
Fundamental Algebraic Concepts in

Concept-Enabled C++

Peter Gottschling

November 9, 2006

Contents

I Description 5

1 Introduction 6

2 Concepts and Models in Generic Programming 8
2.1 Concept Checking in C++ . 9
2.2 Portability to Compilers without Concepts 11

3 Algebraic Concepts 13
3.1 Concept Categories . 13
3.2 One-operation Concept Overview 14
3.3 Purely Algebraic and Augmented Concepts 14

3.3.1 Magma . 15
3.3.2 Closure of Operations on Arithmetic Data Types 15
3.3.3 CommutativeMagma . 16
3.3.4 SemiGroup and CommutativeSemiGroup 16
3.3.5 Monoid and CommutativeMonoid 17
3.3.6 PartiallyInvertibleMonoid 17
3.3.7 Group and AbelianGroup 18

3.4 Additive and Multiplicative Concepts 18
3.4.1 Default Functors and Functions 18
3.4.2 Relating Operator and Functor-Based Concepts 22
3.4.3 On Multiplicative Concepts 22

3.5 Two-Operation Concepts . 23
3.6 Default Model Declarations . 24

3.6.1 Default Declarations for Standard Arithmetic Types . . . 25
3.6.2 Restricting Model Declarations for Operations 26

4 Examples 27
4.1 Generic Power Function on Various Algebraic Concepts 27

4.1.1 Generic Power Function on Magmas 28
4.1.2 Generic Power Function on Monoids 28
4.1.3 Generic Power Function on Semi-Groups 30
4.1.4 Generic Power Function on Groups 32
4.1.5 Generic Power Function on Partially Invertible Monoids . 33

1

4.1.6 Test Case: Power Function on Non-Negative Reals 34
4.2 On the Granularity of Template Function Constraints 35
4.3 Generic Reduction Implementation 37

4.3.1 Arithmetically Correct Loop Unrolling with Concept Ver-
ification . 38

4.3.2 Handling Inaccurate Arithmetic 39

5 Value-Based Model Declarations 42
5.1 Modular Arithmetic . 42
5.2 Algebraic Structure of Cyclic Groups 43
5.3 Concept-Based Invertibility Test 43

6 Theory of Conceptual Restriction 45
6.1 Definitions . 45
6.2 Model Set Inclusion of Concepts with Different Arities 46

6.2.1 Refining from Concepts with Lower Arity 47
6.2.2 Refining from Concepts with Higher Arity 48
6.2.3 General Type Inclusion for Concept Refinement 49
6.2.4 General Type Inclusion in Concept Restriction 52

6.3 Implicit Model Declarations . 54
6.3.1 Model Implication Rules 54
6.3.2 Case Study: Vector Space 55
6.3.3 Design of Restricting Concepts based on Model Implication 57
6.3.4 Model Implication of Non-Restricting Concepts 60

6.4 Comparison between Refinement and Requests 61

7 Conclusions 63

II Concept Specifications 66

8 Single-Operation Concepts 67
8.1 Purely Algebraic Concepts . 67

8.1.1 Commutative . 68
8.1.2 Associative . 69
8.1.3 SemiGroup . 70
8.1.4 Monoid . 71
8.1.5 Inversion . 72
8.1.6 Group . 73
8.1.7 AbelianGroup . 74

8.2 Augmented Algebraic Concepts 75
8.2.1 Magma . 75
8.2.2 CommutativeMagma . 77
8.2.3 SemiGroup . 78
8.2.4 CommutativeSemiGroup 79
8.2.5 Monoid . 80

2

8.2.6 CommutativeMonoid . 81
8.2.7 PartiallyInvertibleMonoid 82
8.2.8 PartiallyInvertibleCommutativeMonoid 84
8.2.9 Group . 85
8.2.10 AbelianGroup . 86

8.3 Concepts for Additive Algebraic Structures 87
8.3.1 AdditiveMagma . 87
8.3.2 AdditiveCommutativeMagma 89
8.3.3 AdditiveSemiGroup . 89
8.3.4 AdditiveCommutativeSemiGroup 89
8.3.5 AdditiveMonoid . 91
8.3.6 AdditiveCommutativeMonoid 92
8.3.7 AdditivePartiallyInvertibleMonoid 93
8.3.8 AdditivePartiallyInvertibleCommutativeMonoid 95
8.3.9 AdditiveGroup . 96
8.3.10 AdditiveAbelianGroup . 97

8.4 Concepts for Multiplicative Algebraic Structures 98
8.4.1 MultiplicativeMagma . 98
8.4.2 MultiplicativeCommutativeMagma 100
8.4.3 MultiplicativeSemiGroup 101
8.4.4 MultiplicativeCommutativeSemiGroup 102
8.4.5 MultiplicativeMonoid . 103
8.4.6 MultiplicativeCommutativeMonoid 104
8.4.7 MultiplicativePartiallyInvertibleMonoid 105
8.4.8 MultiplicativePartiallyInvertibleCommutativeMonoid 107
8.4.9 MultiplicativeGroup . 108
8.4.10 MultiplicativeAbelianGroup 109

9 Algebraic Structures with Two Operations 110
9.1 Purely Algebraic Concepts . 110

9.1.1 Distributive . 110
9.1.2 algebra::Ring . 112
9.1.3 algebra::RingWithIdentity 113
9.1.4 algebra::DivisionRing . 114
9.1.5 algebra::SkewField . 115
9.1.6 algebra::Field . 116

9.2 Augmented Concepts . 117
9.2.1 GenericRing . 117
9.2.2 GenericCommutativeRing 119
9.2.3 GenericRingWithIdentity 120
9.2.4 GenericCommutativeRingWithIdentity 121
9.2.5 GenericDivisionRing . 122
9.2.6 GenericField . 124

9.3 Operator-Based Concepts . 124
9.3.1 Operator-Based Concepts 124
9.3.2 Ring . 125

3

9.3.3 CommutativeRing . 126
9.3.4 RingWithIdentity . 127
9.3.5 CommutativeRingWithIdentity 128
9.3.6 DivisionRing . 129
9.3.7 Field . 130

10 Models 131
10.1 String Concatenation . 131
10.2 Non-Negative Real Values . 132

4

Part I

Description

5

Chapter 1

Introduction

Using generic programming concepts to define algebraic structures creates a
symbiosis between generic programming and algebra. Mathematicians use the
methodology of concepts to focus on essential properties of algebraic structures.
All properties that are not relevant in a given context are ignored. In theoretical
investigations, no specific objects or sets are examined but abstract objects
holding certain properties. From these initially postulated properties, other
properties are deduced without taking specific objects into consideration.

In the same manner, generic functions are not limited to a specific type but
are applicable to every type with the appropriate properties. These properties
are given as template function constraints in form of concepts. Concepts for-
mally characterize the requirements of a data type to be applicable to a generic
implementation of an algorithm. In this paper, we formalize the mathematical
properties of algebraic structures as generic programming concepts in order to
constrain C++ generic functions with mathematical stringency.

In some sense, these algebraic concepts establish a symbiosis between algebra
and generic programming. At first, the idea of concepts was adapted from
algebra to generic programming. Now, algebraic structures are specified with
the generic programming concepts.

Historically, concepts in C++ played only the role of documentation and it was
the user’s responsibility to check whether his data type models a concept. Siek
and Lumsdaine [13, 17] started to involve compilers in this checking process by
introducing prototypes of concepts that access all associated types, operators,
and functions of these concepts so that the instantiation of such a prototypes
shows whether a data type fulfills all requirements of a concept.

Currently, research is going on to introduce concepts into the C++ standard
[5, 14, 20]. Gregor started implementing concept checking in the gcc-based
compiler ConceptGCC according the latest revision of the standard proposal on
language extension for concepts. A first prototype is available for testing [6].
The concept implementations presented in this paper are compilable with the
current version of ConceptGCC.

The intention behind integrating concepts into compilers was mainly to clar-

6

ify error messages. However, we consider it even more important that the con-
cept checking extends the error detection to semantic errors that are completely
transparent to compilers without concept checking. As a consequence, concept
checking not only helps to understand error messages better. It also provides a
completely new ability to establish mathematical reliability in software because
the compiler can check the semantic constraints when they are stated in the
program. We consider this approach of compiler-supported semantic verifica-
tion and of exposing semantic behavior in program sources as a new paradigm
that we call Property-Aware Programming.

The definition of algebraic concepts is only the first step of establishing this
new form of mathematical software reliability. However, it is really a fundamen-
tal step. The specific objectives of introducing algebraic concepts are to

1. Express algebraic concepts in the same fashion as STL concepts [18];

2. Implement these concepts in ConceptGCC;

3. Provide additive and multiplicative concepts that are based on operators
+ and ∗;

4. Introduce algebraic concepts definable for an arbitrary binary operations;

5. Relate all these concepts to each other so that additive and multiplicative
concepts are refinements of concepts with arbitrary operators;

6. Provide concepts with two connectors, like rings, that are refinements of
additive and multiplicative concepts in an operator-based definition;

7. Establish alternative two-connector concepts that are defined on two ar-
bitrary binary operations in the generic definition;

8. Discuss the behavior of intrinsic numeric C++ types;

9. Illustrate the applicability on examples;

10. Provide theoretical background in order to relate concepts with different
numbers of template parameters to each other in a mathematically correct
manner.

7

Chapter 2

Concepts and Models in
Generic Programming

Generic software in terms of templated functions or templated function objects
provides the calculation of an algorithm to the whole set of types that are ad-
missible to the algorithm and its implementation. Types that do not match the
requirements of a generic function syntactically cause compiler errors. Unfortu-
nately, the error messages are often extremely long in heavily-templated libraries
and not necessarily very helpful. The reason is that the messages are generated
after template instantiation and possibly appear in a indirectly-called function
(the one that could not be instantiated). This function can be unknown to
the user and because many errors take place in internal helper functions, there
might not even be a documentation for this function. Thus, it is often extremely
difficult to relate the error message to the cause of the problem. Even more crit-
ical than syntactic mismatches are violations of semantic requirements. They
are completely transparent to current compilers and executables are generated
that compute incorrectly.

Because of the difficulties to interpret error messages caused by syntactic
errors and of the necessity of probably time-consuming debugging in case of
semantic errors, it is very important to assure that all requirements of a generic
function are fulfilled when called in a program. For this reason, good generic
libraries are equipped with very detailed specifications of syntactic and semantic
demands of each function in form of concepts.

Definition 1 A concept is a set of syntactic and semantic requirements on a
type or a tuple of types. A type or tuple of types that fulfill all requirements is
called a model. A concept that adds requirements to another concept is called
refinement.

The requirements defined in concepts consist of:

Valid Expressions: compilable C++ expressions that the type must provide;

8

Associated Types: other types than the modeling related to the concept;

Invariants: semantic properties, which can be required for all objects of the
type(s) — like associativity — or required on function arguments as pre-
condition — like symmetric values of a matrix — and;

Complexity Guarantees: maximum limits on compute time and memory
needs often depending on complexity requirements on the parameters.

Valid expressions and associated types are syntactic requirements checkable by
the compiler and their violation will be detected (unless implicit conversion
cause accidental syntactic mismatching). Invariants cannot be verified by
the compiler. The only way to detect violations of semantic requirements are
run-time tests. This does not formally prove the correctness of programs but
decreases the probability of erroneous executions.

For a more detailed description see for instance [15, chapter 2].

2.1 Concept Checking in C++

Concepts of generic C++ libraries are currently described as textual documen-
tation and it is the users’ responsibility to verify whether his types model the
concepts of a generic function. An extension of C++ is proposed to the standard
committee in order to use compilers for checking concepts. Integrating concepts
into the C++ has several important advantages:

• Verification of type properties occurs at function call and so errors are not
detected inside the implementation but at erroneous function calls;

• Error messages are generated in terms of concept requirements instead of
obfuscated errors within an unknown context, and

• Verification is provided whether the concepts of a function cover its se-
mantic and syntactic requirements including all functions called by it.

ConceptGCC is the first prototype of a C++ compiler that provides concept
checking. It is based on gcc and implements the extensions proposed for the
next standard. In our concept implementations, we use the syntax of the stan-
dard proposal. All programs are compiled with ConceptGCC. The details of
ConceptGCC are given in [4]. In this chapter, we sketch the new language fea-
tures used in this text on some examples (the examples are not part of algebraic
concepts of the paper).

concept GroupExample<typename Operation, typename Element>
: SemiGroupExample<Operation, Element>

{
typename inverse result type;
inverse result type inverse(Operation, Element);
where std::Convertible<inverse result type, Element>;

9

Element operator+=(Element&, Element);

axiom Inversion(Operation op, Element x)
{

op(x, inverse(op, x)) == identity(op, x);
op(inverse(op, x), x) == identity(op, x);

}

axiom SomeCondition(Operation op, Element x)
{

if (x != identity(op, x))
op(x, x) != x;

}

typename magnitude type = Element;
};

The syntax of concepts is similar to the syntax of classes and structs. The
example above introduces a concept called GroupExample over the two types
Operation and Element. The concept is a refinement of the concept Semi-
GroupExample. Both are defined over the same types.

The second line is the request for a free function or function object with
the given signature. The result type of the function can be specified or, as in
our example, automatically detected. It is then related to the associated type
introduced in the first line. Where clauses are used to put more constraints on
the modeling and the associated types, as in the above example to require the
result type of the function inverse to be convertible into the Element type.

Furthermore, it is requested that the operator+= exist (i.e. x += y; is a valid
expression). Its first parameter must be a non-const reference and the second
one can be passed arbitrarily. In signatures within concept, value parameters
and const reference parameters are equivalent, i.e. the signature

Element operator+=(Element&, const Element&);

is equivalent to the one in the concept.
Invariants are defined in axioms.1 Axioms define properties that are held by

all objects of a type, (e.g., that the result of a binary operation between some
element and its inverse is the identity of this operation like in the sample concept
above). Currently, axioms have no impact on the executable. The axioms are
intended to be used for customizable optimization. Another possible utilization
is to generate a set of tests to check whether the axioms are held for a set of
random tuples. These would of course not prove the correctness of programs
formally but decreases the probability of erroneous programs—to what extend
would be strongly application dependent. Automatically generated concept-
based run-time tests are subject to future research.

A precondition is a required property of a single object that is used as func-
tion argument and do not need to hold on all objects of a certain type; for

1The ‘axioms’ are actually no axioms in the mathematical sense. They are (mathematical)
properties in general because these ‘axioms’ are not required to be a minimal set of theorems.

10

instance, x ≥ 0 can be claimed for all unsigned integers but not for all signed
integer values or all float values. Expressing the demand of non-negativeness as
a type constraints would be overly restrictive and unnecessarily limit the appli-
cability of a generic function. Therefor, this requirement is more appropriately
specified as precondition.

The last statement in the example code introduces an associated type, which
is by default the type Element unless it is declared by the user in a concept map.
A concept map is a declaration by the user that a certain type models a concept,
for example

template <typename T>
where Float<T>

concept map GroupExample<math::add, T>
{

typedef long double magnitude type;
}

The concept map above is not a model declaration for a single type but is
templated itself. For an arbitrary type T that models the concept Float the tuple
(math::add, T) is a model of GroupExample. Furthermore the associated type
‘magnitude type’ is defined differently from the default for these types. Declaring
a type or a tuple of types a model of a concept causes the compiler to verify
that all syntactic requirements are fulfilled. In the example concept it will be
checked whether a plus operator exists and whether inverse is defined as a free
function or as a function local to the concept to be defined in the concept map.
All associated types must be defined in the concept map unless there is a default
in the concept or they can be resolved by automatic type detection.

These concepts are used to constrain template functions, like in the following
example:

template <typename Op, typename Element, typename Exponent>
where math::GroupExample<Op, Element> && std::Integral<Exponent>

inline Element multiply and square(Element base, Exponent exp, Op op)
{ /∗ ... ∗/ }

Calling this function with a tuple (base, exp, op) requires that the types of op and
base model GroupExample and that Exponent models std::Integral which means
that Exponent is a signed or unsigned integer. For types not modeling these
concepts the compiler will not call the function but inform the user that the
function is a candidate for his call and which requirement is not fulfilled. For a
more detailed description, see for instance [4]

2.2 Portability to Compilers without Concepts

For practical reasons it is important that programs containing concepts and
concept maps are backward compatible to compilers without concept checking.
Concepts and concept maps are therefore conditionally defined only when con-
cept checking is available. Template function constraints are replaced by the

11

macro function LA WHERE. This function evaluates to a where clause in com-
pilations where concept checking is available and to an empty string otherwise.
The only feature that needs to be supported in the concept-free software is the
specification of associated types; these have to be defined as type traits. The
access to associated types in code that is portable between concept-checking and
concept-free compilers is much more convenient if the type traits have the same
names as the concepts. Although this approach provides portability, the double
definition raises a high risk of inconsistency between the concept-enabled and
the concept-free version.

12

Chapter 3

Algebraic Concepts

The algebraic concepts introduced in this chapter can be distinguished between
structures with one operation — like monoid or group — and structures with
two operations — like ring or field. Another distinction between concepts is the
genereicity of the definition: allowing the operation(s) being freely chooseable in
terms of type parameter or being fixed as addition and/or multiplication. This
different representation of operation is characterized by the following concept
categories.

3.1 Concept Categories

Concepts with one operation are expressible in different two manners: with a
given or with a freely chooseable operation. We will first introduce the general
concepts where the operation is implemented with a functor realizing an arbi-
trary binary operation. This category of functor-based concepts is split into
two sub-categories: one defining only mathematical properties in the concepts
and the other adding very basic implementation requirements to facilitate their
utilization in defining generic functions constraints.

Later we define concepts specialized to addition and multiplication as the
most important binary operations. These concepts use operators instead of
functors because this is the common practice in numerical libraries.

Thus, we have the following categories of concepts:

• Functor-based concept:

– Purely algebraic concepts;

– Augmented concepts, and

• Operator-based concepts.

These categories are used in the same manner for one-operation and two-operation
concepts. For the sake of brevity, we will in the following omit the grouping

13

into functor-based concepts and distinguish between three categories: purely
algebraic, augmented, and operator-based concepts.

3.2 One-operation Concept Overview

In this section, we only sketch the concepts and discuss them later in more
detail. The algebraically most general one-operation concept is a magma, which
is a structure that requires only the closure of the considered operation. Semi-
group adds associativity and monoid the identity element and related properties.
Structures with inversion are called in this paper partially invertible monoid,
short PIM, or group depending whether the inversion is defined on all elements
or not. For all these concepts exist also a commutative version. Figure 3.1
depicts all one-operation concepts.

+Magma+SemiGroup+Monoid

+CommSemiGroup

+Group

+CommMonoid+AbeleanGroup

MagmaSemiGroupMonoid

CommSemiGroup

Group

CommMonoidAbeleanGroup

+PIM

+CommPIM

PIM

CommPIM

+CommMagma

CommMagma

Commutative

AssociativeSemiGroupMonoidGroup

AbeleanGroup

Purely Algebraic
namespace algebra

Augmented
namespace math

Operator-based
namespace math

Inversion

Figure 3.1: Overview of one-operation concepts.

3.3 Purely Algebraic and Augmented Concepts

In this paper we define an Algebraic Structure as a finite or infinite set of ele-
ments and one or more functions defined on elements of the set. In contrast to
algebraic structures with an addition or multiplication as operation, we call alge-
braic structures with an arbitrary binary operation purely algebraic structures.
All characteristics of this operation are either explicitly defined or deducible
from the explicit definitions. Concepts defining the requirements of pure al-
gebraic structures are called pure algebraic concepts, see. Section 8.1. The
concepts in this section are strictly limited to mathematical properties. They
are all defined in the namespace algebra.

Using these concepts to constrain template functions demands in most cases
additional constraints regarding assignability and convertibility of the element

14

type and results of operations. Augmenting the concepts with the requirements
Assignable and Convertible enables clearly more concise definitions of function
constraints as illustrated in Section 4.1.6. Except the two basic concepts Con-
vertible and Assignable we do not use any other non-mathematical concept in
any algebraic concept. As the augmented concepts have the same names as the
purely algebraic ones, they are defined in the namespace math to avoid conflicts.

3.3.1 Magma

The concept Magma – also called groupoid1 – introduces a binary operation on
the set and its closure. The closure of a binary operation is defined so that for a
set S of elements of type Element and an operation op of type Op, the operation
must be defined on all (a, b) ∈ S × S and the result must be part of the set S

a, b ∈ S → op(a, b) ∈ S.

Unfortunately, this is not expressible in a clean mathematical style within the
language. Due to this lack of correct definability, we exclude magma from the
purely algebraic concepts in namespace algebra.

The definition of magma in namespace math represents the closure by means
of the return type’s convertibility into the element type. Requiring that the
return type be the Element type would simplify the concept definition but limit
the genereicity. As an example, expression templates could not be used when
the return type of an operation was demanded to be equal to the element type.

For convenience, we also add the requirement of assignability. Mathemati-
cally, this is not necessary and even on the implementation side one could as well
restrain from it and instead request the assignability in the template function
where needed. However, in most cases the Magma concept will come together
with Assignable and so that we included it into Magma.

