UNBOUNDED COMPUTATIONAL STRUCTURES+

by
Daniel P. Friedman

David S. Wise

Computer Scilence Department
Indiana University

Bloomington, Indiana 47401

TecHNIcAL ReporT No. 64
UNBOUNDED COMPUTATIONAL STRUCTURES

DANIEL P, FRIEDMAN
Davip S. Wise

Mavy, 1977

To appear in Software-Practice and Experience, é, 4
(August, 1978), Lo7-416.

TResearch reported herein was supported (in part) by the
National Science Foundation under grants numbered

DCR75-06678 and MCS75-08145.



UNBOUNDED COMPUTATIONAL STRUCTURESJF

Daniel P. Friedman

David S. Wise

Computer Science Department
101 Lindley Hall
Indiana University

Bloomington, Indiana 47401

SUMMARY

The concept of suspended evaluation is used as an approach

to co-routines. Problems from the literature involving
infinite data structures are solved in a LISP-1like applicative
language to demonstrate that simple new semantics

can enrich old and "friendly" control structures. It

appears that the very nature of these problems draws control
structure and data structure together, so that issues of

style may be studied at once for both.

+Research reported herein was supported (in part) by the
National Science Foundation under grants numbered
DCR75-06678 and MCS75-08145.



0. INTRODUCTION

The advocates of structured programming (a term meant to include
issues of control as well as data structures) have raised serious
questions of programming style. The desire to work with a small,
well organized set of control and data structures has attracted
much attention to revealing this small set. Function invocation
has long been regarded as essential to structured programming, but
the restrictions on function invocation inherent in structured
programming have been sorely neglected by those advocating exten-
sions, such as co-routineing and multi-tasking, to the concept
of function.

Co-routines can be thought of as functions which can stop
in the middle of processing and be restarted at the whim of the
programmer. The difficulty associated with co-routines and other
structures of this type (framesl, objects2, etc.) is not one of
power, but one of protection. The Opportunity for mischief with
such models is astounding. In this paper we propose a different
approach to co-routines, wherein resumable structures are created
by the system but may not be directly manipulated by the user.
Thus, the issue of protection disappears while the useful features
of such structures are retained.

We have proposed semantics for building data structures
which subsume this sort of control structure into data manip-
ulation3. Embedded in LISP, these semantics require only a
slight modification of the user's perspective on the function
cons which builds a data structure, and on the functions first

and rest which access it. As a result, the program structures



which parallel co-routines are hidden from the user, who is
unable to manipulate them directly. The only way his program-

ming is affected is by knowledge of their existence. We argue

that this knowledge alone is sufficient to permit clear,
structured applicative programs for many classic examples of
co-routines, and that the simplicity of such programs will
make this program strategy accessible to more users. These
constructs permit an approach to infinite structures treated
as objects rather than as processes. Older conceptualizations

of this representational issue utilize various programming

5

structures (like functional closuresu, objectsz, co-routines~”,

dynamic lists6, streamsY, framesl’S, generatorsS’g, and actorslo).
We shall skirt these ideas while explaining the new approach.
The goal of this paper is threefold: it surveys, through examples,

recent results on suspended3 or lazyll

evaluation of applicatively
written programs; it reviews divers esoteric control structures
as they are commonly applied to infinite structures; and it draws
together aspects of data structures and of control structures by
treating difficult problems from both perspectives.

The remainder of thilis paper is divided into four parts.
The first reviews the elements of a stylized applicative program-
ming language12 we use in expressing programs (we adopt some
simplifications) with particular emphasis on the suspended

construction of data structures. In the second section an

example, the construction of the 1list of all natural numbers, is



explained in some detail from the perspective of co-routines.
The third section centers on another example which, written as
a sequential (as opposed to applicative) program, requires an
unbounded number of processes: a closed form solution for the
sieve of Eratosthenes for the 1list of all prime numbers. The
fourth section presents several solutions for problems which
have been solved using some flavor of co-routines: comparing
the contents of a list, merging binary trees, Hamming's problem
on composites of three primes, - ' 2 £33 and ,
from the calculus, power sequences and series including Newton's
approximation to square roots. The conclusion includes observations

on the implications of suspended evaluation as a control structure

and as a data structure.



