CCA-LISI: On Designing A CCA Parallel Sparse Linear Solver
| nter face

Fang (Cherry) Liu and Randall Bramley
Indiana University
Bloomington, Indiana
{fangliu,bramley } @indiana.edu

Abstract

Sparse linear solvers account for much of the execution
time in many high-performance computing (HPC) applica-
tions, and not every solver works on all problems. Hence
choosing a suitable solver is crucial step for an efficient ap-
plication. Unfortunately, the best solver cannot be deter-
mined during the application development. Experiments on
finding best suitable solver require a plug and play mecha-
nism.

This work is part of the Common Component
Architecture (CCA) [27] effort on designing common inter-
face among various parallel high performance linear solver
libraries, hence componenizing them and enabling dynami-
cal switching. The implementation of this interface provides
a CCA toolkit and is reusable under CCA-compliant frame-
work such as Ccaffeine[20].

1. Introduction

Linear system solvers are ubiquitous in scientific appli-
cations, and both iterative and direct methods play impor-
tant roles in solving the large-scale systems of linear equa-
tions that arise in applications. The linear system is typically
written as Az = b where A is the coefficient matrix, b is the
given right hand side vector, and x is the unknown vector
to be solved. Although present in all linear solvers, the ma-
trix may be stored in a variety of data structures and rarely
is stored as a single 2D array. While the linear solver pack-
ages provided by several national laboratories and universi-
ties are used widely in the scientific computing community,
no single package is optimal or even works in all cases. E.g.,
a nonlinear PDE solver may generate a sequence of linear
systems which may have widely varying characteristics and
require different solution methods. A mechanism for facil-

itating switching the solvers is needed for scitific applica-
tion code which often has deeply embeded linear solvers.
This is particularly true for HPC distributed memory par-
allel codes, which require clearly identifying the distribu-
tion of the linear system’s data across processors. Minimiz-
ing the required application code changes related to this
switching can alleviate the difficulty of changing solvers as
the problems change. Similar to the way Message Passing
Interface (MPI) [31] provides a portable interface to mul-
tiple underlying communication libraries, a common linear
solver interface spanning multiple solver packages can be
developed to meet these requirements.

A linear solver interface is also needed for the increas-
ingly important area of model coupling. E.g., fusion energy
simulations are now integrating codes that model different
physics of a fusion reactor [35]. The constituent codes typ-
ically assume some mode decoupling to get models that are
computationally feasible. Coupling the codes may involve
all of the modes from each constituent code, and may also
introduce intermediate modes that do not appear in any of
the physics sub-models[23]. A linear solver interface can
help in creating solvers for the integrated fusion simulation
that combines separate codes, and enable the usage of each
code’s native and specialized solvers for the subproblems
corresponding to each physics sub-model.

This paper identifies the design issues in creating a sin-
gle software interface LInear Solver Interface (LISI) span-
ning a broad range of HPC linear solvers. A linear solver
component using a draft LISI specification for the interface
has been written, providing multiple implementations in-
cluding software from Terascale Optimal PDE Solvers —
a SciDAC ISIC (TOPS), Trilinos, and SuperLLU. Because
interfaces are defined using Scientific Interface Definition
Language (SIDL) [37], the Babel compiler from Lawrence
Livermore National Laboratory (LLNL) [10] provides lan-
guage interoperability for the interfaces. In particular Ba-
bel creates bindings for Fortran 77, Fortran 95, C and C++,

Java, and Python, the languages most commonly used in
high-performance computing. Some terminology first: de-
velopers sometimes refer to the primary iteration as the
solver and the preconditioner is a transform to make the
linear system easier to solve. Others focus on the precondi-
tioner (which typically takes the most time in a solve), and
call the iterative phase iterative refinement. In this paper the
first terminology is used.

Figure 1 demonstrates an ideal componenized HPC ap-
plication architecture. We highlight both Algebraic Solvers
and Parallel 1/0O since they are the two most time-
consuming parts in a scientific simulation. Each part ex-
poses its well-defined interface to interact with other com-
ponents. This diagram also presents the need for sparse
linear solver interface.

--mm
n B
Optimization

Data Redistribution 3

] Adaptive Solution [1

| Steerng |

Derivative Computations []

Figure 1. Typical Phases in Multidisciplinary
scientific applications

2. Problem Statement

Although a large number of sparse linear solver packages
are available [29], none can guarantee solving the full range
of linear systems encountered in applications. Some pack-
ages focus on particular class of problems and provide effi-
cient solvers for them. High Performance Preconditioners
(HYPRE) [8] from LLNL [10] has preconditioners and
solvers emphasizing multi-level methods, featuring paral-
lel multigrid methods for both structured and unstructured
grid problems. Portable, Extensible Toolkit for Scientific
Computation (PETSc) [22] and Trilinos [33] are general
purpose packages, but with different sets of iterative solver
methods and preconditioners. Both of them provide exten-
sibility: PETSc provides direct solvers through third party
packages and Trilinos does so through its Amesos interface.
SuperLU [40, 39] is a direct solver for LU factorization us-

ing sparse Gaussian elimination and is good for nonsym-
metric nonsingular linear system. SuperLU uses a supern-
odal algorithm for the sparse LU factorization. MUItifrontal
Massively Parallel sparse direct Solver (MUMPS) [15] is
a parallel sparse direct solver using a multifrontal method.
Iterative and direct solvers each have advantages and dis-
advantages. Iterative methods may converge too slowly or
not at all. The time required to solve a linear system is
not always possible to determine analytically, particularly
for nonsymmetric and highly non-normal [38] matrices. Di-
rect methods are more predictable but may require exces-
sive memory to hold a full factorization. Although com-
monly used for robustness, a direct solver may fail in some
cases where an iterative solver succeeds. E.g., a Krylov sub-
space solver can handle a rank-deficient coefficient matrix
in a consistent linear system, provided the initial residual
lacks any components in the null space of the coefficient
matrix.

