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representation of the continuation or global context in
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for the conversion of a propositional formula to conjunctive
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1. Introduction

The notion of program transformation is a programming
paradigm which combines the notion of stepwise refinement
[4, 10, 29] with traditional optimization techniques. Under
this paradigm, one writes a clear, correct, though possibly
inefficient, program, and then transforms it via correctness-
preserving transformations into a program which is more
efficient although probably less clear. Some of the classes
of program transformations are: 1local simplification, partial
evaluation (or unfolding), abstraction (or folding), and
generalization [28]. The generalization transformation
replaces a function by some generalization which may be
more amenable to subsequent manipulations. Typical gener-
alizations include the introduction of additional variables
or the extension of a function to deal with a list of
inputs. Typical strategies for generalization involve
pattern-matching between compatible but non-identical
goals [1, 2, 28].

In this paper we present a different strategy for

generalizations: the use of continuations. A continuation

is a data structure which represents the future course of
a computation. The use of continuations makes the global
context of a computation available in the local context,
and therefore allows the standard local transformations to
use this global information. Our strategy is to obtain

tractable closed forms for continuations. By studying the
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interactions between a function and its continuation,
useful transformations can be made.

Many of these transformations are probably familiar to
assembly-language programmers, since the machine-level
programmer usually has access to a continuation variable:
the run-time stack. Despite this fact, we belleve that our
account of these techniques is useful, since it liberates
them from the realm of undocumented "coding tricks" and
transports them to the source-language level where they can
be used by a wider class of programmers. Furthermore, we
will see that such heuristics as "add an accumulator" or
"generalize to a list of arguments" may be derived from
transformations on continuations, rather than being merely
instances of isolated cleverness.

Section 2 of this paper presents our source language
(a dialect of LISP) and our major method of proof, subgoal
induction [16]. Section 3 illustrates the notion of a con-
tinuation and presents examples of the kind of manipulations
that are performed on them. In Section 4, these techniques
are applied to the problem of a binary (or tree-structured)
recursion pattern. 1In Section 5, our techniques are applied
to two moderate-sized examples: the a-B tree search algorithm
and the conversion of propositional formulas to conjunctive

normal form. Section 6 presents a summary and conclusion.



2. Preliminaries

In this section we will describe our language, a
syntactically-sugared dialect of LISP, and we will describe
the verification method we will employ, the method of
subgoal induction [28].

2.1 The Source Language

We define functions by recursion equations, e.g.
F(x,y) <= if p(x) then y ;this is a comment
else a(b(x), F(e(x), ¥))

This style of definition has a long history [12, 15, 21].
We will often use sets of simultaneous recursion equations.
We will usually use upper-case for the names of functions
we are defining (e.g. F above) and lower-case for functions
which are assumed elementary (e.g. a, b, ¢, and p above).
Such functions will often be left unspecified. We refer
to these functions as trivial and to the ones we define
by equations as serious [19]. Occasionally we will use the
arithmetic functions, which we write in infix notation.
End-of-line comments are preceded with semicolons. Side-
effects are not permitted.

We will have occasion to use list-processing, for which
we use notation adapted from [7]. If x, y, and 2z are
variables, [x y z] denotes a list whose three elements are
the values of x, y, and z. If the value of y 1s a list
of N elements, then the value of [x ! y] is a list of N+l

elements whose first element is x and the rémainder of
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whose elements are those of y. We use hd and t% to

select the first'elémént of a list and its remainder;

thus
hd([x ! y]1) = x
ta(lx ! y1) =y
hd([x y Z]) = X
te([x y 2]) = [y 2]

Similarly, [x y ! z] denotes a list whose first two elements
are equal to x and y, and whose remainder is equal to z.
[] denotes the empty list. The function append(x,y)
concatenates two lists non-destructively; append is asso-
ciative, so we will sometimes write append(x,y,z).
We will also occasionally use temporary functional
objects passed as arguments. Such objJects, called closures,
are created using A-notation. For example, the definition
F(x,y)<= MAPHD(Az.[x ! z], ¥y)
MAPHD(f, x)<= 1if x = [] then []
else [f(hd(x)) ! MAPHD(f, t2(x))]
passes a functional object as a parameter to MAPHD. The value
of x inside the closure is the value at the time the closure
was created; that is, we use lexical or static scoping
[17, 26]. Thus F(3, [[1] [2] [3]]) evaluates to
[[3 1] [3 2] [3 3]]. MAPHD is a generally useful function which

we shall take as primitive. Another useful function is



MAP! which is defined as
MAP!(f, a; x) <& iﬁ_x = []'Egég.a
else f(hd(x), MAP!(F, a, £2(x)))
where f 1is a function of two arguments; MAP!(sum, 0, X)
returns the sum of the elements of x.