1. THE LANGUAGE

The language we shall use here is a derivative of LISPlB,
Chapter 1. It has been implemented over LISP on the DEC-10 and
then in PASCAL and runs on the CDC 6600. The only data structure is

a parenthesized list. Lists are sequential structures of elementary

items (numbers or identifiers), or other lists. A system predicate,

atom, is provided for identifying an elemenftary item; others
test equality of structures. In particular, null tests for the
empty 1list: () . Most important are the 1list manipulation

primitives: cons, first, and rest. The 1list constructor cons

takes two arguments, the second of which is always a lists: i%
returns the list which results from adding the first parameter

at the left of the list. Just as cons builds a list, first and
rest access it; first extracts the leftmost item from a non-null
list and rest returns the remainder of such a 1list with the first
item omitted.

The syntax we use for function invocation 1is also the
S-expression of LISP. The form (f a b c¢) 1s interpreted as the
function f invoked on three arguments, a, b, and C, which are
each evaluated before being used. In defining functions we shall
equate an invocation pattern with a conditional expression
represented by a sequence of forms separated by the commenting

keywords if, then, else, and elseif. For instance, the definition

of append, which concatenates two lists, appears as

(append a b) =
if (null a) then b
else (cons (first a) (append (rest a) b))

To enhance readability we use bracketed expressions in place of

LISP's 1list. [] evaluates to () and [a b c] evaluates to {1 2 3)



assuming that a is bound to 1, b to 2, and ¢ to 3 in the active

14 and Hewittlo)

environment. We use angle brackets (like Backus
in place of LISP's apply. The two items within the brackets are
a function and its list of arguments. Thus, (f a b ¢) is synon-
omous with <f [a b cl> .

A new syntactic structure we introduce is the "starred" list.
A starred structure in parentheses represents an infinite homo-

12,15

geneous list of the indicated item For instance (0%)

is the zero vector of unbounded dimension. Since numbers always
evaluate to themselves, [1¥] evaluates to (1%¥) or (1 1 1 1 ... )

Such infinite structures are most interesting when we extend them

to starred functions. In our scheme structures in the functional
position indicate instances of functional combinationlS. A
starred function is "spread across" its arguments much like a
multiple-argument MAPCAR in LISP. If f is a function of three
arguments and a, b, and ¢ are infinite lists, bound to the values
of [ay ay a3 .- ],[bl‘b2b3 «os 15 @nd [eq g C3 .. ]
respectively, then ([f¥] a b c¢) gives the value of

[(f a; by cl)(f a, by 02)(f a3 b3 03) ... ]l. For example, if

nn is bound to the 1list of integers (1 2 3 4 ... ), then

([sum*] nn nn) evaluates to the infinite 1list of positive even

integers and ([sum*] nn ([subl¥*] nn)) evaluates to the odds.

The essence of our approach to infinite structures is implicit
in the concept of suspended evaluation. It is easily implemented
by changing the semantics of the elementary functions first, rest,

and cons from the classic call-by-value to call—by-need16 or

call—by-delayed—valuelT. Instead of an invocation of cons



placing the ultimate values of its two arguments in the node
allocated for its result, each field is filled with a suspension,
a distinguishable structure containing the unevaluated argument
and the current environment. Conceptually, the value of a call
on cons is unchanged. When either of the two projection functions,
first and rest, is invoked on that value the appropriate argument
will be evaluated in the preserved environment. The resulting
value is returned and takes the place of the suspension within the
extant node. Future accesses will find the value in place of the
suspension, so the net effect is that evaluation is postponed
but not repeated. As a result the LISP evaluator is invoked no
more often than it is under McCarthy's classic interpretation of
these elementary functions, and in many instances it 1is called
significantly less. When the language interpreter itself is
implemented using these functions the least fixed-point semantics
for pure LISP result. More important to the ideas presented here,
no user data structure is built until its existence 1s essential
to the course of the computation; even if the user "constructs"
an infinite structure within his program only the finite part he
uses will be manifested.

