(next1 j e c d mem ? ? (bit nil)(bit nil) sio)))

(cdr1 (lambda (s e c d mem i j do_gc donesecd sio)
(car2 s e c d mem (cdr* mem i) ? (bit nil)(bit nil) sio)))

(next1 (lambda (s e c d mem i j do_gc donesecd sio)
(next2 s e ? d mem (cdr* mem c) ? (bit nil)(bit nil) sio)))

(next2 (lambda (s e c d mem i j do_gc donesecd sio)
(fetch s e i d mem ? ? (bit nil)(bit nil) sio)))

(fetch (lambda (s e c d mem i j do_gc donesecd sio)
(if (need_2_gc)
(init_gc1 s e c d mem (alloc* mem) ? (bit nil)(bit nil) sio)
(exec s e c d mem (car* mem c) ? (bit nil)(bit nil) sio))))

Figure 28: WS reuses common control suffixes to compress its expressions. The cdr1
state transfers control to car2. Many of the serial control flows end with a transfer
to next1 or fetch. However, Starfish’s serialization must explicitly enumerate all
common suffixes as shown by the final, post data-refinement schedules for car-t and
cdr-t.

Chapter 9. Case Studies 213

...
(ld3 (lambda (s e c d mem i j do_gc donesecd sio)

(if (zero?* i)
(ld4 s e c d mem ? (car* mem j)(bit nil)(bit nil) sio)
(ld3.5 s e c d mem i (cdr* mem j)(bit nil)(bit nil) sio))))

(ld3.5 (lambda(s e c d mem i j do_gc donesecd sio)
(ld3 s e c d mem (sub1* i) j (bit nil)(bit nil) sio)))

(ld4 (lambda (s e c d mem i j do_gc donesecd sio)
(ld5 s e c d mem (cdr* mem c) j (bit nil)(bit nil) sio)))

(ld5 (lambda (s e c d mem i j do_gc donesecd sio)
(ld6 s e c d mem (car* mem i) j (bit nil)(bit nil) sio)))

(ld6 (lambda (s e c d mem i j do_gc donesecd sio)
(ld7 s e c d mem (cdr* mem i) j (bit nil)(bit nil) sio)))

(ld7 (lambda (s e c d mem i j do_gc donesecd sio)
(if (zero?* i)
(ld8 s e c d mem (car* mem j) ? (bit nil)(bit nil) sio)
(ld7.5 s e c d mem i (cdr* mem j)(bit nil)(bit nil) sio))))

(ld7.5 (lambda (s e c d mem i j do_gc donesecd sio)
(ld7 s e c d mem (sub1* i) j (bit nil)(bit nil) sio)))

(ld8 (lambda (s e c d mem i j do_gc donesecd sio)
(ld10 s e c d mem i (alloc* mem)(bit nil)(bit nil) sio)))

...

Figure 29: WS embeds a looping control flow that implements (locate* mem i j)

with control states ld3 through ld7.5.

toto.

WS’s schedule of ld-t embeds a control loop for locate, a combinator which calls

the iterative recursive function index. This sort of iterative looping is not possible

with Starfish’s serialization facility. Instead, the derivation uses locate as a primitive

to be factored out of the primary controller.

WS routinely places don’t-care markers in registers that are no longer live. I

noted a missed opportunity in the serialization of ap-t. After step 9 of the initial

schedule, the contents of d no longer effect the result (Figure 30). Starfish’s initial

serialization marks these don’t-care’s. The serialization table confirms the correctness

Chapter 9. Case Studies 214

Figure 30: The value of d is no longer needed after step 9; it is replaced with a #.
WS exploits similar optimizations, although this particular one was overlooked.

of this simplification upon commitment to the behavior table.

9.2.7 Data refinement

HS operates on abstract pairs over atoms, defined by lt. This stage of the derivation

translates the system into WS’s native data-type, replacing the abstract pairs (lt)

with cell references (lc) to a heap (lmem{lc}). The lc declaration only declares

function signatures and constants with no identities. Intuitively the lc, for LISP

cell is a tagged integer, where the tag specifies empty-list, character, integer, symbol

or pair. The first three classifications are atoms; their numerical portion does not

reference the heap. The numerical field of pair or symbol tagged cell is a reference to

the heap. Symbols for this implementation are lists of characters whose head element

Chapter 9. Case Studies 215

(define-param-alg lmem
(cell)
()
([car* (lmem cell) cell]
[cdr* (lmem cell) cell]
[alloc* (lmem) cell]
[setcar!* (lmem cell cell) lmem]
[setcdr!* (lmem cell cell) lmem])

([m lmem] [i cell] [j cell] [k cell] [l cell])
([’car*-setcdr!* (car* (setcdr!* m j k) i) (car* m i)]
[’cdr*-setcar!* (cdr* (setcar!* m j k) i) (cdr* m i)]
[’setcar!*-setcdr!*-comm

(setcar!* (setcdr!* m i j) k l)
(setcdr!* (setcar!* m k l) i j)]))

(define-term-alg lc
(nil* err* fls* tru*)
((nil?* 1) (atom?* 1) (num?* 1) (pair?* 1) (sym?* 1)
(test?* 2)
(eq?* 2) (<=?* 2) (plus* 2) (minus* 2)
(sym-list* 1) (char2int* 1)) () ())

Figure 31: Signature declarations for a heap memory.

carries a symbol -tag. A further refinement could make this mapping explicit, however

such precision is unnecessary for the derivation’s target.

The heap structure, lmem for LISP memory, stores the cells in pairs. A pair or

symbol tagged cell references one of these pairs with its numerical field. The accessors

car* and cdr* (lmem{lc} × lc → lc) return the first and second cells respectively

of the pair referenced by their cell input. The alloc* function (lmem{lc} → lc)

returns a pair-tagged cell reference to an uninitialized pair in the heap, while the

functions setcar!* and setcdr!* (lmem{lc} × lc × lc → lmem{lc}) replace their

respective cells (as referenced by their middle argument) with the cell in their trailing

argument. The lmem declaration contains three identities that show how effects and

Chapter 9. Case Studies 216

(declare-funcs heap-helpers
()
([true?* ("lc") "boolean"]
[lc-eq? ("lc" "lc") "boolean"]
[locate* ("lmem{lc}" "lc" "lc") "lc"]
[list-sym* ("lmem{lc}" "lc") "lc"])

([m "lmem{lc}"] [i "lc"] [j "lc"] [k "lc"])
([’setcdr!*-inits-car-to-nil

"(setcdr!* m (alloc* m) i)"
"(setcar!* (setcdr!* m (alloc* m) i) (alloc* m) nil*)"]

[’setcar!*-inits-cdr-to-nil
"(setcar!* m (alloc* m) i)"
"(setcdr!* (setcar!* m (alloc* m) i) (alloc* m) nil*)"]

[’setcdr!*-effects-mem
"(cdr* (setcdr!* m i j) k)"
"(sel (lc-eq? i k) j (cdr* m k))"]

[’setcar!*-effects-mem
"(car* (setcar!* m i j) k)"
"(sel (lc-eq? i k) j (car* m k))"]

[’lc-eq?-comm "(lc-eq? i j)" "(lc-eq? j i)"]
[’lc-eq?-true "(lc-eq? i i)" "true"]
[’lc-eq?-false-1 "(lc-eq? (alloc* m) (car* m i))" "false"]
[’lc-eq?-false-2 "(lc-eq? (alloc* m) (cdr* m i))" "false"]))

Figure 32: These remaining functions and identities round-out the necessary signature
for the heap.

accessors commute with each other. These identities are critical to justifying the WS

memory access schedule. The first two indicate that an arbitrary setcdr!* change to

memory does not alter any subsequent car* access, and similarly setcar!*’s changes

are invisible to future applications of cdr*. The third identity shows that arbitrary

setcar!* and setcdr!* updates to the heap are independent and may commute.

The next declarative block, heap-helpers, defines the predicate signature lc-eq?

and heap versions of true?, locate and list-sym. lc-eq? intuitively returns the

boolean true when it’s arguments are the same and false otherwise. locate and

Chapter 9. Case Studies 217

list-sym need to traverse paths within their potentially nested pair arguments, thus

their heap implementations require an additional argument for the heap itself. Four

identities constrain lc-eq?’s behavior to return true on equal elements (reflexivity),

false for comparision of newly allocated cells with existing cells (i.e., those which

may be accessed in the memory prior to allocation), and that its arguments commute

(symmetry). The setcXr!*-effects identities show when heap updates change ac-

cess results of a given reference. These identities validate much of the retiming in

Section 9.2.8. Two more identities in this block prescribe an unintialized field in a

newly allocated pair to be nil after initialization of the other field. These identities

are critical in post-refinement scheduling.

The data refinement uses the state-threading schema presented in Section 8.3

to map lt to lmemlc. The core identities to this homomorphism relate cons, car

and cdr to their implementations in lmem{lc}. The following diagrams show how

lt’s functions are embedded in the refinement type. They commute with respect to

abstract equivalence; i.e.,

[r0 m0] ≡ [r1 m1]⇔ α(r0,m0) = α(r1,m1) (162)

The following bindings hold for the diagrams below:

[a* ma] = (pr=>heap a m)
[b* mab] = (pr=>heap b ma)

Chapter 9. Case Studies 218

(declare-refinement pr => cell
() "lt" "lc" ([m "lmem{lc}" "#:lmem{lc}"])
;; Formals
([a "lt"] [b "lt"] [i "lc"] [j "lc"] [tst "boolean"])
;; Image bindings
([a* "(pr=>cell a m)"]
[ma "(pr=>cell.m a m)"]
[b* "(pr=>cell b (pr=>cell.m a m))"]
[mab "(pr=>cell.m b (pr=>cell.m a m))"])

;; Refinement for functions that produce lt’s
(["#:lt" "#:lc" "m"]

["(cons a b)" "(alloc* mab)"
"(setcar!* (setcdr!* mab (alloc* mab) b*)
(alloc* mab) a*)"]

["(car a)" "(car* ma a*)" "ma"]
["(cdr a)" "(cdr* ma a*)" "ma"]
["(nil? a)" "(nil?* a*)" "ma"]
["(atom? a)" "(atom?* a*)" "ma"]
["(num? a)" "(num?* a*)" "ma"]
["(pair? a)" "(pair?* a*)" "ma"]
["(sym? a)" "(sym?* a*)" "ma"]
["(test? a b)" "(test?* a* b*)" "mab"]
["(eq? a b)" "(eq?* a* b*)" "mab"]
["(<=? a b)" "(<=?* a* b*)" "mab"]
["(plus a b)" "(plus* a* b*)" "mab"]
["(minus a b)" "(minus* a* b*)" "mab"]
["(char2int a)" "(char2int* a*)" "ma"]
["(sym-list a)" "(sym-list* a*)" "ma"]
["(list-sym a)" "(list-sym* ma a*)" "ma"]
["(locate a b)" "(locate* mab a* b*)" "mab"]
["nil" "nil*" "m"]
["err" "err*" "m"]
["fls" "fls*" "m"]
["tru" "tru*" "m"])

;; For functions that consume lt’s, but do not produce lt’s?
([’pr=>cell:true? "(true? a)" "(true?* a*)"]))

Figure 33: Refinement declaration from pairs to heap representation. Identities are
expressed as the top and bottom terms of the commuting diagram as in Section 9.2.7.

