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Abstract

We consider the problem of data type extensions. Guttag,
Horowltz, and Musser have pointed out that in this situation
the naive initial algebra approach requires the data type to
save too much information. We formulate a category of imple-
mentations of such an extension, and we show that such a cate-
gory has a final object. The resulting semantics 1s closer
to that of Hoare, since it can be argued that an abstract data
type in the sense of Hoare 1s a final object in the category
of representations of that type. We consider as an example
the specification of integer arrays, and we show that our
specification ylelds arrays as 1its abstract data type. The

connection with initial algebra semantics is discussed.
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0. Prologue
In this paper we are concerned with the definition of new

data types from old, using the viewpoint of what 1s called initilal
algebra semanties [9,10,13,14]. Before discussing the problem
in detall, we summarize our interpretation of the initial algebra
approach in this prologue.(*)

One wishes to specify data types axiomatically, that is, by
writing down, 1n some logical calculus, sentences which describe
those properties of the data type on which its user may rely. A
program which uses a data type may then be proved correct by de-
ducing its verification conditions from the axioms of the data
type. Such a program will then work correctly with any implemen-
tation of the data type which satisfies the axioms. Thus the pro-
grammer 1is concerned not with single algebras, but with the class
of algebras which are legal representations of the data type; the
programs he writes ought to work satisfactorily regardless of
which representation 1s used. Our first thesils, therefore, 1is
that a 4pecification o4 a data type should present a class of
algebras. If one desired merely to construct a single algebra,
then numerous mathematical techniques are avallable; it is the
finite presentation of classes of algebras that requires formal
methods.

One logilcal language which seems to be useful for the spec-
ification of data types 1s the language of generators and rela-

tions [9,10,13,16]. A presentation via generators and rela-

(#)The reader should be warned that we diverge 1in some details from
the approach, say, of [10]. Our outlook is much closer to that
of [9]; any misinterpretations are solely our responsibility,
of course.



tions defines an equational class of algebras. Since one wishes

to discuss connections between equatlonal classes lndependent

of thelr presentation, one introduces categories called algebraic
theories [20]. An algebraic theory is a representation of its
equational class, Just as a Zermelo-Fraenkel ordinal 1s a rep-
resentative of its order-isomorphism 019?5'(*) An algebraic
theory consists of equivalence classes of terms (compositions of
generators), where two terms are equivalent 1ff their equallity is
deducible from the relations.(**} Of particular importance 1is

the case where there are no relations between the generators; then

the theory is called a free theory and the morphisms are just the

terms. The T-algebras (or implementations, or models) of an alge-
braic theory T are certain functors from T to the category

of sets; this plcture is merely a notational variant of the con-
ventional plcture of an algebra.

The denotational semantics of a term in a T-algebra is the
mapping i1t induces on the unlverse set of the algebra. This
mapping is obtalned by mapping the term (a morphism of a free
theory F) to its equivalence class (a morphism of T), and thence,
via the T-algebra (qua functor) to the desired set map (a morphism
of the category of sets). We ldentify T-algebras with implemen-
tations, and since the functor from the free theory to T is

independent of the implementation, we sometimes refer to it as

(¥)Although, unlike the ordinal, an algebraic theory 1s not a
member of the class 1t represents.

(*#%)More precisely, the morphisms of a theory are equivalence classes
of (tuples of) terms.



(%)

"the semantics"™. These relationships are shown in Figure 0.1

F semantics:T

implementation
Sets
Figure 0.1

The fragment of algebra semantics we have described 1s more
than an algebraicization of attribute grammars [19] with only
synthesized attributes.(**) The difference is that the algebraic
framework allows additional problems to be attacked:

(1) equivalence of presentations: gilven two sets of gener-

ators and relations, do they define the same class of lmplementa-
tions? If the generator sets are quite different, it may be
difficult to state a translation theorem; it may be easler to
prove the algebraic theories 1somorphic. Similar questions

arise with respect to simulability [8] or program trasformations

[3,23].

(11) operational semantics: glven some complex term and some

set of terms which we regard as known constants, a computation is
a deduction (in some appropriate formal system) that the value of
the complex term 1s always equal to the value of a particular

known term in any implementatlon, i.e. that they are mapped by

(#)This is, of course, a crude notion of implementation - see
(1i1) below.

(#%)Although synthesized attributes are enough, see, for example [4].



the semantics to the same morphism in T . It can be shown that
this problem is equivalent to a word problem in a tree rewriting
system [22], and then under reasonable conditions the tree re-
writing system has the Church-Rosser property with various pleasant
conse (*)

guences.

(11i) classes of implementations: An equational class is

usually not quite what one wants for the class of implementations.
One may desire additional closure properties (which leads to the
consideration of "theories with additional structure" [5,24]) or
more restricted closure properties (a situation to be considered
in this paper). Rather than having a single, so-called "abstract"
implementation, one always has a class of implementations, and
one may pose the question of which of those implementations is
"the" desired one. The conventional choice is the initial T-
algebra, which has two desirable properties. First, its universe
contains no values other than those required by the generators.
Second, two values have the same semantics in the initial T-
algebra if and only if they have the same semantics in every
T-algebra. Thus no information is lost except that which is
required by the relations.