The new semantics for cons extends 1ts role as the creator
of data structureslg, The significant feature of the semantics
for manipulating data structures is that no structure is created
until it is ultimately necessary to the computation. We will not
carry this to the extreme in which all structures belonging to the
system are suspended; here we only propose to suspend construction

of structures specified by the user's code. The behavior of his



code is nevertheless drastically altered, since any evaluation,
even from within a probe, stops on an application of cons as
surely as if it were a constant function. Arguments are held
for evaluation if and when they are actually used.

Even more significant is the conceptual treatment of
structures by the programmer. In applying cons to build a
structure, and later using first and rest to access 1t, he conceives
the structure as being manifest in a form little different from
the directed graph model of data structures. In fact there may
be "buds" in the physical representation of his structure where
he envisions trees; structure which is unused remains ungrown.
This property is
of particular significance when a suspension represents an
infinite structure, which will grow nicely within the user's
capacity to use parts of the structure. He can't use it all!
The user is free to perceive the infinite structure as an
infinite graph if he wishes.

The idea of a suspension, particularly of a linear list,
is closely related to many structures from the literature.
Landin7 proposed the stream model which has been described
in some detail by Burge1? In this type of list only the
rest of a list may be suspended, and coercion of that suspension
must not return the empty list (NIL). Using other terminology,
cons is strict®’ in its first argument and non-strict in
its second. As a result, access into a stream will manifest
the prefix of the linear structure up to and including the

information sought.



= e

Another perspective on the stream model is available
through co-routines. Associated with each stream is a process
(which can be activated to generate more of the tail whenever
it is needed). That process is very much like the generator of

9 oI of CONNIVER8 which is explicitly established

IPL-V
and then implicitly invoked by accessing the structure. The

dynamic list in POP—26 is a similar feature. Henderson and
Morrisll, however, describe a system which is substantially
the same as our view of cons; the user is not asked to specify

for infinite structures any more than is expressed when

constructing ordinary finite structures.



=i g £

2. THE NATURAL NUMBERS

The first example we shall develop is the definition
of the list of all natural numbers. There are two approaches
to this problem using suspended cons. The first is the
definition of a program which is expressed as a recursive
function, and the second is the direct definition of the data
structure itself. For this example the second is the more
concise, but it is less general as we shall see in the next
section.

Let us define a function fromheretoeternity which takes

an integer as its argument and returns the ordered lis?t of

all integers greater than or equal to it19’6’20’2l’ll

(fromheretoeternity 1) =
(cons i (fromheretoeternity (addl 1)))

Then the natural numbers, nn, may be defined as

nn = (fromheretoeternity 1) .

Because termination tests are not needed, the mental
process of writing these definitions is even simpler than that
required for writing familiar recursive functions like
factorial once the programmer stops worrying about how the
machine handles infinite structures. It is best to forget
about the semantics of cons, accepting its ability to build
Towers of Babel as long as the blueprints make sense. Then
the creation of the function and the correctness of nn follow

from the inductive definition of the natural numbers:



—

1 is a natural number;

if n is a natural number then so is n+l.

The semantics of nn may be viewed in two ways. Since
it 1is homogeneous the view of it as a generator
or as the result of a co-routine activated on any call is
perfectly satisfactory. In our model the entire
structure is represented by the portion that
has been used by the program at the time that a snapshot
is taken.

Another definitional style treats nn as a data structure
defined recursively upon itself without any new function
definition. This style depends heavily upon the use of
functional combination (the use of ¥*'s here) to imply applications
of cons. LISP allows the use of MAPping functions for similar
purposes, avoiding necessity for additional function definitions
through a specific language feature.