Chapter 9. Case Studies 219

lt× lmem{lc} [(cons a b) m]−−−−−−−−−→ lt× lmem{lc}

pr=>heap

y ypr=>heap

lc× lmem{lc} −−−−−−−−−−−−−−−−−−−−−→
[(alloc mab)

(setcar!*

(setcdr!* m* (alloc mab) a*)

(alloc mab)

b*)]

lc× lmem{lc}
(163)

lt× lmem{lc} [(car a) m]−−−−−−−→ lt× lmem{lc}

pr=>heap

y ypr=>heap

lc× lmem{lc} −−−−−−−−−−−→
[(car* ma a*) ma]

lc× lmem{lc}

(164)

lt× lmem{lc} [(cdr a) m]−−−−−−−→ lt× lmem{lc}

pr=>heap

y ypr=>heap

lc× lmem{lc} −−−−−−−−−−−→
[(cdr* ma a*) ma]

lc× lmem{lc}

(165)

Similarly, he functions list-sym and locate map to their counterparts. They do not

change the heap, but need it for evaluation.

lt× lmem{lc} [(list-sym a) m]−−−−−−−−−−→ lt× lmem{lc}

pr=>heap

y ypr=>heap

lc× lmem{lc} −−−−−−−−−−−−−−→
[(list-sym* ma a*) ma]

lc× lmem{lc}

(166)

lt× lmem{lc} [(locate a b) m]−−−−−−−−−−→ lt× lmem{lc}

pr=>heap

y ypr=>heap

lc× lmem{lc} −−−−−−−−−−−−−−−−→
[(locate* mab a* b*) mab]

lc× lmem{lc}

(167)

The remaining functions and constants in lt correspond to their starred counterparts

in lc with no effect on the heap and no need for heap access. The schema for one-

Chapter 9. Case Studies 220

and two-argument function identities follows:

lt× lmem{lc} [(f a) m]−−−−−−→ lt× lmem{lc}

pr=>heap

y ypr=>heap

lc× lmem{lc} −−−−−−−→
[(f a*) ma]

lc× lmem{lc}

(168)

lt× lmem{lc} [(h a b) m]−−−−−−−→ lt× lmem{lc}

pr=>heap

y ypr=>heap

lc× lmem{lc} −−−−−−−−−→
[(h a* b*) mab]

lc× lmem{lc}

(169)

Starfish’s data refinement facility also allows the user to specify automatic rewrites

of functions that do not produce lts yet accept lt parameters. The one translation

in this category is true?

lt× lmem{lc} [(true? a) m]−−−−−−−−−→ boolean

pr=>heap

y ∥∥∥
lc× lmem{lc} −−−−−−−−−−→

[(true?* a*) ma]
boolean

(170)

Starfish automatically rewrites terms using these identities. Since memory ac-

cesses are already serialized, no two registers try to update mem in the same action.

When this is not the case, Starfish follows the signal order specified in the transfor-

mation command for updating the state.

9.2.8 Re-serialization and re-scheduling

Data translation from abstract pairs to a referenced heap exposes the memory accesses

resulting from application of cons. Reserialization separates the alloc*, setcar!*,

and setcdr!* steps in cons’s implementation.

Chapter 9. Case Studies 221

Initial schedule of rtn-t after con-
version from pairs to heap

Insertion point of limited reserial-
ization: Note that the serial for
lines 1 and 2 have been symbolically
combined into a single row of sub-
ject terms.

Serialization table: The lhs shows
the proposed schedule, while the
rhs shows its serial symbolic evalu-
ation. The last row shows the sub-
ject terms which the serialization’s
evaluation must achieve. The last
step (not shown) commutes the or-
der of setcar!* and setcdr!* in
the fifth row of the rhs.

Result of commiting reserialization

Figure 34: Reserializing steps 1 and 2 of rtn-t: The refinement of pairs to heaps
replaces cons with a sequence of alloc*, setcar!* and setcdr!*. Starfish only
commits a serialization to the behavior table when the serial evaluation matches the
subject terms. Identity application is frequently necessary to satisfy this requirement
(as above).

Chapter 9. Case Studies 222

The symbolic evaluation of target schedules differ in several places from the terms

at this stage of the derivation. To achieve the target schedules, we use algebraic identi-

ties in the evaluation tables (left half of the serialization tables) to justify correctness.

In all but one case, the identities declared in the previous section suffice.

Reserializing the cons operation in rtn-t is representative of this process. Fig-

ure 34 shows the schedule for rtn-t. With the exception of steps 1 and 2, the schedule

represents the derivation’s target. Reserialization spans steps 1 and 2, where target

terms are the symbolic evaluation of these two steps. The result of the subschedule is

to place (alloc* mem) in s*, hold the value for d*, and initialize the new cell in mem

with i* and (car* mem d*). A hand-chosen rescheduling produces the third table in

Figure 34, where the bottom row represents the target terms. The final term in mem

differs from the target by the order of pair initialization. An application of identity

setcar!*-setcdr!*-comm identity rewrites this term to match the target:

(setcdr!*
(setcar!* mem (alloc* mem) i*)
(alloc* mem)
(car mem d*))

= (setcar!*
(setcdr!* mem
(alloc* mem)
(car mem d*))
(alloc* mem) i*)

Once the last row matches the evaluation requirement, Starfish can insert the sub-

schedule into the behavior table (Figure 34).

The subschedule for dum-t omits explicit intialization of the car field with nil

(Figure 35). The identity setcdr!*-inits-car-to-nil justifies this shortcut. While

setcdr!* is not necessarily responsible for initializing the car component to nil,

the identity ensures that its value is nil after initializing the cdr. Burger’s Scheme

Chapter 9. Case Studies 223

Insertion point for reserializa-
tion

Full schedule proposal (lhs): the
mem evaluation term needs to re-
flect a nil in the car cell.

setcdr!*-inits-car-to-nil

fixes the mem evaluation term.

Insertion of subschedule

Figure 35: Reserialization of dum-t

machine had an independently designed process to nil-out or invalidate memory after

garbage collection. A functional model of alloc* can’t change the heap because it

returns a reference, not a memory.

The post-translation target schedules frequently retime heap accesses to interleave

with evaluation of the alloc*-setcar!*-setcdr!* image of cons. In the previous

example, the target schedule retimes (car* mem d) from evaluation before alloc*

to evaluation after the alloc*, but before the subsequent setcar!* and setcdr!*.

Since alloc* doesn’t change the mem register, the subsequent cdr* accesses the same

value from mem. However, some of the other target schedules (e.g., ap-t) retime

Chapter 9. Case Studies 224

memory accesses to after the setcar!* and setcdr!*. These memory mutations

could potentially overwrite the subject of memory access. Since the heap is partitioned

into car-cells and cdr-cells, pushing a car* access past a setcdr!* (or a cdr* access

past a setcar!*) can not change the access result. The identities car*-setcdr!*

and cdr*-setcar!* (Figure 31) express this property.

When this is insufficient justification, the identities setcar!*-effects-mem and

setcdr!*-effects-mem (Figure 32) show how access to a mutated memory works

relative to the original memory. The identity asserts that the scope of the mutation

is limited to the cell at the address: if the access and mutation addresses are different,

then the mutation does not change the access value. In some contexts, we can use

identities to show that two address values are different: for instance the result of

(alloc* m), is always different than the result of (car m a) for any choice of m or

a (lc-eq?-* in Figure 32). In other places, the inequality is the result of a control

invariant rather than a data-type invariant. Such control invariants are asserted, and

then externally verified. Figures 36, 37 and 38 illustrate the three different tactics we

use to justify access to a mutated heap.

The remaining reserialization tasks employ the same transformation tactics. For

complete details, refer to Appendix A.

9.2.9 Comparing the derivation result with the WS

Starfish’s derivation (SD) produces much of WS from HS. The schedules for rtn-t,

dum-t, ap-t, sel-t, join-t, car-t, cdr-t, cons-t, ldc-t, ldf-t, atom-t, num-t,

sym-t, pair-t, eq-t, leq-t, add-t, sub-t, exec-t, pop-t, and stop-t exactly

Chapter 9. Case Studies 225

Serial sub-schedule of rtn, steps
2 through 4

The first three steps of the
retiming proposal results in a
cdr* access to a setcdr!*-
mutated memory.

⇒ ⇒ ⇒

Figure 36: Retiming of ap-t steps 2 through 4. The bottom row shows rewrites
on j*’s evaluation term. The first rewrite comes from the setcdr!*-effects-mem

identity. The next is an assertion that the two addresses are not lc-eq?; this becomes
an external proof obligation. The final rewrite is selector evaluation. (continued in
Figure 37)

match WS.

The cell-type conversion branches (sl-t, ls-t, ci-t) in the Starfish derivation

differs from WS. WS destructively overwrites the source cell with resulting cell rather

than allocating a new pair to hold the result. This is a departure from the semantics

specified by HS.

The ld-t branch in WS contains a control loop for the behavior of locate in

states ld4 through ld10. The combination of data-refinement and serialization is one

way that Starfish adds behavior to a specification—for example converting cons to

the alloc*-setcar!*-setcdr!*. Starfish does not expand recursive term behavior

Chapter 9. Case Studies 226

The retiming proposal’s
fourth step car* accesses a
setcdr!*-mutated memory.

The car*-setcdr!* iden-
tity, a recognition of mem-
ory segmentation, rewrites
the term as an access to the
original memory.

⇒

The evaluation of the final
two steps do not require any
rewriting to match the sub-
ject terms. The serialization
in the lhs is the new sub-
schedule.

Figure 37: (continued from Figure 36) Retiming of ap-t steps 2 through 4. Since
memory is partitioned into car and cdr cells, a write to a cdr does not change the
read of any car.

Chapter 9. Case Studies 227

Serial sub-schedule of ap, steps
17 through 19

The first three steps of the re-
timing proposal results in cdr*

accesses to a setcdr!*-mutated
memory. The first access re-
quires an external assertion,
while lc-eq?-false-1 justifies
the second access (below).

⇒ ⇒ ⇒

The last step in the retiming
proposal produce a matching
evaluation.

Figure 38: Retiming of ap-t steps 17 through 19. The key observation here is that
alloc* produces a cell different from any car* or cdr* access to that heap.

Chapter 9. Case Studies 228

into schedules. Adding behavior for locate would require manipulation in the DDD

behavioral algebra. The locate function subsumes this control structure in SD. The

schedule’s prefix and suffix are the same in both WS and SD, relative to locate and

its control loop.