Guttag et. al. [17] have suggested that in some cases the
initial algebra saves too much information. It is the purpose
of this paper to suggest a solution to that problem. The out-

line of the paper is as follows: Section 1 presents an example

(#)See [17] for a well-illustrated discussion. Although tree
rewriting systems have been the object of some study [22], their
exact connection with algebralc theories has not to our knowledge
been adequately explored in print.



to illustrate the problem posed by Guttag et. al. Section 2 is
given over to definitions, most of which are guite standard.

In Sectlion 3, we argue that an abstract data type 1n the sense
of [18] ought to be a final object in the category of data type
representations. In Section U4, we present our model of data
type extensions. In Section 5, we prove the main result: that
the category of representations of a data type extension has a
final object, which gives the final algebra semantics of the
title. It 1is also shown that the conventional initial algebra
semantics 1s preserved as a special case. We mention briefly
an analogy between final algebra semantics and minimal realization

in automata.



1. Introduction

In this section we presume a general familiarity with the

mathematical structures discussed in the prologue. There are

several excellent tutorials on various aspects of this material

% W o

Let us consider a theory of intergers, TI P This theory
2

will have one sort, denoted 4 , and generators as follows:

for each nonnegative integer k , a symbol n, :A+4L

__‘K

undefined: A4

plus:

AL+A

subject to the identities

Qlus[gk,gp] = Qk+p for each k,pew

(¥)

plus[x,undefined] = undefined
plus[undefined,x] = undefined

It is easy to show, using canonical term algebras [10], that the

initial algebra
under the usual
data type which
integers (where
do this, we add

generators:

of Ty , consists of {n, |kew}u{undefined}

addition. Now let us consider the theory of a
consists of integer-valued arrays indexed by

"integers" is the type defined by T Y. Pao

I,+

a new sort (for arrays), called a , and new

empty:A+a (the empty array)
alt:aii+a (alt[A,],x] = "A after A[J]:=x")
val:adiri (vallA,j]1 = A[J])

(¥)This represents

a countable set of axioms.
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The intended semantices of the generators (sketched above) may

be captured by adding the following ldentities:

vallempty,x] = undefined

val[alt[x,gp,z],gp] z for pew
val[alt[x,gk,z],g ] = val[x,gp] for k#p,k,pew

val[x,undefined] = undefined

We call this theory TARR

It is clear that val, applled to an array and an integer,
always reduces to an integer by applications of the ldentitles,
i.e., thils set of identities is sufficlently-complete in the sense

of Guttag [16]. The inltial algebra of T , however, does not

ARR
consist of the arrays we hoped to define. The initial algebra
consists of two sorts. The sort SL corresponding to 4 con-
sists of {ngKem}u{undefined} as before, but the set S
corresponding to a 1s defined inductively as

a

(1) empty eSa

(11) if xeS,, and m,m'eS;, then alt[x,m,m'] 1s 1n the set S5,

(111) nothing else

For example altlalt[empty,n,,n,]l,n,,n,]

and alt[alt[empty,n,,n,1,n,,0,]

are distinct elements of the initial algebra of TARR . Here
the initial algebra saves too much information: it saves not only
the values in the array but also the order of all changes 1n the
array.

One could destroy this unneeded information by adding the

identities
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a t[a_t[x,gk,y],gk,z] = alt[x,gk,z] kew
alt[a t[x,gk,y],gp,z] = alt[alt[x,gp,z],gk,y] K,Pew k2D
alt[x,undefined,y] = x

It is straightforward to see that this suppresses duplicate sub-
script entries and causes subscript errors on updates to be ignored.
Unfortunately, adding the second axiom scheme causes the under-
lying operational semantics to lose the Church-Rosser property
[17,22]. This is an unpleasant consequencej; Guttag et.al. suggest
the use of "equality interpretations" to allow information to be
lost in a controlled manner.

It is the purpose of this paper to suggest another solution.
We observe that the difficulty arises when we are dealing with

data type extensions. We have "enough information" in our imple-

mentation of the extension so long as no values of the base type
(e.g. integers) are merged. We wish to lose as much information

as possible; therefore we are led to final algebras in the category
of implementations which have "enough information". The main

theorem of this paper shows that such final algebras exist.
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2. Preliminaries

If C is a category, C(a,b) denotes the set of arrows or
morphisms from object a to object b . If f e C(a,b) and
g ¢ C(b,c) , their composition, a member of C(a,c), is denoted
g.f. We write gf when no confusion results. If £ e C(a,b)
then dom(f) = a and cod(f) = b . Sets will denote the cate-
gory whose objects are sets and whose morphisms are the usual
set-theoretic functions. Right-to-left composition (usually of
functors or of functions in Sets) 1s written using Molts
g-f(x) = g(f(x)) .

