
Access Control for XML - A Dynamic Query Rewriting Approach

Sriram Mohan Arijit Sengupta Yuqing Wu Jonathan Klinginsmith

Indiana University, Bloomington, Indiana, USA�
srmohan, asengupt, yuqwu, jklingin � @indiana.edu

Abstract

We introduce the notion of views as a mechanism
for securing and providing access control in the
context of XML. Research in XML has explored
several efficient querying mechanisms. Hiding
sensitive data from unauthorized users is as im-
portant as supporting efficient querying of visible
data. However, given the semi-structured nature
of XML data, this is non-trivial, as access con-
trol can be applied on the values of nodes as well
as on the structural relationship between nodes. In
this context, we present an algebraic security view
specification language SSX for DBAs to specify
security constraints for different user groups. A
Security Annotated Schema (SAS) is proposed as
the internal representation for the security views
and can be automatically constructed from the
original schema and the security view specifica-
tion sequence used to define the security con-
straint. We also propose a set of rules that can be
used to rewrite user XPath queries on the security
view into an equivalent XQuery expression that
can be executed against the original data, with the
guarantee that the users only see information in
the view and not infer any data that was blocked.
Experimental evaluation demonstrates that our ap-
proach is expressive and efficient.

1 Introduction
XML is one of the most extensively used data represen-
tation and data exchange formats. The number of XML
related applications developed and under development is
significant. Much of the research on XML has focused on
developing efficient mechanisms to store and manage XML
data either as a part of a relational database or using native
XML stores. However, hiding sensitive data is as important

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

as making the data efficiently available. For instance, given
an XML document tree, it is possible that there are differ-
ent user groups with varying permissions to access various
parts of the document. Any security specification model
must ensure that these policies are enforced correctly and
efficiently. Given a query � over a secured XML document
tree, it is important that the result of the query just contain
the nodes that the user has permissions to see, in the context
that the user has permissions to see. The enforcement of the
policy, commonly denoted as Access Control must also en-
sure that the user not be able to indirectly reference the data
through a combination of queries on the view tree. In this
paper we propose the notion of views as a mechanism for
access control for XML. We introduce a security specifi-
cation language (SSX) and rules to rewrite user queries to
enforce security constraints.

1.1 Challenges

The semi-structured nature of XML data implies that the
data is not in a normalized structure and makes the task
of defining security views non-trivial. XML data can have
duplicate/missing elements and/or missing attributes. Fur-
thermore, the identification of an element is no longer re-
stricted to the value of the element itself(like a record in the
relational model) but depends on the context, the form of
the path (from the root element to the element) and the chil-
dren/descendants of the element. In XML, it is frequently
the case for the content of a certain element to be visible
only to a given user group, or the visibility to be condi-
tional, based on the value/structure of elements outside the
sub-tree rooted at the element in question. It is also possi-
ble that a given element has differing structures for differ-
ent user groups. Hence XML Access Control should also
consider the structural relationship between nodes.

Another challenge is in the presence of multiple access
control policies. With constant change in data, it is expen-
sive to actually materialize and maintain each view that im-
plements a security specification. When such materialized
views are used to address the security concerns, the secu-
rity model has to guarantee that the results returned to the
users is exactly what would be returned if the view were
materialized at the same instant the query was issued.

Research on XML access control has handled some of
the above issues with differing degrees of success and ef-
ficiency. Approaches proposed vary from XML access

1

Emp#

HR

AgeName

Employee

Dept

Salary

Location

*

*

Phone
*

Figure 1: Example Tree Structure for an HR XML Database

control languages [14, 12], cryptography [9], execute-and-
check method [11], to materialized security views [1, 5].
The most recent work by Fan et al. [6] introduced an
approach that annotated the security restrictions on the
schema structure, and rewrites XPath queries issued against
the new schema structure into queries against the origi-
nal XML document. View materialization is thus avoided.
However, the expressiveness of the security annotation is
limited to hiding node/sub-tree values. Enforcing security
constraints based on the structural relationships between el-
ements, which is at least as important as the values, remains
an open question in the XML context and is one of the main
contributions of this paper.

1.2 Motivating Scenarios

Consider an XML database that contains the human re-
source information of a university. The schema structure to
which the XML documents conform is shown in Figure 1.
In the hierarchical structure, the university has multiple de-
partments (dept) ; each department has a list of employees
and a location. The information about each employee in-
cludes emp#, name, multiple phone numbers (phone), age
and salary.