2.2 Subgoal Induction

Our major method for proving properties about recursion
equations is the method of subgoal induction [16], which is
an easily-understood refinement of earlier methods [14, 15].
For each serious function, F(x,y), we introduce an input-
output specification wF(x,y;z) which is a condition on the
input parameters x, y and the output value 2. The
principle of subgoal induction states that if the verification
conditions (which we are about to describe) are true, then
the function satisfies i1ts specifications, that is, if F
halts on input (x,y), then wF(X, v, F(x,y)) 1s true.
There 1s one verification condition for each branch of the
equation. The verification condition for each branch has
the form A&B&C=>D, where A is the condition for taking
that branch, B says that all serious function calls on
this branch satisfy their specifications, C says that
equal arguments to a serious function give equal answers,
and D says that the final value on this branch satisfies
the desired specification. New variables are introduced

throughout to eliminate all occurrences of serious function



symbols. For example,
F(x)<= if p(x) then a(x)
else B(F(L(x)), F(r(x)))
produces the verification conditions
¥V x[p(x)=> ¥(x; a(x))]
\;f:xi?.f;zl ‘-3"22 [~p(x) & p((x); z;) & W(r(x); z,) &
[2(x)=r(x) => z,]
=> P(x; b(z,,2,))]
In the second condition, the second and third conjuncts
comprise formula B. The "functionality" condition C is
not used in this paper, but is useful for specifications
which would otherwise be too weak to support the induction.
Extensions to multiple equations are obvious, as are those
to multiple-valued and nondeterministic functions [10, 22].
In our experience, this method is a powerful and natural
method for explalining the correctness of recursive programs.
While subgoal induction 1s a partial correctness method,
it can be extended to prove total correctness by including
a performance measure in the specifications, just as the

inductive assertion method can be so augmented [11].
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3. Manipulating Continuations

To illustrate the notion of a continuation, let us
consider a function which reverses a list:

REV(x)<= 1f x = [] then [] (3.1)

else append(REV(t&(x)), [hd(x])

If REV is called with a non-nil list x, it proceeds to
call REV on t2(x); given the value of REV(t&(x)), say w,
the resulting answer is append(w, [hd(x)]). Another way of
expressing this idea is that the function Aw.append(w, [hd(x)])
is applied to the argument REV(t&(x)). The function

Aw.append(w, [hd(x)]) is called the continuation

(5, 6, 19, 20, 22, 23, 24, 26]. We can use this idea to

rewrite REV in the so-called continuation-passing style:
-

REV2(x)<=REVC(x,Az.z)

REVC(x,Y) <= ;=Y(REV(x)) i - {3.2)
if x = [] then v([1)
else REVC(t2(x), Aw.y(append(w, [BE(x)1)))
Here the intended input-output specification is included
as a comment.
In order to fix our ideas about subgoal induction as a
déviee for program explanation/verification, let us prove:
Proposition 3.1 REVC(x,y) = Y(REV(x)).
z) is z = Y(REV(x)).

Proof: The specification WREVC(X’ s

3= may be read "is intended to equal"
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The verification conditions are:

(1) Ga=l1). = Ypppes (%s 33 TIDHE

and (ii) (x = [1)& VrEvE (t2(x), Aw.y(append(w,[hd(x)]1)); z)
=> Ypoye (X, 75 2)
Substituting the definition of wREVC’ we have to show

(1)  (x=[1) => (y([]1) = v(REV(x)))

(1i) (x=2[1) & (z = (Aw.y(append(w, [hd(x)1)))(REV(tL(x))))

=> (z = Y(REV(x)))
Verification condition (i) follows immediately from the
definition of REV. Condition (ii) is proved as follows:

(x2[1) & (z = (Aw.Xx(append(w, [hd(x)]))) (REV(t2(x)))

=> (x2[]) & (z = y(append(REV(t2(x)), [hd(x)])) (B-reduction)#¥

=> 'z = Y(REV(x)) (def. of REV, using x=[1]).

The use of subgoal induction lets us prove the correctness
of REVC essentially "line by line", referring to the definition
of REV and doing some simple manipulations. Henceforth,
proofs of this sort will be left to the reader; the relevant
input-output specification will be included as a comment.¥*¥
Similarly, it is evident that if REV terminates (which it
always does), then so does REVC. This may be proved by
- considering the performance specification
wREVC (x, v; 2) = if y occurs as a first argument to REVC

during the computation of REVC(x, 7Y),
then y occurs as a first argument to

REV during the computation of REV(x).

* =
The operation of B-reduction replaced an expression of
the form (Av.t)a by t, with a substituted for all

free occurrences of wv.

%% ]
Just as one should include one's invariants asi comments.
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A brief consideration of the usual operational semantics of
recursion equations (using, say, call-by-value) reveals
that this specification is inconsistent with non-termination.
Similar arguments throughout will be left %to the diligent
reader.