If C is a category, an objeect a of C 1s initlal iff for
any object b of C , there 1s exactly one morphism in C from
a to b . The object a 1s final iff for any object b there
is exactly one morphism in C from b to a . All initial
objects in a category are always isomorphic; similarly for final
objects. In Sets, & is initial (consilder the function whose
graph is empty), and any singleton set 1s final.

Let S be a set whose elements are called sorts. An

S-sorted operator alphabet 0 1s a map Q:K+S¥xS for some set
#
(5

. If sek , and Qs = (w,a), we say w 1s the domain
of 5 and & ‘I8 the codomain of 3¢ . "IFf'"'3 Has 'orly one
element, and w = a" (where S = {a}) , we say s 1s n-ary;
Q 1is then a ranked alphabet. When no ambiguity results, we
will write §© for K and write "seQ". We write @Q(w,a) for

{sek|Qs = (w,a)l}.

(#)S*¥ denotes the free monoid generated by S .
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An S-sorted algebraic theory (or just theory) is a category
T whose objects are the elements of S* and in which multipli-
cation in S* coincides with the categorical product. If T
is a theory, and fieT(u,wi) (e A9 Byeawati] - 5o then the

product morphism in T(u,wl...wn) is denoted [f ,fn] w We

1’ LI
write ey for the projection morphisms. A theory-functor is
a product-preserving functor between theories. If Q 1is an
S-sorted operator alphabet, we may construct the free theory

F. by the usual methods [12]; if seQ , then SEFﬂ(dom(S),COd(S))

Q
If T is an S-sorted theory, so is T2 , Where

Tz(u,v) = {(f,g) If,8¢T(u,v)} with composition given by

(f,g)(f',g') = (ff',gg') . An equation on T 1is an element
of Tz(w,a) for some aeS . A congruence on T 1s a sub-

theory R of T2 such that for each u,ve3*, R(u,v) 1is an equi-
valence relation on T(u,v) . If R 1is a congruence on T ,
then we can form the quotient theory T/R via T/R (u,v) =
T(u,v)/R(u,v) . T/R is also an S-sorted theory; it is the
coequalizer of the evident diagram R+T21T .

If A 1is a set of equations on T , we can construct
the smallest congruence on T containing A as the set of
theorems of a formal system EA . The formal objects of EA
are the morphisms of T2 . We write (f,f'):u+v for
(f,f')eTZ(u,v) o and b (£, 00 ) suxvy AT (E,E') 18 provable

in E The axioms and rules of EA are as follows:

A -
Axioms: If (f,f'):wra e A , then P (f,f'):w + a EA

Por any © ¢ Tlu,v) 5 B{£,f)su+ v ER
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Rules: (f,g):u + v (f,g):u > v (g,h):u > v

ES ET
(gst)en % (f,h):u » v
(g,8):w >y (F,F):v+w (hyh)su+> v g
O B
(fl,f'l):m > al,...,(fn,f'n):m F i EP
([fl,..,fn],[f’l,..,f'n]):m * 8p...8)

Let Eﬂ(u,v) = {(f,f")|~(£f,f"):u > v} . Axiom scheme EA
ensures that every equation in A is in EA ; rules ER, ES,
and ET ensure that each Ea(u,v) is an equivalence relation;

2

rule EC closes EA to a subcategory of T , and rule EP
closes Eﬂ under the product operation of T2 . Hence E& "
with composition inherited from T2 , 1s the smallest congruence
on T containing A

A theory may be presented by (2,A) where Q 1s an operator

alphabet (the generators) and A 1s a set of equations (the

relations). (Q,A) presents the theory T where T(u,v) =
Fg(u,v)/E&(u,v) . The functor F:F T sending each morphism
to its eguivalence class 1s a full theory functor.

If T 1s an S-sorted theory, a T-algebra is a product-
preserving functor A:T+Sets . A natural transformation h:A+B
from one T-algebra to another is just a homomorphism of algebras
(over ). The T-algebras and natural transformations form a
category T-Alg.

If T 1is an S-sorted theory, the T-algebra A given by

A(w) = T(A,w) weS#

A(f):T(A,s)>T(A,Vv):gl>gf FeT(w,v)
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is initial in T-Alg. This (when decoded) comes out to be the
conventional term algebra in the case where T 1s a free theory;
where T 1is not free, the carriers consist of equivalence classes
(under Ea) of (tuples of) terms. We refer to this particular
initial algebra as the canonical initial algebra. The T-algebra

7 given by Z(w) = {1} 1is final in T-alg. Z 1is the algebra
whose universes consist of singleton sets for each sort (and
whose operations are therefore trivial).

3. Data Type Representations

One anomalous property of the initial algebra approach is
a seeming incompatibility with other notions of abstract data
types e.g. [18]. If A 1is an initial algebra of T , and B
is any other T-algebra, there is a unique morphism A-+B . In
Hoare's version (and in related work [e.g.21]), the map runs
the other way: one has the "abstraction map" A from an
arbitrary implementation B to the set of "abstract values".