As noted before, rap and set were dropped from HS because their behavior could

not be expressed functionally with abstract pairs. Since SD operates on a heap model,

it is a good starting point for explicitly specifying the behavior of side-effects. Unlike

WS, HS does not model I/O—and neither does the SD system. As with side-effects,

SD provides a good starting point for adding I/O capabilities.

Chapter 10

Conclusion

10.1 Achievements

Starfish extends the design derivation system with behavior tables, serialization ta-

bles, data refinement and retiming transformations. The fusion of these technologies

have improved both the space of derivations and the ease of achieving them. Two case

studies have shown that these techniques scale to medium-size systems with respect

to the chosen level of abstraction—both the garbage collector and SECD machine

expand into considerably larger descriptions at the gate-level.

Starfish implements behavior table representation, hierarchical connection, display

and transformation algebra. Since behavior tables represent a compromise between

behavioral and architectural views, they are ideally suited for imposing structural or-

der on control-oriented specifications. Table rows align control actions while columns

align component, or signal, actions. Action alignment is the root of perspicuity for

system factorization. In an interactive setting, it informs allocation and binding for

instructions, input signals and output signals.

The core algebra is sufficiently powerful to achieve system factorization, but their

granularity impedes the interactive process. Starfish addresses this problem with

229

Chapter 10. Conclusion 230

higher-level factorization tactics that manipulate factorization targets, inputs, and

outputs. They provide a plausible starting point by automating binding and alloca-

tion for input signals. The designer can subsequently alter the automated results with

property-oriented transformations (e.g., permute-comb-signals). Once the designer

determines the input, output and target signals for a factorization, a higher-level de-

composition command performs instruction assignment, table splitting, decision table

reorganization, and useless signal elimination.

Even though behavior tables can illuminate factorization opportunities and paths

to achieving them, the first proposal for their core algebra [61] matched the architec-

tural transformations of its stream-equation predecessor. Starfish extends the algebra

with sequential identification (p. 53)—a conversion method between combinational

and sequential signals. The transformation enables retiming, which moves function

evaluation to earlier or later steps. It is a primitive for manipulating pipelines. In

addition to altering timing, sequential identification justifies, in part, Starfish’s data

refinement procedures, which replace abstract signals with implementation signals.

Starfish implements an explicit type system for behavior tables. This is a depar-

ture from DDD which checks type consistency with an appropriately defined abstract

interpretation. Starfish adopts first-order multi-sorted term algebras as the basis for

its type system. Designers can declare parameterized types, which overloads the type

of symbols. An inferencer resolves most ambiguities, but designers can explicitly

annotate subterms in case the algorithm fails. Type declarations optionally con-

strain their semantics with universally quantified identities. The collection of such

identities forms a database for the replacement rule—term substitution justified by

Chapter 10. Conclusion 231

algebraic equivalence. Starfish implements special declarative forms to support data-

refinement. Data refinement results from sequential identification and homomorphic

term identities. Starfish automates the term rewriting and signal transformations. A

stateful refinement implements multiple abstract signals as references into a shared

store. Starfish serializes access to the shared implementation state in case of simul-

taneous access at the abstract level.

Starfish implements interactive control serialization at the architectural level with

serialization tables. DDD’s behavioral algebra, rather than its architectural algebra,

supports serialization. It is preferable to make the serialization decisions at the ar-

chitectural level because the behavior table representation makes scheduling conflicts

explicit. Serialization tables are a scheduling assistant that expands the evaluation of

a single behavior-table action into a sequence. It displays intermediate actions and

storage as well as their symbolic evaluation. Starfish only incorporates serializations

whose symbolic interpretation equals the original specification terms. The designer

can “argue” equivalence by applying term-level identities to the symbolic evaluations.

Starfish’s extensions to the previous architectural algebra—retiming, data-refine-

ment, and serialization—widen the space of decomposition. Two case studies illus-

trate this fact: a garbage collector decomposition and an SECD machine refinement.

The first case study shows how data refinement and system factorization transform a

system defined on abstract memory signals into a switched memory architecture. The

second study shows how serialization, retiming, and data-refinement link a low-level

SECD machine description to a high-level specification, similar to a textbook machine

for operational semantics [42]. The original DDD-derivation of SECD hardware [103]

Chapter 10. Conclusion 232

was not published because its starting specification anticipated too much of the target

architecture. Starfish’s SECD derivation establishes much of this missing link.

10.2 Future Work

Although Starfish makes several contributions to formal derivation, there are several

open problems in the field. From the perspective of this thesis, some of the most

evident directions for development include deriving interface protocols, accounting

for timing changes between components, enriching behavior tables with bounded in-

direction, robustly scripting derivations, integrating with synchronous back-ends, and

integrating with external formal verification tools. Finally, as a proof-of-concept pro-

totype, its usability, speed, stability, and error-handling are all obvious points for

improvement.

Transaction modeling

The transaction problem—how to communicate input and output values between

architectural components—is invisible at the behavioral specification level and un-

defined in many architectural views. Derivation methodologies targeting low-level

implementations need principled ways for introducing transaction protocols. In the

context of DDD, Zhu [106] and, more generally, Rath [83] have proposed transac-

tion derivation methods. Rath conceived his proposal, Interface Specification Lan-

guage (ISL), as complementary to behavior tables. ISL expresses transactions as

finite automata and their complements. Derivations incorporate transactions by di-

rectly inserting the automata actions into behavior tables—much like serializations

Chapter 10. Conclusion 233

in Starfish expand single action over many steps. In simple cases, where the trans-

action consumes a fixed number of steps, serialization and data-refinement suffice for

transaction introduction. In general though, transactions re-visit control states until

an external condition has been satisfied; serialization does not capture this kind of

protocol behavior.

Bounded Indirection

Just as ISL and behavior tables are complementary technologies, bounded indirec-

tion [98]—a specification mechanism for compactly expressing interrupts, continua-

tions, and dynamic connections between machines—was proposed at the same time.

An indirect type varies over the space of like-typed sequential signals. In addition

to defining semantics for bounded indirection, the proposal introduces new trans-

formations for manipulating behavior tables. Starfish, the first implementation of

table-oriented derivation, is the natural platform for implementing bounded indirec-

tion, although the construct would benefit any hardware description language.

Accounting for alignment shifts

Serialization and interface protocol insertion alter input and output the timelines of

their target components. Such timing changes can break communication assumptions

with external components. Starfish side-steps this problem by only permitting serial-

ization in flat behavior-table specifications—a choice that limits derivation flexibility.

A full solution will account for the timing changes each transformation introduces,

the timing policy or tolerance afforded by each component, and possibly the inter-

component adjustment required to maintain correct communication.

Chapter 10. Conclusion 234

Addressing and scripting

Robust sub-expression addressing is an important feature for developing derivations

and an even more important feature for developing scripts. Fragile addressing schemes

do not tolerate changes in derivation order without re-specifying expression refer-

ences. Starfish uses guards and signal names specify sub-expressions in a behavior

table. This alleviates some problems with stale sub-expression addressing when al-

tering derivation scripts. However, addressing still relies on numeric branches and

paths for specifying hierarchical nodes and subterms. Addressing would benefit from

specifying paths by the user-defined names for system-node blocks rather than its

position number in the tree representation. Similarly, subterm addressing in scripts

could further benefit from a DDD-style s-expression specification [10], where subterms

are specified by a sequence of function names.

Scripting in Starfish is limited to straight-line command evaluation. Some deriva-

tions consisting of tedious and predictable transformations were generated with user-

defined Scheme functions. This works well enough for achieving known goals, but

a scripting language with interfaces to the transformation engine and backtracking

could explore derivation paths in pursuit of user-defined properties. For instance,

known algorithms for high-level synthesis could guide the transformation process.

Analytical visualization

Visual feedback is one of the chief benefits of behavior tables. Starfish’s support for

subterm colorization is sparse. Expanding colorization to indicate transformation can-

didates, illustrate conflicting subexpressions from transformation errors, and reflect

system properties (e.g., control-flow dependence) as the derivation proceeds would

Chapter 10. Conclusion 235

greatly improve designer interaction. Often a transformation is invalid because of a

conflicting term; for instance, a term instantiation could result in combinational feed-

back. Highlighting the dependency chain in the behavior table is a more informative

way to report this error than a textual error.

More than just an error reporting device, colorization can also inform transforma-

tion decisions. Highlighting abstract types in a behavior table helps determine signal

selection in a signal factorization. The retiming transformation seems particularly

fruitful for visual analysis. In some cases, a retiming essentially moves function exe-

cution to a prior control state. If there are multiple ways to enter the source control

state, the function may potentially be replicated in each of those previous states. A

control-flow analysis which highlights the incoming and outgoing transitions can aid

the retiming process.

Integration with external tools

Identities in Starfish’s type and refinement declarations are user assertions. More-

over, Starfish does not specify term semantics beyond identity satisfaction. A formal

workflow must specify term semantics and verify that the semantics satisfy the type

and refinement declarations. The natural place to specify semantics is within DDD

as functional Scheme expressions. Once specified, a theorem proving assistant such

as PVS or Isabelle can validate the type structure and identities against the term

semantics.

Although these interactions complete the formal justification for Starfish’s re-

sults, Starfish still has no back-end for generating synchronous systems. If exported

Chapter 10. Conclusion 236

to DDD, which an easy transformation, the stream interpreter can execute or sim-

ulate the architecture. The real payoff, however, comes from synchronous back-end

compilers. Revitalizing low-level synthesis—the most recent interfaces are over a

decade old—would bring the design methodology into the next stage of maturity by

producing a testable implementation. Since Starfish expressions are independent of

the synchronization mechanism, the synthesis target need not be hardware. Integrat-

ing a synchronous software back-end, such as the Giotto real-time compiler [45], is

a promising option since embedded systems depend upon software as much or more

than hardware. Giotto, in particular, aligns well with Starfish’s principle of manual

intervention since its compiler exploits user-defined annotations when generating its

results.

Other systems, including DDD’s commercial offspring DRS [13], provide a good

model for how Starfish’s role in the design process by successfully joining several tools

together. DRS is the central tool in a workflow that integrates theorem provers, model

checkers, equivalence checkers, and temporal logic specification with low-level tools for

conventional simulation and synthesis. DRS performs a series of shallow embeddings

to verify specification properties at a high level in PVS, and then model-check the

results of their derivation and VHDL generator at a low-level. Conventional tools

synthesize the last stages of the product; automated model extraction and verification

maintain formal correctness.

Chapter 10. Conclusion 237

Top-down design methods such as design derivation are natural candidates for or-

ganizing the application of external tool-sets. The long-term goal for design derivation—

to which Starfish belongs—is to formalize the design process by delegating specifi-

cation, synthesis, and verification tasks to external specialized tools in a coherent

manner. Architectural decomposition, Starfish’s task, lies at the heart of this coordi-

nation challenge.