2.1. Switching solvers

Historically most HPC applications were written from
the ground up for a single purpose with little reuse of ex-
isting codes. When built using HPC solver packages, ap-
plications can be so tightly coupled with them so that it is
hard to change to another underlying solver library. But ap-
plication requirements may change with time, adding new
physics to underlying models or being applied to new sets
of problems. Being able to change out easily the solver im-
plementation used is important. Because application codes
are constantly evolving and changing, minimizing the num-
ber of lines of code that must be changed to swap solvers
is critical. As an example, in fusion energy simulations
the extended magnetohydrodynamics code M3D [11] uses
PETSc’s sparse linear solver KSP and has at least 744 lines
of code in 44 subroutines directly making calls to that li-
brary. The radio frequency heating code AORSA [1] has 41
lines of code in 5 subroutines that interface with its underly-
ing solver (ScaLAPACK [26]). A single shared linear solver
interface would in principle allow exchanging the underly-
ing solvers with no changes in the application code. Some
CCA frameworks like Ccaffeine [20] even allow dynamic
run-time swapping of components. Switching to a different
solver library also has a learning curve, particularly when
the solvers are heavily parameterized and the ways of spec-
ifying those parameters vary widely. At least three groups
of users can use the proposed LISI. Numerical linear alge-
braists need to have low level parameter access while ap-
plication users typically do not want to deal with parameter
settings. Computer scientists often bridge applications and
solvers so that they can work together.

Changing an application code to use the proposed LISI
would also require extensive application code changes and

handling a new learning curve, but the intent is that the
change would only need to be made once, and afterwards
substituting new solvers do not require modifying the base
code.

2.2. Requirements

For usage in modern HPC applications, an interface must
satisfy some minimal requirements. Those include:

Parallelism. Distributed-memory parallelism is still the
only architecturally scalable system, and is the most com-
monly used approach. This requires partitioning a global
data object (the coefficient matrix A and right hand side
vector b) across multiple memory spaces. Many cur-
rent HPC linear solver packages use a block row par-
titioning on the linear system among multiple proces-
sors, corresponding to a domain decomposition of the
unknowns. Some partitioning concepts have become stan-
dard for dense (fully populated) arrays, such as cyclic,
block cyclic, and arbitray rectangular multi-dimensional
block decomposition [30]. Unfortunately no standard se-
mantics exist yet for expressing the partitioning of sparse
linear systems, which is part of the reason for the com-
plexity of exchanging solver libraries for an applica-
tion.

Multilevel method support. Multilevel [45] (includ-
ing multigrid and some multipole) methods are the only
widely available and applicable solvers that have proven
scalable in practice. Multilevel solvers such as HYPRE typ-
ically involve alternating between grids of different refine-
ment, and this entails supporting re-entrancy at least in
any implementation of a common LISI. Multilevel meth-
ods typically use different solvers on different levels and
it may be more efficient to use different solvers for subdo-
mains solved in parallel on the same level.

User-supplied linear operators. Increasingly often scien-
tific applications do not explicitly create a data structure for
the linear system’s coefficient matrix and right-hand side
vector. Iterative methods based on Krylov subspaces typi-
cally only require the results of matrix-vector products, and
in the case of preconditioning, the result of solving a re-
lated linear system. This opens the opportunity for “matrix-
free” solvers where the application is required to perform
matrix-vector products and preconditioner solves, either via
callbacks or by providing a function pointer to the lin-
ear solver package. For nonlinear systems, Newton-Krylov
solvers [36] use a similar approach and have been proven ro-
bust, accurate, and scalable. All LISIs will need to support
allowing the application itself to provide the matrix vector
products, and/or the preconditioner operations.

Language interoperability. Most scientific HPC simu-
lations are written in Fortran, but existing solver pack-

ages are developed in C, C++ or Fortran. Several sys-
tems like SWIG [24], Matlab’s MEX [19], CHASM [2],
JNI [9], and f2py [5] bridge between a specified target lan-
guage and other languages. The relatively new Fortran
2003 standard [6] has a C interoperability specification, al-
though it has significant limitations on the types used and
does not handle the large existing base of Fortran codes in
use. Microsoft’s .NET [13], and particularly the the Com-
mon Language Infrastructure (CLI) and The Common
Language Runtime (CLR) [14] in principle also ad-
dress language interoperability by first translating code
to a common intermediate representation. Language in-
teroperability also is provided by Babel, which generates
stubs and skeletons for different languages based on inter-
faces defintion in SIDL. Babel supports C, C++, Fortran77,
Fortran90, Python and Java being combined in a single ap-
plication.

3. Current solver libraries

At least 24 HPC iterative linear solver packages and 17
HPC direct linear solver packages are freely available from
national laboratories and universities [7]. Most are self-
contained packages and can be integrated into an existing
program to compute the solution of large sparse linear sys-
tems of equations. But the packages are written in differ-
ent languages, with vastly different APIs, and expect input
data in different formats. Here we highlight some prevail-
ing linear solver packages in HPC community.

3.1. Trilinos

Sandia’s Trilinos[33] is a C++ object-oriented frame-
work for solving large-scale, complex multi-physics engi-
neering and scientific problems. It provides solver libraries
for linear, nonlinear, time-dependent and eigenvalue prob-
lems, and for constructing and using sparse and dense dis-
tributed matrices and vectors. Trilinos is a multi-package
project, and AztecOO is the package for solving sparse lin-
ear systems. AztecOO accepts user matrices and vectors as
Epetra [3] objects (Epetra is another package within Trili-
nos) which provides a parallel data distribution founda-
tion for all Trilinos solver development. In Trilinos, Epe-
tra objects handle the distributed objects such as linear
system matrix, right hand side vector and solution vec-
tor, Epetra_Map contains information used to distribute
vectors, matrices and other objects on a parallel machine.
AztecOO is an object-oriented descendent of Aztec, and
provides scalings, parallel domain decomposition, precon-
ditioners, and a set of common Krylov methods such as CG,
GMRES, TFQMR, BICGSTAB [41]. AztecOO supports
matrix-free methods through the pure virtual class Epe-
tra_RowMatrix. The separate package IFPACK [42] pro-

vides a suit of object-oriented algebraic preconditioners for
AztecOO. Trilinos also provides a way of accessing third
party direct solvers through the interface module Amesos.
Since Trilinos is a multi-package project and the packages
have cross-dependencies, using AztecOO requires multiple
package installations (e.g., Epetra, Teuchos, IFPACK). Also
since it is written in and provides interfaces using C++,
some Fortran programmers find it difficult to use.