3.3.2 Closure of Operations on Arithmetic Data Types

Since arithmetic operations are in almost all cases performed on hardware-
supported floating point or integer types, we discuss in this section how these
data types model the the most fundamental algebraic concept. First we consider
the addition of float, double, or long double values that can result in overflow. In
arithmetic compliant with the IEEE Standard 754 this results in special values
‘+∞’ and ‘−∞’. Regarding these special numbers as legal values of type Element,
all floating points are closed under addition and therefore are perfect models
of Magma. However, it is safe to assume that in almost all cases floating point
numbers are considered as approximation of real numbers x ≈ x ∈ R. Taking
this into account, the result 2 · 1038 + 2 · 1038 = ∞, computed as 4-byte float,
one can see that the addition of real numbers is not approximated correctly.
The same is true for approximating the multiplication of real number. Besides
overflow, the multiplication of floating point values is also falsified by the fact

1We do not use this term here because of its ambiguity in algebra.

15

http://www.sgi.com/Technology/STL/Assignable.html
http://www.sgi.com/Technology/STL/Assignable.html
http://www.sgi.com/Technology/STL/Assignable.html

that the product of very small non-zero values result in zero using computer
arithmetic.

Thus, floating point numbers of different formats only approximate R as
long as no overflow, underflow or rounding to zero occurs. Ignoring the approx-
imation of real numbers, the closure of addition and multiplication can still be
considered formally. In this case, the result ∞ as the sum of two large numbers
is then perfectly legal as well as rounding to 0 are. The only cases where the set
of legal values is left is∞+−∞ = NaN, −∞+∞ = NaN, and ±∞∗±0 = NaN,
unless one regards the special IEEE 754 value NaN—Not a Number—as a legal
result.

Accordingly, signed ints only behave like integer numbers Z and unsigned ints
like natural numbers N2 if no overflow or underflow happen. Another prospec-
tive of ints is seeing them as cyclic groups Zn. An unsigned k-bit int is isomorphic
to Z2k regarding addition and multiplication (e.g., an unsigned 32 bit int repre-
sents a cyclic set from 0 to 4,294,967,295). Furthermore, the set of signed k-bit
int Sk is isomorphic to the set of unsigned k-bit int Uk whereby

s ∈ Sk ≡
{

2k − s for − 2k−1 ≤ s < 0
s for 0 ≤ s < 2k−1.

(3.1)

For instance with 32 bit values, -2,147,483,647 is equivalent to 2,147,483,649, -1
to 4,294,967,295, The operations implemented in processor hardware and
therefore realized in C++ operators holds the signed/unsigned isomorphism for
addition, multiplication, and subtraction but not for division.

Regardless of whether the results of int operations are considered being cor-
rect when overflow and underflow occur, the set of values is never left and the
requirements of Magma are thus perfectly fulfilled. Resuming, the arithmetic
types model the formal concept definitions but the approximation of the corre-
sponding sets of numbers is only valid in certain ranges of values.

3.3.3 CommutativeMagma

This concept adds the commutativity to a closed binary operation. We introduce
it to provide a more precise characterization of floating point numbers, which
are commutative but not associative, see. SemiGroup. The lack of associativity is
caused by the finite precision, a property that is more investigated in computer
science than in algebra. This might be the reason that CommutativeMagma is
used as a concept in mathematics.

However, before considering to declare arithmetic on floating point numbers
as CommutativeMagma, the programmer should read Section 4.3.2 and examine
whether disavowing associativity improves the programs’ numerical behavior.

3.3.4 SemiGroup and CommutativeSemiGroup

Semi-group is defined in two concepts: the pure mathematical version alge-
bra::SemiGroup and the augmented version SemiGroup with basic implementa-

2Assuming 0 ∈ N

16

tion behavior in namespace math.
Commutative semi-group CommutativeSemiGroup has no definition in algebra

because this structure is not common in mathematical textbooks but is conve-
nient for numerical software.

3.3.5 Monoid and CommutativeMonoid

A monoid is a semi-group with an identity. The identity element depends both
on the operation and on the element type. Earlier versions of the concept
referred to the operation as template parameter assuming the operation to be
state-less. In the current version, the operation is passed as function parameter,
which not only allows the operation to have a state but also simplifies the syntax.

Referring to an element in the identity function is not necessary for scalar
types. To be applicable to more complex types, like vectors and matrices, it is
necessary to access run-time information (e.g., dimension). Another example,
distributed data types, require information on the distribution in order to return
a compatible identity element, for example string in Section 10.1.

The identity function is implemented using a functor named identity t. From
our experience, template class specialization provides a more comprehensible
behavior than template function overloading. Therefore, we recommend the
programmer when establishing new identity elements to specialize identity t in-
stead of overlapping identity.

Similar to semi-group, monoid is defined in two versions: algebra::Monoid
and Monoid in math whereas CommutativeMonoid is only defined in math.

3.3.6 PartiallyInvertibleMonoid

The concept PartiallyInvertibleMonoid, short PIM, introduces inversion and a
check whether a given element is invertible. Even if it does not exist in mathe-
matical literature, we propose it for implementation purposes in order to build
a bridge between Monoid and Group. With PartiallyInvertibleMonoid, one can use
inversion even when not all elements are invertible. The best-known example
is division by zero but other monoids can have more than one non-invertible
element, for instance cyclic sets of non-prime size with regard to multiplication.
Another example is the inversion of square matrices where matrices other than
the zero-matrix are not invertible. Therefor, all models of this concept must
provide the function is invertible.

Obviously, no int type, neither signed nor unsigned, provides inverse ele-
ments for the multiplication (with the exception of 1 and -1) consistent with
the arithmetic of Z and N. However, the picture is different if the integral types
are considered as representations of cyclic groups {0, . . . , 2k−1} with k the size
of the type in bits. Since all odd numbers are co-prime to the cycle, they have
a reciprocal value, i.e. for every given odd number a exist a unique value b such
that a ·b = b ·a = 1. For instance, the reciprocal of 3 with respect to the product
of 32-bit unsigned int is 2,863,311,531. The isomorphism (3.1) between equally-
sized signed and unsigned int also applies to multiplication, and the reciprocal

17

of 3 with regard to 32-bit signed int is thus -1,431,655,765. Although int types
formally model PartiallyInvertibleCommutativeMonoid regarding multiplication,
the practical value is highly questionable. So, we refrain from including it in
the standard model declarations. Besides, these modular reciprocals are incon-
sistent with the division operator. The reason we discussed it in this paragraph
is the ironic fact that this accidental model provides a cleaner behavior than
all models involving floating point types (which are the most commonly used
arithmetic types).

3.3.7 Group and AbelianGroup

Groups and commutative groups, called Abelian groups, provide the same func-
tions as PIMs. The difference is that all elements are invertible. The function
is invertible can therefor be defined by default to return always true so that in-
vertibility tests can be removed during compilation.

3.4 Additive and Multiplicative Concepts

Operations used in pure algebraic and augmented concepts must be callable
objects and are either functions or objects of a class with an application operator
operator()(/∗... ∗/). A short term for such an object is functor.

We distinguish here between two types of functors: primary functors that
define the semantic itself and derived functors that are based on the semantic
of an operator (i.e. operator+ and operator∗). Whereby primary functors serve
to provide as many operations as possible for a given element type, derived
functors are used to relate additive and multiplicative concepts to pure algebraic
concepts. Considering how inaccurately floating point operations model certain
algebraic concepts, we will show how derived functors can control which concepts
are modeled by floating point addition and multiplication.

3.4.1 Default Functors and Functions

Many types already provide operators for addition and/or multiplication. These
operators, operator+ and operator∗, can be used to define the operation type
needed for purely algebraic and augmented concepts. The semantic of these
functors is of course identical with the semantic of the operators; only the syntax
is different.

template <typename Element>
struct add : std::binary function<Element, Element, Element>
{

Element operator() (const Element& x, const Element& y)
{

return x + y;
}

};

18

template <typename Element>
struct mult : std::binary function<Element, Element, Element>
{

Element operator() (const Element& x, const Element& y)
{

return x ∗ y;
}

};

The definition is similar to the functors add and times in the standard library.
We chose to redefine them in namespace math for better adaption to the de-
fault return types. Especially the addition/multiplication of two short int/char

returns an int not a short int/char. Therefor, the functors for these two types
are specialized to return int instead of the arguments’ type (other than in the
standard library).

We also provide a functor to compute the minimum and maximum of two
values; the maximum can be implemented in the following way:

template <typename Element>
struct max : public std::binary function<Element, Element, Element>
{

Element operator() (const Element& x, const Element& y)
{

return x >= y ? x : y;
}

};

Notice that min and max in STL are template functions and not functors.
Similarly to the default functors for the binary operations, we introduce de-

faults to provide the identity element of certain functions. The additive identity
element of most numeric types is typically an appropriate representation of zero.
For this reason, we define the default additive identity as ‘0’ converted to the
corresponding element type. This approach covers all standard numeric types
in C++. The identity of vectors and matrices is correctly computed if the ‘0’ is
converted into an object consisting completely of 0s. Nevertheless, there can be
numeric types whose identity element cannot be calculated by converting 0 and
the identity must be provided by the user.

The conversion of ‘1’ into a standard numeric C++ types enables the correct
multiplicative identity element for these types. Providing the multiplicative
identity for vectors and matrices will most likely require a user-defined imple-
mentation. Notice that the identity is only used in the context of this paper
when the types (Operation, Element) are declared to model the Monoid. Con-
versely, the declaration of a Monoid requires a user-defined computation of the
identity element if the default implementation is not appropriate.

Objects returned by identity may depend on run-time information, especially
in case of vectors and matrices. Therefore, an element is passed as reference to
access information like vector dimension.

We omit the implementations for multiplication and minimum because they
are equivalent to addition and maximum that are shown in the following listing:

19

template <typename Element>
struct identity t< add<Element>, Element >

: public std::binary function<add<Element>, Element, Element>
{

Element operator() (const add<Element>&, const Element& ref) const
{

Element tmp(ref);
tmp= 0;
return tmp;

}
};

template <typename Element>
struct identity t< max<Element>, Element >

: public std::binary function<max<Element>, Element, Element>
{

Element operator() (const max<Element>&, const Element& ref) const
{

using std::numeric limits;
return numeric limits<Element>::min();

}
};

template <typename Operation, typename Element>
inline Element identity(const Operation& op, const Element& v)
{

return identity t<Operation, Element>() (op, v);
}

template <typename Element>
inline Element zero(const Element& v)
{

return identity t<math::add<Element>, Element>() (math::add<Element>(), v);
}

Alternatively to the implementation above, the operation can be defined as a
template parameter instead of a function parameter (and an earlier version was
in fact implemented in this manner). We favor a function parameter since this
allows us to define operation types containing states and, more importantly, be-
cause it simplifies the syntax. The two-level implementation with a free function
and a functor underneath is chosen because according to our experiences over-
loading highly templated functions bears a higher risk of accidently accessing a
wrong version than when specializing templated types.3 Thus, we recommend
users to specialize identity t instead of overlapping identity according to our ex-
periences. As short cuts for multiplicative and additive identity elements, we
provide the unary functions one and zero.

3Without going into detail, templated function overloading is a two-phase process and a
more complex behavior needs to be considered.

20

The default functor inverse is based on identity and the operators for sub-
traction and division, respectively. Therefore, modifications on these operators
or on the identity change the result of inverse. If the operators − and / exist,
and assuming that they are consistently defined with regard to + and ∗, spe-
cialization will not be needed in most cases. However, in absence of one these
operators one can still define the inverse directly (e.g., matrices usually do not
provide a division but one can implement an inverse function directly). Another
reason for specializing inverse (i.e. the underlying type inverse t) can be that the
default using both identity and +/∗might be significantly more expensive than a
direct implementation.

template <typename Operation, typename Element>
struct inverse t {} ;

template <typename Element>
struct inverse t< add<Element>, Element >

: public std::binary function<add<Element>, Element, Element>
{

Element operator()(const add<Element>&, const Element& v) const
{

return zero(v) − v;
}

};

template <typename Operation, typename Element>
inline Element inverse(const Operation& op, const Element& v)
{

return inverse t<Operation, Element>() (op, v);
}

The default of the function is invertible is defined with the same signature as
identity. The default behavior for additive structures is to return always true

and for multiplicative structures, the element is tested whether it is non-zero.

template <typename Operation, typename Element>
struct is invertible t {};

template <typename Element>
struct is invertible t< add<Element>, Element >

: public std::binary function<add<Element>, Element, Element>
{

bool operator() (const add<Element>&, const Element&) const
{

return true;
}

};

template <typename Element>
struct is invertible t< mult<Element>, Element >

: public std::binary function<mult<Element>, Element, Element>

21

{
bool operator() (const mult<Element>&, const Element& v) const
{

return v == zero(v);
}

};

template <typename Operation, typename Element>
inline bool is invertible(const Operation& op, const Element& v)
{

return is invertible t<Operation, Element>() (op, v);
}

This behavior can be changed for a certain type and operation by specializing
the underlying functor is invertible t. The functions inverse and is invertible are
only used with the concept PartiallyInvertibleMonoid and its refinements.

3.4.2 Relating Operator and Functor-Based Concepts

The operator-based additive and multiplicative concepts are specializations of
the functor-based algebraic concept and should, therefore, be programmed as
refinements. To build the bridge between the former, multi-type concepts, and
the latter, single-type concepts, the functors math::add and math::times are used.
Thus, every type that models a corresponding additive/multiplicative concept
implicitly models the corresponding purely algebraic concept with regard to the
functor math::add/math::times. The consistency of the calculations is expressed
in the axioms.

3.4.3 On Multiplicative Concepts

Floating point numbers provide a rather symmetric range of exponents so that
most values are invertible. However, because of representation constraints this
symmetry will never be perfect and there will be either some very large values
whose reciprocals will evaluate to 0 or some very small values whose reciprocals
will turn into infinity. The latter will be the case with floating points repre-
sented in the meanwhile common IEEE 754 standard, especially when inverting
small denormalized numbers. To avoid critical rounding towards 0 or ±∞, one
can specialize the function is invertible in MultiplicativePartiallyInvertibleCommu-
tativeMonoid accordingly. For performance reasons, we keep the simpler test of
non-zeroness as default.

Most arithmetic data types will not model MultiplicativeGroup or Multiplica-
tiveAbelianGroup because at least the identity of the corresponding addition will
not be invertible. However, since operator∗ can be arbitrary for user-defined
data types, one can always define a type that model MultiplicativeGroup, es-
pecially when implementing examples from algebra text books like Kleinsche
Vierergruppe (Klein’s four-group), which are often specified with ∗ as oper-
ator. It is also imaginable to define data types that explicitly exclude 0 and

22

other non-invertible elements. As a rather academic consideration: one could
implement floating point or integer addition in user types with operator∗; this is
formally perfectly legal concerning the concepts but the practical impact would
be limited to a fair amount of confusion.

3.5 Two-Operation Concepts

These concepts specify algebraic structures with an additive and a multiplica-
tive operation—either defined in terms of an operator or as functor for more
genereicity. There is a general agreement that the additive structure is always
an Abelian group; different opinions exist regarding the multiplication.

In the definition of these concepts we oriented on definition from text books,
like the one from van der Waerden [21], and also on the formal definitions in
Tecton [10]. In these documents, rings are defined as semi-groups with respect
to multiplication. Other authors like Bourbaki define rings as multiplicative
monoids. We call such structures ‘ring with identity’. Adding the notion of divi-
sion, i.e., the inversion with regard to multiplication, yields a algebraic structure
called division ring or synonymously skew-field. A commutative division ring is
called field. Figure 3.2 summarizes these relationships.

+AbeleanGroup

*SemiGroup*Monoid

*CommSemiGroup*CommMonoid

*PIM

*CommPIM

RingRingWithIdentiyDivisionRing

Field CommRingCommRingWithIdentiy

Two operations

Multiplicative concepts

Additive concepts

Figure 3.2: Overview of two-operation concepts.

The two-operation concepts are also organized in the following three cate-
gories:

• Purely algebraic concepts,

• Augmented concepts, and

• Operator-based concepts.

23

The first category is strongly oriented on mathematical textbooks and we defined
there only concepts that are common for mathematicians. The concepts in the
other categories are slightly more numerous. Figure 3.3 shows which concepts
exist in the categories.

Purely Algebraic
namespace algebra

Augmented
namespace math

Operator-based
namespace math

DistributiveRingRingWithIdentiyDivisionRing

Field

SkewField

GRingGRingWithIdentiyGDivisionRing

GField GCommRingGCommRingWithIdentiy

RingRingWithIdentiyDivisionRing

Field CommRingCommRingWithIdentiy

Figure 3.3: Organization of two-operation concepts.

3.6 Default Model Declarations

All algebraic concepts except Magma and its operator-based equivalents demand
model declaration due to their semantic requirements (i.e. axioms which cannot
verified by the compiler). Fortunately, it is not necessary to write a concept map
for each combination of type and concept. When a type or a tuple of types is
declared to be a model of a concept C then the mechanism of nested model
declaration implicitly declares all models of concepts where C is a refinement.
In this respect, where clauses in concepts differ from refined concepts, in both
cases the same requirements are added to a concept but the model declaration
of the refinement implies the model declaration of the concept refined from
whereas a where clause verifies whether a model declaration of the referred
concept is given. For instance,

concept B<typename T> : A<T> {}

concept C<typename T>
{

where A<T>;
}

the model declaration of B for some type implies that this type also models A,
whereby a concept map of C requires that this type models A. The 42 concepts
in this paper all use refinement to extend the set of requirements. In particular,
Field refines most other concepts and a model declaration as Field for some type

24

implies modeling 37 other concepts. Currently, no model for MultiplicativeGroup
exists but it is perfectly reasonable to define a type that models Multiplicative-
Group, see also Section 3.4.3.

3.6.1 Default Declarations for Standard Arithmetic Types

Furthermore, we group the arithmetic types with the same behavior using con-
cepts. We used concepts for signed and unsigned integers from the concept-
enabled standard library.

template <typename T>
where std::SignedIntegral<T>

concept map CommutativeRingWithIdentity<T> {}

template <typename T>
where std::UnsignedIntegral<T>

concept map AdditiveCommutativeMonoid<T> {}

template <typename T>
where std::UnsignedIntegral<T>

concept map MultiplicativeCommutativeMonoid<T> {}

Signed integers are Abelian groups with regard to addition and commutative
monoid for multiplication. In addition, the two operations are distributive so
that they model CommutativeRingWithIdentity with the limitation of overflow
problems. All other model declaration are implied by this declaration.

Unsigned integers are also distributive but the demand for an additive Abelian
group in all two-operation concepts presented avoids a model declaration for any
of them. Therefore, two independent concept maps are given for commutative
monoid regarding both operations.

A concept for floating point types is introduced in the math namespace4; as
well as a concept for complex types. Both are used in model declarations of the
here-presented concepts

template <typename T>
where Float<T>

concept map Field<T> {}

template <typename T>
where Complex<T>

concept map Field<T> {}

Users can enable model declarations for their types in two ways, either writ-
ing them directly or writing a concept map for some of the classifying concepts
used above. Which is more appropriate depends on how similarly the type
behaves to the modeling types. As these classifying concepts are still under

4Possibly these concept will be later integrated into the standard namespace.

25

development and it is not yet foreseeable in which templated algebraic and nu-
merical model declarations they will be used, it is recommended to not write
concept maps of user defined types for these concepts now.

3.6.2 Restricting Model Declarations for Operations

In our concepts, we provide a model declaration for maximal applicability. For
instance, we define floating point types as AbelianGroup regarding math::add and
as PartiallyInvertibleCommutativeMonoid regarding math::mult despite the imper-
fect associativity caused by rounding errors.

As criterion for model declaration, we examined whether it is useful for a
significant part of the elements. Theoretically, (mult<int>, int) build a model
of PartiallyInvertibleCommutativeMonoid whereby only 1 and -1 are invertible.
Assuming most algorithms stop with an error by lack of invertibility, the benefit
of such model declaration is negligible. In contrast, floating point numbers are
declared as Field despite the fact that some denormalized non-zero values have
no correct inverse.

One way to restrict the model declarations is to disable all pre-defined con-
cept maps by compiling with −DLA NO CONCEPT MAPS and declare models as
desired.

For two reasons, this approach may be inappropriate. This technique fails
in programs where the model declaration shall be only changed for one type or
a few types and all others are utilized in the common way. However, this is only
a convenience problem. More critical is the situation when a pair (Operation,
Element) shall be for instance a model of Monoid in one part of the program
and an AbelianGroup in another part (within the same compilation unit). Since
model declarations are globally valid in the whole program, this is not pos-
sible with the same type tuple. However, a different modeling behavior can
be achieved by introducing a new type for the operation.5 As an example,
declaring addition of float as a commutative, non-associative operation can be
implemented with the following code fragment:

template <typename Element>
struct non associative add : public math::add<Element> {};

concept map CommutativeMagma<non associative add<float>, float> {}

5Introducing a new element type is theoretically also possible but usually less elegant,
especially when the element type is not a class.