This recursion scheme most easily handles recursive definitions
of infinite lists in which the value of the (n+k+1)th element

tha through (n+k)th elements. This restriction

depends only on the n
should be compared with the problem considered in the next section
which involves a course-of-values recursive definition. For nn,

however, the definition follows easily with k=0.
nn = (cons 1 ([addl*] nn)) .

This definition recurses on the definition of the 1list nn



i

just as the definition of the function

fromheretoeternity recurses on itself. 1In both

cases the definition is easiest to read under the assumption
that the structure (be it data or function) being defined
already exists.

The term letre022 has been used
in the literature to establish environments for such recursive
definitions. They have classically been used to define functions
in an environment within which they were already assumed to be

defined. The identical techniques work for defining data structures.

The definition of nn immediately above could be written as
(label nn (cons 1 ([addl¥*] nn)))

and run under the interpreter for suspending cons given in the
appendix of3. Thus, the expressiveness of data structures
and program structures is nearly the same.

The ultimate user of structures is the output portion
of the program. In traversing the structure which represents
the result of a program (the top level function call) precisely
those parts of intermediate structures are created which are
essential to the ultimate result. Elsewhere2O
we consider a specific output driver which runs the system
evaluator to print out the value of nn, under either definition
given here, within the resources of the "best" sequential program:

finite memory and a lot of paper.



7 o

3. SIEVE OF ERATOSTHENES

The example presented in this section is a closed form
expression of the Sieve of Eratosthenes for generating all

prime numbers. This algorithm is often expressed in sequential

languages as generating a finite number of primes.

Being interested only in terminating programs,
we shall make a program generating only theé
say, first 1000 values of the sequence.

DijkstragB,Pg- 129

In either context the algorithm may be expressed as sifting
primes from the list of integers by repeatedly deleting the
first element, a prime, from the list and eliminating all ihs
multiples from the list. When the list is bounded then the list

transformation is a finite process and may be completed as each

prime is discovered.

Our code is similar to that attributed to Quarendonll, but

the only arithmetic operation we use is addition. The

structure of the applicative expression of the program is

similar to the algorithm outlined above but the data structures
used are perceived as infinite 11,21,24
primes = (sieve (fromheretoeternity 2)) .

The integers strictly greater than one will be sifted, as one
is not a prime,

(sieve nums) =
(cons (first nums)
' (sieve (removemult (first nums)
(twice (first nums))

(rest nums)))) ..



o B

One call of the function gieve identifies the first
element of the list as a new prime which is constructed onto
the rest of the primes, which may be obtained by sifting all
multiples of the newly discovered prime, starting with its double,
from the list of candidates at this point. We intend (twice n)
to mean (sum n n); a programmer tolerant of multiplication and
familiar with elementary number theory would use (square n)

instead.

(removemult ine mult 1lis) =
if (less? (first 1lis) mult)
then (cons(first 1lis) (removemult inc mult (rest 1lis)))
elseif (greater? (first lis) mult)
then (removemult inec (sum mult inc) 1lis)
else (removemult inc mult (rest 1lis)) .

In order to remove all multiples of a number, inc, greater than
or equal to a candidate multiple, mult, from a list, lis, Three
cases must be considered. In the first case the first ifem on
the list is too small so it is prefixed to what results from
processing the rest of the list. Secondly, if that first item is

larger than mult, then the process should run on the same list
with the next higher multiple. Finally, if the first item

is the multiple sought, then the answer is what results from

processing only the rest of the 1list.



~16-

That 1s, for each prime discovered, another sifting

incantation of removemult is created to filter the initial

list of integers. FEach one becomes a process which lines

up on the path from the generator of all the integers to the

printing device. Under our semantics, however, the user need
not be conscious of the creation of all these processes;

that is implicit in his use of cons. He need not be aware of
their activation and interaction; that is implicit in his use
of first and rest.

This example, then, demonstrates how multiple co-routines
may be created without appeal to generators or expliclt process
creation. However, since the next item on the list of primes
depends on all its predecessors (course of values recursion)
the facility of functional combination to define data structures
directly does not appear to be useful. That control structure
does not extend to models which mimic an unbounded number of
processes.