Bibliography

[1] Mark Aagaard, Byron Cook, Nancy A. Day, and Robert B. Jones. A framework
for microprocessor correctness statements. In CHARME ’01: Proceedings of
the 11th IFIP WG 10.5 Advanced Research Working Conference on Correct
Hardware Design and Verification Methods, pages 433–448, London, UK, 2001.
Springer-Verlag.

[2] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Pe-
ter D. Mosses, Donald Sannella, and Andrzej Tarlecki. Casl: The common al-
gebraic specification language. Theoretical Computer Science, 286(2):153–196,
2002.

[3] Egidio Astesiano, H. J Kreowski, and B. Krieg-Bruckner, editors. Algebraic
Foundations of Systems Specification. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1999.

[4] Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-aware circuit
design. In CHARME, pages 5–19, 2005.

[5] Jon Barwise and Lawrence Moss. Vicious Circles. CSLI Publications, 1996.

[6] G. Birtwistle and B. Graham. Verifying SECD in HOL. In J. Staunstrup,
editor, Formal Methods for VLSI Design: IFIP WG10.2, Lecture Notes, pages
129–177. North-Holland, 1990.

[7] E. Boerger and J. K. Huggins. Abstract State Machines 1988-1998: Commented
ASM Bibliography. ArXiv Computer Science e-prints, November 1998.

[8] Tommaso Bolognesi and Ed Brinksma. Introduction to the iso specification
language lotos. Comput. Netw. ISDN Syst., 14(1):25–59, 1987.

[9] B. Bose, M. E. Tuna, and J. M. Nagy. LavaCORE configurable Java Processor
Core. In 2002 IEEE Aerospace Conference Proceedings, volume 4, pages 4–
1953–4–1959, 9-16 March 2002.

238

BIBLIOGRAPHY 239

[10] Bhaskar Bose. DDD - a transformation system for digital design derivation.
Technical Report 331, Indiana University Computer Science Department, May
1991.

[11] Bhaskar Bose. DDD-FM9001: Derivation of a Verified Micro-
processor. PhD thesis, Computer Science Department, Indiana
University, USA, 1994. Technical Report No. 456, 155 pages,
//ftp.cs.indiana.edu/pub/techreports/TR456.html.

[12] Bhaskar Bose and Steven D. Johnson. DDD-FM9001: Derivation of a verified
microprocessor. an exercise in integrating verification with formal derivation.
In G. Milne and L. Pierre, editors, Correct Hardware Design and Verification
Methods (CHARME’93), volume 683 of Lecture Notes in Computer Science,
pages 191–202. Springer, 1993. IFIP WG 10.2 Advanced Research Working
Conference, CHARME’93, Arles, France, May 24-26, 1993, Proceedings.

[13] Bhaskar Bose, M. Esen Tuna, and Ingo Cyliax. FormalCORETM PCI/32 a
formally verified VHDL synthesizable PCI core. In C. Michael Holloway, edi-
tor, Lfm2000: Fifth NASA Langley Formal Methods Workshop, pages 105–116,
Langley Research Venter, Hampton, Virginia, June 2000.

[14] C.D. Boyer and Steven D. Johnson. Using the digital design derivation system:
case study of a VLSI garbage collector. In Darringer and Ramming, editors,
Ninth International Symposium on Computer Hardware Description Languages
(CHDL’89), Amsterdam, 1989. IFIP WG 10.2, Elsevier.

[15] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31(3):560–599, 1984.

[16] Robert G. Burger. The scheme machine. Technical Report 413, Indiana Uni-
versity, Computer Science Department, August 1994. 59 pages.

[17] R. M. Burstall and John Darlington. A transformation system for developing
recursive programs. Journal of the ACM (JACM), 24(1):44–67, 1977.

[18] Rod M. Burstall and Joseph A. Goguen. The semantics of clear, a specification
language. In Proceedings of the Abstract Software Specifications, 1979 Copen-
hagen Winter School, pages 292–332, London, UK, 1980. Springer-Verlag.

[19] Raul Camposano and Wayne H. Wolf, editors. High-Level VLSI Synthesis.
Kluwer Academic Publishers, Norwell, MA, USA, 1991.

[20] K. Claessen and M. Sheeran. A tutorial on lava: A hardware description and
verification system, 2000.

BIBLIOGRAPHY 240

[21] B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar microproces-
sors in hawk, 1998.

[22] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238–252, New York,
NY, USA, 1977. ACM Press.

[23] D. Eisenbiegler, R. Kumar, and C. Blumenrohr. A constructive approach to-
wards correctness of synthesis-application within retiming. edtc, 00:427, 1997.

[24] Dirk Eisenbiegler and Ramayya Kumar. Formally embedding existing high
level synthesis algorithms. In CHARME ’95: Proceedings of the IFIP WG
10.5 Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, pages 71–83, London, UK, 1995. Springer-Verlag.

[25] Hans Eveking, Holger Hinrichsen, and Gerd Ritter. Automatic verification of
scheduling results in high-level synthesis. date, 00:59, 1999.

[26] Robert E. Filman and Daniel P. Friedman. Coordinated computing: tools and
techniques for distributed software. McGraw-Hill, Inc., New York, NY, USA,
1984.

[27] Daniel P. Friedman, Christopher T. Haynes, and Mitchell Wand. Essentials
of programming languages (2nd ed.). Massachusetts Institute of Technology,
Cambridge, MA, USA, 2001.

[28] Daniel P. Friedman and David S. Wise. Output driven interpretation of re-
cursive programs, or writing creates and destroys data structures. Information
Processing Letters, 5(6):155–160, 1976.

[29] Daniel P. Friedman and David S. Wise. Functional combination. Comput.
Lang., 3(1):31–35, 1978.

[30] Alfons Geser and Paul Miner. A formal correctness proof of the SPIDER diag-
nosis protocol. Theorem-Proving in Higher-Order Logics (TPHOLs), track B,
2002.

[31] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Applications
of Algebraic Specification using OBJ. Cambridge, 1993.

BIBLIOGRAPHY 241

[32] Joseph A. Goguen, James Thatcher, and Eric Wagner. An initial algebra ap-
proach to the specification, correctness and implementation of abstract data
types. In Raymond Yeh, editor, Current Trends in Programming Methodology,
pages 80–149. Prentice-Hall, 1978.

[33] Yuri Gurevich. Evolving algebras 1993: Lipari guide. pages 9–36, 1995.

[34] J V Guttag and J J Horning. Report on the larch shared language. Sci. Comput.
Program., 6(2):103–134, 1986.

[35] Joshua D. Guttman, John D. Ramsdell, and Mitchell Wand. VLISP: a verified
implementation of Scheme. Lisp and Symbolic Computation, 8:5–32, 1995.

[36] D. Harel. Statecharts: a visual formalism for complex systems. The Science of
Computer Programming, 8:231–274, 1987.

[37] David Harel. On visual formalisms. Commun. ACM, 31(5):514–530, 1988.

[38] Mats P.E. Heimdahl and Nancy G. Leveson. Completeness and consistency in
hierarchical state-based requirements. IEEE Transactions on Software Engi-
neering, 22(6):363–377, 1996.

[39] Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw. SCR*:
a toolset for specifying and analyzing requirements. In Proceedings of the Tenth
Annual Conference on Computer Assurance (COMPASS ’95), pages 109–122,
1995.

[40] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated
consistency checking of requirements specifications. ACM Trans. Softw. Eng.
Methodol., 5(3):231–261, 1996.

[41] Constance L. Heitmeyer, James Kirby, Bruce G. Labaw, and Ramesh Bharad-
waj. Scr*: A toolset for specifying and analyzing software requirements. In
CAV ’98: Proceedings of the 10th International Conference on Computer Aided
Verification, pages 526–531, London, UK, 1998. Springer-Verlag.

[42] Peter Henderson. Functional Programming. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1980.

[43] K.L. Heninger. Specifying software requirements for complex systems: New
techniques and their application. IEEE Transactions Software Engineering,
SE-6:2–13, 1980.

BIBLIOGRAPHY 242

[44] K.L. Heninger, J. Kallander, D.L. Parnas, and J.E. Shore. Software require-
ments for the A-7 aircraft. NRL Memorandum Report 3876, United States
Naval Research Laboratory, Washington, D.C., November 1978.

[45] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: a
time-triggered language for embedded programming. Technical report, Berkeley,
CA, USA, 2001.

[46] C. A. R. Hoare. Proof of correctness of data representation. In Language Hier-
archies and Interfaces, International Summer School, pages 183–193, London,
UK, 1976. Springer-Verlag.

[47] D. N. Hoover and Zewei Chen. Tbell: A mathematical tool for analyzing de-
cision tables. Contractor Report 195027, National Aeronautics and Space Ad-
ministration, Hampton VA 23681-0001, November 1994. Authors’ affiliation:
Odyssey Research Associates, Inc., Ithaca NY.

[48] D. N. Hoover and Zewei Chen. Tablewise, a decision table tool. In Computer As-
surance, 1995. COMPASS ’95. ’Systems Integrity, Software Safety and Process
Security’. Proceedings of the Tenth Annual Conference on Computer Assurance,
pages 97–108, June 1995.

[49] D. N. Hoover, David Guaspari, and Polar Humenn. Applications of formal
methods to specification and safety of avionics software. Contractor Report
4723, National Aeronautics and Space Administration Langley Research Cen-
ter (NASA/LRC), Hampton VA 23681-0001, November 1994. Authors affilia-
tion: Odyssey Research Associates, Inc., Ithaca NY. Printed copies available
from NASA Center for AeroSpace Information, 800 Elkridge Landing Road,
Linthicum Heights MD 21090-2934.

[50] Steven D. Johnson. An interpretive model for a language based on suspended
construction. Technical Report 68, Indiana University Computer Science De-
partment, Bloomington, Indiana, Aug 1977.

[51] Steven D. Johnson. Applicative programming and digital design. In Proc.
Eleventh Annual ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming (POPL’84), pages 218–227, 1984.

[52] Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations.
MIT Press, Cambridge, 1984.

BIBLIOGRAPHY 243

[53] Steven D. Johnson. Digital design in a functional calculus. In G. Milne and P.A.
Subramanyam, editors, Formal Aspects of VLSI Design, pages 153–178. North-
Holland, Amsterdam, 1986. Proceedings of tthe 1985 Edingurgh Workshop on
VLSI, Edinburgh, Scotl and, U.K.

[54] Steven D. Johnson. Manipulating logical organization with system factoriza-
tions. In M. Leeser and G. Brown, editors, Hardware Specification, Verification
and Synthesis: Mathematical Aspects, volume 408 of Lecture Notes in Computer
Science, pages 260–281. Springer, July 1989. Mathematical Sciences Institute
Workshop, Cornell University, Ithaca, New York, USA, July 1989, Proceedings.

[55] Steven D. Johnson. A tabular language for system design. In C. Michael
Holloway and Kelly J. Hayhurst, editors, Lfm97: Fourth NASA Langley For-
mal Methods Workshop, September 1997. NASA Conference Publication 3356,
Proceedings of the 4th NASA Langley Formal Methods Workshop, Hampton,
Virginia 10-12 September, 1997, http://archive.larc.nasa.gov/shemesh/Lfm97/.