26

Chapter 4

Examples

Algebraic concepts are crucial as fundamental theoretical background in nu-
merical software. As an example, we present a generic algebraic computation
in the form of the generalized power calculation with an arbitrary binary oper-
ation instead of multiplication. We will show different algorithms to compute
the power function generically and we will show how algebraic concepts can be
used to select the best applicable algorithms. In addition to dispatching be-
tween algorithms, the concept determines the range of correct exponents. Later
we will demonstrate how algebraic concepts guarantee that loop unrolling is
arithmetically correctly applied.

Other applications, not presented in this paper, are the construction of fac-
torization trees by Henckell and Pin [7] using Monoids and the study of
languages’ complexity with Monoids by Raymond et al. [12].

Even more important than the direct application of the fundamental con-
cepts to specify algorithm requirements is the definition of high-level concepts,
like vector and Hilbert spaces. These high-level concepts are the background of
many numeric libraries and it is crucial for the software reliability to integrate
these mathematical requirements into the compilation process. We developed
a first prototype of vector space concepts and we applied it in collaboration
with Bonderer and Troyer to a linear solver—conjugate gradient—and an
eigensolver—power method [2]. These results will be published in future papers;
for this document we limit ourselves to the fundamental algebraic concepts.

4.1 Generic Power Function on Various Alge-
braic Concepts

The power function computes the repeated multiplication of a value a.

a1 = a

an = an−1a if n > 1

27

The extension to arbitrary binary operations is straightforward

power(a, 1, op) = a

power(a, n, op) = op(power(a, n− 1, op), a) if n > 1

4.1.1 Generic Power Function on Magmas

The simplest algorithm to compute the nth power of a with respect to a given
binary operation op is to apply the operation successively n − 1 times. This
calculation does not require special algebraic properties except that the result
is representable as the argument type. As mentioned before, POD only fulfill
this requirement if no overflow occurs. Assuming this, the algorithm’s need can
be specified by the concept math::Magma. The exponent is required to be an
integral type and its value must be larger than 0.

template <typename Op, typename Element, typename Exponent>
where math::Magma<Op, Element> && std::Integral<Exponent>

inline Element power(const Element& a, Exponent n, Op op)
{
ifdef MTL TRACE POWER DISPATCHING

std::cout << ”[Magma] ”;
endif

if (exp < 1) throw ”In power: exponent must be greater than 0”;

Element value= a;
for (; n > 1; −−n)

value= op(value, a);
return value;

}

For documentation purposes, one can enable a log message showing which ver-
sion of power was actually called using −DMTL TRACE POWER DISPATCHING as
compiler flag or defining the macro before including power.hpp. We will omit the
parts of the power that enable this tracing in the following listings for the sake
of brevity.

4.1.2 Generic Power Function on Monoids

If the operation is associative, the following exponent law

an = an−mam for all 1 ≤ m < n (4.1)

applies. Stepanov [19] pointed out that concept-based dispatching allows the
use of (4.1) to compute the generic power function with logarithmic logarithmic
effort over the exponent instead of linear. This algorithm is known as multiply-
and-square or Russian peasant algorithm [19]. The fastest and clearest version of
this algorithms demands an identity element for the operation (i.e. the operation
must be a Monoid).

28

template <typename Op, typename Element, typename Exponent>
where math::Monoid<Op, Element> && std::Integral<Exponent>

inline Element multiply and square(const Element& a, Exponent n, Op op)
{

if (n < 0) throw ”In multiply and square: negative exponent”;

using math::identity;
Element value= identity(op, a), square= a;

if (n & 1)
value= base;

for (n>>= 1; n > 0; n>>= 1) {
square= op(square, square);
if (n & 1)

value= op(value, square);
}
return value;

}

The idea of the algorithm is to square a successively and represent the power
as a product of these squared values (e.g., a21 = a16 · a4 · a1). Starting with the
identity as temporary value, the value must be therefore multiplied with a if n
is odd, with a2 if bn/2c is odd, with a4 if bn/4c is odd, . . .

The binary representation of the exponent makes it very easy to decompose
it into a sum of powers of two, for instance to decompose 21 = 101012 =
100002 + 1002 + 12. Relying on this presentation—therefore the exponent type
is required to be integral—the oddness of the exponent can be computed by
testing whether the least-significant bit is 1 and the down-rounded division by
2 can be calculated by shifting the value to the right.

Note that including an identity e in the computation provides the 0th power.
The definition of the 0th power as identity follows naturally from the before-
mentioned exponent law (4.1)

∀a, n : e · an = an = a0+n = a0 · an ⇐⇒ a0 = e.

The extension to the generic power function is straight forward.
There is one slight inefficiency left in the algorithm. The identity is assigned

to value and immediately overwritten if the n is odd. Using the ternary operator
in the initialization avoids this.

template <typename Op, typename Element, typename Exponent>
where math::Monoid<Op, Element> && std::Integral<Exponent>

inline Element multiply and square(const Element& a, Exponent n, Op op)
{

if (n < 0) throw ”In multiply and square: negative exponent”;

using math::identity;
Element value= bool(n & 1) ? Element(a) : Element(identity(op, a)), square= a;

29

for (n>>= 1; n > 0; n>>= 1) {
square= op(square, square);
if (n & 1)

value= op(value, square);
}
return value;

}

This minor change reveals the very subtle effect of concept checking. Firstly,
the result of n & 1 must be converted into a boolean. Although integer values
are considered true in C++ iff they are different from 0, this is not part of the
concept Integral (yet). Probably, this will change soon.

Another subtle difference with checking concepts is the usage of ‘if’ and
‘?:’. When using the if-statement, both the type of a and the result type of
identity must be assignable to the type of value. This is covered by the concept
Monoid.1 Using ?: requires that a and identity(op, a) have the same type or that
one type is convertible into the other but not both mutually into each other.
This is necessary to determine the type of the expression without ambiguity. The
used concept does not guarantee the uniqueness of this result type; therefore
we explicitly convert both values into Element, which is permissible with the
concepts. The uniqueness of the ternary operator could also be guaranteed by a
SameType constraint to the functions requirement. However, this would restrict
the set of permissible types and undermines the goals of generic programming.

Without concept-checking, the type of the expression is determined at in-
stantiation time. Then the type of Element and the result type of identity are
known and compiler error only happens when the result type of ?: is ambiguous
for the actually instantiated types. As a consequence, type conflicts in generic
functions can stay undiscovered for a long time if the function were never in-
stantiated with type combinations causing the ambiguity. For instance, some
subtle ambiguities using the ternary operator in the STL were only discovered
after concept-checking the library.

In order to enable better code re-usability, we provide a separate function
multiply and square that is used in different manners by several versions of power.
The power function of Monoid is then trivial.

template <typename Op, typename Element, typename Exponent>
where math::Monoid<Op, Element> && std::Integral<Exponent>

inline Element power(const Element& a, Exponent n, Op op)
{

return multiply and square(a, n, op);
}

4.1.3 Generic Power Function on Semi-Groups

To lift the algorithm to SemiGroup the implementation must compute without
using identity, which also excludes the 0th power. One solution is to recursively

1in math:: not in algebra::

30

compute abn/2c, square this result and multiply it with a if n is odd,

an = (abn/2c)2 · an mod 2.

The implementation of this recursive technique reads:

template <typename Op, typename Element, typename Exponent>
where math::SemiGroup<Op, Element> && std::Integral<Exponent>

Element power(const Element& a, Exponent n, Op op)
{

Exponent half= n >> 1;

// If half is 0 then n must be 1 and the result is a
if (half == 0)

return a;
Element value= power(a, half, op);
value= op(value, value);
if (n & 1)

value= op(value, a);
return value;

}

Recursive function calls are more expensive than iterative methods and un-
likely to be inlined. To compute the generic power function iteratively in absence
of identity, the computation must start with the most-significant bit. Interme-
diate values are continuously squared and, depending on whether the corre-
sponding bit in the exponent is odd multiplied with a. The computation is very
similar to Horner’s scheme [8] for evaluating polynomials

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = ((· · · (anx+ an−1)x · · ·)x+ a1)x+ a0

In the same fashion, the power computation can be nested with the most-
significant bit of the exponent inside all nested operations. Be n = bk2k +
bk−12k−1 + ·+ b12 + b01 the binary representation of n with bk = 1. Then the
nth power of a can be written as

an = ((· · · ((((abk)2abk−1)2abk−2)2an−2)a · · ·)2ab1)2ab0 .

For instance, a20, with 20 = 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 0 · 20, reads

a20 = a101002 = ((((a1)2a0)2a1)2a0)2a0.

The multiplication with a0 is not realized as a multiplication with the iden-
tity, which is not available, but is only a notation that the actual value is not
multiplied with a0. The implementation of the algorithm starts with finding
the highest 1-bit in the exponent. Special attention must be payed to signed
int where the search of the highest one-bit of n must start in the second-most
significant bit (otherwise negative values are introduced and the shifting usually
behaves differently).

31

template <typename Op, typename Element, typename Exponent>
where math::SemiGroup<Op, Element> && std::Integral<Exponent>

inline Element power(const Element& a, Exponent n, Op op)
{

if (n <= 0) throw ”In power [SemiGroup]: exponent must be greater than 0”;

Exponent mask= 1 << (8 ∗ sizeof(mask) − 1);
if (mask < 0)

mask= 1 << (8 ∗ sizeof(mask) − 2);
while(!(bool)(mask & n)) mask>>= 1;

Element value= a;
for (mask>>= 1; mask; mask>>= 1) {

value= op(value, value);
if (n & mask)

value= op(value, a);
}
return value;

}

Although this algorithm starts with the most-significant position in the expo-
nent, its main loop has the same compute pattern of squaring and multiplying.
The only difference in compute time is therefore the initial search for the highest
bit in n.

Remark One can argue whether a separate implementation for semi-groups
is needed. Each semi-group can be embedded into a monoid by adding a new
element, say e, and defining ex = x = xe for all members of the semi-group.
Although this is mathematically perfectly feasible, we cannot easily add a new
value to a type so that this embedding has no practical impact in computer
science. On the other hand, all examples of semi-groups, we found so far provide
an identity element. However, one can easily define non-monoidal semi-groups
by appropriately limiting the element range, e.g. addition of float with ∀x : x <
−4, multiplication of int with ∀x : x > 47, or concatenation of strings with at
least three characters length. In all these cases the identity is a value of the
type but excluded from the set by definition. As a consequence, one could use
this identity, which comes from outside the set, internally in the algorithms but
must require that the exponent is at least one so that the result always lies in
the set.

4.1.4 Generic Power Function on Groups

Computing the power on a Group operation does not enable a more efficient
algorithm. The difference is that the existence of an inverse function enables
negative exponents by means of another exponent law

a−n =
1
an

32

or more generally

power(a,−n, op) = power(inverse(a), n, op). (4.2)

The implementation of (4.2) is simple use of multiply-and-square

template <typename Op, typename Element, typename Exponent>
where math::Group<Op, Element> && std::SignedIntegral<Exponent>

inline Element power(const Element& a, Exponent n, Op op)
{

using math::inverse;
return n >= 0 ? multiply and square(a, n, op)

: multiply and square(inverse(op, a), −n, op);
}

Please note that the implementation

template <typename Op, typename Element, typename Exponent>
where math::Group<Op, Element> && std::SignedIntegral<Exponent>

inline Element power(const Element& a, Exponent n, Op op)
{

using math::inverse;
return n >= 0 ? power(a, n, op)

: power(inverse(op, a), −n, op);
}

would only call itself and end in an infinite loop. If it there were a possibility
to call the power function of Monoid within the power function of Group, an
implementation similar to the last listing were feasible. In order to use the
multiply-and-square algorithm differently within the different power selections,
it is implemented in a separate function.

4.1.5 Generic Power Function on Partially Invertible
Monoids

For many types, the division is not defined for all values. More generically, there
are operations with an inverse function but which is not guaranteed to work on
all values—e.g., wrong results, exceptions, program crashes, infinite loops. The
generic approach to handle this is the boolean function is invertible that can be
used to avoid illegal calls of inverse. For more details see PartiallyInvertibleMonoid.

template <typename Op, typename Element, typename Exponent>
where math::PartiallyInvertibleMonoid<Op, Element>

&& std::SignedIntegral<Exponent>
inline Element power(const Element& a, Exponent n, Op op)
{

using math::inverse; using math::is invertible;

if (n < 0 && !is invertible(op, a))
throw ”In power: a must be invertible with negative exponent”;

33

return n >= 0 ? multiply and square(a, n, op)
: multiply and square(inverse(op, a), −n, op);

}

4.1.6 Test Case: Power Function on Non-Negative Reals

To test some types other then plain old data types (POD), we introduced a new
class positive real that explicitly excludes negative reals at run-time. The positive
reals including the zero R+

0 form a CommutativeMonoid with respect to addition
and a PartiallyInvertibleCommutativeMonoid w.r.t. multiplication. Excluding the
zero R+ would build an AbelianGroup towards multiplication. We refrain from
the last definition because slight asymmetries of floating point numbers small
de-normalized numbers might also turn into infinity by inversion.

To enable different concept maps for the same binary operation, we introduce
five new function classes, which are all publically derived from math::mult.

struct magma mult : public math::mult<positive real> {};
struct semigroup mult : public math::mult<positive real> {};
struct monoid mult : public math::mult<positive real> {};
struct pim mult : public math::mult<positive real> {}; // Partially invertible monoid
struct group mult : public math::mult<positive real> {};

namespace math {
concept map SemiGroup< semigroup mult, positive real > {};
concept map Monoid< monoid mult, positive real > {};
concept map PartiallyInvertibleMonoid< pim mult, positive real > {};
concept map Group< group mult, positive real > {};

}

The concept Magma is ‘auto’ and does not need a model declaration.
Alternatively, one could test the concept dispatching with the same operation

functor and different element types. This demands typically more work when
the base class has non-trivial constructors that has to be called from each derived
class. In addition, functions like identity would need to be rewritten due to the
argument change. Theoretically there is no objection either to vary both Element

and Operation type (which causes even more implementation work). Resuming,
from our experience it is the easiest way to provide multiple Operation functor
types because they are normally state-free types. However, this are all practical
technical considerations and do not demonstrate any limitation of concepts.

Computing the 777th and −777th power of 1.1 and 0 on with respect to
different concepts returns the following results.

1.1^777 as Magma [Magma] 1.4525e+32

1.1^777 as SemiGroup [SemiGroup] 1.4525e+32

1.1^777 as Monoid [Monoid] 1.4525e+32

1.1^-777 as Monoid [Monoid]

== Exception: In multiply_and_square: negative exponent

34

1.1^777 as PIMonoid [PIMonoid] 1.4525e+32

1.1^-777 as PIMonoid [PIMonoid] 6.88468e-33

0^777 as PIMonoid [PIMonoid] 0

0^-777 as PIMonoid [PIMonoid]

== Exception: In power [PIMonoid]: a must be invertible with negative n

1.1^777 as Group [Group] 1.4525e+32

1.1^-777 as Group [Group] 6.88468e-33

0^777 as Group [Group] 0

0^-777 as Group [Group] inf

The modeled concept is printed for each operation, e.g., 1.1^777 as SemiGroup
means that 1.1777 is computed with a functor that is declared to model Semi-
Group. To verify whether the correct version of power was called, the functions
were enabled2 to print out the concept dispatching in brackets.

As one can see, the result of 1.1777 is always the same. The efficiency is
slightly lower in a SemiGroup and significantly lower in a Magma. Negative ex-
ponents cannot be used for Monoid and more general concepts. Raising zero to
a negative power is an illegal operation and modeling the multiplication as Par-
tiallyInvertibleMonoid allows us to provide a proper error behavior. Conversely,
zero is incorrectly inverted to ∞ when the multiplication is modeled as Group.
Note that the inversion of 0 and ∞ is to some extend consistently defined in
IEEE 754 as 1/0 = ∞ and 1/∞ = 0. Nevertheless, it does not model Group
since 0 · ∞ is not one but NaN.

4.2 On the Granularity of Template Function
Constraints

In Section 4.1, we used the algebraic concepts from namespace math that
impose constraints on the Element type in form of assignability and convert-
ibility. In contrast to it, the concepts in namespace algebra specify exclusively
mathematical properties. Therefore, if used to constrain a template function,
all needs of this function—and of all functions called by it—towards assignabil-
ity and convertibility must be defined in the where clause. For instance the
power function for monoid and group from Section 4.1 would have the following
constraint lists with the concepts from algebra

template <typename Op, typename Element, typename Exponent>
where algebra::Monoid<Op, Element> && std::Integral<Exponent>

&& std::Callable2<Op, Element, Element>
&& std::Assignable<Element, std::Callable2<Op, Element,

Element>::result type>
&& std::Assignable<Element, Element>

inline Element power(const Element& base, Exponent n, Op op)
{

return multiply and square(base, n, op);

2Compiled with -D MTL TRACE POWER DISPATCHING.

35

}

template <typename Op, typename Element, typename Exponent>
where algebra::Group<Op, Element> && std::SignedIntegral<Exponent>

&& std::Callable2<Op, Element, Element>
&& std::Assignable<Element, std::Callable2<Op, Element,

Element>::result type>
&& std::Assignable<Element, Element>

inline Element power(const Element& base, Exponent n, Op op)
{

using math::inverse;
return n >= 0 ? multiply and square(base, n, op)

: multiply and square(inverse(op, base), −n, op);
}

The advantage of explicitly enumerating the requirements is that they are ab-
solutely minimal and the set of supported types is maximal. However, this
explicitness comes at a high price.

One obvious disadvantage is that the where clause became significantly larger.
The developer of concept-checked generic libraries will spent much time specify-
ing constraints when using minimalist concepts. While libraries grow by defining
more expressive and more powerful functions on top of existing ones, the situ-
ation even deteriorates because the requirements of all called functions and all
used data types are agglomerated in the new function or in the new data type.
In worst case, the lists of constraints grow exponentially with the depth of called
functions and used data structures.

It is therefore inevitable that libraries with more expressive functionality
also need to provide more complex concepts. For not being over-restrictive,
the concepts must be kept as lean as possible while containing the essential
requirements.

Another problem with minimalist function constraints is the sensitivity
to changes of the called function. Adding, for instance, the statement
value= identity(op, base); to multiply and square would demand the requirement

std::Assignable<Element, algebra::Monoid<Op, Element>::identity result type>

added to constraint list of multiply and square’s, and to the lists of the two power

functions above. Especially, if a function is called by many others directly or
indirectly, adding a requirement adds this requirement to all functions that call
it directly or indirectly unless the calling function has the requirement already in
the where clause. The impact is even much stronger than changing the interface
because then only direct callers are concerned. To avoid this avalanche-like prop-
agation of additional requirements, both function can be kept: (i) the original
with less requirements and (ii) the more restrictive and more efficient version—
we assume that the latter is more efficient in some sense otherwise one would
not add a more restrictive function.

Using very fine-grained concepts like the ones above can be a source of
highly increasing software development time. Many concepts introduce asso-
ciated types that are only used as result type of a function and defined by

36

automatic type detection. Often cases, their names do not need to be known in
function constraints. In Section 4.1, the associated types of algebraic concepts
were not exposed in the where clauses. This is different with the constraints in
this section, the name of op’s and identity’s result types needs to be known to
the author of the power functions. One might be lucky and find these names in
the error messages of the compiler instead of reading all details of the documen-
tation or the source code of the concept. However, this technique only works
when functions fail to instantiate and it is by far more difficult to debug code
that compiles but dispatches to non-optimal functions.

The reasonings above showed that the right granularity of concept design is
uttermost importance. Too coarse-grained concepts eliminate too many types
and undermine the whole idea of generic programming. On the other hand,
expressing the constraints of complex functions with a long list of simple re-
quirements will make the development of generic software too expensive. En-
abling at the same time maximal applicability and efficient development can
be realized with three methods. First, broadly used essential functions, like
STL function, shall be implemented with maximal applicability regardless how
many requirements need to be specified. More complex functionality shall in-
volve more elaborated concepts; defining the requirements of a finite element
assembly or a non-linear solver with dozens or hundreds involved std::Assignable
and std::Convertible requirements would be fatally distractive. Second, concepts
can be used more appropriately if they are defined hierarchically like the alge-
braic concepts in algebra and math.

Third, developing concepts according to functions and data types that are
most likely used with this concepts so that more requirements can be included
in the concepts without impact to the main applications. For instance, the
difference between the easy-to-read constraints in Section 4.1 using more refined
concepts and the long requirement lists in this section using less restrictive
concepts is that the assignability of identity’s result type was requested in the
first case. However, this did not exclude any POD or user-defined type from
the set of models. Even, if the first version is admittedly more restrictive, the
restriction had no practical impact so far.