In closing this section we must make one negative comment.
Of course no implementation can generate primes forever in the
same way that integers may be listed to the limit of one's paper
supply. In printing nn the number of extant suspensions is
boundedgo, In printing primes the number of suspensions grows
with the output until storage capacity is exceeded. Therefore.
the list of primes actually printed may be comparable in length to
the results from bounded sequential implementations of the sort

mentioned at the beginning of the section. The difference 1s that

the bound is not explicit in the algorithm itself.



3T

4y, FURTHER EXAMPLES

In this section we present several more examples demonstrating
the creation of infinite data structures. Several of the problems
are taken from the literature, but we have rewritten the solutions
to take advantage of suspensions created by cons. In reviewing
these programs it is useful to notice that syntactically there is
no difference from the classic use of ggg§_3’13 and that the
only semantic change 1is the existence of suspensions. Since the
user is unable to manipulate suspensions, they have no effect on
his programming style except to give him confidence that no structure
will be built prematurely.

25

The first example is due to Hewitt by way of Henderson

and Morris ll, who showed that the obvious solution in LISP
exhibits the desired behavior under their new semantics. The problem
is to determine whether the elementary items of two list structures
are equal when compared by simultaneous traversals. A classic
solution might read

(samefringe? a b) =
(eqlis (collapse a) (collapse b))

(collapse 1lis) =

if (null 1is) then []

elseif (atom 1is) then [lis]

else (append (collapse (first 1lis))

(collapse (rest 1lis))) .

where append is taken from the language description section and
eglis is true if its arguments are two identical lists of atoms.
If it is to perform as desired the function must traverse the

lists a and b no further than absolutely necessary; when two

different elementary items are found in corresponding positions



1B

then the rest of the list should not be processed at all.

Under McCarthy's semantics the collapse of both lists is
completed before any comparison is made; under the semantics

of suspensions (used by cons in append) no more of the collapsed
lists are built than are required by eglis, which requires no
traversal beyond the first difference. Therefore, the user need
not change his programming habits in order to achieve the
multi-tasking performance.

A related example is the merging of the items in two or
more binary search trees into a single sorted sequence26 . The
solution requires only a merging algorithm for the sorted lists.

<mergetrees listoftrees> =

<mergelists ([collapse*] listoftrees)> .
<mergelists lists> = <merge (sort lists)> .

The sort is in the order of the first elements27

(sort lists) =
if (null lists) then []
else (insert (first lists) (sort (rest lists)))

(insert alist lists) =
if (null lists) then []
elseif (less? (first alist) (first (first lists)))
then (cons alist lists)
else (cons (first lists) (insert alist (rest lists)))

<merge sortedlists> =
if (null sortedlists) then []
elgseif (singleton? (first sortedlists))
then (cons (first (first sortedlists))
(rest sortedlists))
else (cons (first(first sortedlists))
<merge (insert (rest (first sortedlists))
(rest sortedlists))>)

As in the previous example, the use of suspended cons, explicitly
here and implicitly in append, prevents the intermediate results

of collapse from ever being entirely present in the system?o.



.

23

The next example is credited by Dijkstra ~, Page 129, to Hamming:
To generate in increasing order the sequence
1y 25 3 45 855 By G5 9y 10, 12, swe of ALL

numbers divisible by no primes other than
By 3y OF 5.

The solution (due to G.Kahn and D.MacQueéﬂza is fairly easy following

the discussion above:

composites235 =
(cons 1 (remdup (merge ([product®*] [2%¥] composites235)

([product®*] [3*] composites235)
([product*] [5%] composites235))))

(remdup lis) =
if (same (first 1lis) (first (rest 1lis)))
then (remdup (rest 1lis))

else (cons (first 1lis) (remdup (rest 1lis))) .
This solution is remarkable partly because of the way in which
it uses the function merge, which we just finished defining as
a help function to operate on an argument list of finite lisf®s.
In this application the arguments are infinite so that the first
two conditions in merge never succeed. The else condition is
the only relevant.one, and it applies as well to the infinite case.
As before, the correct program for infinite structures turns out
to be less difficult than the corresponding problem solved for
finite ones!