Let us now make another observation about the operational
semantics of REVC: In the computation of REV2(x), every
value of vy supplied to REVC is of the form Av.append(v,a)
for some a. TQ prove this, we observe that Az.z 1s of this

form (with a = []), and if y = Av.append(v, a), then

Aw.¥ (append(w, [hd(x)1]))

Aw. ((Av.append(v, a))(append(w, [hd(x)]))) (def. of ¥v)

= Aw.append(append(w, [hd(x)]1), a) - (B - reduction)

= Aw.append(w,append([hd(x)], a)) (associativity)

= Aw.append(w, [hd(x) ! al) (fact about
append)

Hence, instead of carrying around the function vy, we
can carry around the list a which represents it. Instead
of writing +vY([]), we can write append([],a) or Jjust a.
This gives us:

REV3(x) <= REVC3(x, [1)

REVC3(x, a) <= ; = append(REV(x), a)

if x = [] then a ? (3.3)
else REVC3(t&(x), [hd(x) ! a]) ‘
which is just the usual "iterative reverse with accumulator.™

This leads us to our key observation: An accumulator 4s

often fust a data structure representing a coniinuation
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5unction.(f} Data structures representing functions of

some restrictéd type are widespread: A closure is of course
a data structure; an association list is a representation
of a function from keys to values when the keys are atoms(**);
and the run-time stack is a machine-level representation of

the top-level continuation [e.g. 19, 26]. Indeed, the identifier
environment in which a program is run can be any data struc-

ture which can be used to map keys to values; even the

form of the keys can be made arbitrary by pre-processing

(see [22]).

E
( )It would be nice to turn this observation into 2 theorem

by replacing the word "often" by "always". That, unfortunately,
would require a formal definition of an "accumulator,™ which is

quite beyond the scope of this paper.
(**) e = =30 g e
If more 1s known about the function, then a more finely
optimized representation may be used e.g. a binary search
tree.
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F(x) <=

if p(x) then a(x)
else b(F(e(x)), d(x))

where b 1s assoclative, with right identity 1 is replaced

b}
by
F'(x) <= FC(x, 1b)
FC(x, y) <= 3 = b(F(x), v)
if p(x) then b(a(x), ¥)

else FC(c(x), b(d(x), v))

Figure 3.1 Replacement of associative continuation-

builder by accumulator

It is worthwhile to state Proposition 3.1 as a general
transformation (Figure 3.1).

Proposition 3.2 In Figure 3.1, F'(x) = F(x).

Proof: By subgoal induction on FC. The interesting

case is ~p(x):

Bo (%, v = Poletx), vldlx}, v))
= b(F(ec(x)), b(d(x), Y)) (IH)
= b(b(F(e(x)), d(x)), ¥Y) (associativity
of b)
= b(F(x), v) (definition
of F) &

This transformation is well-known; what is new in our
discussion is the relationship between the accumulator and

the continuation.
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Similar transformations for the non-assoclative case have
been considered by Strong [25]. Let us take, for an example,
McCarthy's 91-function:

F(x) <= (3.4)

if x>100 then x-10 else F(F(x+1l1))
In continuation form this becomes:
F2(x) <= F2-C(x, Az.z)
F2-C(x, v) <= ;=Y(F(x)) (3.5)
if x > 100 then y(x-10)

else F2-C(x+11l, Aw.y(F(w)))

Here again, we can obtain a closed form for the continuation:

it is always of the form Aw.F(F(F....(w))) for some number

of F's. Hence we can represent the continuation by a
counter, Unfortunatély, 1t is more difficult to simulate
y(x-10) in this representation. To do this we write a
special function F3-SEND which simulates functional application
for thé given representation of the continuation:
F3(x) <= F3-C(x, 0)
F3-C(x, 1) <= ;=r' 1) (5(x)) (3.6)
if x > 100 then F3-SEND(x-10, i)
else F3-C(x+11, 1+1)
F3-SEND(v, 1) <= ;=F'1)(v)
if i=0 then v 5 The identity continuation
else F3-C(v, i-1)

(Compare [13, Problem 3-5]).
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When less is known about the continuation-builders,

then the representation of the continuation will perforce
In previous work, we have considered the

be less compact.
Another case,

case where nothing whatsoever is known [27].
also studied by Strong [25], is that of a single continuation-

builder with a parameter:
F(x) <= (3T
if p(x) then a(x)
else if q(x) then F(b(x))
else c(d(x), F(e(x)))
Introducing continuations, we get
F2(x) <= F2-C(x, Az.z)
F2-C(x, y) <= ;=Y (F(x)) (3.8)
if p(x) then y(a(x))
“else if q(x) bhen F2-C(b(x), v)
else F2-C(e(x), Aw.y(c(d(x), w))) |

know a closed form for the continuation:

Here again, we
Aw.c(al, c(a2,.., c(an, w))).
We can represent this continuation by [an an_l...al], giving:

F3(x) <= F3-C(x, [1)

F3-C(x, y) <= H}
i

if p(x) then F3-SEND(a(x), ¥y)
(3.9)

else if q(x) then F3-C(b(x), Y)
else F3-C(e(x), [d(x) ! v1]) f

<=

F3-SEND (v, ¥)

i
i
]
i

{
i

[
|
i
|

if y=[] then v
else F3-SEND(c(hd(y),v), t2(y)) —dj
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This is the well-known technique of replacing a single return
address by a data stack [10,25]*. We chose to reverse the
ai's in the representation of the continuation so that the
transformations of building and decomposing the continuations
would be easily implemented in our list processing primitives.
The correctness proof for (3.9) is not quite so straight
forward as that for (3;8). In (3.8) we had the specification
F2=C{x, ) Y(F(x)); In (3.9), Y is no longer a function
but is rather its representation. Hence the corresponding
specification is F3-C(x, y)=F3-SEND(F(x), v).