4.3 Generic Reduction Implementation

Another important generic function is the reduction of a set of n values to
a single value using a binary operation. In the STL this function is called
accumulate using a loop over each value. The function can be implemented with
concepts in the following way:

template <typename Iter, typename Value, typename Op>
where std::ForwardIterator<Iter>

&& std::Convertible<Value, std::ForwardIterator<Iter>::value type>
&& math::Magma<Op, std::ForwardIterator<Iter>::value type>

typename std::ForwardIterator<Iter>::value type
inline accumulate(Iter first, Iter last, Value init, Op op)
{

for (; first != last; ++first)

37

init= op(init, ∗first);
return init;

}

We will later refer to this implementation as sequential reduction.

4.3.1 Arithmetically Correct Loop Unrolling with Con-
cept Verification

In scientific computing loops are usually unrolled in order to accelerate the exe-
cution on super-scalar processors. Unfortunately, unrolling is often not sufficient
if all statements access the same variable for accumulation. To provide indepen-
dent operations it is necessary to introduce multiple temporaries. This in turn
changes the order of operations and the result is only correct if the operation is
associative and commutative (ignoring rounding errors in these examples). In
addition, the identity of the operation is needed when more than one temporary
is used. All these demands are specified by the concept CommutativeMonoid. In
comparison, the STL function without unrolling only has the requirements of
Magma. In addition, the requirement of ForwardIterator needs to be narrowed
to RandomAccessIterator.

template <typename Iter, typename Value, typename Op>
where std::RandomAccessIterator<Iter>

&& std::Convertible<Value, std::RandomAccessIterator<Iter>::value type>
&& math::CommutativeMonoid<Op,

std::RandomAccessIterator<Iter>::value type>
typename std::RandomAccessIterator<Iter>::value type
inline accumulate(Iter first, Iter last, Value init, Op op)
{

typedef std::RandomAccessIterator<Iter> trait;
typedef typename trait::value type value type;
typedef typename trait::difference type difference type;
value type t0= identity(op, init), t1= identity(op, init),

t2= identity(op, init), t3= init;
difference type size= last − first, bsize= size >> 2 << 2, i;

for (i= 0; i < bsize; i+= 4) {
t0= op(t0, first[i]);
t1= op(t1, first[i+1]);
t2= op(t2, first[i+2]);
t3= op(t3, first[i+3]);

}
for (; i < size; i++)

t0= op(t0, first[i]);
return op(op(t0, t1), op(t2, t3));

}

In the context of this work, the change of the iterator concept is less important,
also compilers without concepts will inform the programmer if the iterator has
no random access (not necessarily in a readable form). What is completely

38

http://www.sgi.com/Technology/STL/ForwardIterator.html
http://www.sgi.com/Technology/STL/RandomAccessIterator.html

unknown to the compiler is commutativity and associativity of the binary op-
eration. This can only be provided by a concept map, either from the user or
from a library, and only be verified by a concept-enabled compiler.

4.3.2 Handling Inaccurate Arithmetic

Floating point numbers are associative if one takes rounding errors into consid-
eration. In most applications, rounding errors are tolerated unless the compu-
tation is numerically sensitive, like Gram-Schmidt orthogonalization. For this
reason, we normally treat floating point numbers as associative data, both to-
ward addition and multiplication. Handling float and double as non-associative
disables the unrolling of reduction operations. However, that does not improve
the computation at all.

The unrolled reduction is Not Wronger than the sequential reduction, it is
only Differently Wrong. The inaccuracy originates from cancellations of low-
significant bits and the problem already occurs in the sequential reduction.
The unrolling of the reduction computation does not introduce a new source of
error, it only shifts it slightly. As a matter of fact, the non-associativity itself is
a consequence of the inaccuracy.

As mentioned above, it does not help to disable the unrolling in order to
handle rounding errors. We rather need to disable both generic versions and
need to call a numerically stabler reduction. Which algorithm is best in which
context is beyond the scope of this document, we merely provide the framework
to detect when the generic reduction can be used. Nevertheless, we like to men-
tion that the selection between different stable algorithms can also be realized
with the aid of concepts.

As a tool, we introduce at this point the concept RegularReduction and pro-
vide conditions for this regularity. The template function accumulate now dis-
patches between three different versions, which call different implementations.

concept RegularReduction<typename Operation, typename Element> {}

template <typename Iter, typename Value, typename Op>
where std::ForwardIterator<Iter>

&& std::Convertible<Value, std::ForwardIterator<Iter>::value type>
&& math::Magma<Op, std::ForwardIterator<Iter>::value type>
&& RegularReduction<Op, std::ForwardIterator<Iter>::value type>

typename std::ForwardIterator<Iter>::value type
inline my accumulate(Iter first, Iter last, Value init, Op op)
{

return mtl::accumulate simple(first, last, init, op);
}

template <typename Iter, typename Value, typename Op>
where std::RandomAccessIterator<Iter>

&& std::Convertible<Value, std::RandomAccessIterator<Iter>::value type>
&& math::CommutativeMonoid<Op,

std::RandomAccessIterator<Iter>::value type>

39

&& RegularReduction<Op, std::RandomAccessIterator<Iter>::value type>
typename std::RandomAccessIterator<Iter>::value type
inline my accumulate(Iter first, Iter last, Value init, Op op)
{

return mtl::accumulate unrolled(first, last, init, op);
}

template <typename Iter, typename Value, typename Op>
where std::ForwardIterator<Iter>

&& std::Convertible<Value, std::ForwardIterator<Iter>::value type>
&& math::Magma<Op, std::ForwardIterator<Iter>::value type>

typename std::ForwardIterator<Iter>::value type
inline my accumulate(Iter first, Iter last, Value init, Op op)
{

return mtl::accumulate staple(first, last, init, op);
}

The question at hand is: What are sufficient conditions that the generic re-
duction can be used regularly? Firstly, data types that are not subject to
rounding errors, like int, can always use the generic version. The notion of pre-
cise arithmetic for every operation is worthwhile to be formalized in a concept.
All integral types model this concept. It is also clear that this is a sufficient
condition to apply the generic reduction on every binary operation.

concept AccurateArithmetic<typename T> {}

template <typename T>
where std::Integral<T>

concept map AccurateArithmetic<T> {}

The generic reduction is also applicable if rounding errors for a certain type are
tolerated, which is specified by the following concept

concept TolerateRoundingErrors<typename T> {}

It is the common practice to accept rounding errors for all standard floating
point types so that this should be the default behavior. On the other hand, we
need the opportunity to disable this default. A possible implementation is the
following,

ifndef CONSIDER FLOAT ROUNDING ERRORS
template <typename T>

where math::Float<T>
concept map TolerateRoundingErrors<T> {}

endif

where for all Float types rounding errors are supposed to be tolerated unless
the macro CONSIDER FLOAT ROUNDING ERRORS is defined in the source code
or command line. This approach allows a finer grained type treatment. It is
possible to disable the tolerance in general but enable it for some type, e.g.,
types with higher precision like quad-double qdouble.

40

concept map TolerateRoundingErrors<qdouble> {}

Even for types where rounding errors are an issue, some operations can be non-
critical, like minimum and maximum. The reason why these operations are no
subject to rounding errors is that no arithmetic operations are executed but
only selective operation. We characterize this type of operations in the concept
SelectiveOperation.

concept SelectiveOperation<typename Operation, typename Element> {}

template <typename Element>
concept map SelectiveOperation<math::min<Element>, Element> {}

template <typename Element>
concept map SelectiveOperation<math::max<Element>, Element> {}

We declare the functor types math::min and math::max as models of this concept
for all types. The practice will show whether it is necessary to declare the
model only for known types or if it is safe to declare it for all types with these
operations. Note that math::min and math::max are defined as functors, opposed
to std::min and std::max, which are functions.

Modeling one of the concepts above is a sufficient condition that the generic
reduction can be used. Since it is not clear at this moment whether logical
disjunction will be supported, we implement the model declaration with three
concept maps.

template <typename Operation, typename Element>
where AccurateArithmetic<Element>

concept map RegularReduction<Operation, Element> {}

template <typename Operation, typename Element>
where TolerateRoundingErrors<Element>

&& !AccurateArithmetic<Element>
concept map RegularReduction<Operation, Element> {}

template <typename Operation, typename Element>
where SelectiveOperation<Operation, Element>

&& !AccurateArithmetic<Element>
&& !TolerateRoundingErrors<Element>

concept map RegularReduction<Operation, Element> {}

For internal implementation reasons of concept-enabled compilers, the con-
straints in the concept map must exclude each other. Therefor, we add extra
negative constraints to the model declarations. It is possible that more concepts
can help to characterize the regularity of reduction.

Although we investigated the treatment of rounding errors in the context of
a reduction operation, we expect that similar approaches can be taken in other
contexts and that this discussion and the introduced concepts can contribute to
address rounding errors in whole area of scientific computing as part of scientific
libraries (instead of being optimization details of compilers).

41

Chapter 5

Value-Based Model
Declarations

This chapter discusses concept modeling that depends on values. An important
example of value-based model distinction are cyclic groups that are fields if the
cycle length is prime and rings otherwise. In order to declare whether a cyclic
group is a field or a ring for a given cycle length, the concept checking has to
determine whether this length is prime.

Another aspect that makes cyclic sets so interesting is that all hardware-
supported arithmetic types have flaws in modeling algebraic concepts properly
The reason is that infinite mathematical structures are approximated with finite
data types. On the other hand, finite algebraic structures can be perfectly
modeled.

5.1 Modular Arithmetic

Cyclic groups can be implemented with modular arithmetic on integral data
types. Using machine arithmetic for modular arithmetic, the size of the set
and all intermediate results must not be larger than the maximum value of the
underlying data type. In fact, this means that the cycle size must be equal
to or smaller than the square root of the largest representable value of the
underlying arithmetic type. Furthermore, the division has to implemented with
an extended Euclidean algorithm instead of the native division. A cyclic group
with the underlying arithmetic type and the modulus as template parameter is
sketched here

template<typename T, T N>
class mod n t
{

T value;
public:

static T const modulo= N;

42

typedef mod n t self;

explicit mod n t(T const& v) : value(v % modulo) {}

self operator+ (self const& x, self const& y);
self operator− (self const& x, self const& y);
self operator∗ (self const& x, self const& y);
self operator/ (self const& x, self const& y);
/∗ ... ∗/

};

The name ‘cyclic group’ is somehow confusing since the cyclic sets are only
groups with respect to addition but not with regard to multiplication.

5.2 Algebraic Structure of Cyclic Groups

The type models the concept CommutativeRingWithIdentity for all possible in-
stantiation of T and N.

template <typename T, T N>
concept map CommutativeRingWithIdentity< mod n t<T, N> > {}

The really interesting fact is that in case N is a prime number the corresponding
type also models Field, which in turn can be tested with the concept Prime.

template <typename T, T N>
where meta math::Prime<N>

concept map Field< mod n t<T, N> > {}

The concept Prime relies on a meta-function that calculates at compile-time
whether a number is prime.

concept Prime<long int N> {}

template <long int N>
where std::True<is prime<N>::value>

concept map Prime<N> {}

More precisely the meta-function is used to express a conditional model decla-
rations. To not digress too far, we refrain from giving the source code of is prime

and only mention that it tests whether N is divisible by 2 or any odd number
smaller than the square root of N. For small N the compile time is not affected,
for values around 1,000,000 the compiler needed about 18 seconds on a PowerPC
G4 1.3GHz, and about one minute to test prime number around 10,000,000. In
the latter case, intermediate types reached slightly more than 1,500 levels of
template nesting.

5.3 Concept-Based Invertibility Test

The multiplicative structure of cyclic sets is never a group because at least
the 0-element — or more precisely the equivalence class with additive identity

43

element — is never invertible. The multiplicative structure of a cyclic set always
models MultiplicativePartiallyInvertibleMonoid regardless the cycle length.

The computation of the invertibility can be optimized regarding the cycle
length. In the general case, the invertibility of a certain element has to be
computed with Euclidean’s algorithm to check whether the element in question
is co-prime with the cycle length.

template<typename T, T N>
struct is invertible t< mult< mod n t<T, N> >, mod n t<T, N> >
{

typedef mod n t<T, N> mod t;
bool operator() (mult<mod t> const&, mod t const& v) const
{

return v.get() != 0 && mtl::gcd(N, v.get()) == 1;
}

};

This computation is relatively expensive. For cyclic groups where the cycle
length is prime — i.e. N models Prime — the invertibility test can be imple-
mented more efficiently. In this case, every element is invertible if it is different
from 0.

template<typename T, T N>
where meta math::Prime<N>

struct is invertible t< mult< mod n t<T, N> >, mod n t<T, N> >
{

typedef mod n t<T, N> mod t;
bool operator() (mult<mod t> const&, mod t const& v) const
{

return v.get() != 0;
}

};

This is only one example where concept modeling can be used to accelerate
computation.

44

Chapter 6

Theory of Conceptual
Restriction

In this chapter we discuss the questions:

• While using the requirements of concept A in concept B, when is a refine-
ment preferable to a where clause?

• What types of requirements can be expressed by refinements?

• Which requirements should not be specified by refinements, even if this is
technically feasible?

• When should a concept definition be auto?

• Which models are implicitly declared for different styles of concept defi-
nitions?

Some of these questions cannot be answered in a formal way. Instead, they
are design decisions and we will provide guidelines for them. Before we discuss
the answers to the questions raised above, we introduce definitions needed to
express the theory of conceptual restriction.

6.1 Definitions

Concept refinements and where clauses are equal in the sense that refining con-
cept B from concept A or requesting concept A in a where clause of concept B

both signify that a type or a tuple of types must model A in order to model B.
This commonality is represented in the following:

Definition 2 For a concept B requesting concept A in a where clause we say B

requests A and depict it by B a A. The refinement of concept A is symbolized by
B : A as in programs. Concept B restricts concept A if it refines A or requests
A. Restriction is represented by B ≺ A

45

B ≺ A
def= B a A ∨ B : A (6.1)

To simplify notation we often write a tuple of types (t1, t2, . . . , tn) as one sym-
bol t = (t1, t2, . . . , tn). The set of all definable types in C++ is denotes as T.
Equivalently, the set of all tuples of types with arity n is given by the nth direct
product of T

Tn = T× · · · ×T︸ ︷︷ ︸
n times

= {(t1, . . . , tn) : t1 ∈ T ∧ · · · ∧ tn ∈ T} (6.2)

Definition 3 The set of tuples that model concept C is for brevity called model
set of concept C and is denoted by TC. The arity of the concept nC is the
defined as the arity of these tuples, which is identical with the concept’s number
of template parameters.

The tuples modeling a certain concept are a subset of all tuples with the con-
cepts’ arity

TC ⊆ TnC .

Note that this is not a strict subset relationship. However, concepts with the
equality TC = TnC have no practical value and can be omitted.

Definition 4 A type or a tuple of types t modeling a concept C is notated by
t |= C. Furthermore, model declaration explicitly written by the programmer are
symbolized t |=p C and implicit declarations inserted by the compiler t |=i C.

The fact that a certain type tuple models a concept can be written different
ways

t |= C ≡ t ∈ TC.

For brevity, we also introduce a notation for modeling multiple concepts

t |= C1, . . . ,Cn
def= t |= C1 ∧ · · · ∧ t |= Cn.

6.2 Model Set Inclusion of Concepts with Dif-
ferent Arities

The set of types that model a concept—short model set—is a set of type tuples
where the arity of the tuples is the number of type parameters in the concept
(the concept’s arity). If concept C is refined from concept A and the two concepts
have different arities then the two model sets consists of tuples of different arities.
Nevertheless, we will show in this section that the model set of C is included in
the model set of A by adapting the representation of A’s model set. This model
set inclusion is a crucial property of concepts and it is therefor important to
prove its validity for concept refinement with arity change.

Although the model set inclusion is not in general expected regarding a
concept B requested in a where clause of concept C, we can show that the model

46

set of C is included in the model set of B in an appropriate representation. At
first, we consider refinements of multi-type concepts on examples.

Refining a concept adds requirements and as a consequence the set of mod-
eling types is potentially reduced

C : A =⇒ TC ⊆ TA.

The model set of a refinement from multiple concepts is a subset of the inter-
section of the concepts refined from

C : A1, . . . ,An =⇒ TC ⊆
⋂

i∈[1,n]

TAi (6.3)

This formulae cannot be applied directly when the refined concepts have differ-
ent arity. However, we will show that a very similar formulae, (6.9), applies in
general.

6.2.1 Refining from Concepts with Lower Arity

First, we consider the case that the refined concept(s) has/have lower arity.
How does the type set inclusion work if the concepts have different arities? For
instance, the concept GenericRing in Section 9.2.1 is defined on three types and
refines two concepts on two types each.

concept GenericRing<typename AddOp, typename MultOp, typename Element>
: AbelianGroup<AddOp, Element>,

SemiGroup<MultOp, Element>
{ /∗ ... ∗/ };

To introduce the principle of model set extension, we start by considering the
example above. Let t = (t1, t2, t3) model GenericRing. This requires that (t1, t3)
models AbelianGroup and that (t2, t3) models SemiGroup. Be TA1 , TA2 , and TC

the model sets of AbelianGroup, SemiGroup, and GenericRing respectively, then
we define the extension of TA1 and TA2 with respect to TC as

T̂A1(C) def= {(t1, t2, t3) : (t1, t3) ∈ TA1 ∧ t2 ∈ T}

T̂A2(C) def= {(t1, t2, t3) : (t2, t3) ∈ TA2 ∧ t1 ∈ T}.

To determine which type parameters are added to the tuple, the type extension
must refer to a reference concept (here TC). However, if the reference is clear
from the context we will omit it. In other words, tuples with lower arities are
extended with free parameters. Thus, the extended model sets are tuples of the
same arity as concept C and the added parameters can be of any type. For this
extended type sets, the inclusion (6.3) of the intersection also holds

TC ⊆ T̂A1 ∩ T̂A2 . (6.4)

Please note that although in this example the arities of the refined concepts
are lower than the arity of the defined concept, all type parameters of the defined

47

concept are used at least once in the refined concepts. This is neither a necessary
requirement for mathematical correctness nor is it needed in order to fulfill the
inclusion requirement. The type set extension is also correct if not all template
parameters are referred to in the refined concepts. Nevertheless, for the sake of
maintainability it is advisable to not over-stress refinement from concepts with
lower arity; read also the discussion in Sections 6.3.2 and 6.3.3.

6.2.2 Refining from Concepts with Higher Arity

Conversely, the refinement from the functor-based to the operator-based single-
operation concepts reduces the concept arity. For instance, the refinement of
AdditiveMagma from Magma

concept AdditiveMagma<typename Element>
: Magma< math::add<Element>, Element >

{ /∗ ... ∗/ };

omits the first type parameter. This is only possible because the additional type
is completely dependent on the parameters of the refined concept.

The refinement from a concept with more free parameters violates the consis-
tent inclusion of model sets. All parameters must be either constant or uniquely
determined by the type parameters of the concept. Fortunately, the language
specification in C++ forces this by declaring the free type parameters as param-
eters of the concept. For instance, a syntax like

template <typename T, typename U>
concept C<T> : A<T, U> {}

would tolerate more free parameters in the refined concepts than in the refining
one.

Be TA and TC the model sets of Magma and AdditiveMagma respectively,
then TC is extended with regard to TA by adding the dependent type math::add.

T̂C(A) def= {(math :: add〈t〉, t) : t ∈ TC}

Now, the inclusion relation (6.3) is fulfilled

T̂C ⊆ TA.

Taking the type parameter dependency in the concept definition into ac-
count, the models of Magma that are relevant for the considered refinement

T′
A = {(t1, t2) : t1 = math :: add〈t2〉} ∩TA ⊆ TA.

Let T̂A be a set of single elements with

T̂A = {t : (math :: add〈t〉, t) ∈ TA}.

A bijective mapping between T′
A and T̂A can be easily defined

(math :: add〈t〉, t) ≡ t.

48

In other words, the relevant model set of Magma is equivalent to a the single-
type set T̂A. As T̂A has the same parameters as concept C it can be considered
as type parameter adaption towards C and we can write T̂A(C). Furthermore,
it is a superset of C’s model set

TC ⊆ T̂A(C) ≡ T′
A ⊆ TA.

Resuming, the dependency of the type parameter reduces the model set TA to
T′

A, which in turn is equivalent to a set of tuples with fewer parameters T̂A.
Finally, the model set TC is a subset of T̂A.

This relatively complicated construction allows us to express the inclusion
relationship on fewer parameters.

Another reason why the arity of the general concept can be higher is param-
eter replication, for instance

concept B<typename T, typename U> : A<U, T, U, T, U> {};

Note that the order of type parameters can be arbitrary; the only restriction is
that A cannot have more free parameters than B.

As in the previous example, we can extend the model set of B or adapting
the model set of A to this context. The latter option provides the advantage
that we can treat all examples, including the first one, equally.

T̂A(B) def= {(t1, t2) : (t2, t1, t2, t1, t2) ∈ TA}
TB ⊆ T̂A.

As one can see, the parameters in the tuple must be reordered appropriately.
The examples show that the arity adaption is possible in both ways: increas-

ing and decreasing the number of parameters. The last example also shows that
the order of parameters can change.