In this section we will attempt to make some sense of these
two views.

We said previously that we identify objects of the category
T-Alg with implementations of the theory T . This identification
is, of course, rough at best; for example, it includes the final
algebra Z as a legal implementation. Even if we wish to exclude
some elements of T-Alg, the class of legal implementations of T
wlll be some subcategory K of T-Alg.

Let us imagine, therefore, that we are given a particular
subcategory K of T-Alg which 1s known to be the category of legal

implementations of T ; and let W Dbe the "abstract data type".
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In the example of Section 1, W would be given by

W(i) = {gklkew}u{undefined} (as before)

W(a) = {M|M is a partial function w+w, of finite domain

W(val) = A(M,j)[if J = undefined then undefined
else 1f M 1is undefined at J then undefined
else EN(j)]

W(alt) = k(Msjs‘x)[M—{(J,}')EM}U‘[CJ3x)]’:l

K 1is to the category of representations of W

If we have a reasonable notion of "category of legal imple-
mentations”, the followlng observations should hold:

(1) W 41s an object of K (A data type ought to be a legal
implementation of itself)

(2) for any object A of K , there i1s a morphism 1n K
from A to W (the "abstraction map")

(3) for any obJect A of K , there is only one morphism
in K from A to W . (There is only one "reasonable" abstrac-
tion map for each data type representation A , i.e. each "con-
crete" value in A may reasonably represent only one "abstract"
value in W .)

These observatlions imply that W 1s a final object in K ,

that 1s: an abstract data type is a final object in the category

of its representations (where of course, "abstract data type"

means abstract in the sense of [18]).

A second argument for this thesis (particularly in support
of the uniqueness condition) may be made as follows: the correct-
ness of a data type representation is proved (in [18]) relative

to a particular abstraction funetion. Thus an implementation is



&1

a palr (A,A) where A 1is a T-algebra and A 1s an abstraction
map A-W ., This makes K a "comma category" whose ob jects
are pairs (A,A) as sketched above and whose morphisms (A,A)-+(B,B)

are T-Alg morphisms h:A+B such that the diagram
A—h—ﬁ——+B
A/
W
commutes. Then (W,1) is a final object, since the diagram

ety 3y

\/

commutes iff h=A
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4, Data Type Extensions

Guttag [16] has suggested concentration on the issue of
data type extensions--that is, the process of adding new types
to exlsting type structures. In the example of Section 1, we

extended TI,+ to TARR . This extension 1s presented by

adding new generators and relations to the generators and

relations in the presentation of T A presentation of

IR S
a data type extension, then, might be a 4-tuple (QO,&O,Rl,ﬁl)

where (QU,QU) is a presentation of a base theory TO (e.g. TI +),
5

and Ql and al are new generators and relations to be "added".

The theory T of 0ld and new data types is (roughly)

3 X
F Flhash.) .
(2g2,) | g
What we are trying to present is a functor 'I'O+T1 3 that 1s;
we are trylng to specify both the new theory Tl and 1its relation

to the base theory T What requirements should be placed on

U L
this functor? Clearly, it should be product-preserving. One

might require sorts of T to be mapped to sorts in T s but

0 1
for our purposes this 1s unnecessary. One would be upset if

the additional identities in Tl caused values in TO to merge

(e.g. 1f in T,pp we could conclude that n, = n, ). For this

purpose we could ask that the functor be faithful.
Guttag [16] proposed a new condition for data type exten-
sions. He suggested that a presentation of a data type exten-

sion was "sufficiently-complete" iff any term 1n F9 R (A,a)
5 Sl §

where a 1s a sort in T0 , 1s reducible via ldentities in

aouﬁl to a term in TO . The appropriate condition on the

functor is A-fullness, which is defined as follows:
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Definition Let T be an S-~sorted theory, and let C

0]
be any category. A functor i:TO+C is A-full (respectively

A-faithful) iff for every aeS , the function TO(A,a)+c(1(n),i(a))
given by f™i(f) 1is surjective (resp., injective).

If a data type extenslon functor is A-full, then no "new?"
values of the old types will be present in the initial algebra

T is A-full but not

Note that the functor TI,++ ARR

of Tl i

full; the term

val[alt[empty,xl,x2],x3]

is not equivalent to any morphism of T

g o
Definition A data type extension is a functor i:TO+'I'l
where TO and T1 are algebraic theories, and 1 1is product-

preserving, A-full, and A-faithful.
Given a data type extension 1 , what 1s i1ts category of
representations? Clearly 1t should be a subcategory of gl—Alg.

#
Thus a typical representation of 1 1is shown in Figure 4.1.( )

Sets

Figure 4.1

Having imposed the A-faithfulness condition on 1 to

ensure that T1 does not merge values in TO s We would not

(¥#)Since i 1itself uniquely determines TO and 'I'l , We say

"implementation of i" rather than "implementation of Tl rela-

tive to T, via 1" or the like.
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like this information to be lost by A . Therefore we require
Aoi to be A-faithful. For example, if 1 1s the data type
extension T

Typge bhe T -algebra W:T, .-+Sets (defined

e ARR
in Sectlon 3) 1s not A-faithful (it merges Jjust those array

values in (A,a) which we felt deserved merging), but Wel

TAHR
is A-faithful (the 1ntegers don't get merged).