3.2. PETSc

The PETSc [22] package from Argonne National
Laboratory (ANL) includes an expanding suite of paral-
lel linear, nonlinear equation solvers and time integrators
that may be used in application codes written in For-
tran, C and C++. PETSc also provides parallel matrix
and vector assembly routines, distinguishing them-
selves by a naming convention, such as MATMPI and
VECMPI for the parallel data structure, VECSEQ and
MATSEQxxx for the serial data structure. PETSc was orig-
inally written in object-oriented C, and provides common
Krylov subspace solvers and scalable parallel precondi-
tioner. Third party direct and iterative solvers are accessible
through the PETSc type matrix, and matrix free meth-
ods are supported using a special type matrix. PETSc
is fully extensible, but it doesn’t share a common in-
terface with Trilinos. Because PETSc started out as
a C library it tends to be easier for Fortran program-
mers to master, but may require some additional infor-
mation such as the counts of nonzeros in each diagonal
block.

3.3. SuperLU

SuperLU [40, 39] is a general purpose library for the di-
rect solution of large, sparse, nonsymmetric systems of lin-
ear equations. It implements LU decomposition with par-
tial pivoting followed by triangular system solves, and is
one of most popular direct solvers so far. It is written in C
with straightforward APIs and is designed to be easy to use
from Fortran; e.g., the user can supply the memory space re-
quired and can specify C or Fortran array offsets. SuperLU
comes in three different versions: SuperLU for sequential
machines, SuperLU_MT for shared memory parallel ma-
chines, SuperLU_DIST for distributed memory. For defin-
ing HPC solver interfaces SuperLU_DIST is the most rel-
evant one. Like most general direct solvers, SuperLU can
have scaling problems for large systems, but its robustness
and accuracy is needed for many multiscale problems.

3.4. Hypre

High Performance Preconditioners (HYPRE) [8] from
LLNL is a library of high performance preconditioners fo-
cused on parallel multigrid methods for both structured and
unstructured grid problems. There are two basic multi-grid
approaches: geometric and algebraic. In geometric multi-
grid [45], the discretization of the problem is used to de-
fine the multiple refinements of the grid used. Algebraic
multi-grid methods [28] use only the information available
in the linear system of equations. For linear systems defined
on structured meshes (e.g., logically rectangular meshes)
and semi-structured meshes (e.g., locally refined meshes),
HYPRE provides geometric multi-grid methods. For lin-
ear systems defined on unstructured meshes, HYPRE pro-
vides algebraic multi-grid methods. Since multi-level meth-
ods are the only ones proven scalable, HYPRE is an impor-
tant package for a LISI to support.

4. Related Work

Several efforts (e.g., [17] [34] [4]) have designed shared
abstract interfaces for linear solver packages, but none have
yet achieved wide acceptance from the HPC community.

4.1. Equation Solver Interface

The Equation Solver Interface (ESI) [4] effort started be-
fore SIDL was designed and its interfaces were written in
C++. ESI development stopped some years ago at least in
part because of a lack of community support, but it has pro-
vided a start point for other interface design efforts. ESI
specified interfaces for Matrix, Vector, Parameter, Opera-
tor, Preconditioner and IndexSpace. It was a top-down ef-
fort which started from a general mathematical expression
of linear systems, rather than beginning with a particular
existing package and trying to generalize it. A major rea-
son ESI was not successful was because it was premature;
no large set of applications had a driving need for it, there
was no practical language-independent way of expressing
the interfaces, and there was not enough sustained commu-
nity involvement.

4.2. The TOPS CCA interface

TOPS [16] researchers proposed a TOPS CCA inter-
face [17] and a TOPS Solver Component at SCO0S5. It pro-
vides direct access to virtually all of the TOPS (as well as
many other) linear and nonlinear algebraic solvers includ-
ing geometric and algebraic multi-grid. The TOPS inter-
face separate the interface into two parts: TOPS.System
and TOPS.Solver. Solver users need to implement

TOPS.System interface which defines the algebraic prob-
lem. TOPS.Solver provides the solver capability such as
initializing the solver by passing in command line argu-
ments, setting up the parameters, and then solving the
linear system from TOPS.System. TOPS effort is a bot-
tom up approach to design an CCA interface for the TOPS
solvers, it reflects the requirements of TOPS solvers in de-
tail, and some methods have implicit assumption on how
underneath data is distributed. This interface is not gen-
eral enough for most of parallel solvers which are currently
widely used.

4.3. Ames CCA interface

Ames laboratory works on a CCA interface for
Sparskit[34]. SPARSKIT is a serial toolkit for sparse ma-
trix computations and is written in FORTRAN 77 and
has a cumbersome interface. Componentizing it en-
ables its wider usage in modern applications and fa-
cilitates further SPARSKIT enhancements. This ef-
fort also uses bottom-up design fashion, and the interface
is mainly for SPARSKIT, and since SPARSKIT is a se-
rial solver, the interface doesn’t address parallelism. It can-
not be directly used for HPC scalable solver packages. The
interface is also tightly coupled with the underlying li-
brary, and it cannot be used for other libraries as a general
interface.

5. CCA/SIDL
5.1. CCA framework

The CCA was started in 1997 as an effort to bring the
component programming model to scientific users, and the
CCA is a specification of the component programming pat-
tern and the interface the components see to the underlying
support substrate, or framework [21]. In the CCA, a com-
ponent is defined as a collection of ports, where each port
represents a set of functions that are publicly available. A
port is described using SIDL [37] which is a programming-
language-neutral interface definition language. There are
two types of ports: provides ports and uses ports. The ports
implemented by a component are called provides ports and
other components may connect to use. The ports that a com-
ponent may connect to and use are named as USES ports.
CCA uses this provides-uses design pattern [32] to define
interactions between the components.

CCA provides a framework which facilities:

e Reusable components
o Components assembling

e Language interoperability

e Dynamical switching components with the same in-
terface and different implementation.