6.2.3 General Type Inclusion for Concept Refinement

In order to handle the general case of concept refinement, we introduce the no-
tion of type parameter mapping. The language specification requires that refined
concepts depend on at least one template parameter of the defined concept. The
simplest case is that the parameter or some of the parameters are used directly,
possibly permuted

C〈T1, . . . , Tn〉 : A〈Tk, Tj〉 with 1 ≤ k, j ≤ n.

Notice that A’s parameters depend on C’s template parameters. One can there-
fore introduce mapping functions ψi that map from C’s parameters to each of
A’s parameters. In the case at hand, the mappings to A’s first and second
parameters are defined as

ψA
1 : (T1, . . . , Tn) 7→ Tk

ψA
2 : (T1, . . . , Tn) 7→ Tj .

49

To shorten the notation, we also use a vectorized mapping

ψA : (T1, . . . , Tn) 7→ (Tk, Tj).

Part of the A’s parameters can be constants, but not all, e.g.:

C〈T1, . . . , Tn〉 : A〈Tk, bool〉
ψA : (T1, . . . , Tn) 7→ (Tk, bool).

Refined concepts can also be defined on classes completely or partly templated
on C’s parameters.

C〈T1, . . . , Tn〉 : A〈std::set<T3, less<T3>, my alloc>, std::vector<T2>〉
ψA : (T1, . . . , Tn) 7→ (std::set<T3, less<T3>, my alloc>, std::vector<T2>).

Nested classes are also feasible if they depend at least partly on the template
parameters of the defined concept, for instance:

C〈T1, . . . , Tn〉 : A〈std::vector<std::vector<T2> >〉
ψA : (T1, . . . , Tn) 7→ (std::vector<std::vector<T2> >).

Any combination of the parameters above is feasible. Nevertheless, associated
types are not allowed as parameters for refinements.

We summarize the parameter mapping with the following:

Property 1 All parameters of refined concepts depend on the template param-
eters of the defined concept or are constant. At least one parameter must be
non-constant.

Not all of C’s template parameter T = (T1, . . . , Tn) are used in each refinement.
This leads to

Definition 5 The template parameters referred to in refined concept A are de-
picted as T�A. These parameters have the same relative order as they have in
the parameter list of concept C. The remaining parameters are symbolized by
T�A—also preserving the order. The number of referred parameters is denoted
as µA, the number of template parameters not referred to in concept A is depicted
as ηA. Their sum is the concept arity nC = µA + ηA.

For instance, the following concept

concept C<typename T1, typename T2, typename T3, typename T4, typename T5>
: A1<T4, T1, vector<T3>, class alpha<T3, T1> > /∗ , ... ∗/

{}

has the template parameters T = (T1, T2, T3, T4, T5). Only three of them are
referred in A1: T�A1 = (T1, T3, T4) so that T�A1 = (T2, T5). Thus, µA1 = 3 and
ηA1 = 2. The parameter limitation can also be applied to constant types, for
instance

(bool, int, short, char, float)�A1 = (bool, short, char)

50

In the same way as the mapping from T to a A’s parameter list is specified,
we define the mapping from T�A to A’s parameter list. Since the template
parameters not in T�A are not used by ψA, we can define a mapping from T�A

to the image of ψA

ψA : T 7→ U ⇐⇒ ϕA : T�A 7→ U (6.5)

where U are the template parameters of A (as they are used in the refinement
clause). For instance,

ψA1(bool, int, short, char, float) = ϕA1(bool, short, char)

= (char, bool, vector<short>, class alpha<short, char>) (6.6)

The examination of necessary conditions to model refined concepts reveals the
usefulness of the parameter limitation and the corresponding parameter map-
ping. As an example, in order to model the refined concept A1 from the last
example, the tuple must provide a certain structure

(t1, t2, t3, t4) |= A1 =⇒ ∃t′ : t3 = vector<t′> ∧ t4 = class alpha<t′, t2>.

A new notation is introduced by

Definition 6 A tuple t that matches the parameter pattern of a concept A’s
refinement clause is denoted as t n ΠA. The set of all these pattern matching
tuples is depicted as T̃A

def= {t : tn ΠA}

For instance, (int, short, vector<float>, class alpha<float, short>) matches the pa-
rameter pattern of A1.

Applying the vectorized parameter mapping ϕA1 to an arbitrary triplet of
types yields a quadruple of types that always matches A1’s parameter pattern

∀t ∈ T3 : ϕA1(t) n ΠA1 .

More generally, for an arbitrary refinement Ai of concept C, a tuple of arity µAi

can be mapped to a tuple that matches the parameter pattern of Ai’s clause

C : Ai, . . . =⇒ ∀t ∈ TµAi : ϕAi(t) n ΠAi . (6.7)

In order to be relevant for modeling concept C, a tuple of types must at the
same time model the refined concept A and match the parameter pattern in
refinement clause ΠA. We define the set of these types

T′
Ai

def= T̃Ai ∩TAi ⊆ TAi .

We also define the set of tuples of arity µAi that can be projected to a model of
Ai

T′′
Ai

def= {t ∈ TµAi : ϕAi(t) |= Ai}.

51

Despite the potentially different arities of their elements, each element in T′′
Ai

can be associated with exactly one element in T′
Ai

T′
Ai
≡ T′′

Ai
.

Furthermore, when a tuple tmodels concept C, then its limitation to the referred
parameters t�Ai can be mapped to a tuple that:

• Matches the clause pattern due to the mapping’s definition and

• Models the refined concept due to refinement properties.

That is
t |= C =⇒ ϕAi(t�Ai

) n ΠAi
∧ ϕAi(t�Ai

) |= Ai.

As only the referred parameters are interesting for modeling Ai we introduce
another set that separates the parameters referred and unreferred in Ai. This
set T̈C(Ai) is a superset of TC

T̈C(Ai)
def= {t ∈ TnC : ϕAi(t�Ai

) |= Ai ∧ t�Ai
∈ TηAi} ⊇ TC

This set can be represented as the following direct product:

T̈C(Ai) = T′′
Ai
×TηAi .

Together with the inclusions and equivalences above, this yields

TC ⊆ T̈C(Ai) = T′′
Ai
×TηAi ≡ T′

Ai
×TηAi ⊆ TAi ×TηAi . (6.8)

The last term we call
T̂Ai

def= TAi ×TηAi .

Since this inclusion holds for every refinement, the general form of Equation (6.3)
extends to

C : A1, . . . ,An =⇒ TC ⊆
⋂

i∈[1,n]

T̂Ai . (6.9)

6.2.4 General Type Inclusion in Concept Restriction

The inclusion of model sets applies in the same way to where clauses as it does
to refinements. The difference is that requests can be defined on associated
types so that more parameter mappings need to be taken into consideration.
An associated type of the defined concept

concept C<typename T1, ..., typename TN>
{

typename assoc type;
}

52

is considered dependent on all template parameters because it may be different
for each combination of types

ψa : (T1, . . . , Tn) 7→ C<T1, ..., TN>::assoc type,

using a as abbreviation for assoc type. The same argument applies to associated
types that are automatically detected from result types of functions since the
arguments of these functions depend directly or indirectly on the concept pa-
rameters or type constants. Associated types of other concepts or classes are
mapped similarly as templated classes, for instance

C〈T1, . . . , Tn〉 a B〈std::set<T3>::reference, std::vector<T2>::pointer〉
ψB : (T1, . . . , Tn) 7→ (std::set<T3>::reference, std::vector<T2>::pointer).

By back-substituting all associated types of the defined concepts, every request
is expressed depending on the concept parameter or type constants. For in-
stance,

concept C<typename T1, typename T2, typename T3>
{

typename assoc type;
typename type2 = D1<T3>::result type;
typename type3 = D2<vector<type2>::pointer, T2>::reference;

where B<type3, D3<T3>::pointer>;
}

can be transformed into

concept C<typename T1, typename T2, typename T3>
{

typename assoc type;
typename type2 = D1<T3>::result type;
typename type3 = D2<vector<type2>::pointer, T2>::reference;

where B<D2<vector<D1<T3>::result type>::pointer, T2>::reference,
D3<T3>::pointer>;

}

where all type parameters of B depend on the concept parameters.
With these additional mappings, the intermediate sets from Section 6.2.3

can be used in the same manner for requests. In addition, T̂Bj is defined cor-
respondingly to T̂Ai

. Therefore, the model set of concept C is a subset of the
adapted model sets of all requested concepts

C a B1, . . . ,Bm =⇒ TC ⊆
⋂

j∈[1,m]

T̂Bj . (6.10)

Furthermore, each type tuple that models concept C must model all refined
and all requested concepts. Thus, Equations (6.9) and (6.10) can be combined

53

to equation

C : A1, . . . ,An a B1, . . . ,Bm =⇒ TC ⊆
⋂

i∈[1,n]

T̂Ai ∩
⋂

j∈[1,m]

T̂Bj (6.11)

6.3 Implicit Model Declarations

This section discusses which model declarations are implicitly inserted by the
compiler for different definitions of a concept. Conversely, one can start design-
ing concepts by initially deciding which model declarations imply each other
and then define the concepts accordingly.

6.3.1 Model Implication Rules

Nominally confirmed refinements only imply that a type modeling the defined
concept implicitly models all refined concepts. The reverse is not true.

C : A1, . . . ,An a B1, . . . ,Bm

t |= C =⇒ t |=i An ∧ · · · ∧ t |=i A1
(6.12)

Automatic refinement implies model declaration in two directions. The model
declaration of the concepts refined from is again implied. In addition, types that
model all requested and all refined concepts automatically model the defined
concept.

auto C : A1, . . . ,An a B1, . . . ,Bm

t |= C =⇒ t |=i A1 ∧ · · · ∧ t |=i An

t |= A1 ∧ · · · ∧ t |= An ∧ t |= B1 ∧ · · · ∧ t |= Bm =⇒ t |=i C

(6.13)

Equations (6.12) and (6.13) can also be expressed for multi-type concepts. If
the arities are different the adaption from Section 6.2 must be applied. For the
sake of syntactic clarity, we refrain from it here. However, the example in the
following section illustrates multi-type model implication.

Concept maps are similar to auto concepts concerning the implication from
the requested concepts towards the defined concept. The difference is that the
opposite implication is not given in general

T |=p C a B1〈T 〉, . . . ,Bm〈T 〉
t |= B1 ∧ · · · ∧ t |= Bm =⇒ t |=i C

(6.14)

Or in terms of model sets ⋂
j∈[1,m]

TBj ⊆ TC (6.15)

Note that in contrast to Section 6.2 the intersection of TBj is included in TC,
not vice versa.

Multiple concept maps are treated as disjunction of the model declarations

T |=p C a B1〈T 〉 ∧ · · · ∧ T |=p C a Bm〈T 〉
t |= B1 ∨ · · · ∨ t |= Bm =⇒ t |=i C

(6.16)

54

Expressed as model sets it reads ⋃
j∈[1,m]

TBj ⊆ TC (6.17)

Multiple maps of one concept is the only situation where unions of sets are
involved.

6.3.2 Case Study: Vector Space

Vector spaces are mathematical structures of the following two element types:

• The vector type, which must model an AdditiveAbelianGroup and

• The scalar type, which must model a Field.

In most cases, the scalar type is the value type of the vector type. Thus, at
least three operations are defined over the element types individually: vector
addition and scalar addition and multiplication. In addition, the two types must
be distributive with regard to scalar-vector multiplication and both additions.
To simplify notation, we consider the case that all operations are denoted as
operators and we only sketch the syntactic requirements.

concept VectorSpace<typename Vector,
typename Scalar = typename Vector::value type>

: AdditiveAbelianGroup<Vector>,
Field<Scalar>

{
// Require operators of mixed multiplication and respective assignabilities
axiom Distributivity(Vector v, Vector w, Scalar a, Scalar b)
{

a ∗ (v + w) == a ∗ v + a ∗ w;
(a + b) ∗ v == a ∗ v + b ∗ v;

}
}

As VectorSpace is not an auto-concept, all models must be declared explicitly.
(We assume in this section that VectorSpace is not refined by other concepts.)
Declaring a type v (or the pair (v, s)) to be a model of VectorSpace implies the
model declaration of v as AdditiveAbelianGroup and v::value type (or s) will be
implicitly declared to model Field

(v, s) |=p VectorSpace =⇒ v |=i AdditiveAbelianGroup ∧ s |=i Field.

If all model declarations of VectorSpace are correct then the the implied declara-
tions for AdditiveAbelianGroup and Field are also correct. Incorrect declarations
of VectorSpace can imply incorrect declarations of AdditiveAbelianGroup and
Field. If for instance somebody accidently declares a vector of integer as Vec-
torSpace then integer will be incorrectly declared as Field. The wrong declaration
affects the whole program!

55

In turn, erroneous implicit model declarations can only be corrected by re-
moving the causing model declaration from the program. Currently, no tool
exist to trace the inference of models. Thus, in order to avoid an accidental dec-
laration of type t modeling concept C, the programmer must inspect the whole
source code to find all concepts directly or indirectly refining C and examining
those concepts’ model declarations.

The wrong model implication of Field can be avoided by changing this re-
quirement from a refinement into a where clause:

concept VectorSpace<typename Vector,
typename Scalar = typename Vector::value type>

: AdditiveAbelianGroup<Vector>
{

where Field<Scalar>;

// Require operators of mixed multiplication and respective assignabilities
axiom Distributivity(Vector v, Vector w, Scalar a, Scalar b) { /∗ ... ∗/ }

}

Declaring an integer vector to model VectorSpace will now cause the compiler to
verify whether integer models Field. The programmer must now explicitly declare
that integer models Field (assuming that this not already done by another wrong
declaration).

The incorrect VectorSpace model still can be forced by incorrectly declaring
integer modeling Field. However, it is more likely that the programmer—before
writing the wrong declaration—verifies the requirements of Field. Then he or
she will realize that—despite the existence of integer division—the notion of
reciprocal elements is not fulfilled.

In other words, changing a refinement into a request does not avoid wrong
model declarations. Nevertheless, it introduces a higher level of security by
forcing the programmer to declare the wrong model directly instead of indirectly.

Another criterion for the concept design is the role a type plays in a concept.
The VectorSpace concept is primarily a description of the Vector type and the
Scalar type plays a more secondary role. From this prospective, most people
might not be aware that statement on the VectorSpace impacts the behavior of
the Scalar type in other contexts.

The refinement from AdditiveAbelianGroup is less critical because the demand
for additivity of the Vector type with all its properties is more obvious for Vec-
torSpaces. Nevertheless, this is a design decision and other programmers might
prefer to request AdditiveAbelianGroup in a where clause instead of a refinement.

Rule 1 Restriction with more where clauses and less refinements reduces the
risk of accidental model declarations but comes at the price of demanding more
model declarations from the programmer. Conversely, replacing requests by re-
finements does not falsify the concepts but complicates the detection of wrong
model declarations.

What are sufficient conditions that a pair of types models VectorSpace? Ob-
viously, the two types must model AdditiveAbelianGroup and Field. In addition,

56

the distributivity—defined in the concept body—must be also fulfilled. These
three conditions are sufficient for modeling VectorSpace. In order to declare dis-
tributivity independent on VectorSpace, it must be defined in a separate concept
Distributive: VectorSpace is auto-matically modeled.

concept Distributive<typename Vector,
typename Scalar = typename Vector::value type>

{
// Require operators of mixed multiplication and respective assignabilities
axiom Distributivity(Vector v, Vector w, Scalar a, Scalar b) { /∗ ... ∗/ }

}

auto concept VectorSpace<typename Vector,
typename Scalar = typename Vector::value type>

: AdditiveAbelianGroup<Vector>,
Distributive<Vector, Scalar>

{
where Field<Scalar>;

}

Given that for a pair of types all three prerequisite concepts are modeled, Con-
versely, declaring a VectorSpace model implies modeling AdditiveAbelianGroup
and Distributive for the corresponding types. With the abbreviation VS, A, D,
and F for VectorSpace, AdditiveAbelianGroup, Distributive, and Field respectively,
we can represent the model set implication as

auto VS〈v, s〉 : A〈v〉,D〈v, s〉 a F〈s〉
(v, s) |=p VS =⇒ v |=i A ∧ (v, s) |=i D

v |=p A ∧ (v, s) |=p D ∧ s |=p F =⇒ (v, s) |=i VS

6.3.3 Design of Restricting Concepts based on Model Im-
plication

In this section, we investigate how concepts can be designed on the base of
given model set implications. We use in all following examples the notation
that concept Z restricts concepts X and Y. Concept Z will be referred to as
‘defined concept’ or the ‘special concept’ and concepts X and Y as ‘restricting
concepts’ or ‘general concepts’.

As first example, we search a concept definition so that for all types modeling
both concepts X and Y, the modeling of Z is implied

t |= X,Y =⇒ t |= Z.

This implication can be realized with an auto concept requesting concepts X

and Y.

auto concept Z<typename T>
{

where X<T>;
where Y<T>;

};

57

The opposite case that modeling Z implies modeling both X and Y

t |= X,Y ⇐= t |= Z

can be implemented by refinement without request.

concept Z<typename T>
: X<T>, Y<T>

{};

Note that the concept must not be auto. Defining the concept auto (without
where clause)

auto concept Z<typename T>
: X<T>, Y<T>

{};

establishes an equivalence between Z and the conjugation of concepts X and Y

t |= X,Y ⇐⇒ t |= Z

In other words, their model sets are equal

TX ∩TY = TZ.

An auto refinement without where clauses from a single concept introduces an
equivalence of the concepts. For instance, the synonym SkewField for Division-
Ring can be established with:

auto concept SkewField<typename T> : DivisionRing<typename T> {}

Auto-refining DivisionRing from SkewField would have the same effect.
It is also possible to define the concept in a manner that modeling Z implies

only modeling X but not Y (or vice versa).

t |= X ⇐= t |= Z

by refining from X and requesting Y

concept Z<typename T>
: X<T>

{
where Y<T>;

};

The opposite case that modeling only X but not Y implies modeling Z is not
possible to declare. This case makes no sense mathematically: either modeling X

and Y is a sufficient condition for modeling Z or it is not because more conditions
must be fulfilled. Thus, there is no possibility that only modeling X implies
modeling Z.

Of course it is also possible to establish unrelated model sets in both direc-
tions using requests without auto.

58

concept Z<typename T>
{

where X<T>;
where Y<T>;
/∗ ... ∗/

};

The added comment stands for additional conditions since—as stated in the
last paragraph—the fact that modeling X and Y does not imply modeling Z

means that more conditions exist. Then these conditions should be stated in
the concept as where clause or axiom. This leads to

Rule 2 Non-auto concepts without axioms are incomplete.

If the concept has semantic requirements, they must be stated in an axiom.
Without semantic requirements, models can be automatically deduced from
modeling all restricting concepts and fulfilling the syntactic requirements. The
converse results in

Rule 3 Auto concepts with axioms are wrong.

Semantic requirements cannot be verified by the compiler; thus, their existence
prohibits model set implication from the restricted concepts.

Is it possible that the disjunction of modeling two restrictions implies mod-
eling the defined concept

t |= X ∨ t |= Y =⇒ t |= Z?

Expressed in terms of model sets, the union of X’s and Y’s model sets is included
in Z’s model set

TX ∪TY ⊆ TZ.

The restriction requires the inclusion of Z’s model set in the union of X’s and
Y’s model sets, see Section 6.2

TZ ⊆ TX ∩TY.

It follows that the concepts X and Y have the same model sets

TX ∪TY ⊆ TZ ⊆ TX ∩TY =⇒ TX = TY = TZ. (6.18)

This means that the concepts X and Y are equivalent; they might be formulated
with different refinements and different requests but they are perfectly inter-
changeable with each other. Furthermore, concept Z is also equivalent. For
the sake of clarity, it is advisable to verify at this point whether really three
names for the same concept are needed. To answer the introducing question:
the disjunction is possible but the equivalence (6.18) deprives its usefulness.
Thus, the fact that the disjunction is not expressible with the current language
specification does not constitute a restriction.

The implementations of the expressible implications are summarized in

59

Table 6.1: Design guide for concept restriction

Model implication Implementation
t |= X,Y → t |= Z auto Z a X,Y
t |= X,Y ← t |= Z Z : X,Y
t |= X← t |= Z Z : X a Y
t |= X,Y ↔ t |= Z auto Z : X,Y

6.3.4 Model Implication of Non-Restricting Concepts

In contrast to the last section, we assume that concept Z does not restrict
concepts X and Y. This lack of restriction turns the model implications into
sufficient conditions, which can be realized by means of

Rule 4 Concept maps implement sufficient conditions.

Automatic concepts also realize sufficient conditions. The differences are
that

• Automatic concepts also require the types to model the restricted concepts
and

• Concept maps enables disjunction.

Thus, automatic concept definitions state sufficient and necessary conditions.
Firstly, we consider the objective that for every type holds that modeling

both X and Y implies modeling Z

t |= X,Y =⇒ t |= Z.