We impose a second condition on implementations: a
"reachability™ condition, which means that an implementation

of 1 has no values except required by Tl.

Definition If i:TO+'I'l is a data type extension, the cate-

gory Ki of implementations of i 1is the full subcategory of
gl:ggé—consisting of functors A:T,>Sets such that

(1) Aei 1is A-falthful
and (2) for each obJect w of Tl’ the map ﬂi:Tl(A,w)+A(w)
given by f BAf() , 1s surjective.

Condition (2) 1s worthy of more explanation for the non-
initiate. IF feTl(A,w) , then Af ¢ Sets (A(A),A(w)) . Thus
Af 1s a function of no arguments, ylelding a value in A(w)
Thus Af() , being the application of Af to a string of no
arguments, evaluates to thils value. Another condition equilvalent
to condition (2) is that for each w , the map
T,(A,w)>Sets(A(A) ,A(w)) glven by f AT is surjective.

Proposition 1. Let T be any theory. A T-algebra

A:T+Sets is initial 1ff for every object w of T , ni is

bijective.
Proof. In the canonical initial T-algebra C ,

ng(f) = f , so “3 is bijective. Since all initial T-algebras
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are isomorphic, ”2 is bijective for every initial T-algebra B.
If A 1is any T-algebra and ni is bijective, ngo(ni)-l
is an isomorphism between A and the canonical initial T-algebra
c . 1
Propesition 8. "IT" "1:F T is a data type extension, and

g "l
A 1s an object of Ki’ then Aoi:T0+Sets is an initial To-algebra.

Proof. Asl is A-falthful, so for each objJect w of TO’

Aol A Nt . wh
r] = oi
w

is injJective. N is surjective, so Ty N is

surjective as well, Hence, by Proposition 1, Aei 1is initial. ®
This proposition establishes that in the terminology of

[10] the sorts of T are "protected" in T . The map

0 3
A bAei ("composition with i") is the forgetful functor
T,-Alg » I,-Alg mentioned in [10, Definition 9].
Proposition 3. Let i:TO+Tl be a theory-functor. Then 1
is a data type extension iff for every object A of Ki , - el

is an initial T, —-algebra.

0
Proof. The Y"only-if" was shown in the previous proposition.

For the reverse direction, let A be an initial Tl—algebra.

Aol
Nw

Proposition 1. For any feTO(h,w), nioi(f) = nﬁ(i(f)) . Hence

is a bijection by hypothesis, and ni is a bijection by

i(f) = (nﬁ)'loni°1(f) .' 8o "1 'reatrieted ' o To(ﬂ,w) is a

bijection, and i is A-full and A-faithful. B
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We have now returned to the situation we found in Section 3:

we have a category Ki of data type representations.

Can we

find an abstract data type in K ? Our main theorem gives an

all
affirmative answer:

Main Theorem, If 1:T0+’I'l is a data type extension, then

Ki has a final object.

We begin with a characterization of the objects of Ki .

given by Theorem 1.

Definition. Let 1:T.~T be a data type extension. A

g1

congruence Q on Tl is 1-faithful iff the composite TO;Tl*Tl/Q

is A—_fadehfil.

Lemma 1. Let i:’I'O

+T1 be a data type extension.

A

congruence Q on T is i-faithful iff for every pair of

1l

morphisms f,geT, with domain A , if (i(f),1(g))eQ, then £ = g.

Theorem 1. Let i:TO+Tl be a data type extension. A

product-preserving functor A:T1+Sets is an object of Ki 185

there exists an i-faithful congruence Q@ on

diagram
Ti—————+-Tl/Q

A B

Sets

commutes, where B 1s an initial algebra of T,/Q

Proof. (<=): Given an i-faithful congruence

observe that B 1is falthful.

T

1

such that the

Q

, we merely
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(=>): Given an object A of Kl , let Q(w,v) =
{(f,g)|f,geT (w,v) and A(f) = A(g)} . Q 1s the usual kernel
congruence. To show that Q 1s 1-faithful, let f,geTO(ﬂ,w) for
some w o, and let (1(f),i(g))eQ(A,w) . Then A(Li(Ff)) = A(i(g))
Since Aei 1is A-faithful, we conclude f =g . Hence @ 1is
i-faithful by Lemma 1. Let [f] denote the equivalence class of
f modulo @Q

Let j denote the functor T1+T1/Q . Let B denote the
Tl/Q-algebra given by

B(w) = A(w)

BC[ET) = A(EF) fer, (w,v)
The second portion of the definition is independent of represen-
tatives by the construction of @ . Hence A=Boj