Proposition 3.3 For all x and y, F3-C(x, yv)=

F3-SEND(F(x), Y).

Proof: By subgoal induction on F. If p(x), then
F3-C(x, y) = F3-SEND(a(x), v) (def. of F3-C)
= F3-SEND(F(x), v) (def. of F).

Otherwise, if q(x), then

F3-C(x, Y) = F3-C(b(x), ¥) (def. of F3-C)
= F3-SEND(F(b(x)), V) (IH)
= F3-SEND(F(x), ¥) (def. of F).

: :Note that in the original definition of F there were two
recursive calls on F. The first of these, however, was tall-
recursive, and so corresponds to the identity transformation
on continuations. Similarly, tail-recursive lines could be
added to any of our examples without requiring global modi-
fications.
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Otherwise,

F3-C(x, v) = F3-C(e(x), [d(x) ! v]) (def. of F3-C)

F3-SEND(F(e(x)), [d(x) ! y1) (IH)

F3-SEND(ec(d(x),F(e(x))), v) (def. of F3-SEND)

F3-SEND(F(x), Y) (def. of F). B

Proposition 3.4 F3(x) = F(x)

Proof: F3(x) = F3-C(x, []) = F3-SEND(F(x), []) = F(x). &
By viewing these transformations as data-structure opti-
mizations on continuations, we can consider other cases.
We can use interactions between different continuation-build-
ers to find closed forms for continuations;' The use of
assoclativity was a primitive example of this and another
example appears in Section 5.2. Alternatively, we can use
local continuations to represent parts of the global state,
relying on the run-time stack to do the rest. Let us consider
the following example:
G(x) <=
~if p(x) then a(x)
else if q(x) then b(G(e(x)))
else dA(G(2(x)), G(r(x)))
where b distributes through d, i.e.
b(d(x, y)) = d(b(x), b(y))
We can then introduce a counter for the b-builder:
G2(x) <= G2-C(x, 0)
G2-C(x, 1) <= ;= v (acx))
if p(x) then G2-SEND(a(x), i)
else if q(x) then G2-C(ec(x), 1+1)

else ?
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The desired value in the place of the question mark is
b(i)(d(G(i(x)), G(r(x))). By the distributive law, this
is equal to d(b(i)(G(R(x))), b(i)(G(r(x)))) = d(G2-c(2(x), 1),
G2-C(r(x), 1))
Thus we get -
Ge-C(x, i) <= ;=b(i)(G(X))
if p(x) then G2-SEND(a(x), i)
else if q(x) then G2-C(c(x), i+1)
else d(G2-C(2(x), i), G2-C(r(x), 1))
G2-SEND(v, i) <= s=0 1) (v
if 1=0 then v
else G2-SEND(b(v), i-1)

Although the conditions for this transformation look
somewhat restrictive, they arise in both the large examples
we will do later. The result of this transformation is not
yet in iterative form C18Ts as the previous examples
all were, but it has only a single line with a non-trivial
continuation-builder, and is therefore in a good form for
further transformations. In the next section we consider
some transformations applicable to binary recursion patterns

such as this.
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4, Nonlinear Recursions

The préVious example showed how the user can retain
control over the representation of portions of the continua-
tion while allowing the run—-time stack to handle the
"messier" portions, such as return addresses. In this sec-
tion we will consider the case of nonlinear recursion
patterns in more detail. 1In ﬁarticular, we will examine
the recursion equation

F(x) <=

if p(x) then a(x) (4.1)

else b(F(2(x)), F(r(x)))

where b 1s an assoclative operation with an identity. We
wlll see how one may use accumulators here without falling
back on asslignment, and how a non-pessimizing interpreter
will in fact mimic rather clever hand-compiled code. Last,
we wlll see why in this situation one is led to consider the
generalization "take a list of arguments", or

AL.MAP!(b, 1, MAP(F, %))

b ?
(a quite mysterious generalization!), and why this is usually
wrong.

We have written the equation (4.1) to suggest the traversal
of some binary tree [10], where the trivial functions & and
r select the left and right subtrees. In terms of attribute

grammars [8] F computes a synthesized attribute, as do the

original examples of the last section. A continuation, however,
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is a summary of the tree above the current node, and is

therefore an inherited attribute. (See Figure 4.1)

value continuation
¢ value
AR -
\\ 1
\ |
o ® .4

(a) (b)
Figure 4.1 Attribute-grammar patterns for recursion
equations.
(a) Nonlinear recursions.
(b) Linear recursion in continuation-passing
style.

From our programming knowledge, we can observe that we
would like to implement equation 4.1 with an accumulator.
The attribute-grammar pattern for this Implementation is
shown in Figure 4.2.