[56] Steven D. Johnson. Formal derivation of a scheme computer. Technical Re-
port 544, Indiana University Computer Science Dept., Bloomington, Indiana,
September 2000. http://www.cs.indiana.edu/ftp/techreports/.

[57] Steven D. Johnson. View from the fringe of the fringe. In Tiziana Margaria and
Thomas Melham, editors, 11th Advanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods, CHARME 2001, Livingston,
Scotland, Proceedings, volume 2144 of Lecture Notes in Computer Science, pages
1–12. Springer-Verlag, 2001. Invited paper.

[58] Steven D. Johnson, B. Bose, and C.D. Boyer. A tactical framework for digital
design. In Birtwistle and Subramanyam, editors, VLSI Specification, Verifica-
tion and Synthesis, pages 349–383. Kluwer, Boston, 1988.

[59] Steven D. Johnson and Bhaskar Bose. A system for mechanized digital de-
sign derivation. In IFIP and ACM/SIGDA International Workshop on Formal
Methods in VLSI Design, 1991. IFIP WG 10.2 conference series. Available as
Indiana University Computer Science Department Technical Report No. 323
(rev. 1997).

[60] Steven D. Johnson and C.D. Boyer. Modelling transistors applicatively. In G.J.
Milne, editor, The Fusion of Hardware Design and Verification, pages 397–420.
North-Holland, 1988. Proceedings of the IFIP WG 10.2 Working Conference on
The Fusion of Hardware Design and Vierification, Glasgow, Scotland, 4-6 July,
1988.

BIBLIOGRAPHY 244

[61] Steven D. Johnson and Alex Tsow. Algebra of behavior tables. In C. M. Hol-
loway, editor, Lfm2000: Fifth NASA Langley Formal Methods Workshop, pages
23–34, 2000. NASA Conference Publication NASA/CP-2000-210100. Proceed-
ings of the 5th NASA Langley Formal Methods Workshop, Williamsburg, Vir-
ginia, 13-15 June, 2000, http://shemesh.larc.nasa.gov/fm/Lfm2000/.

[62] Steven D. Johnson, R.M. Wehrmeister, and B. Bose. On the interplay of syn-
thesis and verification: Experiments with the FM8501 processor description. In
Claesen, editor, Formal VLSI Specification and Synthesis, VLSI Design Meth-
ods - I, pages 385–404. North-Holland, 1990. Proceedings of the IFIP WG
10.2/WG 10.5 International Worksho p on Applied Formal Methods for Cor-
rect VlSI Design, Sponsored by IMEC, Houtha len, Belgium, 13-16 November,
1989.

[63] Peter J. Landin. The mechanical evaluation of expressions. 6(4):308–320, Jan-
uary 1964.

[64] Nancy G. Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and Jon Damon
Reese. Requirements specifiation for process-control systems. IEEE Transac-
tions on Software Engineering, 20(9):684–707, September 1994.

[65] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.
Wood. Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News, 33(4):92–99, 2005.

[66] John Matthews and John Launchbury. Elementary microarchitecture algebra.
In CAV ’99: Proceedings of the 11th International Conference on Computer
Aided Verification, pages 288–300, London, UK, 1999. Springer-Verlag.

[67] David Megginson. Megginson Technologies: Simple API for XML. Accessed 18
June 2007, http://www.megginson.com/downloads/SAX/.

[68] J Meseguer and J A Goguen. Initiality, induction, and computability. pages
459–541, 1986.

[69] José Meseguer. A logical theory of concurrent objects and its realization in the
maude language. pages 314–390, 1993.

[70] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, Inc., 1994.

[71] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

http://www.megginson.com/downloads/SAX/

BIBLIOGRAPHY 245

[72] Paul S. Miner. Hardware Verification using Coinductive Assertions. PhD thesis,
Computer Science Department, Indiana University, USA, June 1998. Technical
Report No. 510, 138 pages.

[73] Paul S. Miner and Steven D. Johnson. Verification of an optimized fault-
tolerant clock synchronization circuit. In Mary Sheeran and Satnam Singh,
editors, Designing Correct Circuits, Electronic Workshops in Computing,
http://www.ewic.org.uk/ewic/workshop/view.cfm/DCC-96. Springer, Septem-
ber 1996.

[74] Lawrence S. Moss. Parametric corecursion. Theoretical Computer Science,
260(1-2):139–163, 2001.

[75] John O’Donnell. HYDRA: hardware description in a functional language using
recursion equations and high order combining forms. In G.J. Milne, editor, The
Fusion of Hardware Design and Verification, pages 309–328. North-Holland,
1988. Proceedings of the IFIP WG 10.2 Working Conference on The Fusion of
Hardware Design and Vierification, Glasgow, Scotland, 4-6 July, 1988.

[76] John O’Donnell. Overview of hydra: A concurrent language for synchronous
digital circuit design. In IPDPS ’02: Proceedings of the 16th International
Parallel and Distributed Processing Symposium, page 240, Washington, DC,
USA, 2002. IEEE Computer Society.

[77] Sam Owre, John M. Rushby, and Natarajan Shankar. Pvs: A prototype verifi-
cation system. In CADE-11: Proceedings of the 11th International Conference
on Automated Deduction, pages 748–752, London, UK, 1992. Springer-Verlag.

[78] D. L. Parnas. Tabular representation of relations. Technical Report 260, Com-
munications Research Laboratory, McMaster University, 1992.

[79] David Lorge Parnas. Inspection of safety-critical software using program-
function tables. In IFIP Congress (3), pages 270–277, 1994.

[80] David Lorge Parnas. Some theorems we should prove. In HUG ’93: Proceedings
of the 6th International Workshop on Higher Order Logic Theorem Proving and
its Applications, pages 155–162, London, UK, 1994. Springer-Verlag.

[81] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer, 1994.

[82] R. Radhakrishnan, E. Teica, and R. Vermuri. An approach to high-level syn-
thesis system validation using formally verified transformations. hldvt, 00:80,
2000.

BIBLIOGRAPHY 246

[83] Kamlesh Rath. Sequential System Decomposition. PhD thesis, Computer Sci-
ence Department, Indiana University, USA, 1995. Technical Report No. 457,
90 pages.

[84] Kamlesh Rath, Venkatesh Choppella, and Steven D. Johnson. Decomposition
of sequential behavior using interface specification and complementation. VLSI
Design, 3(3-4):347–358, 1995.

[85] Kamlesh Rath and Steven D. Johnson. Toward a basis for protocol specifi-
cation and process decomposition. In D. Agnew, L. Claesen, and R. Cam-
posano, editors, Computer Hardware Description Languages and their Appli-
cations (CHDL’93), volume A-32 of IFIP Transactions, pages 169–186. North-
Holland, 1993. Proceedings of the 11th IFIP WG 10.2 International Confer-
ence on Computer Hardware Description Languages and their Applications -
CHDL’93, sponsored by IFIP WG 10.2 and incooperation with IEEE COMP-
SOC, Ottawa, Ontario, Canada, 26-28 April, 1993.

[86] Kamlesh Rath, M. Esen Tuna, and Steven D. Johnson. Behavior tables: A basis
for system representation and transformational system synthesis. In Proceed-
ings of the IEEE/ACM International Conference on Computer Aided Design
(ICCAD’93), pages 736–740. IEEE Cat. No. 93CH3344-9, November 1993.

[87] Markus Roggenbach. Csp-casl: a new integration of process algebra and alge-
braic specification. Theor. Comput. Sci., 354(1):42–71, 2006.

[88] David Sands. Total correctness by local improvement in the transformation
of functional programs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 18(2):175–234, 1996.

[89] Donald Sannella. Formal program development in Extended ML for the working
programmer. In Proc. 3rd BCS/FACS Workshop on Refinement, Workshops in
Computing, pages 99–130. Springer, 1991.

[90] Donald Sannella. Algebraic specification and program development by step-
wise refinement. In Proc. 9th Intl. Workshop on Logic-based Program Synthesis
and Transformation, LOPSTR’99, volume 1817 of Lecture Notes in Computer
Science, pages 1–9. Springer, 2000.

[91] Mary Sheeran. Generating fast multipliers using clever circuits.

[92] Mary Sheeran. Retiming and slowdown in ruby. In G.J. Milne, editor, The
Fusion of Hardware Design and Verification, pages 289–308. North-Holland,
1988. Proceedings of the IFIP WG 10.2 Working Conference on The Fusion of
Hardware Design and Vierification, Glasgow, Scotland, 4-6 July, 1988.

BIBLIOGRAPHY 247

[93] Daniel J. Sorin, Manoj Plakal, Anne E. Condon, Mark D. Hill, Milo M.K.
Martin, and David A. Wood. Specifying and verifying a broadcast and a mul-
ticast snooping cache coherence protocol. IEEE Transactions on Parallel and
Distributed Systems, 13(6):556–578, 2002.

[94] Robert F. Stark, Joachim Schmid, and E. Borger. Java and the Java Virtual
Machine: Definition, Verification, Validation with CDrom. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2001.

[95] T. F. Melham. Abstraction mechanisms for hardware verification. In G.
Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Verification,
and Synthesis, pages 129–157, Boston, 1988. Kluwer Academic Publishers.

[96] Alex Tsow and Steven D. Johnson. Visualizing system factorizations with be-
havior tables. In Warren A. Hunt, Jr. and Steven D. Johnson, editors, Formal
Methods in Computer-Aided Design, Third International Conference, FMCAD
2000, Austin, TX, USA, November 1-3, 2000, Proceedings, volume 1954 of
Lecture Notes in Computer Science, pages 523–541, Heidelberg Berlin, 2000.
Springer-Verlag.

[97] Alex Tsow and Steven D. Johnson. Data refinement for synchronous system
specification and construction. In Dominique Borrione and Wolfgang Paul,
editors, Correct Hardware Design and Verification Methods (CHARME 2005),
volume 3725 of Lecture Notes in Computer Science, pages 398–401, Berlin,
October 2005. Springer-Verlag. 13th IFIP WG 10.5 Advanced Research Working
Conference.

[98] M. Esen Tuna, Kamlesh Rath, and Steven D. Johnson. Specification and synthe-
sis of bounded indirection. In Proceedings of the Fifth Great Lakes Symposium
on VLSI (GLSVLS I’95), pages 86–89. IEEE, March 1995.

[99] Mitchell Wand. Continuation-based program transformation strategies. Journal
of the ACM, 27:164–180, 1980.

[100] Mitchell Wand. Deriving target code as a representation of continuation seman-
tics. ACM Transactions on Programming Languages and Systems, 4(3):496–517,
July 1982.

[101] Mitchell Wand. Semantics-directed machine architecture. In Proceedings 9th
ACM Symposium on Programming Languages, pages 234–241, 1982.