It remalns to show that B 1s an initial algebra of Tl/Q
Let C denote the canonical initial algebra of Tl/Q . We
claim that B and C are isomorphic in LQI/Q}—Alg. We must give
for each object w of Tl/Q , & bijective map gw:B(w)+C(w)
such that £ 1s a natural transformation B-»C . 1In order to

do this, let n denote the surjective map Tl(ﬂ,w)+ﬂ(w) whose

existence is guaranteed by the definition of Ki . Given
xeB(w) = A(w) , 1let nal(x) denote any feTl(A,w) such that
A(f) = x . Now let gw(x) = J(n;l(x)) . The value of gw(x)

is independent of the choice of n;l by construction of Q

It is easy to see that Ew is bijective. To show that £ 1is
a natural transformation, we must show that for any [f]eTl/Q(w,V) s

C([f])°5w = £v°B([f]) . Let xeB(w)=A(w) ., Then



and

(c(Lf1))(i(=))
(eCLeli)(lgl)
[ef]

il

C([£1) g, (x)

n

g *B(LF1)(x) = € _oA(£) (x)
= g,°A(f)-A(g) () since
= g °A(gf) ()
= g on (&f)
= J°n;l°nw(gf)
= j(ef)
= [gf] . B®

where

x:

n,(8) = x

n,(g) = (48) (),

24



Lemma 2. Let i:TO+'I'l be a data type extension, let A,B

be objects of Ki , and for each object w of 'I'1 , let
& be a map A(w)»B(w) . Then & 1s a morphism of K iff

i
A _ B
for each w , &wonw = nw .
Proof. Let & be any natural transformation from A& ¢to

B . Then for any feTl(A,w) following diagram commutes:

ACA) »B(A)

Af Bf

A(w) aw +B(w)

Notice that since A(A) and B(A) are singleton sets, the
topmost arrow 1s unique. Chasing the unique member of A(A)

around the diagram, we conclude that gw(ni(f)) = nE(f) for

A _ B
every f . Hence Ewonw =R
For the "if" portion, assume that for each w , Ewoni =7
By surjectivity of ni , 1t will suffice to show EVoAfoni =

Bfaﬁweni (See Figure 5.1).

T(A,w)
e :
Alw)—2 +B(w)
A(F) B(g)

A(V)MT*-* B(v)

v

Figure 5.1
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We chase an element g of T(A,w) around the diagram as

follows:

E_oAfoni(g) = £_oAfoAg () (Def'n of 1)

v W v rIW
= Ev°ﬁ(g-f) Q) (A is a functor)
- A A
= Ev°nv(g»f) (Def'n of n_)
_ B A _ B
= nv(g.f) (B4 - ),
= B(g.f) () (Def'n of n%)
= BfoBg () (B 1s a functor)
- B
= Bf nw(g) (Def'n of nw)
e oF onh - el
= Blog_on_ (E) (n, = €.°1 ).

So & 1is a natural transformation. B
Lemma 3. If 1:T,»T; 1is a data type extension, and A,B
are objects of Ki , then there 1s at most one morphism from

A to B in K

i -
Proof. Let &,E' be two natural transformatlions from
does Bl o) el
A to B . Then Ew e ©  The gw ne By surjectivity of
A P 1
ﬂw s EW = E’W . 1

We now need a theorem about least upper bounds of sets of
congruences.

Theorem 2. Let T be an S-sorted theory. Let the congru-
ennices on T be ordered by inclusion. Let @ be any set of
congruences on T . Then @ has a least upper bound, denoted
V2 , characterized as follows: If f,geT(w,v) , then

(f,g)eVQ 1iff there exist f ..,fneT(w,v) such that

0’
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(1) f,=7f¢
(11) £, =8
(iii) for each 1 , 0si<n , there exists QeQ such
that (fi,fi+l)eQ(w,v) g

Proof. Let' Z(w,v) = {(f,g)|(f,8)eQ(w,v) for some QeQ} .
We claim that EZ is the desired least upper bound of ¢ . If
QeQ , then QEZEEZ . If R 4is a congruence and QcR for each
QeQ , then ZcR , so EZEEB =R . BSo EZ is the least upper
bound.

It remains to show that (f,g)eEZ iff there exists a
sequence fo""fn as specified. If the sequence exists, then
(f,g)eEz by repeated application of transitivity (rule ET). We
will next show that 1if (f,g)eEZ , then the sequence exists.

The proof is by induction on derivations in the formal system EZ
LT (f,g)sEZ via an axiom, then it is easy fto see that the
required sequence exists., For each rule we will have an induction
step of the form: "if sequences exist for the hypotheses of the
rule, then a sequence exists for the conclusion of the rule."

(In the following steps, we write "fo,..,fn is a sequence for
(f,g)" to mean f,..,T satisfies condition (iii) of the theorem,
fO = f , and fn = g). Names of quantities in the rules are
taken from Section 2.

l""fn is a sequence for (f,g) , then

fn,fn_l,..,fO is a sequence for (g,f) .