X

key:

/ < accumulator - in
& accumulator - out

Figure 4.2 Attribute-grammar pattern for nonlinear
recursion.
How can we write this information flow pattern as a

term in a recursion equation? If we set G(x, v) = b(wv, P(x)),
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compiled code above. We refer to this phenomenon as
evlis-tail-recursion.(*)

We can still do better by hand, however, since we can
take advantage (as an interpreter cannot) of the fact that
there is only a single function symbol which is stacked,
namely G2. In other words, we have a single continuation-

builder with a parameter, and so we can apply the trans-

formation of the preceding section to get our third version:

F3(x) <= G3(x, s [l
G3(x, v, y) <= |
if p(x) then SEND3(b(v, a(x)), ¥) "L
else G3(&(x), v, [r(x) ! vD) 7 (4.3)

1
i

SEND3(v, y) <=

i
kl
i

if y=[] then v

j._!‘
else G3(hd(y), v, t2(Y)) |

"

The transformation from (4.2) to (4.3) differs from the
transformation from (3.7) to (3.9) only in regard to the
else line (setting q(x)=false in (3.7)). Let us check this

verification condition.

Proposition 4.1 G3(x, v, Y) = SEND3(G2(x, V), Y)

Proof: We proceed by subgoal induction on G2. The only
verification condition which differs significantly from those
in Proposition 3.3 is the last, the case where p(x) is
fakse. The verification condition is

~p(x) & sz(ﬁ(x), v zl) & wGé(r(X), zZy 22) =3 wG2(x, V3 22)

%
( )The idea of evlis-tall-recursion was discovered jointly
with D.P. Friedman and D.S. Wise. Like tail-recursion, evlis-tail-
recursion can dramatically improve the space performance of many

programs.
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(Here we have ignored the superfluous functionality

condition). Assuming thé hypotheses, we calculate:

]

G3(x, v, y) = G3(2(x), v, [r(x) ! v1D) (def. of G3)

1}

SEND3(G2(&(x), v), [r(x) ! v]1) (IH)

]

a3(r(x), G2(2(x), v), ¥) (def. of SEND3)

SEND3(G2(r(x), Gz(g(x); %31 5 Y ICIR)

SEND3(G2(x, V), Y) (def. of G2)B

Proposition 4.2 F3(x)=F(x).

Proof: F3(x)=G3(x, 1., [1)=SEND3(G2(x, 1,), [1) =
G2(x, lb)=F2(x)=F(X). B

Equations (4.3) are in iterative form [12] and so do
not require use of the run-time stack. Note that G3 and
SEND3 are mutually tail-recursive; this corresponds to
the use go-to's in the iterative code. Since we have derived
this program from a more structured one by provably correct
transformations, we conclude that here the use of the go-to
is permissible [10]. While this code uses the go-to, the
correctness proof bears little, if any, resemblance to a
correctness proof for (4.3) using the inductive assertion
method. The structure of the proof followed not the "object
code" (L4.3) but rather the "source code" (4.2), and is hence
much easier.

Some other observations about (4.3) concern the sole
appearance of b. Its second argument is a(x), where
p(x) is true. If b 1s a user function which is complicated

but known to be associative, it may be optimized to take
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advantage of this fact. (We will use this later).
Furthermore, the values of v aré all of the form
b(b(b(lb,al),..,aﬂ). Hénce this version is most suitable
for b's which prefér to associate to the left. For b's
which are cheaper to associate to the right (like append),
one can get a similar program based on G(x,v) ;=b(F(x),v).
Furthermore, we can take advantage of the way the values
of v are built. If b is, say, conjunction, and some
a(x) comes out false, then we can exit immediately, rather
than calling SEND3 again. Note that this may cause F3 to
converge when the original F diverged!

We next consider some transformations which we might
use to restore some "structure" to the "go-to" program
(4.3). We first observe that for any t and u,

SEND3(v,Lt u ! v]) = 63(t;v,[u ! v]1)
by unwinding the definition of SEND3. We unwind the call
to G3 in the definition of SEND3 to get

SEND4 (v, y) <= 3=SEND3(v, v)

if ¥+ = [1 then ¥
else if p(hd(y)) then SENDA(b(v, a(hd(y))), t2(y))

else G3(2(hd(y)), v, [r(hd(y)) ! t2(y)1)
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Using the previous identity we get our next version:
FA(x) <= SENDA(1_, [x]) 'r&}
SEND4(v, y) <= ;= SEND3(v, ¥y) (4.
if y = [] then v \%w

else if p(hd(y)) then SENDA(b(v, a(hd(y))), t4(y))

4)

else SEND4(v, [2(hd(y)) r(hd(y)) ! t2(y)1)
Note that SEND4 is just a while-loop arnd may therefore
be claimed to be "more structured" than (%.3), which requires
unrestricted gotos.