[102] Mitchell Wand and Daniel P. Friedman. Compiling lambda expressions using
continuations and factorizations. Journal of Computer Languages, 3:241–263,
1978.

BIBLIOGRAPHY 248

[103] R.M. Wehrmeister. Derivation of an SECD machine: Experience with a trans-
formational approach to synthesis. Technical Report 290, Indiana University,
Computer Science Department, September 1989.

[104] David E. Winkel and Franklin P. Prosser. Art of Digital Design: An Introduction
to Top-Down Design. Prentice Hall Professional Technical Reference, 1987.

[105] Niklaus Wirth. Program development by stepwise refinement. Commun. ACM,
14(4):221–227, 1971.

[106] Zheng Zhu. Structured Hardware Design Transformations. PhD thesis, Com-
puter Science Department, Indiana University, USA, 1992.

[107] Zheng Zhu and Steven D. Johnson. An example of interactive hardware trans-
formation. In P. A. Subramanyam, editor, IFIP and ACM/SIGDA International
Workshop on Formal Methods in VLSI Design, January 1991. IFIP WG 10.2
conference series.

Appendix A

SECD derivation details

SECD specification file

(define-enum-alg secd-state

(rtn-t dum-t ap-t sel-t join-t car-t cdr-t cons-t ld-t ldc-t ldf-t atom-t eq-t

leq-t add-t sub-t sl-t ls-t ci-t num-t sym-t pair-t exec-t pop-t stop-t)

()

()

())

(define-term-alg lt

(nil err tru fls)

((cons 2) (car 1) (cdr 1)

(nil? 1)

(locate 2)

(atom? 1)

(eq? 2)

(<=? 2)

(plus 2)

(minus 2)

(test? 2)

(if 3)

(sym-list 1)

(list-sym 1)

(char2int 1)

(num? 1)

(pair? 1)

(sym? 1))

(key a b)

((’access1 (car (cons a b)) a)

(’access2 (cdr (cons a b)) b)

; (’pair-tst (pair? (cons a b)) tru)

; (’nil-tst1 (nil? nil) tru)

; (’nil-tst2 (nil? tru) fls)

; (’nil-tst3 (nil? fls) fls)

; (’nil-tst4 (nil? (cons a b)) fls)

))

(declare-funcs secd-helpers

()

([dcd ("lt") "secd-state"]

[test-inst? ("secd-state" "lt") "lt"]

; [true?* ("lt") "boolean"]

[true? ("lt") "boolean"]

)

([a "lt"] [b "lt"] [k "lt"] [tst "boolean"])

([’if-def "(if k a b)" "(sel (true? k) a b)"]

[’test?-def "(test? a b)" "(test-inst? (dcd a) b)"]

249

Appendix A. SECD derivation details 250

[’test-inst?-def-atom "(test-inst? atom-t b)" "(atom? b)"]

[’test-inst?-def-num "(test-inst? num-t b)" "(num? b)"]

[’test-inst?-def-sym "(test-inst? sym-t b)" "(sym? b)"]

[’test-inst?-def-pair "(test-inst? pair-t b)" "(pair? b)"]

; [’assert1 "(sel tst (car a) (car b))" "(car (sel tst a b))"]

))

(define-param-alg lmem

(cell)

()

([car* (lmem cell) cell]

[cdr* (lmem cell) cell]

[alloc* (lmem) cell]

[setcar!* (lmem cell cell) lmem]

[setcdr!* (lmem cell cell) lmem])

([m lmem] [i cell] [j cell] [k cell] [l cell])

([’car*-setcdr!* (car* (setcdr!* m j k) i) (car* m i)]

[’cdr*-setcar!* (cdr* (setcar!* m j k) i) (cdr* m i)]

[’setcar!*-setcdr!*-comm

(setcar!* (setcdr!* m i j) k l)

(setcdr!* (setcar!* m k l) i j)]

))

; want, but cannot express general commutativity

; between setcar!* and setcdr!*

(define-term-alg lc

(nil* err* fls* tru*)

((nil?* 1)

(atom?* 1)

(eq?* 2)

(<=?* 2)

(test?* 2)

(plus* 2)

(minus* 2)

(sym-list* 1)

; (list-sym* 1)

(char2int* 1)

(num?* 1)

(pair?* 1)

(sym?* 1))

()

())

;; Expresses specific features of lmem{lc}

(declare-funcs heap-helpers

()

([true?* ("lc") "boolean"]

[lc-eq? ("lc" "lc") "boolean"]

[locate* ("lmem{lc}" "lc" "lc") "lc"]

[list-sym* ("lmem{lc}" "lc") "lc"])

([m "lmem{lc}"] [i "lc"] [j "lc"] [k "lc"])

([’setcdr!*-inits-car-to-nil

"(setcdr!* m (alloc* m) i)"

"(setcar!* (setcdr!* m (alloc* m) i) (alloc* m) nil*)"]

[’setcar!*-inits-cdr-to-nil

"(setcar!* m (alloc* m) i)"

"(setcdr!* (setcar!* m (alloc* m) i) (alloc* m) nil*)"]

Appendix A. SECD derivation details 251

[’setcdr!*-effects-mem

"(cdr* (setcdr!* m i j) k)"

"(sel (lc-eq? i k) j (cdr* m k))"]

[’setcar!*-effects-mem

"(car* (setcar!* m i j) k)"

"(sel (lc-eq? i k) j (car* m k))"]

[’lc-eq?-comm "(lc-eq? i j)" "(lc-eq? j i)"]

[’lc-eq?-true "(lc-eq? i i)" "true"]

[’lc-eq?-false-1 "(lc-eq? (alloc* m) (car* m i))" "false"]

[’lc-eq?-false-2 "(lc-eq? (alloc* m) (cdr* m i))" "false"]

))

(declare-refinement pr => cell

();; no parameters for now

"lt"

"lc"

([m "lmem{lc}"

"#:lmem{lc}"])

([a "lt"]

[b "lt"]

[i "lc"]

[j "lc"]

[tst "boolean"]

)

;; An unspecified refinement results in (<name> <state-symbol> <src-val>)

(

["#:lt" "#:lc" "m"]

["(cons a b)"

; Basically "(alloc* m)" with call by value threading of state

"(alloc* (pr=>cell.m a

(pr=>cell.m b m)))"

"(setcar!* (setcdr!* (pr=>cell.m a (pr=>cell.m b m))

(alloc* (pr=>cell.m a (pr=>cell.m b m)))

(pr=>cell b m))

(alloc* (pr=>cell.m a (pr=>cell.m b m)))

(pr=>cell a (pr=>cell.m b m)))"

]

["(car a)"

"(car* (pr=>cell.m a m) (pr=>cell a m))"

"(pr=>cell.m a m)"

]

["(cdr a)"

"(cdr* (pr=>cell.m a m) (pr=>cell a m))"

"(pr=>cell.m a m)"

]

;; The tag-checking lc primitives will be extended ALU ops

; ((nil?* 1)

; (atom?* 1)

; (eq?* 2)

; (<=?* 2)

Appendix A. SECD derivation details 252

; (plus* 2)

; (minus* 2)

; (sym-list* 1)

; (list-sym* 1)

; (char2int* 1)

; (num?* 1)

; (pair?* 1)

; (sym?* 1))

["(nil? a)"

"(nil?* (pr=>cell a m))"

"(pr=>cell.m a m)"]

["(atom? a)"

"(atom?* (pr=>cell a m))"

"(pr=>cell.m a m)"]

["(num? a)"

"(num?* (pr=>cell a m))"

"(pr=>cell.m a m)"]

["(pair? a)"

"(pair?* (pr=>cell a m))"

"(pr=>cell.m a m)"]

["(sym? a)"

"(sym?* (pr=>cell a m))"

"(pr=>cell.m a m)"]

["(test? a b)"

"(test?* (pr=>cell a (pr=>cell.m b m)) (pr=>cell b m))"

"(pr=>cell.m a (pr=>cell.m b m))"]

; Straight ALU ops

["(eq? a b)"

"(eq?* (pr=>cell a (pr=>cell.m b m)) (pr=>cell b m))"

"(pr=>cell.m a (pr=>cell.m b m))"]

["(<=? a b)"

"(<=?* (pr=>cell a (pr=>cell.m b m)) (pr=>cell b m))"

"(pr=>cell.m a (pr=>cell.m b m))"]

; Straight ALU ops

; Integers have a uniform representation (e.g. hashed)

; and do not actually reference the memory in a non trivial way.

["(plus a b)"

"(plus* (pr=>cell a (pr=>cell.m b m)) (pr=>cell b m))"

"(pr=>cell.m a (pr=>cell.m b m))"]

["(minus a b)"

"(minus* (pr=>cell a (pr=>cell.m b m)) (pr=>cell b m))"

"(pr=>cell.m a (pr=>cell.m b m))"]

;; Chars are also hashed as integers and require

;; no memory updates

["(char2int a)"

"(char2int* (pr=>cell a m))"

"(pr=>cell.m a m)"]

;; This is just a tag change in the expected model

["(sym-list a)"

"(sym-list* (pr=>cell a m))"

"(pr=>cell.m a m)"]

;; This is a tag change plus a well formedness check in the expected model.

;; Accesses but does not change the heap for the well formedness.

["(list-sym a)"

"(list-sym* (pr=>cell.m a m) (pr=>cell a m))"

"(pr=>cell.m a m)"]

;; Locate is equivalent to a couple of list-refs. It is a recursive

;; accessor that has no effect on the memory. We do not define its

Appendix A. SECD derivation details 253

;; behavior here though. It would be nice to say the value maps to

;; a one-level unrolling of its recursive definition

; ["(locate a b)"

; "(pr=>cell (locate a b) m)"

; "(pr=>cell.m a (pr=>cell.m b m))"]

["(locate a b)"

"(locate* (pr=>cell.m a (pr=>cell.m b m)) (pr=>cell a (pr=>cell.m b m)) (pr=>cell b m))"

"(pr=>cell.m a (pr=>cell.m b m))"]

; Punting on tag changing ops. These should update the memory

["nil" "nil*" "m"]

["fls" "fls*" "m"]

["tru" "tru*" "m"]

["err" "err*" "m"]

)

;; For functions that consume lt’s, but do not produce lt’s?

; ([’pr=>cell:true?*

; "(true?* a)"

; "(inv (lc-eq? (pr=>cell a m) fls*))"])

([’pr=>cell:true?

"(true? a)"

"(true?* (pr=>cell a m))"])

;; abstraction identities, this should be the usual ident-dt

(

[’pr=>cell-inv

"(pr<=cell (pr=>cell a m)

(pr=>cell.m a m))" "a"]

;; No cons-decode here :(

;; This may require more sophisticated cells.

;; [tag addr] may be appropriate.