(ET): TIf fo,..,fn is a sequence for (f,g) , and

gy»-+28; 1s a sequence for (g,h) , then fo,..,fn=g0,gl,..,gm

(B8): 1L, L4t

is a sequence for (f,h) .
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(BC): AIiF fo,..,fn is a sequence for (f,f') , then for

each 1 , 0si<n , there exists QeQ such that (fi,f )eQ .

i+l
Since @Q 1s a congruence, (gfih,gfi+lh)eQ as well. Hence

gfyh,..,gf h is a sequence for (gfh,gf'h)

(EP)» T R£isn 5 Jet  F g be a sequence for

102 ipi

(f Let P(k) = Zijpi . We construct a sequence gJ

.]_’f'i‘)
(O=3sP(nH¥1)} for ([fl""fn]’[fi""fﬁ]) by specifying the

projections of the gj

€8y = £ J<P(k)
fiq P(k)<j<P(k+1l); 1 = J-P(k)
f& jsP(k+1)

The effect of this construction is to create a sequence which

changes one component at a time:

TIRCYRETE S R E SE IS PR S PR S P YRR L S Pl P PO RS P

Lf "

etc. As in the argument for rule EC, for each step in the sequence,
(gj,gj+l) is in some QeQ because the palr of components which
change is 1in some congruence Q@ , so the whole step is in Q by
applying rule EP for Q . Verification of the detalls is left to
the diligent reader. B

Note: Theorem 2 is a variation of a theorem well-known
for single-sorted algebras [15,Lemma 10.2]. An alternate proof
could be obtained by proving the theorem for many-sorted algebras
in general [2], and then observing that an S-sorted theory is

itself an S¥xS#*_-sorted algebra [1].

Theorem 3. Let i:T0+Tl be a data type extension, and let
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Q be a set of i-faithful congruences on T Then VQ 1is

l Ll
i-faithful.
Proof. Let f,geTO(A,w) , with (3(f).2(e))esNVD . - Then

by Theorem 2 there exist fO,..,fneTl(A,w) such that f, = il8r 5

fn = 1(g) , and for each Jj , 0<j<«n , (fj’f3+1)eQ for some
QeQ . Since 1 1s a data type extension, it is A-full, so
for each fJ there exists gJeTO(A,w) such that fJ = i(gj) ;

By Lemma 1, Hence f, = f, s Bnd . F fn =

B~ B 37 Hie 0
Since i 1is A-faithful, f =g . By Lemma 1, this establishes
that V0 1s i-faithful. N

We are now ready to prove the main theorem.

Proof of the main theorem. Let Q be the set of all i-

i
and let J be the quotient functor

~

faithful congruences on T . Let a = V9 , let 6 = Tl/a 5
Al +% . Let W be the can-
onical initial algebra of % , and let C = WDS:T1+Sets. We
claim that C is a final object of K. . By Theorem 3, é is
j-faithful, so by Theorem 1, C 1is an object of Ki .
Now let A be any objJect of Ki . By Theorem 1, there
exists an i-faithful congruence Q on Tl , With quotient functor
j:Tl+Tl/Q , and an initial algebra B of Tl/Q such that
A = Bej . Since Q is i-faithful, we have a theory-functor

k:(Tl/Q)+(Tl/é) = % such that Jj = ke .

By Lemma 2, we need only show that for each object w of

c A ¢ . ,.¢By=1_A
'I‘l s M factors through Ny - We claim that e d k (nw) Ny
Since B 1s an initial Tl/Q—algebra, na is a bijection, so
(n2)7! 1s well defined. So, 1f feT,(A,w) , then



ko (no) Tren)(£) =

= ke(nB)~1an) ) (Definition of ni)
= KeJ (L) (%)

- J0£) (3 = keoJ)

= ”i(f) (Definition of C)

As justification for the step marked (¥), we calculate:

no(J(£)) = B(I(£))() = A£()

Hence & = ko(ni)_l is the required natural transformation.

Uniqueness 1is guaranteed by Lemma 3. B§

30
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6. Example

In this section we will complete our consideration of the
array example.

Propeosition 3. Let 1 Dbe the data type extension

d Then the TAR -algebra W , defined in Section

.+ ” Tima o
3, is a final objJect of K

R
i L]

Proof: First, it is stralghtforward to check that W 1is
an object of K, . Furthermore, if feTARR(A,a) , it 1s easy

to show from the axioms for TAR that the partial function

R
W(f) 1s defined at just those integers j such that in TARR ,
val[f,gﬂ] o for some k , and that for any other j ,

val[f,gj] = undefined.