We close with two examples which point the way toward applica-
tions of these concepts in the calculus. The first is a simple
power sequence based on an arbitrary function f. Given an argument
x we would like the sequence

(. (Fx); (F (Fx))s (BLEWE 2))); vee )

The solution is little more difficult than the concept:

sequence = (cons x ([f*] sequence))



~ DD

which might well be parameterizedlg, pg. 134:

(sequence f x) = (label sss (cons x ([f¥] sss)))
This sort of problem is easily generalized into a series, where a
gseries 1s the list of partial sums of a sequence. First we express
the list of all (reversed) initial segments of the sequence:

segments = ([cons¥*] sequence (cons [] segments))
If sequence were nn then segments would be ((1) (2 1) (3 21) ... ).
We apply addition and parameterize to get the series function:

(series seq) =
([total¥*] (label ss ([cons#*] seq (cons [] ss))))

(total addends) = <sum addends>
Thus infinite sums are programmed from infinite sequences just as
the analysts define series from sequences.

Finally we consider the infinite 1list of approximations
to the square root of y , as generated by Newton's method.
If we take f to be defined by (f x) = (y/x + x)/2 with x initially 1,
then the solution is given by the sequence generator above. Perhaps
a clearer solution for the same problem is (Newton y 1) where

(Newton y app) =
(cons app (Newton y (half (sum (gquotient y app) app))))

Infinitesimals and convergence are fundamental to the analysts
and grief to the programmer. Given these structures, however, the
problems take on a new and pleasant flavor. In dealing with an
approximation, say to the square root of 2, the programmer may
select some element from a series generated by Newton and carry
out a computation with the knowledge that more precision is

29

available by choosing the next element ~:



=21

5. CONCLUSION

We are not the first advocates of applicative programming,
nor are we the first to use co-routines to construct infinite
data structures. We have Simply surveyed the use of infinite
data structures from the perspective of suspensions, which
become part of the user's data structure whether he likes it
or not. It appears that the mystery of co-routineing vanishes
when the control structure is thereby removed from the user's
"tool kit." Without the decision on whether or not to use
partial evaluation he is able to write stralghtforward source
code which runs under new, but consistent, semantics.

It appears that program structure and data structure merge
in our view, so that issues of "style" or "structure" may be
handled at once for both program and data. In order to express
time-dependent structures, like the "infinite" structures we
consider, one must only know of the existence of suspenslons and
use the classic language (e.g. LISP). Well-worn axioms of style
and structure are then available for new classes of problems,
and the quirks of trese new problems will help refine old conventions

by identifying important generalizations.

REFERENCES

1. D. G. Bobrow and B. Raphael, New programming languages
for artificial intelligence research, Comput. Surveys,

vol. 6, no. 3, 153-174, September 19T74.

2. 0.-J. Dahl and K. Nygaard, SIMULA--an ALGOL based
simulation language, Comm. ACM., vol. 9, no. 9,

671-678, September 1966.

3. D. P. Friedman and D. S. Wise, Cons should not evaluate
its arguments. In S. Michaelson and R. Milner eds.,
Automata, Languages and Programming, 257-284, Edinburgh
University Press, Edinburgh, 1976.



10.

1

AR

13.

14.

15.

16

L

—D5

E. Sandewall, A proposed solution to the FUNARG problem,
ACM SIGSAM Bull., no. 17, 29-42, January 1971.

M. E. Conway, Design of a seperable transition-diagram
compiler, Comm. ACM., vol. 6, no. 7, 396-408, July 1963.

R. M. Burstall, J. S. Collins, and R. J. Popplestone,
Programming in POP-2, Edinburgh Univ. Press, Edinburgh,
1971

P. J. Landin, A correspondence between ALGOL 60 and
Church's lambda notation, part I, Comm. ACM., vol. 8,
no. 2, 89-101, February 1965.