This situation is given by concept maps in Equation (6.14). Thus, the implica-
tion above can be implemented with

template <typename T>
where X<T> && Y<T>

concept map Z<T> {}

The opposite case that modeling Z implies modeling both X and Y

t |= Z =⇒ t |= X,Y

is realized by two model declarations

template <typename T>
where Z<T>

concept map X<T> {}

template <typename T>
where Z<T>

concept map Y<T> {}

60

Using logical ‘or’ in the where clause is not recommended since it is currently
not clear whether this will be supported by compilers. Likewise, the behavior
that modeling X or Y implies modeling Z

t |= X ∨ t |= Y =⇒ t |= Z.

is implemented with two model declarations

template <typename T>
where X<T>

concept map Z<T> {}

template <typename T>
where Y<T>

concept map Z<T> {}

The opposite case—that modeling Z implies modeling either X or Y—is math-
ematically valid but not specific enough be useful in programming, at least
imperative programming. 1

Summarizing the previous model implications of non-restricting concepts
leads to

Table 6.2: Design guide for non-restricting concepts

Model implication Implementation
t |= X,Y → t |= Z T |=p Z a X〈T 〉,Y〈T 〉
t |= Z→ t |= X,Y T |=p X a Z〈T 〉 ∧ T |=p Y a Z〈T 〉
t |= X,Y → t |= Z T |=p Z a X〈T 〉 ∧ T |=p Z a X〈T 〉

6.4 Comparison between Refinement and Re-
quests

Resuming the results from this chapter, the differences between refinements and
requests are the following:

• Refinements imply model declarations from the defined concept to all con-
cepts refined from and requests have no impact on the restricted concepts.

• Requests can be defined on associated types of:

– The defined concept,

– Other concepts, and

– Classes.

Refinements cannot refer to associated types.
1Question: What happens with cyclic model declarations?

61

Thus, all requirements on associated types must be defined as request. On the
other hand, declaring concept refinements on associated types would introduce
many hard to maintain side effects in terms of implied model declaration.

Implicit model declaration is a very important design criterion since:

• Too many refinements result in strong interference between concepts and it
is more difficult to locate where a model declaration in question is implied
from.

• Too few refinements demand the programmer to declare too many decla-
ration by hand

There is no absolute rule when a certain restriction should be a refinement
or a request. However, we can adapt a rule of thumb from object oriented
programming to choose between membership and inheritance. If one can say
for two classes A and B: “A is-a B” then B should be a base class of A. If one
said rather: “A has-a B” then B should be a member of A. Nevertheless, this
rule is not sharp and leaves space for subjective interpretation.

Correspondingly, we can suggest the following guideline for concepts:

Rule 5 Let C and A be two concepts where the set of C’s requirements is a
super-set of A’s requirements. In case one would say “C is-a A” then C should
be a refinement of A. In case that is more appropriate to say “C need-a A”, then
A should be a where clause of C.

For the sake of conciseness, we repeat this in

Table 6.3: Choice between refinement and request

Description Implementation
C is-a A C : A
C need-a A C a A

62

Chapter 7

Conclusions

The algebraic concepts presented in this document specify, as all concepts
do, syntactic and semantic requirements on types. Syntactic demands serve
amongst others to type check template function calls before instantiation and
provide the programmer in case of an erroneous call with a message that is
clearly more concise and often also more meaningful than current error mes-
sages.

Despite the distinct importance of explicating error messages for the program
development, we consider the ability to characterize semantic requirements—
which is novel to C++—by far more important. Semantic errors were completely
invisible to compilers before the introduction of concepts and resulted in un-
obstructed compilations generating incorrect executables. On-going research
addresses the question how to efficiently declare and verify semantic properties
that only hold on single values of a type.

A remarkable advantage of concepts is that programmers are now able to
oppose the semantic properties required by a generic function to the semantic
properties hold by a type. In non-generic programs, the comparison between de-
manded and fulfilled properties is mentally executed by the programmer before
or while writing a function for a certain type. The lack of exposing semantic
properties in programs makes it difficult or impossible for others to understand
and verify the correctness of the containing computations, unless massive doc-
umentation on the whole mathematical background exists. Is this the reason
why non-trivial numeric software is scarcely extended by somebody else than
the authors?

The importance of exposing mathematical properties within program sources
and then verifying them in the compilation cannot be overstated. We call this
new paradigm of embedding semantic behavior

Property-Aware Programming

The design of concepts is discussed in this paper based on our experience.
The question whether refinement or requesting is preferable in a certain concept
is (similarly to the question in OO whether inheritance or membership is better

63

suited for a certain class) not answerable with mathematical stringency but one
can provide good guidelines. If one would say “concept X ‘is-a’ Y” then X should
be a refinement of Y and if one would say “concept X ‘needs-a’ Y” then X should
request Y.

An important behavior of concepts is that refinement adds requirements and
removes types from the model set. This behavior is less obvious for refinement
of multi-type concepts, especially if the refined concepts have different arities.
It could be shown that the inclusion of model sets holds for refinement from
concepts with fewer parameters as well as from concepts with more parame-
ters. The same inclusive behavior holds for concepts requested in where clause.
Furthermore, we give the complete set of rules that define implied model sets.

Returning to the algebraic character of this paper’s concepts, they only
represent the core of algebraic structures and build a base for other algebraic
concepts. We distinguish the following three categories of concepts:

• The purely algebraic concepts that only contain mathematical properties
on arbitrary operations;

• The augmented concepts that add basic implementation requirements; and

• The operator-based concepts.

The first category of concepts should be used if the function constraints need to
be specified with very fine granularity in order to enable the absolute maximum
set of model types. The second category represents a slight restriction over
the first one by adding requirements like assignability and convertibility to the
concepts. We expect that these additional requirements do not reduce the model
sets significantly. Furthermore, we assume that many generic functions need
assignability and convertibility and their lists of conceptual prerequisites can be
shortened by using the augmented concepts. For numeric functions expressed
in terms of standard arithmetic operators, the operator based concepts are the
most suitable.

The example of the power function illustrates how the computation is defined
on different ranges and implemented with different algorithms depending on the
algebraic concept modeled. The calculation of a generic reduction of n values
w.r.t. an arbitrary binary operation showed that concepts allow the programmer
to specify the admissibility of performance optimization techniques. How to
address floating point rounding errors in a general manner was also illustrated
on the example of generic reduction.

The application of these algebraic concepts within concepts in vector spaces
is not shown in this document and will be published in a future paper. Nev-
ertheless, we like to mention here that the concepts have proven to work on
non-scalar data types like vectors.

The flexible definition of the concepts, especially the fact that the return
type of an operation is not required to be identical with the arguments, enabled
the concept checking of expression templates. At the moment, only a fixed set of
expressions is supported, which is sufficient to express all common linear solvers

64

with natural operator representation, and research is in progress to support
arbitrary expressions.

This excursion into vector spaces and linear solvers gives a fore-taste of the
potential of mathematical concepts to emerge into all domains of scientific com-
puting and to initiate a new age of scientific computing that can be strongly
impacted by property-aware programming enabling a new quality of mathemat-
ical software reliability.

Acknowledgment: I wish to thank Laura Hopkins for her intensive sup-
port on the linguistic details of the whole text. I also thank Torsten Höfler
for his constructive discussions.

65

Part II

Concept Specifications

66

Chapter 8

Single-Operation Concepts

Concepts with one operation are expressible in different manners: with a given
or with a freely chooseable operation. We will first introduce the general con-
cepts where the operation is implemented with a functor realizing an arbitrary
binary operation. This part will be separated into two sub-parts: one defining
only mathematical properties in the concepts and the other adding very basic
implementation requirements to ease their utilization.

Later we define concepts specialized to addition and multiplication as the
most important binary operations. These concepts use operators instead of
functors because this is the common practice in numerical libraries.

Thus, we have the following three categories of concepts:

• Purely algebraic concepts,

• Augmented concepts, and

• Operator-based concepts.

The same categories are used for concepts with two operations.

8.1 Purely Algebraic Concepts

All concepts in this section characterize tuples of two types: a functor that rep-
resents an operation and a type the functor operates on, which are the elements
of the set. They are all defined in the namespace algebra. Purely algebraic con-
cepts are meant to specify only mathematical properties. Unfortunately, there
is no proper way to characterize the closure of an operation

a, b ∈ S → op(a, b) ∈ S.

Therefore we omit this property and start with commutativity.

67

8.1.1 Commutative

The concept commutative formalizes that the order of arguments in a binary
operation can change.

Notation

{Operation, Element} are types that build a model of Commutative.
op is an object of type Operation.
x, y are objects of type Element.

Valid Expressions

• Commutativity
op(x, y)

Return Type: Arbitrary
Semantics: Arbitrary

Invariants

• Commutativity
op(x, y) = op(y, x)

Implementation in ConceptGCC

concept Commutative<typename Operation, typename Element>
{

axiom Commutativity(Operation op, Element x, Element y)
{

op(x, y) == op(y, x);
}

};

68

8.1.2 Associative

Associative operations can be executed in different orders.

Notation

{Operation, Element} are types that build a model of Associative.
op is an object of type Operation.
x, y are objects of type Element.

Valid Expressions

• Associativity
op(x, y)

Return Type: Arbitrary
Semantics: Arbitrary

Invariants

• Associativity
op(op(x, y), z) = op(x, op(y, z))

Implementation in ConceptGCC

concept Associative<typename Operation, typename Element>
{

axiom Associativity(Operation op, Element x, Element y, Element z)
{

op(x, op(y, z)) == op(op(x, y), z);
}

};

69

8.1.3 SemiGroup

A Semi-Group is an algebraic structure closed under its binary operation and
associative. As we cannot specify the closure, algebra::SemiGroup and Associative
are equivalent, confer Section 6.3 on concept equivalence.

Auto-Refinement of

Associative

Implementation in ConceptGCC

auto concept SemiGroup<typename Operation, typename Element>
: Associative<Operation, Element>

{};

70

8.1.4 Monoid

Refinement of

algebra::SemiGroup

Associated Types

identity result type The result type of identity, automatically detected,
normally the same as Element.

Notation

{Operation, Element} are types that build a model of Commutative.
op is an object of type Operation.
x is an object of type Element.

Valid Expressions

In addition to the expressions defined in algebra::SemiGroup, the following ex-
pressions must be valid:

• Identity element
identity(op, x)

Return Type: identity result type

Semantics: See invariants

Invariants

• Neutrality from left
op(identity(op, x), x) = x

• Neutrality from right
op(x, identity(op, x)) = x

Implementation in ConceptGCC

concept Monoid<typename Operation, typename Element>
: SemiGroup<Operation, Element>

{
typename identity result type;
identity result type identity(Operation, Element);

axiom Neutrality(Operation op, Element x)
{

op(x, identity(op, x)) == x;
op(identity(op, x), x) == x;

}
};

71

8.1.5 Inversion

This concept introduces the notion of generic inversion, which is not necessarily
defined on all elements.

Associated Types

inverse result type The result type of inverse, automatically detected,
normally the same as Element.

Notation

{Operation, Element} are types that build a model of Commutative.
op is an object of type Operation.
x is an object of type Element.

Valid Expressions

• Inversion
inverse(op, x)

Return Type: inverse result type

Semantics:

Invariants

• Cancellation from left
op(inverse(op, x), x) = identity(op, x) if inversion is defined for x

• Cancellation from right
op(x, inverse(op, x)) = identity(op, x) if inversion is defined for x

Implementation in ConceptGCC

auto concept Inversion<typename Operation, typename Element>
{

typename inverse result type;
inverse result type inverse(Operation, Element);

};

Notes

Using the inversion in its pure form is very dangerous. It should be either
used with an explicit invertibility check, see PartiallyInvertibleMonoid, or with
concepts where invertibility is guaranteed for all elements, see algebra::Group.

72

8.1.6 Group

A Group is a monoid with inversion on all elements.

Refinement of

algebra::Monoid and Inversion.

Notation

{Operation, Element} are types that build a model of Commutative.
op is an object of type Operation.
x is an object of type Element.

Valid Expressions

Same as algebra::Monoid and Inversion.

Invariants

• Cancellation from left
op(inverse(op, x), x) = identity(op, x)

• Cancellation from right
op(x, inverse(op, x)) = identity(op, x)

Implementation in ConceptGCC

concept Group<typename Operation, typename Element>
: Monoid<Operation, Element>, Inversion<Operation, Element>

{
axiom Inversion(Operation op, Element x)
{

op(x, inverse(op, x)) == identity(op, x);
op(inverse(op, x), x) == identity(op, x);

}
};

Notes

The cancellation is defined in the manner as in concept Inversion but in this
concept the inversion is required to be executable on every element.

73

8.1.7 AbelianGroup

Auto-Refinement of

algebra::Group and Commutative.

Valid Expressions

Same as algebra::Group and Commutative.

Implementation in ConceptGCC

auto concept AbelianGroup<typename Operation, typename Element>
: Group<Operation, Element>, Commutative<Operation, Element>

{};

74

8.2 Augmented Algebraic Concepts

8.2.1 Magma

The concept Magma introduces a binary operation on the set and its closure.
The closure of a binary operation is defined so that for a set S of elements of
type Element and an operation op from type Op, the operation must be defined
on all (a, b) ∈ S × S and the result must be of type Element.

a, b ∈ S → op(a, b) ∈ S.

It is augmented with Convertible and Assignable, see. Section 3.3.1 The convert-
ibility represents in some measure the closure, see. Section 3.3.2.

Refinement of

Callable2, Convertible, and Assignable.

Notation

{Operation, Element} are types that build a model of Magma.
op is an object of type Operation.
x, y are objects of type Element.

Valid Expressions

• Operation
op(x, y)

Return Type: Element or a type convertible to Element.

Implementation in ConceptGCC

namespace math {

auto concept BinaryIsoFunction<typename Operation, typename Element>
{

where std::Callable2<Operation, Element, Element>;
where std::Convertible<std::Callable2<Operation, Element, Element>::result type, Element>;

typename result type = std::Callable2<Operation, Element, Element>::result type;
};

auto concept Magma<typename Operation, typename Element>
: BinaryIsoFunction<Operation, Element>

{
where std::Assignable<Element>;
where std::Assignable<Element, BinaryIsoFunction<Operation, Element>::result type>;

};

}

75

http://www.sgi.com/Technology/STL/Assignable.html
http://www.sgi.com/Technology/STL/Assignable.html

Remark: the closure is not directly expressed in the concept. Instead it is char-
acterized by the request that the return type is convertible into the element
type. Whether the result of the computation and the possibly following con-
version is mathematically correct cannot be expressed by the concept and the
answer also depends on interpretation as we will explain in section 3.3.2.

We will omit the namespace declaration in later programs. All following
mathematical concepts and type traits are defined in the namespace math.

Models

• modN t<n> with functor implementing + or ∗, see Section 5.1.

• Contingent: (int, math::add<int>), for limitations see Section 3.3.2.

• Contingent: (float, math::add<float>) and (float, math::mult<float>), for
limitations see Section 3.3.2.

• Contingent: (complex<double>, math::add<complex<double> >) and
(complex<double>, math::mult<complex<double> >), same as float.

76

8.2.2 CommutativeMagma

This concept adds the commutativity to a closed binary operation. We introduce
it to provide a more precise characterization of floating point numbers, which
are commutative but not associative; see also Section 3.3.3.

Refinement of

Magma and Commutative.

Invariants

The same as Commutative.

Implementation in ConceptGCC

auto concept CommutativeMagma<typename Operation, typename Element>
: Magma<Operation, Element>,

algebra::Commutative<Operation, Element>
{};

Models

• modN t<n> with functor implementing + or ∗, see Section 5.1.

• Contingent: (int, math::add<int>), for limitations see Section 3.3.2.

• Contingent: (float, math::add<float>) and (float, math::mult<float>), for
limitations see Section 3.3.2.

• Contingent: (complex<double>, math::add<complex<double> >) and
(complex<double>, math::mult<complex<double> >), same as float.

77

8.2.3 SemiGroup

A Semi-Group is a magma where the operation is associative.

Refinement of

Magma and algebra::SemiGroup

Invariants

The same as algebra::SemiGroup.

Implementation in ConceptGCC

auto concept SemiGroup<typename Operation, typename Element>
: Magma<Operation, Element>,

algebra::SemiGroup<Operation, Element>
{};

78

8.2.4 CommutativeSemiGroup

A Commutative Semi-Group combines associativity and commutativity.

Refinement of

SemiGroup and CommutativeMagma

Implementation in ConceptGCC

auto concept CommutativeSemiGroup<typename Operation, typename Element>
: SemiGroup<Operation, Element>,

CommutativeMagma<Operation, Element>
{};

79

8.2.5 Monoid

A Monoid is a semi-group with an identity.

Refinement of

SemiGroup and algebra::Monoid.

Notation

{Operation, Element} are types that build a model of Monoid.
op is an object of type Operation.
x is an object of type Element.

Valid Expressions

• Identity
identity(op, x)

Return Type: Element or a type convertible to Element.

Invariants

The same as SemiGroup and algebra::Monoid.

Implementation in ConceptGCC

auto concept Monoid<typename Operation, typename Element>
: SemiGroup<Operation, Element>,

algebra::Monoid<Operation, Element>
{

where std::Convertible<identity result type, Element>;
};

Remark: Refinement is currently not auto due to internal problems with
ConceptGCC (revision 338).

Models

• STL strings with concatenation-based functor and empty string as iden-
tity, see Section 10.1.

Note

The difference to algebra::Monoid is only the convertibility of identity result type.

80

8.2.6 CommutativeMonoid

A Commutative Monoid can be considered as monoid that is commutative or
alternatively as a commutative semi-group with an identity.

Refinement of

Monoid and CommutativeSemiGroup.

Invariants

The same as

Implementation in ConceptGCC

auto concept CommutativeMonoid<typename Operation, typename Element>
: CommutativeSemiGroup<Operation, Element>,

Monoid<Operation, Element>
{};

Models

• Non-negative reals as positive real with an addition-like functor type like in
Section 10.2.

81

8.2.7 PartiallyInvertibleMonoid

This concept introduces inversion and a check whether a given element is in-
vertible, see Section 3.3.6.

Refinement of

Monoid and Inversion.

Notation

{Operation, Element} are types that build a model of SemiGroup.
op is an object of type Operation.
x is an object of type Element.

Valid Expressions

• Identity
is invertible(op, x)

Return Type: bool or a type convertible to bool.
inverse(op, x)

Return Type: Element or a type convertible to Element.

Remark: The contrast to Inversion, we request here that the result of inverse

must be convertible to Element.

Invariants

• Cancellation from left
if (is invertible(op, x)) → op(inverse(op, x), x) = identity(op, x)

• Cancellation from right
if (is invertible(op, x)) → op(x, inverse(op, x)) = identity(op, x)

Implementation in ConceptGCC

concept PartiallyInvertibleMonoid<typename Operation, typename Element>
: Monoid<Operation, Element>,

algebra::Inversion<Operation, Element>
{

typename is invertible result type;
is invertible result type is invertible(Operation, Element);
where std::Convertible<is invertible result type, bool>;

where std::Convertible<inverse result type, Element>;

// Does it overwrites the axiom from algebra::Inversion
axiom Inversion(Operation op, Element x)
{

82

// Only for invertible elements:
if (is invertible(op, x))

op(x, inverse(op, x)) == identity(op, x);
if (is invertible(op, x))

op(inverse(op, x), x) == identity(op, x);
}

};

83

8.2.8 PartiallyInvertibleCommutativeMonoid

Refinement of

PartiallyInvertibleMonoid and CommutativeMonoid

Implementation in ConceptGCC

concept PartiallyInvertibleCommutativeMonoid<typename Operation, typename Element>
: PartiallyInvertibleMonoid<Operation, Element>,

CommutativeMonoid<Operation, Element>
{};

Models

• modN t<n> with functor implementing + or ∗, see Section 5.1.

• Contingent: (int, math::add<int>), for limitations see Section 3.3.2.

• Contingent: (float, math::add<float>) and (float, math::mult<float>), for
limitations see Section 3.3.2.

• Contingent: (complex<double>, math::add<complex<double> >) and
(complex<double>, math::mult<complex<double> >), same as float.

Notes

An interesting behavior provide integer values towards the invertibility of mul-
tiplication. The division of one by any value with magnitude larger than one
returns zero but the inversion could be implement by means of a Euclidean al-
gorithm. Then for every odd value exists a unique reciprocal, i.e. their product
is one, see. Section 3.3.6.

84

8.2.9 Group

A Group provides the same operations and properties as PartiallyInvertible-
Monoid except that each element must be invertible.

Refinement of

PartiallyInvertibleMonoid

Notation

{Operation, Element} are types that build a model of SemiGroup.
op is an object of type Operation.
x is an object of type Element.