[’pr<=cell-nil-decode "(pr<=cell nil* m)" "nil*"]

[’pr<=cell-fls-decode "(pr<=cell fls* m)" "fls*"]

[’pr<=cell-tru-decode "(pr<=cell tru* m)" "tru*"]

[’pr<=cell-err-decode "(pr<=cell err* m)" "err*"]

[’assert2 "(sel (inv tst) i j)" "(sel tst j i)"]

)

)

;; Table spec

(define-sys-table secd

([none "lt"]) ; for now, no inputs

([s "lt" seq] [e "lt" seq] [c "lt" seq] [d "lt" seq])

()

(none)

("(dcd (car c))")

((["rtn-t"] ["(cons (car s) (car d))" "(car (cdr d))" "(car (cdr (cdr d)))" "(cdr (cdr (cdr d)))"])

(["dum-t"] ["s" "(cons nil e)" "(cdr c)" "d"])

(["ap-t"] ["nil" "(cons (car (cdr s)) (cdr (car s)))" "(car (car s))"

"(cons (cdr (cdr s)) (cons e (cons (cdr c) d)))"])

; cannot define setcar! until data transformation

; (("rap") (nil (setcar! (cdr (car s)) (car (cdr s)))

; (car (car s)) (cons (cdr (cdr s)) (cons (cdr e) (cons (cdr c) d)))))

(["sel-t"] ["(cdr s)" "e" "(if (car s) (car (cdr c)) (car (cdr (cdr c))))"

"(cons (cdr (cdr (cdr c))) d)"])

Appendix A. SECD derivation details 254

(["join-t"] ["s" "e" "(car d)" "(cdr d)"])

;; Loading variables, functions, and constants onto the stack

(["ld-t"] ["(cons (locate (car (cdr c)) e) s)" "e" "(cdr (cdr c))" "d"])

(["ldc-t"] ["(cons (car (cdr c)) s)" "e" "(cdr (cdr c))" "d"])

(["ldf-t"] ["(cons (cons (car (cdr c)) e) s)" "e" "(cdr (cdr c))" "d"])

; (("rech") ((cons (readchar) s) e (cdr c) d))

; (("wrch") (writechar (car s)) (s e (cdr c) d))

(["exec-t"] ["(cons (cons (car s) e) (cdr s))" "e" "(cdr c)" "d"])

(["pop-t"] ["(cdr s)" "e" "(cdr c)" "d"])

; (("set") (cons (set (car (cdr c)) e (car s)) (cdr s)) e (cdr (cdr c)) (d))

;; List ops

(["car-t"] ["(cons (car (car s)) (cdr s))" "e" "(cdr c)" "d"])

(["cdr-t"] ["(cons (cdr (car s)) (cdr s))" "e" "(cdr c)" "d"])

(["cons-t"] ["(cons (cons (car s) (car (cdr s))) (cdr (cdr s)))" "e" "(cdr c)" "d"])

;; These are the constant time binary ops

(["eq-t"] ["(cons (eq? (car s) (car (cdr s))) (cdr (cdr s)))" "e" "(cdr c)" "d"])

(["leq-t"] ["(cons (<=? (car s) (car (cdr s))) (cdr (cdr s)))" "e" "(cdr c)" "d"])

(["add-t"] ["(cons (plus (car s) (car (cdr s))) (cdr (cdr s)))" "e" "(cdr c)" "d"])

(["sub-t"] ["(cons (minus (car s) (car (cdr s))) (cdr (cdr s)))" "e" "(cdr c)" "d"])

;; These are the constant time unary ops

(["atom-t"] ["(cons (atom? (car s)) (cdr s))" "e" "(cdr c)" "d"])

(["num-t"] ["(cons (num? (car s)) (cdr s))" "e" "(cdr c)" "d"])

(["sym-t"] ["(cons (sym? (car s)) (cdr s))" "e" "(cdr c)" "d"])

(["pair-t"] ["(cons (pair? (car s)) (cdr s))" "e" "(cdr c)" "d"])

;; These are the recursive multi-step built in funcitons

(["sl-t"] ["(cons (sym-list (car s)) (cdr s))" "e" "(cdr c)" "d"])

(["ls-t"] ["(cons (list-sym (car s)) (cdr s))" "e" "(cdr c)" "d"])

(["ci-t"] ["(cons (char2int (car s)) (cdr s))" "e" "(cdr c)" "d"])

;; Halt

(["stop-t"] ["s" "e" "c" "d"])

))

secd

SECD derivation file
(load-spec "examples/secd/secd.ss")

(begin-serialization (make-sys-path) (quote ("rtn-t")) (quote ((s . "#") (e . "#") (c . "#") d)))

(ser-insert-col (quote i) "lt")

(ser-insert-col (quote j) "lt")

(ser-set-cell 4 0 "(car s)")

(new-ser-row (quote j) "(car d)")

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote j) "(cdr d)")

(new-ser-row (quote i) "(car j)")

(new-ser-row (quote j) "(cdr j)")

(new-ser-row (quote ((e . "i") (i . "#:lt"))))

(new-ser-row (quote i) "(car j)")

(new-ser-row (quote ((c . "i") (i . "#:lt"))))

(new-ser-row (quote ((i . "(cdr j)") (j . "#:lt"))))

(new-ser-row (quote ((d . "i") (i . "#:lt"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "dum-t"))

(quote (s e (c . "#") d i (j . "(cdr c)"))))

(new-ser-row (quote ((e . "#:lt") (i . "e"))))

(new-ser-row (quote ((j . "#:lt") (c . "j"))))

(new-ser-row (quote ((j . "(cons nil i)") (i . "#:lt"))))

(new-ser-row (quote ((j . "#:lt") (e . "j"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "ap-t")) (quote (s e c d i (j . "(car s)"))))

Appendix A. SECD derivation details 255

(new-ser-row (quote j) "(cdr j)")

(new-ser-row (quote i) "(cdr s)")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote i) "(cons i j)")

(new-ser-row (quote ((e . "#:lt") (j . "e"))))

(new-ser-row (quote ((e . "i") (i . "#:lt"))))

(new-ser-row (quote ((i . "(cdr c)") (c . "#:lt"))))

(new-ser-row (quote ((c . "j") (j . "#:lt"))))

(new-ser-row (quote ((d . "#:lt") (i . "#:lt") (j . "(cons i d)"))))

(new-ser-row (quote ((c . "#:lt") (j . "#:lt") (i . "(cons c j)"))))

(new-ser-row (quote j) "(cdr s)")

(new-ser-row (quote j) "(cdr j)")

(new-ser-row (quote ((j . "(cons j i)") (i . "#lt"))))

(new-ser-row (quote ((d . "j") (j . "#lt"))))

(new-ser-row (quote ((i . "(car s)") (s . "#lt"))))

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((c . "i") (i . "#lt"))))

(new-ser-row (quote s) "nil")

(insert-ser-tab)

(apply-alg-ident (quote ()) (quote ("#" "sel-t")) "c" (quote if-def))

(apply-alg-ident (quote ()) (quote ("#" "sel-t")) "c" (quote assert1))

(begin-serialization (make-sys-path) (quote ("#" "sel-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote j) "(cdr c)")

(new-ser-row (quote ((i . "#:lt") (j . "(sel (true?* i) j (cdr j))"))))

(new-ser-row (quote j) "(car j)")

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((c . "j") (j . "#:lt"))))

(new-ser-row (quote i) "(cdr i)")

(new-ser-row (quote i) "(cdr i)")

(new-ser-row (quote ((d . "#:lt") (i . "#:lt") (j . "(cons i d)"))))

(new-ser-row (quote ((j . "#:lt") (d . "j"))))

(new-ser-row (quote ((s . "#:lt") (i . "(cdr s)"))))

(new-ser-row (quote ((i . "#:lt") (s . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "join-t"))

(quote (s e (c . "#") d (i . "(car d)") j)))

(new-ser-row (quote ((c . "i") (i . "#:lt"))))

(new-ser-row (quote ((d . "#:lt") (i . "(cdr d)"))))

(new-ser-row (quote ((d . "i") (i . "#:lt"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "car-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((s . "#:lt") (j . "(cdr s)"))))

(new-ser-row (quote ((i . "#:lt") (j . "(cons i j)"))))

(new-ser-row (quote ((j . "#:lt") (s . "j"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "cdr-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(cdr i)")

(new-ser-row (quote ((s . "#:lt") (j . "(cdr s)"))))

(new-ser-row (quote ((i . "#:lt") (j . "(cons i j)"))))

(new-ser-row (quote ((j . "#:lt") (s . "j"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "ld-t")) (quote (s e c d (i . "(cdr c)") j)))

(new-ser-row (quote j) "e")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((i . "(locate i j)") (j . "#:lt"))))

(new-ser-row (quote ((j . "(cons i s)") (i . "#:lt") (s . "#:lt"))))

Appendix A. SECD derivation details 256

(new-ser-row (quote ((s . "j") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote i) "(cdr i)")

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path)

(quote ("#" "ldc-t")) (quote (s e (c . "#") d (i . "(cdr c)") j)))

(new-ser-row (quote c) "i")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((j . "(cons i s)") (i . "#:lt") (s . "#:lt"))))

(new-ser-row (quote ((s . "j") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path)

(quote ("#" "ldf-t")) (quote (s e (c . "#") d (i . "(cdr c)") j)))

(new-ser-row (quote c) "i")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((j . "(cons i e)") (i . "#:lt"))))

(new-ser-row (quote ((i . "(cons j s)") (j . "#:lt") (s . "#:lt"))))

(new-ser-row (quote ((s . "i") (i . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "exec-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote ((i . "#:lt") (j . "(cons i e)"))))

(new-ser-row (quote ((s . "#:lt") (i . "(cdr s)"))))

(new-ser-row (quote ((i . "#:lt") (j . "#:lt") (s . "(cons j i)"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path)

(quote ("#" "pop-t")) (quote ((s . "#") e c d (i . "(cdr s)") j)))

(new-ser-row (quote ((i . "#:lt") (s . "i"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "cons-t")) (quote (s e c d i (j . "(car s)"))))

(new-ser-row (quote i) "(cdr s)")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((i . "(cons j i)") (j . "#:lt"))))

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote j) "(cdr j)")

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "eq-t")) (quote (s e c d i (j . "(car s)"))))

(new-ser-row (quote i) "(cdr s)")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((i . "(eq? j i)") (j . "#:lt"))))

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote j) "(cdr j)")

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "leq-t")) (quote (s e c d i (j . "(car s)"))))

(new-ser-row (quote i) "(cdr s)")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((i . "(<=? j i)") (j . "#:lt"))))

Appendix A. SECD derivation details 257

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote j) "(cdr j)")

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "add-t")) (quote (s e c d i (j . "(car s)"))))

(new-ser-row (quote i) "(cdr s)")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((i . "(plus j i)") (j . "#:lt"))))

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote j) "(cdr j)")

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "sub-t")) (quote (s e c d i (j . "(car s)"))))

(new-ser-row (quote i) "(cdr s)")

(new-ser-row (quote i) "(car i)")