The agreement on the ports functionality must be made
between multiple software development teams to facili-
tate seamless component composition. Designing the CCA
common interface is the crucial part on component reusabil-
ity, since one component is considered as reusable only if it
implements some publicly available interface. The LISI de-
fines a minimal common set of functionalities among sparse
linear solver packages and is a basis for further discussion
from interested parties. Successful CCA common interfaces
have been designed in other areas such as CCA distributed
array interface [30], TAU performance interface [43], and
TSTT mesh interface [18].

5.2. Babel SIDL compiler

Babel [44] addresses language interoperability issues to
enable software developed in different languages to com-
municate using Interface Definition Language (IDL) tech-
niques. An IDL describes the calling interface (but not the
implementation) of a particular software library. The Ba-
bel team has developed and maintains SIDL [37] which
addresses unique needs of parallel scientific computing by
supporting complex numbers, dynamic multi-dimensional
arrays, and the parallel communication directives required
for parallel distributed components. Babel uses this inter-
face description to generate “glue code” that allows a soft-
ware library implemented in one supported language to be
called from any other supported language. Currently, Ba-
bel supports Fortran 77, Fortran 90, C, C++, Python, and
Java (uses ports only).

5.3. CCA component capability and limitation

CCA component allows to be reused and assembled to
the application, but it is forced to specify uses ports and
provides ports in the implementation in which those infor-
mation must be hard-coded.

6. Design issues and requirements

Design of a minimal common set of interfaces is not triv-
ial, especially when it spans multiple packages. A flexible
interface will have to address multiple systems problems
and requirements.

6.1. Interface Complexity

The interface tries to capture the interactions between
HPC applications and solvers. The goal is to hide the un-
derlying implementation as much as possible while preserv-

ing functionality and allowing the user flexibility. Extract-
ing commonalities among solver packages is useful, and
will provide some implementations of the LISI. For freely
available sparse linear solvers, three phases are commonly
used:

1. Setup of linear system data structures

2. Setup of interlinked options/choices/algorithms/parameters

3. Solve

Step 1 sets up the sparse matrix, right hand side vector, solu-
tion vector through explicitly passed in arrays in which the
interface is easy to define. However, auxiliary data struc-
tures such as preconditioners, elimination trees for direct
solvers, and multifrontal stacks vary among the packages.
They are hard to define a single interface for. Details that
need to be considered include parameters such as precon-
ditioner method, fill level, drop tolerances, stop tests, and
restarts in Step 2. The solve itself is relatively easy to de-
fine the interface for, but a common interface on post-solve
phase needs careful consideration such as how the statis-
tics information gets returned and in what order.

6.2. Usage Complexity

The way the linear solver is used by HPC applications
varies based on application requirements. There are at least
five different situations:

1. One time solve: the solver is only called once with one
linear system and one right hand side (RHS) vector,
the solution vector is returned when the solve phase
is done. In this case the linear system and RHS vec-
tor need not be stored for reuse.

2. Precompute reused objects such as LU factorization
and symbolic factorization for sparse direct solver and
ILU factors for preconditioned iterative solve. Par-
tially reusable objects need to be stored for reuse.

3. Multiple solves with the same A and multiple RHS
vectors. Now both A and preconditioner are reused
and RHSs are usually presented one after another. The
interface needs to specify how the multiple RHSs are
passed in, e.g. through a multi-dimensional SIDL ar-
ray or set up one by one after each solve.

4. Multiple solves with the different coefficient matri-
ces A. Although A differs on each solve, the A typ-
ically has the same sparsity pattern as the first solve,
and the preconditioner may be still reusable. Comput-
ing the preconditioner is often the most expensive part
of a linear solve.

5. Recursive calls to the solver. This case is mainly
for multi-level solvers. Recursion must be addressed
in the interface. There are two ways to identify the

LISI’s role in this context: one is that LISI will be
treated as the interface to single solver and a multi-
level solver developer can use LISI on each level
solve. The other is where the LISI handles the multi-
level solver by itself. In this case an identifier may
need to be provided by the application for each level
of the grid.

6.3. Input Data Structure Complexity

Unlike the dense matrix, sparse matrices are of-
ten stored in some compact ways to reduce the storage
requirement. The well known formats are: coordinate for-
mat (COQ), compressed sparse row format (CSR), com-
pressed sparse column format (CSC), modified sparse col-
umn format (MSC), modified sparse row format (MSR),
etc. Some existing tools [46] [12] provide the conver-
sion between different sparse data formats, howerver none
of the sparse linear solver packages provides the sup-
port for all formats.

6.4. Parallelism

Specifying how data is divided across distributed mem-
ories may need to be addressed in the interface. The Dis-
tributed Array Descriptor (DAD) [30] effort within the CCA
is to design a common interface for specifying this, but it
currently only addresses dense arrays. Until a DAD is cre-
ated for sparse linear systems, the current proposed LISI as-
sumes that block row partitioning is used. With some initial
reordering of the rows, this is the approach that is most com-
monly used.

6.5. Matrix-free Interface

Many HPC applications use a linear solver by passing in
the linear system explicitly in the form of arrays, but in-
creasingly some high end HPC applications do not form
a linear system in array format explicitly. Especially for
adaptive gridding and extremely large problems with lim-
ited memory this can be more efficient, but the applica-
tion user is then responsible for computing matrix-vector
products and preconditioner application. Both Trilinos and
PETSc provide mechanisms to support matrix-free meth-
ods. Trilinos’s Epetra_RowMatrix virtual class allows the
application developer to implement and create their own
matrix data type with a matrix vector product method pro-
vided to the linear solver to use. The newly created matrix
object can then be passed to AztecOO solver to get the so-
lution. PETSc allows application developer to create a new
Matrix type with user-provided matrix-vector product rou-
tine, and associates the Matrix and this routine through Mat-
ShellSetOperation. LISI needs to provide this functionality.

6.6. Uses-Provides

As we discuss in Section 5, CCA deploys a uses and pro-
vides design pattern which requires functionality separation
among the HPC solvers and applications. Since LISI de-
scribes the interaction between these two parties, how to
choose the uses ports and provides ports is needed to care-
fully think about. Figure 2 shows three cases.