Proposition 4.3 SEND4(v,y) = SEND3(v,y)

Proof: By subgoal induction on SEND4. B

Proposition 4.4 Fl(x) = F(x)

Proof: FH(x) = SEND4(1_, [x]1) = SEND3(1_,[x]) =
G3(x, 1,,[1) = F3(x) = F(x). ®

We may further transform (4.4) by observing that SENDY
treats its first argument as an accumulator and is therefore
the target of a transformation like that of Figure 3.1. We
invert the transformation to get

F5(x) <= SEND5([x]) g

SEND5(y) <= 3
i

b N (4.5)
else 1if p(hd(y)) then b(a(hd(y)), SEND5(t2(y)))

if y=[] then 1

else SEND5([£(hd(y)) r(hd(y)) ! t2(y)])

Prdpdsiﬁioﬁ 4.5 SEND4(v,y)=b(v, SEND5(Yy))
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Proof: By induction on SEND5. @

'Proﬁositioﬁ M.6 F5(x) = F(x)

33993: F5(x) = SEND5([x]) = b(1,_, SEND5([x])) =
SENDA4(1,, [x]) = Fi(x) = F(x). ®

SEND5 is the generalization of F to take a list of
arguments instead of a single argument -- a generalization
which seems & priori non-obvious. If, however, one set about
to optimize SEND5, one would first introduce an accumulator
for the associative builder on the p(hd(y)) 1line. One
might then observe that after the final call to SEND5,

Y 1is guaranteed to be unequal to [], and therefore intro-
duce an inner loop to avoid the +y=[] test. One might
then spread hd(y) in a separate register. The result

of these changes would be nothing other than (4.3).

One last note is in order. If one has an equivalence
relation R on the data objects, and one is willling to
weaken Proposition 4.6 to "F5(x) and F(x) are equivalent
modulo R", then b need not be associative: one needs only

that b(x,b(y,z)) and b(b(x,y),z) are equlvalent modulo R.
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5. Examples

In this section, wé shall do two fair-sized examples:
a-B tree searching and thé conversion of formulas of prop-
ositional logic to conjunctivé'normal form.

5.1 a-B Tree Searching

We wish to do minimax searching of a game tree. We assume
that every node is either a leaf node with a numeric value
or else has associated with it a non-null 1list of sons.
We have two functions, F+ and F , which seek to maximize
and minimize the values associated with a node:

F+(X) <=

if leaf?(x) then value(x)

else max(MAPHD(F , sons(x)))
F(x) <= % [5.1.2)
if lead?(x) then value(x) |

else min(MAPHD(F+, sons(x)))

J

e

Our first step 1s to eliminate the instances of MAPHD
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by standard transformations [2]:
Fot(x) <=
if leaf?(x) then value(x)
else G2 (sons(x))
a2t (2) <=
1f £2(2) = [] then F2™(hd(1))
else max(F (hd(2)), G2t(t2(2)))
F2  (x) <=
i£ leaf?(x) EEEE value(x)
else G2 (sons(x))
G2 (R) <=
CAf £8(R) = [T then F2T(nd(2))
else min(F2t(na(e)), a2 (ta(2)))

We notice that we have two associative

(5.1.2)

continuation-

builders, max and min. Furthermore, under reasonable condi-

tions they commute with each other:

Proposition 5.1.1

(1) If oa=<B, then max(a,min(B,v))= min(B, max(a,v))

(ii) If o<B, then azmax(a, min(B,v))<B

(iii) max(v, min(x,y))

(iv) min(v, max(x,y))

min(max(v,x), max(v,y))

max(min(v,x) ,min(v,y)) ®
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We therefore consider the conditional generalization:

F3'(a,8,%) <= ;=max(a,min(g,F2%(x))) if =B
if leaf?(x) then max(d, min(Rg, valué(x)))
g;ég 63" (a,B,s0ns(x))
637 (a,8,2) <= ;=max(a,min(8,G2%(2))) if a<p
if £2(%) = [] then F37(a,B,hd(8))
else max(a,min(8,max(F27(hd(L)), G27(£2(2))))))
and the simultaneous symmetric generali%ation for the pair
of minimizing functions. Using the associative and dis-
tributive laws 5.1.1 we obtain
max(d,min(B,
max(F2~(hd(2)), G2 (£2(2))))))
= max(max(o,min(B,F27(hd(2))))
max(a,min(8,62* (££(2)))))
= max(F3 (a,B,hd(L)),
max (a,min(B8,627 (£2(2)))))
Introducing a help function for this continuation of F3,
we obtain:
4" (a,8,2) <= 3= 637(a,8,2)
if t2(2)=[] then F3 (a,B,hd(L))
else HA"(a,8,52(2), F3™(a,B,hd(2))))
HH+(a,B,2,v) <= max(v, max(a,min(B,G2+(£))))
But as<v<B, so
max (v, max(d,min(B,G2f(£))) =

if w2z B then v else max (v, min(B,G2+(R)))
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Substituting this for HY, ;1 reach
F5+(a;8,i) <=
if leaf? (x) Eggﬁ_max(d;min(s,valué(x)))
glgg_G5+(d,B,sons(x))
65" (a,8,2) <=
if t2(2) = [] then F5 (a,B,hd(2)))
else H5" (a,8,5%(2), F5 (a;8,hd(2)))
H5" (0,8,8,v) &=

if v > B then v else G5 (v,B,2)

and the simultaneous corresponding minimizing functions.
Here H5 performs cut-off.