(new-ser-row (quote ((i . "(minus j i)") (j . "#:lt"))))

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote j) "(cdr j)")

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "atom-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(atom? i)")

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "num-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(num? i)")

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "sym-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(sym? i)")

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "pair-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(pair? i)")

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "sl-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(sym-list i)")

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

Appendix A. SECD derivation details 258

(begin-serialization (make-sys-path) (quote ("#" "ls-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(list-sym i)")

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(begin-serialization (make-sys-path) (quote ("#" "ci-t")) (quote (s e c d (i . "(car s)") j)))

(new-ser-row (quote i) "(char2int i)")

(new-ser-row (quote ((j . "(cdr s)") (s . "#:lt"))))

(new-ser-row (quote ((s . "(cons i j)") (i . "#:lt") (j . "#:lt"))))

(new-ser-row (quote ((c . "#:lt") (i . "(cdr c)"))))

(new-ser-row (quote ((i . "#:lt") (c . "i"))))

(insert-ser-tab)

(apply-data-refinement (make-sys-path) (quote ((s . s*) (e . e*) (c . c*) (d . d*) (i . i*) (j . j*)))

(quote (mem)) (quote pr=>cell))

(resume-serialization (make-sys-path)

(quote ("rtn-t")) 1 2 (quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((s* . "j*") (j* . "#"))))

(new-ser-row (quote j*) "(car* mem d*)")

(new-ser-row (quote ((mem . "(setcar!* mem s* i*)") (i* . "#"))))

(new-ser-row (quote ((mem . "(setcdr!* mem s* j*)") (j* . "#"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("dum-t")) 3 4

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote e*) "j*")

(new-ser-row (quote ((mem . "(setcdr!* mem j* i*)") (i* . "#") (j* . "#"))))

(ser-eval-ident (quote mem) (quote (setcdr!*-inits-car-to-nil)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ap-t")) 2 5

(quote (s* e* c* d* (i* . "(alloc* mem)") j*)))

(new-ser-row (quote ((mem . "(setcdr!* mem i* j*)") (j* . "#"))))

(new-ser-row (quote j*) "(cdr* mem s*)")

(ser-eval-ident (quote j*) (quote (setcdr!*-effects-mem)))

(oblige-ser-eval-ident (quote j*) (make-term-path 0) "(lc-eq? (alloc* mem) s*)" "false")

(ser-eval-ident (quote j*) (make-term-path) (mk-sel-ident (quote false) "lc") (quote ()))

(new-ser-row (quote j*) "(car* mem j*)")

(ser-eval-ident (quote j*) (quote (car*-setcdr!*)))

(new-ser-row (quote ((mem . "(setcar!* mem i* j*)") (j* . "#"))))

(new-ser-row (quote ((e* . "#") (j* . "e*"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ap-t")) 11 11

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((d* . "#") (mem . "(setcdr!* mem j* d*)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ap-t")) 14 14

(quote (s* e* c* d* (i* . "(alloc* mem)") j*)))

(new-ser-row (quote ((j* . "#") (mem . "(setcdr!* mem i* j*)"))))

(new-ser-row (quote ((c* . "#") (mem . "(setcar!* mem i* c*)"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ap-t")) 17 19

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(new-ser-row ’i* "(cdr* mem s*)")

(ser-eval-ident (quote i*) (quote (setcdr!*-effects-mem)))

(oblige-ser-eval-ident (quote i*) (make-term-path 0) "(lc-eq? (alloc* mem) s*)" "false")

(ser-eval-ident (quote i*) (make-term-path) (mk-sel-ident (quote false) "lc") (quote ()))

(new-ser-row ’i* "(cdr* mem i*)")

(ser-eval-ident (quote i*) (quote (setcdr!*-effects-mem)))

Appendix A. SECD derivation details 259

(ser-eval-ident (quote i*) (make-term-path 0) ’(lc-eq?-false-2))

(ser-eval-ident (quote i*) (make-term-path) (mk-sel-ident (quote false) "lc") (quote ()))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("sel-t")) 8 8

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((d* . "#") (mem . "(setcdr!* mem j* d*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ld-t")) 4 5

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "s*"))))

(new-ser-row (quote ((s* . "j*"))))

(new-ser-row (quote ((i* . "#") (j* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ldc-t")) 3 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (mem . "(setcdr!* mem j* s*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ldf-t")) 3 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((mem . "(setcdr!* mem j* e*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ldf-t")) 6 6

(quote (s* e* c* d* (i* . "(alloc* mem)") j*)))

(new-ser-row (quote ((j* . "#") (mem . "(setcar!* mem i* j*)"))))

(new-ser-row (quote ((s* . "#") (mem . "(setcdr!* mem i* s*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("exec-t")) 1 1

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((mem . "(setcdr!* mem j* e*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("exec-t")) 4 5

(quote (s* e* c* d* (i* . "(alloc* mem)") j*)))

(new-ser-row (quote ((j* . "#") (mem . "(setcar!* mem i* j*)"))))

(new-ser-row (quote ((s* . "#") (j* . "(cdr* mem s*)"))))

(ser-eval-ident (quote j*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((j* . "#") (mem . "(setcdr!* mem i* j*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row (quote ((s* . "i*") (i* . "#"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("car-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("cdr-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

Appendix A. SECD derivation details 260

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("cons-t")) 1 6

(quote (s* e* c* d* (i* . "(alloc* mem)") j*)))

(new-ser-row (quote ((j* . "#") (mem . "(setcar!* mem i* j*)"))))

(new-ser-row (quote ((j* . "(cdr* mem s*)"))))

(ser-eval-ident (quote j*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((j* . "(car* mem j*)"))))

(ser-eval-ident (quote j*) (quote (setcar!*-effects-mem)))

(ser-eval-ident (quote j*) (make-term-path 0) ’(lc-eq?-false-2))

(ser-eval-ident (quote j*) (make-term-path) (mk-sel-ident (quote false) "lc") (quote ()))

(new-ser-row (quote ((j* . "#") (mem . "(setcdr!* mem i* j*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row ’j* "(alloc* mem)")

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row ’i* "(cdr* mem i*)")

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row ’s* "j*")

(new-ser-row (quote ((i* . "#") (j* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("eq-t")) 6 6 (quote ((s* . "i*") e* c* d* i* j*)))

(new-ser-row ’i* "(alloc* mem)")

(new-ser-row (quote ((s* . "#") (mem . "(setcar!* mem i* s*)"))))

(new-ser-row ’s* "i*")

(new-ser-row (quote ((i* . "#") (j* . "#") (mem . "(setcdr!* mem i* j*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("leq-t")) 6 6 (quote ((s* . "i*") e* c* d* i* j*)))

(new-ser-row ’i* "(alloc* mem)")

(new-ser-row (quote ((s* . "#") (mem . "(setcar!* mem i* s*)"))))

(new-ser-row ’s* "i*")

(new-ser-row (quote ((i* . "#") (j* . "#") (mem . "(setcdr!* mem i* j*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("add-t")) 5 6 (quote ((s* . "i*") e* c* d* i* j*)))

(new-ser-row ’j* "(cdr* mem j*)")

(new-ser-row ’i* "(alloc* mem)")

(new-ser-row (quote ((s* . "#") (mem . "(setcar!* mem i* s*)"))))

(new-ser-row ’s* "i*")

(new-ser-row (quote ((i* . "#") (j* . "#") (mem . "(setcdr!* mem i* j*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("sub-t")) 5 6 (quote ((s* . "i*") e* c* d* i* j*)))

(new-ser-row ’j* "(cdr* mem j*)")

(new-ser-row ’i* "(alloc* mem)")

(new-ser-row (quote ((s* . "#") (mem . "(setcar!* mem i* s*)"))))

(new-ser-row ’s* "i*")

(new-ser-row (quote ((i* . "#") (j* . "#") (mem . "(setcdr!* mem i* j*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("atom-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

Appendix A. SECD derivation details 261

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row (quote ((s* . "j*") (j* . "#"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("num-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row (quote ((s* . "j*") (j* . "#"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("sym-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row (quote ((s* . "j*") (j* . "#"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("pair-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row (quote ((s* . "j*") (j* . "#"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("sl-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row (quote ((s* . "j*") (j* . "#"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ls-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row (quote ((s* . "j*") (j* . "#"))))

(insert-ser-tab)

(resume-serialization (make-sys-path) (quote ("ci-t")) 2 3

(quote (s* e* c* d* i* (j* . "(alloc* mem)"))))

(new-ser-row (quote ((i* . "#") (mem . "(setcar!* mem j* i*)"))))

(new-ser-row (quote ((s* . "#") (i* . "(cdr* mem s*)"))))

(ser-eval-ident (quote i*) (quote (cdr*-setcar!*)))

(new-ser-row (quote ((i* . "#") (mem . "(setcdr!* mem j* i*)"))))

(ser-eval-ident (quote mem) (quote (setcar!*-setcdr!*-comm . rl)))

(new-ser-row (quote ((s* . "j*") (j* . "#"))))

Appendix A. SECD derivation details 262

(insert-ser-tab)

(apply-alg-ident (quote ()) (quote ("|2|" "sel-t")) "mem" (mk-sel-uni-br-ident "boolean" "lmem{lc}"))

(apply-alg-ident (quote ()) (quote ("|2|" "sel-t")) "j*" (quote assert2))

	Acknowledgements
	Abstract
	Introduction
	Behavior Tables
	Type Management and Data Refinement
	Scheduling and serialization
	Retiming
	Organization

	Related Research
	Design Derivation
	Type Management
	Stream modeling and transformational synthesis
	Tables in system development

	Design Derivation
	Modeling synchronous processes
	Terms and types
	Multisorted signatures and algebra
	Adapting the mathematics for use in Starfish

	Stream Systems
	An algebra for system refinement
	Correctness and trace comparison
	Five correctness preserving transformations
	Extending identification to sequential signals
	Soundness of fold and unfold transformations

	Behavior Tables
	Behavior Table Expressions
	Behavior Table Algebra
	Notational conventions
	The rules

	Starfish
	Computational Engine
	Language prerequisites
	Type system
	Component addressing
	Analysis
	Transformations
	Command Interpreter

	Display
	Interprocess communication

	System Factorization and Decomposition
	Single Function Factorization
	Factoring Multiple Functions
	Signal Factorization
	Increasing Automation

	Serialization
	How it works
	How Starfish supports serialization

	Data Refinement
	One-to-one refinements
	One-to-many refinements
	Stateful refinement schema
	Starfish's refinement provisions
	Putting it all together

	Case Studies
	SchemEngine Garbage Collector
	Specification
	Factorization
	Data Refinement

	The SECD Machine
	SECD machine specification
	Specification Signature
	Derivation Strategy
	Introducing fetch
	Expanding functions
	Initial serialization and scheduling
	Data refinement
	Re-serialization and re-scheduling
	Comparing the derivation result with the WS

	Conclusion
	Achievements
	Future Work

	SECD derivation details