I:h Provides port E Uses port

Application

Application Solver
Application .

@ (b)

1=

Figure 2. Possible choices for a uses-
provides design pattern for sparse linear
solvers

©

(a) Application has uses ports, solver has provides ports.
The advantage is that the same solver instance can be
used repeatedly and multiple applications can use the
solver simultaneously. The disadvantage is that lin-
ear system must be explicitly passed into the solver.
Ames CCA interface chooses this way to design their
Sparskit CCA wrapper.

(b) Application has provides ports, solver has uses ports.
The advantage is that matrix free method can be sup-
ported in which solver can use the matrix-vec prod-
uct from application side to solve the linear system in
a matrix free manner. The disadvantage is that appli-
cation developer may not want to write all of the pro-
vides ports required since it makes them responsible
for some burdensome CCA coding.

(c) In hybrid use pattern. Both application and solver
have uses and provides ports. The provides port in ap-
plication can provide some function such as matrix-
vec product. TOPS interface use this hybrid provides-
uses pattern, but in a way application provides the
setup of linear system and solver provides the solve
functionality. In their design, application always has
to implement some services even matrix-free method

is not required. Our design chooses the application
provides port that qonly has matrix-free function and
the rest of functions are provided by the solver for
easy usage of solver.

6.7. Recursion

Section 3.4 showed the requirement that LISI supports
recursive calls for a multi-grid solver. To address this issue,
a way to distinguish the multi-level grids needs to be ad-
dressed in the interface. LISI needs to knows which level it
is currently computing if it recursively calls itself. This may
also involve more complicated domain decomposition is-
sues. Recursion may happen in the model coupling case, for
example, the control model starts the solve phase through
the LISI interface and in turn invokes LISI interface on the
sub-model solvers, after sub-models finish solving, it may
go back to top level. This is a two level recursion here. Be-
cause of the importance of multi-level methods for HPC,
LISI must support this case. There is another implicit re-
quirement on how to identifiy each level of linear system.
PETSc provides a way of constructing different KSP solver
context for the different linear system be solved, and Trili-
nos uses Epetra_LinearProblem to identify the linear sys-
tems.

6.8. Minimal Changes

To minimize the overhead of using LISI with current ap-
plications, interface itself must be as small as possible and
not require extensive changes in the application code. How-
ever, some applications are tightly coupled with a particular
library and would require more extensive restructuring.

7. Design Decision

Supporting the interface functionality requirements re-
quires some technical issues to be resolved.

7.1. Multiple or single interface?

In CCA, the interface is exposed to other codes via a
Port. LISI defines only one interface (SparseSolver) to be
publicly accessible, but there are two ways to define how
the data are passed to SparseSolver interface:

e Parameter type is the language build-in primitive type.
In this way other components are easy to prepare the
call once they have the linear system in their hands
as multi-arrays. Most of sparse linear solver package
written in fortran accepts multi-array as the input pa-
rameters.

e Parameters are object types which are described as the
separated interfaces such as Matrix and Vector inter-
face. In this way, the solver component will have a
good data encampulation through object composition,
but it adds a burdon to the outside on using the inter-
face, since they have to have two steps instead one to
call the interface: form the pass-in object and pass the
object to interface.

We decide to choose the first way since SparseSolver is a
relatively simple interface and the data complexity is low,
no need to introcude another complexity throught object
composition.

7.2. R-array or SIDL array?

Both r-arrays (“raw arrays”) and normal SIDL arrays
are supported by Babel, but the use of r-arrays is more re-
stricted:

e It only has the in and inout parameter modes.

e For multi-dimensional array, only column-major or-
der is supported.

e NULL is not allowable
o The lower index is always 0

e It can be used for arrays of SIDL int, long, float, dou-
ble, fcomplex, dcomplex types

From our interface requirement, we do not need out param-
eter, and we will not use multi-dimensional array since our
interface expects the assembled linear system in two dimen-
sional array and represented as sparse linear system format.
Indexing starting at O can be treated at the component im-
plementation by shifting by one, and supported data types
are sufficient for the real world application. Then r-array
limitations may not hinder the LISI design, and compared
with normal SIDL arrays, r-array does have advantages:

e more traditional access in each supported language.

e Developers need less or no code to translate between
their array data structure and r-array data structure.

e SIDL generated APIs can have signatures similar to
legacy APIs

e less performance overhead because r-arrays can avoid
calls to malloc and free.

Most importantly using the r-array instead of SIDL ar-
ray as our parameter can reduce the component developer’s
learning overhead for SIDL array.

7.3. Single or multiple methods for parameters

A single port can have many methods defined, so the de-
sign issue is whether or not to provide separate get and set
methods for each parameter. To avoid repeated parameter
passing, LISI uses separate methods to set them, such as
number of local rows, number of local nonzeros, and start-
ing local row’s number in the global numbering scheme.
The methods are setStartRow, setLocalRows, setLocalNNZ
and setGlobalCol, so that methods such as setupMatrix, se-
tupRHS and doSolve need not provide those parameters on
each call.

7.4. Simple invocation pattern

LISI puts uses ports on the application side, and provides
ports on the solver side. This seems to be a more natural
approach to application users who look at solvers as util-
ities provided to their main code. This also makes the ap-
plication side easier and less embedded into CCA imple-
mentations by simply invoking the interface to pass the lin-
ear system and RHS and get the result back. As Section 6.6
explained, this choice is somewhat arbitrary and there are
arguments for reversing the uses/provides roles chosen by
LISI.

7.5. Generic or specific parameter-setting meth-
ods?

Sparse direct solvers tend to have a shared terminology,
e.g. Markovitz pivoting parameter, drop tolerance, etc. Sim-
ilarly for sparse iterative methods, there are levels of fill in
the preconditioner, stopping test, stopping tolerance, maxi-
mum allowed iterations, etc. So an interface can be defined
with specifically name methods for those. However, solvers
vary in the amount of parameter control available to the ap-
plication, and may have unique or unusual parameters to
be set. Even when terminology matches different interpre-
tations are taken by different solver libraries. For instance
“stopping tolerance” can mean an absolute residual norm
test or a residual measure normalized by the initial resid-
ual. LIST handles this by making the parameter setup meth-
ods as generic as possible, instead of giving a fixed method
name for each parameter such as setSolverMethod and set-
Preconditioner.