G. J. Sussman and D. V. McDermott, From CONNIVER to
PLANNER, a genetic approach, Proc. of FJCC, 1171-1179,
AFIPS Press, Montvale, NJ, 1970.

A. Newell, F. M. Tonge, E. A. Feigenbaum, B. F. Green, Jr.,
and G. H. Mealy, Information Processing Language-V
Manual, Prentice-Hall, Englewood Cliffs, NJ, 1964.

C. Hewitt and B. Smith. Towards a programming apprentice,
IEEE Trans. on Software Engineering, vol. SE-1, no. 1,
26-45, March 1975.

P. Henderson and J. Morris, Jr., A lazy evaluation,
Proc. 3rd ACM Symp. on Principles of Programming
Languages, 95-103 (1976).

Daniel P. Friedman and David S. Wise. The impact of appli-
cative programming on multiprocessing, Proc. 1976 Intl. Conf.
Parallel Processing (IEEE Cat. No. 76CH1127-0C) 263-272.

J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart,
and M. E. Levin, LISP 1.5 Programmer's Manual, Chapter 1,
M.I.T. Press, Cambridge, MA, 1963.

J. Backus, Programming language semantics and closed
applicative languages, Proc. ACM Symp. on Principles
of Programming Languages, 71-86 (1973).

Daniel P. Friedman and David S. Wise, An environment for
multiple-valued recursive procedures. In B. Robinet (ed),
Programmation, Dunod Informatique, Paris, 182-200 €¢1977).

C. Wadsworth, Semantics and progmatics of lambda-calculus,
Ph.D. dissertation, Oxford, 1971.

J. Vuillemin, Correct and Optimal implementation of
recursion in a simple programming language, J. Comp.
Sys. Seci., vol. 9, 332-354 (1974).

on



18.

19.

20.

2

22

28.

2h.

25.

26.

2.

20,

29»

=P8

C. A. R. Hoare, Recursive data structures, Internat. J.
Comput. & Information Sci., vol. 2, 105-132 (1975).

W. H. Burge, Recursive programming techniques, Addison-
Wesley, Reading, MA, 1975.

Daniel P. Friedman and David S. Wise, Output driven inter-
pretation of recursive programs, or writing creates and
destroys data structures. Information Processing Letters
5, 6, 155-160, December 1976.

Daniel P. Friedman and David S. Wise, and M. Wand, Recursive
programming through table look-up, Proc. ACM Symp. on Symbolic
and Algebraic Computation, 85-89 (1976).

P. J. Landin, The next 700 programming languages, Comm.
ACM., vol. 9, no. 3, 157-162, March 1966.

E. W. Dijkstra, A discipline of programming, Chapter 17,
Prentice-Hall, Englewood Cliffs, NJ, 1976.

D. R. Hanson, Procedure-based linguistic mechanisms in
programming languages, Ph.D. dissertation, University
of Arizona, 1976.

C. Hewitt, P. Bishop, R. Steiger, I. Greif, B. Smith, T.
Matson, and R. Hale, Behavioral semantics of nonrecursive
control structures. In B. Robinet ed., Programming
Symposium, Springer-Verlag, Berlin, 385-407 (19T74).

A. Wang and 0.-J. Dahl, Coroutine sequencing in a block
structured environment, Nordisk Tidskr. Informationsbehandling
(BIT), vol. 11, 425-559 (1971).

Daniel P. Friedman and David S. Wise, Aspects of applicative
programs for file systems (preliminary version). Proc. ACM
Conf. on Language Design for Reliable Software, SIGPLAN Notices

12, 3 (March, 1977), 41-55.

¢. Kahn and D. McQueen, Coroutines and networks of parallel
processes. Institut de Recherche d'Informatique et
d'Automatique, Rapport de Recherche 202, November, 1976.

E. A. Ashcroft and W. W. Wadge. LUCID--a formal system for
writing and proving programs. SIAM J. Comput. 5, 3,
336-354, September 1976.