This example is interesting because a-8 cutoff is
usually justified by referring to a picture of the global
tree, rather than by a program transformation argument [9].
Indeed, a possible criticism of recursive procedures is that
they induce a premature contraction of the state space; in
this example, the choice of state space inherent in the
original version (5.1.1) would seem to preclude the intro-
duction of insights derived from the global state. Here,
however, the continuation variable supplies precisely what
is needed: a window allowing the global state to be included
in the local state. (In retrospect, this might have been
expected, since the true state space of a set of recursive
procedures includes the run-time stack as a ghost variable.
It is surprising nonetheless that this state i1s accessable

in comprehensible form at the source le¥el [181) -
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5.2 " Conjunctive Normal Form

Given a formula of the propositional calculus involving
implication; négation, binary conjunction, and binary dis-
Junction, we are asked to produce a formula logically
equivalent to the original and which is in conjunctive
normal form (e.n.f.) [3], that 1s, of the form

Cl &02&..&Cn

where each Ci (called a clause) is of the form

where each ﬁj (called a literal) is a propositional variable
or its negation. Traditionally, such a formula is produced
by first removing implications and then driving negations
inwards, via the rules:

A =>DB -> ~A v B

~(A&B) -> ~f v ~B
~(AVB) -> A & ~B
e i -> A

Then the distributive law
(A&B)YC -> (AVC)&(BVC)
and its variants are aplied until the task is completed.
Removing implications and driving negations inwards are
straightforward programming tasks;distribution seems somewhat
harder, since it is not immediately clear how one can do
better than say "search the'éntire'formula for a possible

rewrite". Furthermore, one must switch at some point from
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binary operations to n-ary operations; this conversion
1s not discussed in the standard sketch of the algorithm.
We will therefore concentraté'on the distribution task.
We will assume thé input formﬁlas aré'given in some
abstract form, but we will use a concrete represéntation
for the output formulas: a olaﬁse is a 1list of literals,
and a formula is a list of clauses.
We make the following try at a program*.
CNF1(x) <=
if literal?(x) then [[x]] (5. 2.1)
else if conj?(x) then append(CNFLl(opl(x)), CNFlfop2(x)))
else if disj?(x) then DISTR(CNF1(opl(x)), CNF1l(op2(x)))
where DISTR is function (yet to be written) which performs
approximately as follows:

DISTR (0 &..&C_,Dq &..8D_) = (¢, vDy )&(cl sz)&...&(cnva)
taking two formulas in c.n.f. and returning the nxm clauses in
the c.n.f. of their disjunction. Such a funection looks 1like
it would take some care to code correctly; furthermore, it
would seem to involve considerable recopying of lists with
the attendant inefficiency. We Observe, however, that the
specifications for DISTR require that it be associative
(at least up to logical equivalence), with [[]], the false

formula, as an identity, so we can use the transformation

i*iHere we use "else if disj?(x) thén..."'rather than
"elge..." to remind the reader of the conditions under which
the final clause is executed.
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of the last section, getting
CNF2(x) <= G2(x,[[1]1,[1)
G2(x,v,Yy) <= ;=S2(DISTR(v,CNF1(x)),Y)
if literal?(x) then S2(DISTR(v,[[x11),Y)

{5.:8.9)
else 1if con]?(x) then S2(DISTR(v,

append (CNF1(opl(x))

CNF1l(op2(x)))),

¥)
~else 1f disj?(x) then G2(opl(x), v, [op2(x) ! vI1)

S2(vw.,y) <=

if y=[] then v

else G2(hd(y),v,t2(y))

Here we regard CNF1l as a "trivial" function——thouéh we
must, of course, eliminate it before we are done!

We now note that DISTR(X, append(Y,Z)) = cnf(Xv(Y&Z))*

enf ((XvY)&(XvZ)) = append(DISTR(X,Y), DISTR(X,Z)), where

I

denotes logical equivalence among representations of cnf

I

formulas. So the conjunction branch may be simplified to
S2(append (DISTR(v,CNF1l(opl(x))),
DISTR(v,CNF1l(op2(x)))),

Y)

fh&re enf(¥) means "some ceuri.f. of X" rather than the
e.n.f. produced by some par-tieular progran.



We can achieve a fold if we can prove:

Proposition 5.1 S2(append(x,y),Y) = append(S2(x,y), S2(y,y))

Proof: We consider
S2' (v,y) <= 3= S2(v,y)
if y = [] then v
else 82'(DISTR(v,CNF1(hd(y))), t2(2))

S2 '(v,y)=82(v,y) follows by subgoal induction on S2!
using the fact that G2(x,v,v) = S2(DISTR(v,CNF1(x)),Y).
We then prove the proposition.CVX,y)[SE'(appénd(x,y),y) =
append(SQ'(x;y); 82'(y,f))] by induection on y. If «vy=[],
then both sides equal append(x,y).‘ If wy=2[], then

S2' (append(x,y),Y)

S2' (DISTR(append(x,y), CNF1(hd(y))),t2(y))

I}

S2'(append(DISTR(x,CNFl(hd(Y)), DISTR(y,CNF1(hd(y)))),

t2(y)) (by the argument above)

I

append (S2' (DISTR(x,CNF1(hd(y))), t2(y))

S2'" (DISTR(y,CNF1(hd(y))), t2(y))) (by IH)