Invariants

• Cancellation from left
op(inverse(op, x), x) = identity(op, x)

• Cancellation from right
x, op(inverse(op, x)) = identity(op, x)

Implementation in ConceptGCC

concept Group<typename Operation, typename Element>
: PartiallyInvertibleMonoid<Operation, Element>

{
axiom Inversion(Operation op, Element x)
{

// In contrast to PartiallyInvertibleMonoid all elements must be invertible
op(x, inverse(op, x)) == identity(op, x);
op(inverse(op, x), x) == identity(op, x);

}
};

85

8.2.10 AbelianGroup

An Abelian Group adds the commutativity to a Group

Refinement of

Group and PartiallyInvertibleCommutativeMonoid

Implementation in ConceptGCC

concept AbelianGroup<typename Operation, typename Element>
: Group<Operation, Element>,

PartiallyInvertibleCommutativeMonoid<Operation, Element>
{};

Models

• modN t<n> with functor implementing + or ∗, see Section 5.1.

• Contingent: (int, math::add<int>), for limitations see Section 3.3.2.

• Contingent: (float, math::add<float>) and (float, math::mult<float>), for
limitations see Section 3.3.2.

• Contingent: (complex<double>, math::add<complex<double> >) and
(complex<double>, math::mult<complex<double> >), same as float.

86

8.3 Concepts for Additive Algebraic Structures

Although algebraic structures with freely chooseable operations are applicable
in a broader sense, almost all arithmetic algorithms are expressed in terms
of operators. For this reason, we introduce the additive and multiplicative
concepts, which are also more convenient regarding the syntax.

One of our most important design goals was the consistency between the
pure algebraic and the operator-based concepts. As the later are special cases
of the former, we tried to express them as concept refinements. This raised the
problem how to refine a concept on one template type from a concept with two
types. The default functors can be used for the second template type and also
to specify the consistency between the concepts in the axioms.

8.3.1 AdditiveMagma

An Additive Magma is a set S of elements of type Element with an addition.
The set must be closed under the addition

x, y ∈ S → x+ y ∈ S.

Refinement of

Magma<math::add<Element>, Element>

Associated Types

• Corresponding functor
math::add

Notation

Element is a type that models AdditiveMagma.
x, y are objects of type Element.

Valid Expressions

• Addition
x + y

Return Type: Element or a type convertible to Element

Semantics: Can be arbitrary if for all pairs of values results are
returned

• Addition Assignment
x += y

Return Type: Element&

Semantics: Equivalent to x = x + y.

87

Invariants

• Consistency with Magma
math::add<Element>()(x, y) = x + y.
Unless add is specialized for Element the default implementation implies
this consistency.

Implementation in ConceptGCC

concept AdditiveMagma<typename Element>
: Magma< math::add<Element>, Element >

{
typename assign result type;
assign result type operator+=(Element& x, Element y);

// Operator + is by default defined with +=
typename result type;
result type operator+(Element& x, Element y);
{

Element tmp(x);
return tmp += y;

}

// Type consistency with Magma
where std::SameType< result type,

Magma< math::add<Element>, Element >::result type >;

axiom Consistency(math::add<Element> op, Element x, Element y)
{

op(x, y) == x + y;
// Might change later
x + y == x += y;

}
}

The equality in axioms is not the equivalence of two consecutive computations
but of two separate computations. Therefore side effects in one evaluation does
not influence the other one, which we used to characterize the consistency be-
tween + and +=. However, this axiom is subject to modification. In case that
it will be allowed to use temporaries in axioms the declaration will be written
more intuitively.

The concept cannot be defined as an auto refinement because the consistency
of the results must be confirmed by the programmer.

88

8.3.2 AdditiveCommutativeMagma

This concept combines the notion of additive closure and commutativity. The
motivation is the same as for CommutativeMagma that floating point numbers
are strictly spoken not associative but commutative, see notes.

Auto-Refinement of

CommutativeMagma<math::add<Element>, Element> and AdditiveMagma.

Implementation in ConceptGCC

auto concept AdditiveCommutativeMagma<typename Element>
: AdditiveMagma<Element>,

CommutativeMagma< math::add<Element>, Element >
{};

Models

• float and all other standard floating point types, see notes.

Notes

The existence of this concept is related to the non-associativity of floating point
numbers. However, this topic is more complex and we discuss it in more detail
in Section 4.3.2.

8.3.3 AdditiveSemiGroup

An Additive Semi-Group is an additive magma where the addition is associative.

Auto-Refinement of

SemiGroup<math::add<Element>, Element> and AdditiveMagma.

Implementation in ConceptGCC

auto concept AdditiveSemiGroup<typename Element>
: AdditiveMagma<Element>,

SemiGroup< math::add<Element>, Element >
{};

Models

• STL strings as concatenation is defined with +, see Section 10.1.

8.3.4 AdditiveCommutativeSemiGroup

An Additive Semi-Group is an additive magma where the addition is associative.

89

Auto-Refinement of

CommutativeSemiGroup<math::add<Element>, Element>, AdditiveSemiGroup, and
AdditiveCommutativeMagma.

Implementation in ConceptGCC

auto concept AdditiveCommutativeSemiGroup<typename Element>
: AdditiveSemiGroup<Element>,

AdditiveCommutativeMagma<Element>,
CommutativeSemiGroup< math::add<Element>, Element >

{};

90

8.3.5 AdditiveMonoid

An Additive Monoid is an additive semi-group with an identity.

Auto-Refinement of

Monoid<math::add<Element>, Element> and AdditiveSemiGroup.

Implementation in ConceptGCC

auto concept AdditiveMonoid<typename Element>
: AdditiveSemiGroup<Element>,

Monoid< math::add<Element>, Element >
{};

91

8.3.6 AdditiveCommutativeMonoid

An Additive Commutative Monoid is a commutative monoid w.r.t. addition.

Auto-Refinement of

CommutativeMonoid<math::add<Element>, Element> AdditiveMonoid, and Addi-
tiveCommutativeSemiGroup

Implementation in ConceptGCC

auto concept AdditiveCommutativeMonoid<typename Element>
: AdditiveMonoid<Element>,

AdditiveCommutativeSemiGroup<Element>,
CommutativeMonoid< math::add<Element>, Element >

{};

Models

• unsigned int and all other unsigned integral types.

92

8.3.7 AdditivePartiallyInvertibleMonoid

A Additive Partially Invertible Monoid is a monoid with an inverse function
written as an unary minus. The binary minus is formally only an abbreviation
for the addition with an inverted value. In contrast to AdditiveGroup, not all
elements need to be invertible.

Refinement of

PartiallyInvertibleMonoid<math::add<Element>, Element> and AdditiveMonoid

Notation

Element is a type that models AdditiveMagma.
x, y are objects of type Element.
op an object of type math::add<Element>.

Valid Expressions

• Inverse
−x

Return Type: Element or a type convertible to Element

Semantics: Inverse of x. Behavior is undefined if x is not invert-
ible.

• Subtraction
x − y

Return Type: Element or a type convertible to Element

Semantics: Equivalent to x + −y. Behavior is undefined if y is
not invertible.

• Subtraction Assignment
x −= y

Return Type: Element or a type convertible to Element

Semantics: Equivalent to x = x + −y.

Invariants

• Consistency with PartiallyInvertibleMonoid
inverse(op, x) = −x if x is invertible.
If defaults for add and inverse are used, consistency is implied for default
implementation of unary minus in concept as well as for unary minus
predefined for C++ arithmetic data types.

Implementation in ConceptGCC

concept AdditivePartiallyInvertibleMonoid<typename Element>
: AdditiveMonoid<Element>,

PartiallyInvertibleMonoid< math::add<Element>, Element >

93

{
// Operator −, binary and unary
where std::Subtractable<Element>;
where Negatable<Element>;

typename assign result type;
assign result type operator−=(Element& x, Element y);

// Operator − by default defined with −=
typename result type;
result type operator−(Element& x, Element y);
{

Element tmp(x);
return tmp −= y;

}

typename unary result type;
unary result type operator−(Element x);
{

return zero(x) − x;
}

axiom Consistency(math::add<Element> op, Element x, Element y);
{

// consistency between additive and pure algebraic concept
if (is invertible(op, y))

op(x, inverse(op, y)) == x − y;
if (is invertible(op, y))

inverse(op, y) == −y;

// consistency between unary and binary −
if (is invertible(op, x))

identity(op, x) − x == −x;

// Might change later
if (is invertible(op, y))

x − y == x −= y;
}

};

Notes

This concept is mainly defined for completeness and for consistency with pure
algebraic concepts. Most additive concepts that provide inversion are invertible
for all elements. However, the invertibility check can be used to deal with
boundary cases like the minimal value of a signed integer type, which is formally
invertible but in a numerically inadequate way (it is the value itself).

94

8.3.8 AdditivePartiallyInvertibleCommutativeMonoid

Auto-Refinement of

PartiallyInvertibleCommutativeMonoid<math::add<Element>, Element>, AdditivePar-
tiallyInvertibleMonoid, and AdditiveCommutativeMonoid

Implementation in ConceptGCC

auto concept AdditivePartiallyInvertibleCommutativeMonoid<typename Element>
: AdditivePartiallyInvertibleMonoid<Element>,

AdditiveCommutativeMonoid<Element>,
PartiallyInvertibleCommutativeMonoid< math::add<Element>, Element >

{};

Notes

95

8.3.9 AdditiveGroup

An Additive Group is identical with an AdditivePartiallyInvertibleMonoid except
that all elements must be invertible.

Auto-Refinement of

Group<math::add<Element>, Element> and AdditivePartiallyInvertibleMonoid

Invariants

• Consistency with Group
math::inverse(op, x) = −x

In contrast to AdditivePartiallyInvertibleMonoid, this must hold for all ele-
ments.

Implementation in ConceptGCC

auto concept AdditiveGroup<typename Element>
: AdditivePartiallyInvertibleMonoid<Element>,

Group< math::add<Element>, Element >
{};

96

8.3.10 AdditiveAbelianGroup

An Additive Abelian Group refines AdditiveGroup with commutativity.

Auto-Refinement of

AbelianGroup<math::add<Element>, Element>, AdditiveGroup, and AdditivePar-
tiallyInvertibleCommutativeMonoid

Implementation in ConceptGCC

auto concept AdditiveAbelianGroup<typename Element>
: AdditiveGroup<Element>,

AdditiveCommutativeMonoid<Element>,
AbelianGroup< math::add<Element>, Element >

{};

Models

• int and all other signed integral types.

• double and all other standard floating point types (rounding errors a side).

• std::complex<T> where T is an additive Abelian group.

Notes

Appropriately defined vector and matrix types providing operators must be
models.

97

8.4 Concepts for Multiplicative Algebraic Struc-
tures

The multiplicative concepts are very similar to the additive concepts and can
be mostly derived from the latter by appropriate replacement of names and
operators. The main difference in the definitions is that no unary operator
representing inversion exist. For convenience, we provide the complete set of
multiplicative concepts. Although the families concepts are very similar, they
differ noticeably in how arithmetic data types model them.

8.4.1 MultiplicativeMagma

A Multiplicative Magma is a set S of elements of type Element with a multipli-
cation. The set must be closed under the multiplication

x, y ∈ S → x ∗ y ∈ S.

Refinement of

Magma<math::mult<Element>, Element>.

Associated Types

• Corresponding functor
math::mult

Notation

Element is a type that models MultiplicativeMagma.
x, y are objects of type Element.

Valid Expressions

• Multiplication
x ∗ y

Return Type: Element or a type convertible to Element

Semantics: Can be arbitrary if for all pairs of values results are
returned

• Multiplication Assignment
x ∗= y

Return Type: Element&

Semantics: Equivalent to x = x ∗ y.

98

Invariants

• Consistency with Magma
math::mult<Element>()(x, y) = x ∗ y.
Unless mult is specialized for Element the default implementation implies
this consistency.

Implementation in ConceptGCC

concept MultiplicativeMagma<typename Element>
: Magma< math::mult<Element>, Element >

{
typename assign result type;
assign result type operator∗=(Element& x, Element y);

// Operator ∗ is by default defined with ∗=
typename result type;
result type operator∗(Element& x, Element y);
{

Element tmp(x);
return tmp ∗= y;

}

// Type consistency with Magma
where std::SameType< result type,

Magma< math::mult<Element>, Element >::result type >;

axiom Consistency(math::mult<Element> op, Element x, Element y)
{

op(x, y) == x ∗ y;
// Might change later
x ∗ y == x ∗= y;

}
}

99

8.4.2 MultiplicativeCommutativeMagma

This concept combines the notion of multiplicative closure and commutativity.
The motivation is the same as for CommutativeMagma that floating point num-
bers are strictly spoken not associative but commutative, but see Section 4.3.2.

Auto-Refinement of

CommutativeMagma<math::mult<Element>, Element> and MultiplicativeMagma.

Implementation in ConceptGCC

auto concept MultiplicativeCommutativeMagma<typename Element>
: MultiplicativeMagma<Element>,

CommutativeMagma< math::mult<Element>, Element >
{};

Models

• float and all other standard floating point types, see notes of AdditiveCom-
mutativeMagma.

100

8.4.3 MultiplicativeSemiGroup

A Multiplicative Semi-Group is an multiplicative magma where the multiplica-
tion is associative.

Auto-Refinement of

SemiGroup<math::mult<Element>, Element> and MultiplicativeMagma.

Implementation in ConceptGCC

auto concept MultiplicativeSemiGroup<typename Element>
: MultiplicativeMagma<Element>,

SemiGroup< math::mult<Element>, Element >
{};

101

8.4.4 MultiplicativeCommutativeSemiGroup

A Multiplicative Semi-Group is an multiplicative magma where the multiplica-
tion is associative.

Auto-Refinement of

CommutativeSemiGroup<math::mult<Element>, Element>, MultiplicativeSemiGroup,
and MultiplicativeCommutativeMagma.

Implementation in ConceptGCC

auto concept MultiplicativeCommutativeSemiGroup<typename Element>
: MultiplicativeSemiGroup<Element>,

MultiplicativeCommutativeMagma<Element>,
CommutativeSemiGroup< math::mult<Element>, Element >

{};

102

8.4.5 MultiplicativeMonoid

A Multiplicative Monoid is an multiplicative semi-group with an identity.

Auto-Refinement of

Monoid<math::mult<Element>, Element> and MultiplicativeSemiGroup.

Implementation in ConceptGCC

auto concept MultiplicativeMonoid<typename Element>
: MultiplicativeSemiGroup<Element>,

Monoid< math::mult<Element>, Element >
{};

103

8.4.6 MultiplicativeCommutativeMonoid

A Multiplicative Commutative Monoid is a commutative monoid w.r.t. multi-
plication.

Auto-Refinement of

CommutativeMonoid<math::mult<Element>, Element> MultiplicativeMonoid, and
MultiplicativeCommutativeSemiGroup.

Implementation in ConceptGCC

auto concept MultiplicativeCommutativeMonoid<typename Element>
: MultiplicativeMonoid<Element>,

MultiplicativeCommutativeSemiGroup<Element>,
CommutativeMonoid< math::mult<Element>, Element >

{};

Models

• int and all other integral types.

• Cyclic groups, see Section 5.

104

8.4.7 MultiplicativePartiallyInvertibleMonoid

A Multiplicative Partially Invertible Monoid is a monoid with an inverse func-
tion. In contrast to MultiplicativeGroup, not all elements need to be invertible.

Refinement of

PartiallyInvertibleMonoid<math::mult<Element>, Element> and MultiplicativeMonoid.

Notation

Element is a type that models MultiplicativeMagma.
x, y are objects of type Element.
op an object of type math::mult<Element>.

Valid Expressions

• Division
x / y

Return Type: Element or a type convertible to Element

Semantics: Equivalent to x ∗ inverse(op, y). Behavior is unde-
fined if y is not invertible.

• Division Assignment
x /= y

Return Type: Element or a type convertible to Element

Semantics: Equivalent to x = x / y.

Implementation in ConceptGCC

concept MultiplicativePartiallyInvertibleMonoid<typename Element>
: MultiplicativeMonoid<Element>,

PartiallyInvertibleMonoid< math::mult<Element>, Element >
{

typename assign result type;
assign result type operator/=(Element& x, Element y);

// Operator / by default defined with /=
typename result type;
result type operator/(Element& x, Element y);
{

Element tmp(x);
return tmp /= y;

}

axiom Consistency(math::mult<Element> op, Element x, Element y);
{

// consistency between multiplicative and pure algebraic concept

105

if (is invertible(op, y))
op(x, inverse(op, y)) == x / y;

// Consistency between / and /=, might change later
if (is invertible(op, y))

x / y == x /= y;
}

};

Models

• Cyclic groups, see. Section 5.

• Square matrices where operator∗ realizes matrix product.

• Rectangular matrices where operator∗ provides element-wise product.1

Notes

Typically, all elements except one will be invertible and the test is invertible will
check whether the value is non-zero, i.e. the identity of the corresponding addi-
tion. This is therefore the default implementation which should be specialized
if the behavior of some type differs from that, e.g. for matrices.

1To avoid confusion with the canonical matrix product, we suggest to not implement this
product in terms of operator∗. Mathematical tools like Mathematica provide two multipli-
cation operators to deal with this ambiguity. Whether the matrix product should use an
operator is a decision to be made on the context. Furthermore, operators can be defined
either way within the context of a specific toolbox.

106

8.4.8 MultiplicativePartiallyInvertibleCommutativeMonoid

Auto-Refinement of

PartiallyInvertibleCommutativeMonoid<math::mult<Element>, Element>, Multiplica-
tivePartiallyInvertibleMonoid, and MultiplicativeCommutativeMonoid.

Implementation in ConceptGCC

auto concept MultiplicativePartiallyInvertibleCommutativeMonoid<typename Element>
: MultiplicativePartiallyInvertibleMonoid<Element>,

MultiplicativeCommutativeMonoid<Element>,
PartiallyInvertibleCommutativeMonoid< math::mult<Element>, Element >

{};

Notes

Floating point numbers provide a rather symmetric range of exponents so that
most values are invertible. Nevertheless, some very large values are not invert-
ible, see. Section 3.4.3.

107

8.4.9 MultiplicativeGroup

An Multiplicative Group is identical with an MultiplicativePartiallyInvertibleMonoid
except that all elements must be invertible.

Auto-Refinement of

Group<math::mult<Element>, Element> and MultiplicativePartiallyInvertibleMonoid.

Implementation in ConceptGCC

auto concept MultiplicativeGroup<typename Element>
: MultiplicativePartiallyInvertibleMonoid<Element>,

Group< math::mult<Element>, Element >
{};

Models

Most arithmetic data types will not model MultiplicativeGroup because at least
the identity of the corresponding addition will not be invertible. However, one
can provide user-defined data types with an operator∗, see. Section 3.4.3.

108

8.4.10 MultiplicativeAbelianGroup

An Multiplicative Abelian Group refines MultiplicativeGroup with commutativity.

Auto-Refinement of

AbelianGroup<math::mult<Element>, Element>, MultiplicativeGroup, and Multi-
plicativePartiallyInvertibleCommutativeMonoid.

Implementation in ConceptGCC

auto concept MultiplicativeAbelianGroup<typename Element>
: MultiplicativeGroup<Element>,

MultiplicativeCommutativeMonoid<Element>,
AbelianGroup< math::mult<Element>, Element >

{};

Notes

No standard arithmetic type models MultiplicativeAbelianGroup because at least
the identity of the corresponding addition will not be invertible. However, one
can provide user-defined data types with an operator∗, see. Section 3.4.3.

109

Chapter 9

Algebraic Structures with
Two Operations

The concepts introduced in this section characterize set with two operations
defined upon. In most numerical software this will be addition and multipli-
cation. However, other pairs of operations perfectly model these concepts and
algorithms exist that can be expressed using ring concepts over minimum and
maximum function as we will show later in this section.

Given the need for arbitrary operations we provide generic concepts which we
later refine to concepts defined on addition and multiplication. As we consider
the latter by far more important we use shorter names — like Ring or Field —
and longer names — as GenericRing — otherwise.

9.1 Purely Algebraic Concepts

In namespace algebra.

9.1.1 Distributive

Notation

{AddOp, MultOp, Element} are types that build a model of GenericRing.
add is an object of type AddOp.
mult is an object of type MultOp.
x, y, z are objects of type Element.

Valid Expressions

None in addition to the expressions defined in AbelianGroup<math::add<Element>,
Element> and SemiGroup<math::mult<Element>, Element>.

110

Invariants

• Distributivity from left
mult(x, add(y, z)) = add(mult(x, y), mult(x, z))

• Distributivity from right
mult(add(x, y), z) = add(mult(x, z), mult(y, z))

Implementation in ConceptGCC

concept Distributive<typename AddOp, typename MultOp, typename Element>
{

axiom Distributivity(AddOp add, MultOp mult, Element x, Element y, Element z)
{

// From left
mult(x, add(y, z)) == add(mult(x, y), mult(x, z));
// z right
mult(add(x, y), z) == add(mult(x, z), mult(y, z));

}
};

111

9.1.2 algebra::Ring

Auto-Refinement of

AbelianGroup<AddOp, Element>, SemiGroup<MultOp, Element>, and Distributive.

Implementation in ConceptGCC

auto concept Ring<typename AddOp, typename MultOp, typename Element>
: AbelianGroup<AddOp, Element>,

SemiGroup<MultOp, Element>,
Distributive<AddOp, MultOp, Element>

{};

112

9.1.3 algebra::RingWithIdentity

Auto-Refinement of

algebra::Ring and Monoid<MultOp, Element>.