Example 1.1 As one may observe, some of the information
about an employee can be considered sensitive, such as age
and salary; and the rest can be made public, such as name
and phone. In case an element is classified as only sensi-
tive or not, the approach proposed by Fan et al. [6] is suf-
ficient, for it would block the access to the sub-trees rooted
at age and salary. (Let’s name this security concern (0) for
it be referred in later discussion). However things are not
always so simple.

Example 1.2 Consider the following security concerns:
(1) Users should not know the age and salary of each indi-
vidual employee in a department, but can access all the age
information of a department; (2) Users should not know the
age and salary of each individual employee and any statis-
tical information about the age of employees in a depart-
ment, but can access all the age information in the scope
of the university; (3) Users should not know the age and
salary of each individual employee, but can obtain infor-
mation about the salary distribution with respect to em-
ployee’s age, in the scope of a department; (4) Users should
not know the age and salary of each individual employee,
and should not know any connection between the age and

salary of each individual employee, since they may infer
someone’s salary indirectly.

HR

NameEmp#

Employee

Dept

Location

*

*

Phone
*

HR

Age

NameEmp#

Employee

Dept

Salary Location

*

*

Phone
*

HR

AgeNameEmp#

Employee

Dept

Sensitive InfoLocation

*

*

Phone

*

Emp

*

* *

Security View Tree Structure 1

Security View Tree Structure 3 Security View Tree Structure 4

HR

NameEmp#

Employee

Dept

Salary

Location

*

*

Phone
*

Age

Emp
*

Security View Tree Structure 2

Salary

Figure 2: Example Tree Structures for the Security Views of an
HR XML Database

Consider the rearrangement of the XML database,
shown in the form of tree structures, in Figure 2. Tree �
addresses security concern (0), but not any of the security
concerns (1-4). Security concern (1) is addressed by Tree � ,
and security concern (2) by Tree � . Both Tree � and Tree �
satisfy security concern (3). But none of the schema tree
structures in Figure 2, except Tree � , is strict enough for
security concern (4).

All the security concerns listed in Example 1.2 are
not uncommon, yet none of the existing techniques sup-
port them without actually generating or materializing the
“views”. The security view specification language needs to
be enriched for DBAs to address these concerns. Defining
such a language is the first focus of this paper.

Furthermore all user queries should return only the val-
ues and the structures that are allowed to be revealed. One
way of achieving this is to materialize each such security
view and evaluate the user queries directly on the mate-
rialized data. Given that there may be multiple security
levels, each requiring a set of materialized security views,
besides the space overhead, view updating complexity is
another problem that cannot be ignored, since the views
have to be consistent with the base data on every query and
update execution. Considering the large size of XML doc-
uments in use, materializing the security views every time
a query is issued is not realistic. An alternative is to main-
tain the security views as virtual views, and rewrite each
query � on a security view to ��� against the base data. This
is the approach taken by [6]. The enrichment of the secu-
rity view specification we propose in this paper poses great
challenges to the query rewriting process.

The main contributions of this paper can be summarized
as follows:

2

	 We propose an infrastructure for access control on
XML documents - specifying security constraints and
rewriting user queries, avoiding view materialization.

	 We introduce an algebraic security view specifica-
tion language SSX, which enables conditionally hid-
ing and reorganizing XML elements/sub-trees.	 We propose SAS - an annotated schema to represent
security constraints specified in SSX and a set of rules
that rewrite user queries based on the SAS .	 We conduct extensive experimental evaluation on var-
ious benchmark databases and prove that our approach
is both effective and efficient.

The rest of the paper is organized as follows: Back-
ground information about XML data, XPath and XQuery is
introduced in Sec.2, along with the formal defintion of the
problem. In Sec.3, we introduce our security view spec-
ifications language SSX. The two primary components of
our method, viz. the annotation process and the rewrite al-
gorithms are discussed in Sec.4 and 5, respectively. We
present the experimental results in Sec.6. Related work is
discussed in Sec.7, followed by the conclusion and discus-
sion of future work in Sec.8.