8. Proposed LIS

The SIDL specification in code listing 8.2 implements
the design decisions made in Section 7 and attempts to sat-
isfy all of the requirements described in Section 6

The interface itself does not provide an implementation,
but does need to mediate between an application code and

solver libraries. Since the interface is written in SIDL, im-
plementations can be written with different languages and
even with different languages for a paired uses/provides
port. LISI does not provide solvers itself and is just an in-
terface and adaptor implementation to them. [25].

8.1. Design Architecture

Figure 3 shows SparseSolver interface’s role in the HPC
application, it sits between native sparse solver packages
and application codes, along with Babel generated client
stub for muti-language support. The arrows indicate the
calling data flow. By introducing SparseSolver layer, the
goal of decoupling is achieved.

Application Code
(Fortran/C/C++/Python/Java)

A

\4

Babel Generated Client Stub
(Fortran/C/C++/Python/Java)

N

SparseSolver Interface

A4 T \ A

SuperLU

Petsc Trilinos

Figure 3. Interface Design architecture

8.2. Description

This package is an interface for both iterative and di-
rect solvers. To avoid name conflict, the interface is put in
the package lisi. The SparseSolver interface extends from
gov.cca.Port and it is implemented by the solver compo-
nents as a publicly available solver functionality.

e Enum type SparseStruct allows the input the array
format to be chosen among CSR, COO, MSR and
VBR,[12]. etc.

e Methods initialize passes the communicator handler
from application to the solver.

e Method setBlockSize specifies the data layout in the
three one-dimensional arrays of pass-in linear system.
Most of solvers take the advantage of the block stor-
age format to get the most efficient data locality.

e Methods setStartRow, setLocalRows, setLo-
calNNZ and setGlobalCols set the data distribution

variable which are needed for the other meth-
ods.

e The setupMatrix is overloaded by the different input
data format and array offset. In the implementation,
it works as an adaptor to convert the input data for-
mat to the libraries’ internal data structure and frees
up users from doing it by their own.

e The setRHS sets up the RHS vector in one chunk per
processor.

e The rest set of setXXX methods provide the generic
way to setup the internal solver parameter, and key is
the parameter name, the agreement on the key’s name
should be associated with the LISI, currently key is
the list of solver, preconditioner, tol and maxits, etc.

e The solve invokes the internal solver and returns the
solution vector in parallel.

As for matrix-free functionality, LISI has a MatrixFree in-
terface which provides matrix-vector product method. Since
MatrixFree interface will be implemented by application
side, we make the assumption that data distribution infor-
mation is already known.

e Enum type ID is used here to identify if the method
is called for solver or preconditioner MATRIX means
the matrix vector product is used for solve phase,
and PRECONDTIONER means the matMult method
is implemented for the precondtioner in the matrix
free mode.

e Method matMult takes a vector and returns a vector
which is transformed by a matrix.

CCA LISI SIDL Interface

package lisi version 0.1

{

enum Spar seStruct

{ CSR, COO, MR, VBR, FEM}
enum | D

{ MATRI X, PRECONDI Tl ONER, }

interface Matri xFree extends gov.cca. Port{
int mtMilt(in IDid,
in rarray<doubl e, 1> x(I ength),
i nout rarray<doubl e, 1> y(length),
inint length);
}

interface SparseSol ver extends gov.cca. Port{
int initialize(in long conm);
int setBlockSize(in int bs);

/* Block row partitioning */
int setStartRow(in int startrow);

int setLocal Rows(in int rows);
int setLocal NNZ(in int nnz);

int setdobal Cols(in int cols);

nt setupMatrix[few args](
in rarray<doubl e, 1> Val ues(NNz),
in rarray<int,1> Rows(NNZ),
in rarray<int,1> Col ums(NN\Z),
inint NN2);

nt setupMatrix[medi a_args] (

in rarray<doubl e, 1> Val ues(NNz),
rarray<int, 1> Rows(RowsLengt h),
rarray<int, 1> Col utms(NNZ),
SparseStruct DataStruct,
int RowsLength, in int NN2);

5 3 3 3 5

int setupMatrix[Ilarge_args](

in rarray<doubl e, 1> Val ues(NNz2),
rarray<int, 1> Rows(RowsLength),
rarray<int, 1> Col utms(NNZ),
SparseStruct DataStruct,

int RowsLengt h,

int NNZ, inint Ofset);

5 3 3 3 35335

int setupRHS(
in rarray<doubl e, 1>
Ri ght HandSi de(NunLocal Row),
in int Nuniocal Row, in int nRhs);

int sol ve(
inout rarray<doubl e, 1> Sol uti on(NurmLocal Row)
i nout rarray<doubl e, 1> Status(StatusLength),
in int Nuniocal Row,in int StatusLength);

nt set(in string key, in string value);

nt setint(in string key, in int value);

nt setBool (in string key, in bool value);

nt setDoubl e(in string key, in double value);

string get_all();
}

The proposed LISI leaves some open questions on the
interface design, and as discussed in Section 6, some issues
aren’t addressed. The current LISI is the core part and pro-
vides a basis for discussions in the HPC solver community,
rather than a final specification.

9. Implementation and testing

To demonstrate the validity and usability of LISI and to
get initial estimates on the overhead introduced by using it,
LISI was implemented with each of Trilinos, PETSc and
SuperLU. The tests were run using the Ccaffeine [20] CCA
framework. In CCA terminology, a component corresponds
to a functional decomposition, while the parallelism typi-
cally comes from a domain decomposition. So one compo-
nent can span multiple processors, and all of its instances
are called cohorts. Figure 4 is a rough schematic of the de-
sign of experiment which has two parts:

Provides/

Application Proc 0
Parallel
Mesh
Data Application Proc 1
Generator

Application Proc 2

Figure 4. Test architecture

1. A parallel mesh data generator sets up the finite differ-
ence operator matrix for 5-point centered differences
on the unit square, with Dirichlet boundary conditions
given around the boundary. The generator solves the
general linear PDE

a*Ugy +O*Uyy +Crxup +d*xuy +exu=f

where a to f are functions of and y. In our test,

a=b = 1
c:d:e =
f = (2—6xx—xx*xx)*sin(r)

The coefficient matrix A, RHS vector b, and solution
vector z are divided conformally into block rows, one
per processor. Mesh data files are written out on each
compute node locally for faster data input.