]

append(S2'(x,y), S2'(y,y)). ®H

By Proposition 5.1, we can simplify the conjunction branch to
append (S2 (DISTR(v,CNF1(opl(x))),Y),

52 (DISTR(vV,CNF1l(op2(x))),Y))
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which we fold with G2 to obtain:

CNF3(x) <= G3(x,[[1],[1) \

G3(x,v,y) <= ;=S3(DISTR(vV,CNF1(x)),Y)
(5+2:3)

r--"'""”'-r"

if literal?(x) then append(G3(opl(x),v,Y),

else if conj?(x) then S3(DISTR(v,[[x1]),Y)
G3(op2(x),v,Y))

else if disj?(x) then G3(opl(x),v,[op2(x) ! vI)

S3(v,y) <=

if v = [] then v

————

eisé'GBKhd(Y);V,tﬁ(Y))

I

Before proceeding further it is worth examining (5.2.3)
to see if wéican maké some intuitive sensé out of its
components. We first noticé that in the only call to DISTR,
the second argument is a formula consisting of a single
literal:

DISTR(C,&..&C ,[[x]]) = (Cqvx)&..&(Cvx)
This simplification would surely make DISTR much easier to
write, but we can observe something stronger: every wvalue
of v 1s a formula consisting of a single clsuse. This is
true because v starts out as a formula of one clause
([[11), and the only operation which changes v is
DISTR(v,[[x]]), which preserves this property. Therefore
we can represent v as a clause instead of a formula; then
DISTR(CI,[[X]J) is logically equivalent to [x ! Cl]. We

therefore rename vV to 1its, since it accumulates literals
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a clause. We also rename Y to rest, since it stores the rest
of x 'which will be processed later. Thesé changes yield
CNFU(x) <= al(x, [], [D
GL(x, lits, rest) <= ; = SY(DISTR([1its], CNF1l(x)), rest

{

if literal?(x) then S4([x ! 1lits], rest) (5.2.4

else if conj?(x) then append(GU(opl(x), lits, rest)
G4(op2(x), 1lits, rest))

else if disj?(x) then GU(opl(x), lits, [op2(x) ! rest])

S4(1its,rest) <=

[] then [1lits]

]

if rest

else GU4(hd(rest), 1lits, t&(rest))

With version (5.2.4) we once again have a single

associative contlnuation builder, append, so we can eliminate

the recursion entirely by applying the transformation of

Section 4 once again. Here we must be a little careful,

since we have two mutually recursive functions instead of
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one. We mame the accumulator clauses . The result is:
CNF5(x) = G5(x,[1,[1,01,[1) N\
G5(x, lits, rest, clauses, y) <= 5=SEND5 (append(clauses, %
G4(x,lits,rest)),

¥)
if literal?(x) then S5([x ! lits], rest, clauses, y)

else if conj?(x) then G5(opl(x), lits, rest, clauses,

[op2(x), lits, rest ! v])
else 1f disj?(x) then G5(opl(x), 1lits, [op2(x) ! rest],
clauses, v)

S5(1its, rest, clauses, y) <=

if rest = [] then SEND5([1lits ! clauses],y) (5.2.5)
/..-f'
else G5(hd(rest), lits, t&(rest), clauses, Y) f
SEND5(clauses, y) <= /

if v = [] then clauses

e P

else G5(hd(y), hd(t2(y)), hd(t2(t2(y))), clauses, f
te(ta(te(y)))) #,/
This 1s not gquite the last word, however. We can prevent
the inclusion of tautologous clauses by replacing the literal
branch of G5 in (5.2.5) by
if literal?(x) then
if tautology?(x, lits) gﬁgg SEND5(clauses,y)
else S5([x ! lits], rest, clauses, ¥Y)
and we can similarly eliminate subsumed clauses [3] by
changing the first branch of S5 to be
if rest = [] then
if subsumed?(lits, clauses) then SEND5(clauses, vy)

else SEND5([1lits ! clauses],y)
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Either of these changes would nhave required an eseape or
similar major surgery on any of the previous versions, since

the necessary variables were hidden from the local state

space.
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6. Conclusions

We have presented a technique for producing generaliza-
tions of functions as a step in the program transformation
process. In this technique one generalizes by adding a
variable corresponding to the continuation or global context
in which the local computation takes place. One can often
express the continuation or portions of it in closed form;
one can then use standard local simplification techniques.

This allows recovery from the premature contraction of the
state space that sometimes accompanies recursive programming
styles. If a closed form is known, then data structure
optimizations may be used to obtain an efficient representation
of the continuation.

This generalization technique is complementary to the
ones suggested in [2], which seem to be aimed towards
finding uses for their abstraction rule to eliminate redundant
function calls. Our local manipulations are, of course,
similar to theirs; our contribution is an account of the
origin of the additional variables in the generalization.

We have given two moderate-sized examples of the technique,
involving repeated applications of these transformations.

Other examples where these ideas have been applied include:
the equal-tips problem, backtrack programs (e.g.[4,pp. 63-661),
finding all factors of a clause [3, p. 80], and implementing

semantic resolution [3, Chap. 6].
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