Now, let A be any object of Ki By Lemma 2, to get a
morphism &:A+W , we must show that nﬂ factors through Ny

Since the n's are in the category of sets, we need only show
that for all f,geTl(A,w) . ni(f) = ni(g) , then

ng(f) = nﬁ(g) . Because A and W preserve products, it is
enough to prove this for the case where w 1is a single sort.
The 1integer sorts of all the algebras in K are lsomorphic

: )

(they are initial algebras of T by Proposition 2), so the

BN
only interesting case is where w = a (the array sort). In
the following, we will write nX for ni
Let f,geTpp-(A,a) . We will show that if n"(f)=n"(g) ,

and nA(f) = nA(S) » then Aol 1is not A-faithful. There are
two ways in which nw(f) and nw(g) could be unequal. They
may have different domains, or they may have different values

at some point of their domain.
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If they have different domains, then without loss of
generality there exists some gpeTARR(A.L) such that in TARR 5
ggl[f,gp] = undefined and ggl[g,gp] = n, for some k . 55 4
nA(f) = nﬁ(g) , then nA(undefined) = A(gg;)[nﬂ(f),nﬁ(gp)] =
A(m)[ng(g),nﬂ(gp)] = n‘ﬂ‘(gk) ." 8o "Asl1 JFs'not A-Falthrul.

Similarly, 1f they are unequal at some point in their
domain, there exists some gpeTARR(A,L) such that in TARR 5
Kg;[f,gp] = n, and ggl[g,gp] =n_ , for k= e
nA(f) = nA(g) , 1t then follows that nA(gﬂ) = nﬁ(gk) :
again showing that Ael 1is not A-faithful. §&

We have considered initial and final algebras in Ki
Are there any Iinteresting intermediate cases? The answer is
yes. Add, for example, to the axioms for TARR the following
axioms:

alt[alt[x,gk,y],gk,z] = alt[x,gk,z] kewkk=T&k=9

alt[alt[x,gk,y],gp,z] alt[alt[x,gp,z],gk,y] K,Pew, k=D

alt[x,undefined,y] = x

The resulting initlal algebra suppresses most of the order
information but preserves "traces" of all values assigned to
location 7 or to location 9. A single trace showing how these
assignments were interleaved may be obtained by putting similar

‘restrictions on the second axiom scheme.
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7. Final vs. Initial Algebra Semantics

The final algebra consﬁructed in the main theorem is an
initial algebra of Tl/ﬁ. Why then, do we distinguish "final
algebra semantics" from "initial algebra semantics"? The answer
lies in the primacy of specification.

We believe that a program should interact with a data
type only through its specifications. Thus a specification, which
is a formal object in some logical calculus, must present a class
of algebras, namely, the class of implementations of the data
type.

As we argued in Section 3, a theory of data type represen-
tations should make the "true" data type a final obJect in its
category of representations. Methodologically, final algebra
semantics 1s more desirable in this regard.

Methodological considerations aside, it may be that T,

and T. have tractable presentations, but Tl/Q does not.

i
In our case, TO and Tl had Church-Rosser presentations,

but the obvious presentation of Tl/ﬁ was not Church-Rosser.

We leave it open whether there exist finitely presentable TO

and Tl such that Tl/a is not finitely presentable.

In any case, "final algebra semantics" should be regarded
as an extension, rather than a competitor, of initial algebra

semantics. If 1 1s the identity functor T1+Tl, then Ki

consists entirely of initial Tl—algebras. Furthermore, if

T, and Tl/@ happen to be equal, then initial and final al-

gebras coincide again. For example, take T0 to be TI 4+ @as
3

before and let T be given by adding a new sort 4 ("string

1



of Integers") with Tl{h,é)=w* and operations

sel] 154 kew

which select the k-th integer from a string (or give
undefined if the string 1s too short). Now, any 1-faithful
congruence on T1 must be the equality relation (for 1if
not, assume o and B are two distinct congruent strings
Since they are distinct, they must differ at some position

(say the J-th position). Then

gk=seljaiselj8=gp

for k=#zp , violating i-faithfulness.) So again K; consists
of initial Tl*algebras , but the presentation of K’é by
4 also specifies the relation of T, to T; .

34
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8. Concluding Remarks

The situation discussed in this paper is reminiscent of
categories of automata, constrained by the requirement that some
external behavior be maintained. In our case the "external
behavior" is the behavior which is reflected in the sorts of
TU ; hence the condition that Aei be A-faithful. One has
initial realizations and, 1f one imposes a reachability condition,
one has a minimal realization which is a final object [7]. We,
too, have an initial realization (an initial Tl-algebra), and
a final or minimal realization whose existence is our main
result.

Similar remarks are echoed in [6]. Our notion of extension
includes all of [10, Def. 9] including enrichment. It also

allows the possibility that a single sort in T is mapped

0
to a tuple of sorts in T. . We regard this paper as comp-

1
lementary tc [10], which seems to be devoted to the problems
of specifying T; (which is no small taskl).

Another echo deserving of mention 1is that of data struc-
ture selection and optimization. The initial implementation is
a very crude data structure, consisting solely of trees (see
e.g. [17]). In our example, arrays are represented as lists of
subsceript-value pairs (without even deleting updated entries!).
By looking at the required updates and addresses, the data
structure implementing the data type may be optimized until

no redundant information 1s stored. In our example, arrays

turn out to be optimal in this sense.
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We leave open the question of formulating a "behavior"
functor adjoint to "minimal realization" [7]; such a develop-
ment might shed some light on the distinection between data

structures and data types. Another extension could involve

types with type parameters.
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