2. Solve the linear system in parallel using stan-
dard SPMD programming. The application compo-
nent interacts with the solver component on each
process through provides/uses interface and com-
ponents interact with their own cohorts using the
Message Passing Interface (MPI)[31] or an equiv-
alent message-passing mechanism. The applica-
tion component sends the data and user speci-
fied solver parameters to the solver component
through the proposed interface, the solver compo-
nent solves the given linear system, and returns its
own portion of the overall solution vector back to lo-
cal application component.

The test was conducted on a Linux cluster with 128 com-
pute nodes, each with dual AMD 2.0Ghz Opetron processor
and 4Gbytes of memory. Figure 5 shows how solver com-
ponents can be switched over with the same driver com-
ponent. In practice, only one of three links would show up

in the component diagram. Because the testing was primar-
ily to validate LISI and provide reference implementations,
tests were run on only 1, 2, 4 and 8 processors with a co-
efficient matrix having 199200 non-zeros, the linear sys-
tem is solved with GMRES solver with ILU precondtioner.
The timing is done with unix time at the command line, so
that the overhead of instantiating the components are in-
cluded for CCA experiments. Figure 6, Figure 7 and Fig-
ure 8 show the comparison of component execution time
(+ line) with non component execution (* line),the average
overhead ranges from 0.07s to 0.13s for processor number
range from 1 to 8, which is considered as small, compared
to the running time from 1.039s to 3.966s.

£ Comman C: Al ture: Untitled_0.bld i Hini SRS o
File View CCA Info
| O [x[o8 |[=+ldfcal 1"
Palette {|-Arena
|
|
olvers. AztecODSolver —,ﬁ
sob-arsAztec D0Sohver
lvers PetseSohver
—
solversSuperLUSohver]

Figure 5. LISI Demo

Trilinos CCA component overhead (NNZ=199200)
T T T T

= T T
L + - CCA
* -~ NonCCA

Computing Time (seconds)
*4

. *
1 2 3 4 5 6 7 8
Number of Processes

Figure 6. Comparison for Trilinos Component

The PETSc component solver implementation was also
tested on 8 processors with different sizes of the linear sys-
tem, shown in Table 1.

PETSc CCA component overhead (NNZ=199200)
T T T T

4 T T
+ - CCA
* * - NonCCA

2k 4

I g =
> o o
T T T
L L L

Computing Time (seconds)

I
N
T
L

0.8 . .
1

Number of Processes

Figure 7. Comparison for PETSc Component

SuperLU CCA component overhead (NNZ=199200)
T T T T

Ind
3

T
+ - CCA
* -~ NonCCA
24r 1
231 b
w *
2
8 2.2t —
Q
<
g
i 21 + B
g +
5
g2 * *]
o
o
19F 1
181 1
*
17
2 3 4 5 6 7 8

Number of Processes

Figure 8. Comparison for SuperLU Compo-
nent

The fourth column in Table 1 was calculated as the dif-
ference of the second and third columns divided by the
second column. The overhead percentage shows how the
framework overhead affects the whole computation, and it
decreases when the problem size increases. This is because
we have the constant number of framework calls in the pro-
gram so that overhead time would be constant no matter
how large the problem size is, but with increased problem
size, more computation time is typically needed both in time
per iteration and the numbers of iterations.

10. Conclusion and Further Work

In this work, we have conducted investigation on widely
used parallel sparse linear solver packages and tried to ab-

nnz CCA(s) | Non-CCA(s) | Overhead | Iters
7840 0.615 0.516 16.1% 27
49600 0.659 0.578 12.3% 67
199200 | 0.936 0.863 7.8% 108
798400 | 2.994 2.873 4% 221

Table 1. Times with and without the LISI inter-
face to PETSc

stract a high level common interface among them. Design-
ing the minimal common set of interface is not trivial, espe-
cially one needs to think across multiple packages. We ex-
amed the issues involving in the designing work, and pro-
pose the our first version of LISI. We considered on how
linear system characteristics, solver parameters and auxil-
iary data are passed through the interface; took into account
that variable usage scenery on how the interface is used;
discussed on supporting the different data structures, par-
allelism, matrix-free methods, recursion and some specific
requirements from CCA specification on how to choose the
uses-provides ports. For easy using interface, we designed
it as a single interface package, picked R-array which is
more natural to the modern language programmer as the ar-
ray parameter type, extracted the common parameters into
separated methods to avoid the potential conflict settings
and had the generic parameter-setting methods to make
the interface accommodate both iterative solvers and direct
solvers. Prototyping and some simple experiments also have
been done to indicate the small overhead from introducing
the new layer on the existed packages.

We only design a top level interface for the HPC solvers,
but there are still more issues that cannot be handled on this
interface such as multi-level problem. And for some func-
tionality such as matrix-free method, we only proposed the
interface but haven’t done real application based implemen-
tation, some updates may be introduced once it’s fully im-
plemented.

11. Acknowledgments

This work is supported in part by National Science Foun-
dation Grants EIA-0202048, MRI CDA-0116050, and the
DoE Office of Science’s Center for Component Technology
for Terascale Simulation Software

References

[1] All-ORders Spectral Algorithm (AORSA). http://www .
csm.ornl_gov/“shelton/fusion.html.

[2] Chasm Language Interoperability Tools. http://

chasm-interop.sourceforge.net.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]
[12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Epetra: Linear Algebra Services Package. http:
//software.sandia.gov/trilinos/packages/
epetra/.

Equation Solver Interface. http://z.ca.sandia.

gov/esi/.