Implementation in ConceptGCC

auto concept RingWithIdentity<typename AddOp, typename MultOp, typename Element>
: Ring<AddOp, MultOp, Element>,

Monoid<MultOp, Element>
{};

113

9.1.4 algebra::DivisionRing

Refinement of

algebra::RingWithIdentity and Inversion<MultOp, Element>.

Notation

{AddOp, MultOp, Element} are types that build a model of GenericDivisionRing.
add is an object of type AddOp.
mult is an object of type MultOp.
x is an objects of type Element.

Invariants

• Zero is different from one
identity(add, x) 6= identity(mult, x)

• Non-zero divisibility from left
if (x 6= identity(add, x))
mult(inverse(mult, x), x) = identity(mult, x)

• Non-zero divisibility from right
if (x 6= identity(add, x))
mult(x, inverse(mult, x)) = identity(mult, x)

Implementation in ConceptGCC

concept DivisionRing<typename AddOp, typename MultOp, typename Element>
: RingWithIdentity<AddOp, MultOp, Element>,

Inversion<MultOp, Element>
{

// 0 != 1, otherwise trivial
axiom ZeroIsDifferentFromOne(AddOp add, MultOp mult, Element x)
{

identity(add, x) != identity(mult, x);
}

// Non−zero divisibility from left and from right
axiom NonZeroDivisibility(AddOp add, MultOp mult, Element x)
{

if (x != identity(add, x))
mult(inverse(mult, x), x) == identity(mult, x);

if (x != identity(add, x))
mult(x, inverse(mult, x)) == identity(mult, x);

}
};

114

9.1.5 algebra::SkewField

SkewField is defined as synonym for algebra::DivisionRing.

Auto-Refinement of

algebra::DivisionRing.

Implementation in ConceptGCC

auto concept SkewField<typename AddOp, typename MultOp, typename Element>
: DivisionRing<AddOp, MultOp, Element>

{};

115

9.1.6 algebra::Field

Auto-Refinement of

algebra::DivisionRing and Commutative<MultOp, Element>.

Implementation in ConceptGCC

auto concept Field<typename AddOp, typename MultOp, typename Element>
: DivisionRing<AddOp, MultOp, Element>,

Commutative<MultOp, Element>
{};

116

9.2 Augmented Concepts

9.2.1 GenericRing

A Ring is a set upon which two operations are defined, one of them building an
Abelian group and the other one forming a semi-group, see notes. Furthermore
the second operation is distributive over the first one.

Refinement of

AbelianGroup<math::add<Element>, Element> and SemiGroup<math::mult<Element>,
Element>

Notation

{AddOp, MultOp, Element} are types that build a model of GenericRing.
add is an object of type AddOp.
mult is an object of type MultOp.
x, y, z are objects of type Element.

Valid Expressions

None in addition to the expressions defined in AbelianGroup<math::add<Element>,
Element> and SemiGroup<math::mult<Element>, Element>.

Invariants

• Distributivity from left
mult(x, add(y, z)) = add(mult(x, y), mult(x, z))

• Distributivity from right
mult(add(x, y), z) = add(mult(x, z), mult(y, z))

Implementation in ConceptGCC

concept GenericRing<typename AddOp, typename MultOp, typename Element>
: AbelianGroup<AddOp, Element>,

SemiGroup<MultOp, Element>
{

axiom Distributivity(AddOp add, MultOp mult, Element x, Element y, Element z)
{

// From left
mult(x, add(y, z)) == add(mult(x, y), mult(x, z));
// From right
mult(add(x, y), z) == add(mult(x, z), mult(y, z));

}
};

117

Notes

Another definition of ring requires the second operation to be a monoid whereby
calling a structure with a semi-group pseudo-ring. We choose this terminology
amongst other reasons to be consistent with already existing formal concept
definitions like Tecton [10].

118

9.2.2 GenericCommutativeRing

A Commutative Ring adds the notion of commutativity to the concept of a ring.

Refinement of

GenericRing<math::add<Element>, math::mult<Element>, Element> and Commu-
tativeSemiGroup<math::mult<Element>, Element>

Implementation in ConceptGCC

concept GenericCommutativeRing<typename AddOp, typename MultOp, typename Element>
: GenericRing<AddOp, MultOp, Element>,

CommutativeSemiGroup<MultOp, Element>
{};

119

9.2.3 GenericRingWithIdentity

A Ring with Identity introduces a neutral element w.r.t. multiplication into the
concept of a ring.

Refinement of

GenericRing<math::add<Element>, math::mult<Element>, Element> and
Monoid<math::mult<Element>, Element>

Implementation in ConceptGCC

auto concept GenericRingWithIdentity<typename AddOp, typename MultOp, typename Element>
: GenericRing<AddOp, MultOp, Element>,

Monoid<MultOp, Element>,
algebra::RingWithIdentity<AddOp, MultOp, Element>

{};

Models

• Square matrices with matrix product and addition.

120

9.2.4 GenericCommutativeRingWithIdentity

A Commutative Ring with Identity adds adds the notion of commutativity w.r.t.
multiplication to the concept of a ring with identity.

Refinement of

GenericRingWithIdentity<math::add<Element>, math::mult<Element>, Element> and
GenericCommutativeRing<math::add<Element>, math::mult<Element>, Element>

Implementation in ConceptGCC

auto concept GenericCommutativeRingWithIdentity<typename AddOp, typename MultOp, typename Element>
: GenericRingWithIdentity<AddOp, MultOp, Element>,

GenericCommutativeRing<AddOp, MultOp, Element>,
CommutativeMonoid<MultOp, Element>

{};

Models

• Rectangular matrices with matrix addition with element-wise multiplica-
tion if the product of the elements commutes, see. MultiplicativePartially-
InvertibleMonoid.

121

9.2.5 GenericDivisionRing

A Division Ring is a GenericRingWithIdentity where 0 is different from 1 and
each non-zero element has a reciprocal element, see. notes on inverse of zero.
Hence, a is a AdditiveAbelianGroup and a MultiplicativePartiallyInvertibleMonoid
where only 0 has no reciprocal. This implies that if the set S is a division ring
then S \ {0} is an MultiplicativeGroup whereby the exclusion on an element is
not expressible in the programming language.

Refinement of

GenericRingWithIdentity<math::add<Element>, math::mult<Element>, Element>

Notation

{AddOp, MultOp, Element} are types that build a model of GenericDivisionRing.
add is an object of type AddOp.
mult is an object of type MultOp.
x is an objects of type Element.

Valid Expressions

In addition to the concepts of GenericRingWithIdentity

• Inversion
inverse(x)

Return Type: Element or a type convertible to Element

Invariants

• Zero is different from one
identity(add, x) 6= identity(mult, x)

• Non-zero divisibility from left
if (x 6= identity(add, x))
mult(inverse(mult, x), x) = identity(mult, x)

• Non-zero divisibility from right
if (x 6= identity(add, x))
mult(x, inverse(mult, x)) = identity(mult, x)

Implementation in ConceptGCC

concept GenericDivisionRing<typename AddOp, typename MultOp, typename Element>
: GenericRingWithIdentity<AddOp, MultOp, Element>

{
typename inverse result type;

122

inverse result type inverse(MultOp, Element);
where std::Convertible<inverse result type, Element>;

axiom ZeroIsDifferentFromOne(AddOp add, MultOp mult, Element x)
{

identity(add, x) != identity(mult, x);
}

axiom NonZeroDivisibility(AddOp add, MultOp mult, Element x)
{

if (x != identity(add, x))
mult(inverse(mult, x), x) == identity(mult, x);

if (x != identity(add, x))
mult(x, inverse(mult, x)) == identity(mult, x);

}
};

Notes

The set {0} with 0+0 = 0 and 0∗0 = 0 fulfills all requirements of a division ring
and Field. As this structure does not provide any practical usage we exclude it
from our considerations.

Allowing 0 = 1 in some set implies that this set is {0}. For this reason we
require 0 6= 1 in the description.

Instead of introducing the inversion in this concept as valid expression one
can refine from PartiallyInvertibleMonoid<math::mult<Element>, Element>. This
would additionally require the definition of a function is invertible which intro-
duces some overhead as it is given that all non-zero elements are invertible.
Refining from Group<math::mult<Element>, Element> would be wrong because
zero is not invertible.

123

9.2.6 GenericField

Commutative division rings are Fields.

Refinement of

GenericDivisionRing<math::add<Element>, math::mult<Element>, Element> and Gener-
icCommutativeRingWithIdentity<math::add<Element>, math::mult<Element>, Element>

Implementation in ConceptGCC

concept GenericField<typename AddOp, typename MultOp, typename Element>
: GenericDivisionRing<AddOp, MultOp, Element>,

GenericCommutativeRingWithIdentity<AddOp, MultOp, Element>
{};

9.3 Operator-Based Concepts

9.3.1 Operator-Based Concepts

The operator-based concepts have the same requirements as their generic equiv-
alents. Therefore, they can be expressed as refinements of generic two-operation
concepts and one-operation concepts with operators, only the non-zero invert-
ibility is repeated using a short cut.

124

9.3.2 Ring

Auto-Refinement of

AdditiveAbelianGroup, MultiplicativeSemiGroup, and GenericRing<math::add<Element>,
math::mult<Element>, Element>.

Implementation in ConceptGCC

concept Ring<typename Element>
: AdditiveAbelianGroup<Element>,

MultiplicativeSemiGroup<Element>,
GenericRing<math::add<Element>, math::mult<Element>, Element>

{};

125

9.3.3 CommutativeRing

Auto-Refinement of

Ring, MultiplicativeCommutativeSemiGroup, and GenericCommutativeRing<math::add<Element>,
math::mult<Element>, Element>.

Implementation in ConceptGCC

concept CommutativeRing<typename Element>
: Ring<Element>,

MultiplicativeCommutativeSemiGroup<Element>,
GenericCommutativeRing<math::add<Element>, math::mult<Element>, Element>

{};

126

9.3.4 RingWithIdentity

Auto-Refinement of

Ring, MultiplicativeMonoid, and GenericRingWithIdentity<math::add<Element>, math::mult<Element>,
Element>.

Implementation in ConceptGCC

concept RingWithIdentity<typename Element>
: Ring<Element>,

MultiplicativeMonoid<Element>,
GenericRingWithIdentity<math::add<Element>, math::mult<Element>, Element>

{};

127

9.3.5 CommutativeRingWithIdentity

Auto-Refinement of

RingWithIdentity, CommutativeRing, and GenericCommutativeRingWithIdentity<math::add<Element>,
math::mult<Element>, Element>.

Implementation in ConceptGCC

concept CommutativeRingWithIdentity<typename Element>
: RingWithIdentity<Element>,

CommutativeRing<Element>,
GenericCommutativeRingWithIdentity<math::add<Element>, math::mult<Element>, Element>

{};

Models

• int and all other signed integer types.

• Cyclic groups, see. Section 5.

128

9.3.6 DivisionRing

Auto-Refinement of

RingWithIdentity, MultiplicativePartiallyInvertibleMonoid, and GenericDivisionRing<math::add<Element>,
math::mult<Element>, Element>.

Implementation in ConceptGCC

concept DivisionRing<typename Element>
: RingWithIdentity<Element>,

MultiplicativePartiallyInvertibleMonoid<Element>,
GenericDivisionRing<math::add<Element>, math::mult<Element>, Element>

{
axiom NonZeroDivisibility(Element x)
{

if (x != zero(x))
x / x == one(x);

}
};

129

9.3.7 Field

Auto-Refinement of

DivisionRing, CommutativeRingWithIdentity, and GenericField<math::add<Element>,
math::mult<Element>, Element>.

Implementation in ConceptGCC

concept Field<typename Element>
: DivisionRing<Element>,

CommutativeRingWithIdentity<Element>,
GenericField<math::add<Element>, math::mult<Element>, Element>

{};

Models

• float and all other floating point types rounding errors and closure issues
aside.

• std::complex<double>

• Cyclic groups where the size is prime, see. Section 5.

130

Chapter 10

Models

10.1 String Concatenation

STL strings are concatenated using a + operator. The concatenation is asso-
ciative and has an identity element. Unfortunately, the default of identity is not
only incorrect for this operation but also can cause the program to crash (in-
terpreting the 0 as pointer in the string constructor). Therefor, it is crucial to
define a specialized identity.

namespace math {
template<>
struct identity t< math::add<string>, string >
{

string operator()(const math::add<string>&, const string&) const
{

return string();
}

} ;

concept map Monoid< math::add<string>, string > {}
}

131

10.2 Non-Negative Real Values

. As an example of a simple monoid we introduce a class that only allows positive
real numbers (and 0). The concept map for AdditiveCommutativeMonoid implies
amongst others the model declaration of (math::add<positive real>, positive real)
as CommutativeMonoid.

class positive real
{
protected:

double value;
public:

positive real(double m): value(m)
{

if (m < 0.0) throw ”Negative value not allowed!\n”;
}

double get value() const
{

return value;
}

positive real operator+(positive real const& y) const
{

return value + y.value;
}

/∗ ∗/
};

namespace math {
concept map AdditiveCommutativeMonoid<mtl::positive real> {};

}

132

Bibliography

[1] Jean-Camille Birget, Stuart Margolis, John Meakin, and Mark Sapir, edi-
tors. Algorithmic Problems in Groups and Semigroups. Birkhäuser, Boston,
2000.

[2] Rolf Bonderer. ConceptC++ implementation of iterative solvers. Master’s
thesis, ETH Zürich, 2006.

[3] Peter Gottschling. Angel – an extensible library for Jacobian accumulation.
In Proceedings of the 4th International Conference on Automatic Differen-
tiation, Chicago, July 19th–23rd 2004.

[4] Douglas Gregor, Jaakko Järvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos
Reis, and Andrew Lumsdaine. Concepts: Linguistic support for generic
programming in C++. In Proceedings of the 2006 ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications
(OOPSLA ’06). ACM Press, October 2006. Accepted. This is the author’s
version of the work. It is posted here by permission of ACM for your per-
sonal use. Not for redistribution.

[5] Douglas Gregor and Jeremy Siek. Implementing concepts. Technical Report
N1848=05-0108, ISO/IEC JTC 1, Information Technology, Subcommittee
SC 22, Programming Language C++, August 2005.

[6] Douglas Paul Gregor. The ConceptGCC home page.
http://www.generic-programming.org/software/ConceptGCC.

[7] Karsten Henckell and Jean-Eric Pin. Ordered Monoids in J-Trivial, pages
121–137. In Birget et al. [1], 2000.

[8] William George Horner. A new method of solving numerical equations of
alll orders, by continuous approximation. Philosophical Transactions of the
Royal Society of London, pages 308–335, July 1819.

[9] David R. Musser and Atul Saini. STL Tutorial and Reference Guide.
Addison-Wesley, Reading, 1996.

[10] David R. Musser, Sibylle Schupp, Christoph Schwarzweller, and Rüdiger
Loos. The Tecton concept library. Technical report, Fakultät für Infor-
matik, Universität Tübingen, 1999.

133

[11] David R. Musser and Alexander A. Stepanov. Generic programming. In
P. (Patrizia) Gianni, editor, Symbolic and algebraic computation: ISSAC
’88, Rome, Italy, July 4–8, 1988: Proceedings, volume 358 of Lecture Notes
in Computer Science, pages 13–25, Berlin, 1989. Springer Verlag.

[12] Jean-François Raymond, Pascal Tesson, and Denis Thérien. Multiparty
Communication Complexity of Finite Monoids, pages 217–233. In Birget
et al. [1], 2000.

[13] Jeremy Siek. Boost Concept Check Library. Boost, 2000. http://www.
boost.org/libs/concept check/.

[14] Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah Willcock, Jaakko
Järvi, and Andrew Lumsdaine. Concepts for C++0x. Technical Report
N1758=05-0018, ISO/IEC JTC 1, Information Technology, Subcommittee
SC 22, Programming Language C++, January 2005.

[15] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph
Library: User Guide and Reference Manual. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[16] Jeremy Siek and Andrew Lumsdaine. The Matrix Template Library: A
unifying framework for numerical linear algebra. In Parallel Object Oriented
Scientific Computing. ECOOP, 1998.

[17] Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding paramet-
ric polymorphism in C++. In First Workshop on C++ Template Program-
ming, October 2000.

[18] Silicon Graphics, Inc. SGI Implementation of the Standard Template Li-
brary, 2004. http://www.sgi.com/tech/stl/.

[19] Alexander A. Stepanov, Jim Dehnert, and John Wilkinson. Generic pro-
gramming: Arithmetic, 1998. http://www.stepanovpapers.com/gprog/
arith.html.

[20] Bjarne Stroustrup and Gabriel Dos Reis. A concept design. C++ Exten-
sions reflector message c++std-ext-7073, April 2005.

[21] Bartel Leendert van der Waerden. Algebra, Volume I and II. Springer,
1990.

134

http://www.boost.org/libs/concept_check/
http://www.boost.org/libs/concept_check/
http://www.sgi.com/tech/stl/
http://www.stepanovpapers.com/gprog/arith.html
http://www.stepanovpapers.com/gprog/arith.html

	I Description
	Introduction
	Concepts and Models in Generic Programming
	Concept Checking in C++
	Portability to Compilers without Concepts

	Algebraic Concepts
	Concept Categories
	One-operation Concept Overview
	Purely Algebraic and Augmented Concepts
	Magma
	Closure of Operations on Arithmetic Data Types
	CommutativeMagma
	SemiGroup and CommutativeSemiGroup
	Monoid and CommutativeMonoid
	PartiallyInvertibleMonoid
	Group and AbelianGroup

	Additive and Multiplicative Concepts
	Default Functors and Functions
	Relating Operator and Functor-Based Concepts
	On Multiplicative Concepts

	Two-Operation Concepts
	Default Model Declarations
	Default Declarations for Standard Arithmetic Types
	Restricting Model Declarations for Operations

	Examples
	Generic Power Function on Various Algebraic Concepts
	Generic Power Function on Magmas
	Generic Power Function on Monoids
	Generic Power Function on Semi-Groups
	Generic Power Function on Groups
	Generic Power Function on Partially Invertible Monoids
	Test Case: Power Function on Non-Negative Reals

	On the Granularity of Template Function Constraints
	Generic Reduction Implementation
	Arithmetically Correct Loop Unrolling with Concept Verification
	Handling Inaccurate Arithmetic

	Value-Based Model Declarations
	Modular Arithmetic
	Algebraic Structure of Cyclic Groups
	Concept-Based Invertibility Test

	Theory of Conceptual Restriction
	Definitions
	Model Set Inclusion of Concepts with Different Arities
	Refining from Concepts with Lower Arity
	Refining from Concepts with Higher Arity
	General Type Inclusion for Concept Refinement
	General Type Inclusion in Concept Restriction

	Implicit Model Declarations
	Model Implication Rules
	Case Study: Vector Space
	Design of Restricting Concepts based on Model Implication
	Model Implication of Non-Restricting Concepts

	Comparison between Refinement and Requests

	Conclusions

	II Concept Specifications
	Single-Operation Concepts
	Purely Algebraic Concepts
	Commutative
	Associative
	SemiGroup
	Monoid
	Inversion
	Group
	AbelianGroup

	Augmented Algebraic Concepts
	Magma
	CommutativeMagma
	SemiGroup
	CommutativeSemiGroup
	Monoid
	CommutativeMonoid
	PartiallyInvertibleMonoid
	PartiallyInvertibleCommutativeMonoid
	Group
	AbelianGroup

	Concepts for Additive Algebraic Structures
	AdditiveMagma
	AdditiveCommutativeMagma
	AdditiveSemiGroup
	AdditiveCommutativeSemiGroup
	AdditiveMonoid
	AdditiveCommutativeMonoid
	AdditivePartiallyInvertibleMonoid
	AdditivePartiallyInvertibleCommutativeMonoid
	AdditiveGroup
	AdditiveAbelianGroup

	Concepts for Multiplicative Algebraic Structures
	MultiplicativeMagma
	MultiplicativeCommutativeMagma
	MultiplicativeSemiGroup
	MultiplicativeCommutativeSemiGroup
	MultiplicativeMonoid
	MultiplicativeCommutativeMonoid
	MultiplicativePartiallyInvertibleMonoid
	MultiplicativePartiallyInvertibleCommutativeMonoid
	MultiplicativeGroup
	MultiplicativeAbelianGroup

	Algebraic Structures with Two Operations
	Purely Algebraic Concepts
	Distributive
	algebra::Ring
	algebra::RingWithIdentity
	algebra::DivisionRing
	algebra::SkewField
	algebra::Field

	Augmented Concepts
	GenericRing
	GenericCommutativeRing
	GenericRingWithIdentity
	GenericCommutativeRingWithIdentity
	GenericDivisionRing
	GenericField

	Operator-Based Concepts
	Operator-Based Concepts
	Ring
	CommutativeRing
	RingWithIdentity
	CommutativeRingWithIdentity
	DivisionRing
	Field

	Models
	String Concatenation
	Non-Negative Real Values