F2PY: Fortran toPython interface generator. http://
cens.ioc.ee/projects/f2py2e/.

Fortran 2003 Final Committee Draft. http://www.

fortran.com/fcd_announce.html.

Freely Available Software for Linear algebra on the
Web(may 2004). http://www.netlib.org/utk/
people/JackDongarra/la-sw.html.

Hypre: Scalable Linear Solvers : high performance precon-
ditioners. http://www.lInl_gov/CASC/linear_
solvers/.

Java Native Interface. http://java.sun.com/j2se/
1.4.2/docs/guide/jni/index._html.

Lawrence Livemore National Laboratory. http://www.
1Inl_gov.

M3D team. http://w3.pppl.gov/~jchen (2004).

Matrix ~ Market. http://math._nist.gov/
MatrixMarket.

Microsoft’s .NET. http://www._microsoft.com/
net/defaul t.mspx.

Microsoft’s .NET. http://msdn.microsoft.com/
library/default._asp?url=/library/en-us/
dndotn%et/html/interopdotnet.asp.

Mumps: a MUItifrontal Massively Parallel sparse direct
solver. http://graal .ens-lyon.fr/MUMPS/doc.
html.

Terascale Optimal PDE Simulation. http:
//www-unix.mcs.anl .gov/scidac-tops/.

Tops Solver Component. http://www-uniX.mcs.
anl .gov/scidac-tops/solver-components/
tops.html.

TSTT: The Center for Terascale Simulation Tools and Tech-
nologies. http://www.tstt-scidac.org/intro/
index.html.

Writing C Functions in MATLAB (MEX-Files). http://
chx.org/content/ml12348/latest/.

B. A. Allan and R. Armstrong. Ccaffeine Framework: Com-
posing and Debugging Applications Iteratively and Running
them Statically. Compframe 2005 workshop, June 2005.

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. R. Kohn,
L. Mclnnes, S. R. Parker, and B. A. Smolinski. Toward a
common component architecture for high-performance sci-
entific computing. In HPDC, 1999.

S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. Ef-
ficient Management of Parallelism in Object Oriented Nu-
merical Software Libraries. In E. Arge, A. M. Bruaset, and
H. P. Langtangen, editors, Modern Software Tools in Scien-
tifi c Computing, pages 163-202. Birkhiuser Press, 1997.

D. Batchelor. Integrated Simulation of Fusion Plasmas.
Physics Today, page 35, 2005.

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]
(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

(40]

D. M. Beazley. SWIG : An Easy to Use Tool for Integrat-
ing Scripting Languages with C and C++. In In 4th Annual
Tcl/Tk Workshop Conference Proceedings, July 1996. The
USENIX Association, see also: http://www.swig.org.

F. Bertrand, Y. Yuan, K. Chiu, and R. Bramley. An Ap-
proach to Parallel MxN Communication. In Proceedings of
the Los Alamos Computer Science Institute (LACS) Sympo-
sium, Santa Fe, NM, October 2003.

L. S. Blackford, J. Choi, A. Cleary, E. D’ Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. Scal A-
PACK Users Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1997.

CCA-Forum. The DOE Common Component Architecture
project. http://www.cca-forum.org/, 2004.

J. Deandy. Black box multigrid. International Journal of
Computional Physics, 48:366-386, 1982.

V. Eijkhout. Overview of Iterative Linear System
Solver Packages. NHSE review, 3(1), 1998. also
see http://www._netlib.org/utk/papers/
iterative-survey/.

D. E. B. et al CCA Distributed Array Descriptor
(DAD). http://www.cca-forum.org/~data-wg/
dist-array/.

M. P. I. Forum. MPI: a message-passing interface standard.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-
Wesley, 1994.

M. A. Heroux and etc. An Overview of the Trilinos Project.
ACM Transactions on Mathematical Software, 31:397-423,
September 2005.

M. S. J. Jones and Y. Saad. Component-based Iterative
Methods for Sparse Linear Systems. volume 9, page 1. Con-
currency and Computation: Practice and Experience, 2005.

D.B.M.B.R.B.M.G.S.J.S.K.A.L. WL N.L.J. L. M.
R.D.R.D. S.Jill Dahlburg, James Corones and H. Weitzner.
Fusion Simulation Project: Integrated Simulation and Opti-
mization of Magnetic Fusion Systems. Journal of Fusion
Energy, 20(4):135, 2001.

C. Kelley. Iterative Methodsfor Linear and Nonlinear Equa-
tions. STAM press.

S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Di-
vorcing language dependencies from a scientific software
library. In 10th SAM Conference on Parallel Process-
ing, Portsmouth, VA, March 12-14 2001. LLNL document
UCRL-JC-140349. See also http://www.1Inl_gov/
CASC/components/babel _html.

S. L. Lee. A practical upper bound for departure from nor-
mality. 16:462-468, 1995.

X. Li and J. Demmel. SuperLU_DIST: A scalable
distributed-memory sparse direct solver for unsymmetric
linear systems. ACM Transactions on Mathematical Soft-
ware, 29:110-140, 2003.

X. S. Li. An Overview of the SuperLU: Algorithms, Imple-
mentation, and user interface. ACM Transactions on Mathe-
matical Software, 31:302-325, September 2005.

[41]

(42]

[43]

[44]

(45]

[46]

Y. Saad. Iterative Methods for Sparse Linear Systems. Pws
publishing company, 1996.

M. Sala and M. Heroux. Robust algebraic preconditioners
with IFPACK 3.0. Technical Report SAND-0662, Sandia
National Laboratories, 2005.

S. S. Shende and A. D. Malony. The Tau Parallel Perfor-
mance System. International Journal of High Performance
Computing Applications, 20:287 — 311, May 2006.

B. Team. The DOE Babel Project. http://www. 1Inl.
gov/casc/components/babel _html, 2000.

D. Wesseling, Pieter. An introduction to multigrid methods.
Pure and applied mathematics. Chichester [England]; New
York: J. Wiley, 1992.

Y.Saad. SPARSEKIT:A Basic Tools Kit for Sarse Matrix
Computations. Technical Report, Computer Science Depart-
ment, University of Minnesota, June 1994.