2 Preliminaries and Problem Definition
XML data is frequently represented as a rooted node-
labeled tree structure, in which the nodes represent the ob-
jects (element (tags), element contents and attributes), and
the edges represent the containment relationship among the
objects. DTDs and XML schema are two popular lan-
guages for representing XML schema information. A typi-
cal XML structure can be represented as a tree, as shown in
Figure 1. There is no substantial difference between a DTD
and a XML schema in representing XML schema informa-
tion, as far as security issues are concerned (XML schema-
specific features such as data types are not required for our
security view specifications). Hence, for the purpose of
clarity, we shall use trees to represent schema information
in the first half of this paper, and switch to XML schema
when the implementation is discussed.

XPath [4] is a declarative query language on XML doc-
uments and is the core of other complex XML query lan-
guages, such as XQuery [3]. An XPath expression de-
clares the query requirement by identifying the node of
interest via the path from the root of the document to the
elements which serve as the root of the sub-trees to be re-
turned. Branching predicates (if any) enforce additional
value/structural restriction on the elements along the path.
To facilitate the discussion in this paper, we define a Simple
Path Expression as follows:

Definition 1 A simple path expression (SPE) is an XPath
expression of the form
��������������
 ���
 � � ���
 � where
 � and
 � are simple path expressions.

In other words, an SPE is an XPath expression without
branching predicates.

XQuery is a functional query language. The introduc-
tion of the FLWOR statement in XQuery enables variable
declaration, variable binding, and result reconstruction, all
of which are beyond the capability of XPath queries. We
will take advantage of these features of XQuery in our
query rewrite process.

Formally, we define the problem of XML security view
specification and rewrite as:

Define a security view specification language�
. Given an original XML schema ��� and a se-

quence of primitives ��
�� in
�

, derive the view
schema �! that reflects the security constraints
expressed by ��
"� . For each query � issued on�� , evaluate � by rewriting it to ��� on � � and exe-
cuting �#� on the base data($ �), guaranteeing that�%�'&($��*),+-�.&/��
 � &($��0)1) .

Original SchemaSecurity View
Specification

Security View
Construction

Security View Schema

User Query (Xpath)
Schema Derivation

Rewrite Query (XQuery)

Query RewriteSecurity Annotated
Schema (SAS)

Figure 3: The Infrastructure of the Security View Based Query
Answering System

The infrastructure of our security-view based query an-
swering system is as shown in Figure 3. The system can
be divided into two components: security view construc-
tion (on the left) and security view based query answering
(on the right). Taking the original XML schema and se-
curity view specification (in the security view specification
language SSX) as input, the Security View Construction
process constructs an Security Annotated Schema(SAS).
SAS is an internal representation in our system and it is
straightforward to derive the schema of the security view
from an SAS. The view schema is visible to the user group
to whom the security constraints is to be applied, and it is
the only schema that is made available to this user group.
Note that it should be transparent to the users whether the
view has been materialized or not. In our system the se-
curity views are not materialized by default. The Secu-
rity View based Query Answering process rewrites the
user queries (in XPath) into equivalent target queries (in
XQuery) against the original schema by appropriately us-
ing the information in the SAS, and evaluates the target
queries on the base data. We will focus on the security
view specification in Sec. 3, the SAS generation in Sec. 4
and the rewrite algorithms in Sec. 5.

3

3 XML Security View Specification
In this section, we introduce our Security Specification
Language for XML (SSX) in the form of a set of primitives
and show how to specify security constraints using SSX.

3.1 Security View Specification Language

We assume that in the XML context, creation of the secu-
rity view specification is the responsibility of DBAs, who
have basic knowledge about databases and are familiar with
the schema of the base data, and are aware of the security
concerns with respect to each user group. We also assume
that as a first step towards building the framework that a
schema is available for the XML document being secured
and it is acyclic.

Given security constraints such as those in Exam-
ples 1.1, 1.2 and other similar cases we can summarize the
basic requirement of a security view specification language
as a language that should be able to achieve the following
schema transformations:
R-1 (conditionally) eliminate element/sub-tree;
R-2 (conditionally) break the association between the chil-

dren of an element;
R-3 (conditionally) copy/move elements/sub-trees to a

higher level;
R-4 (conditionally) copy/move a group of elements/sub-

trees without breaking the association between them;

R-5 (conditionally) break the ordering between instance
nodes;

R-6 rename elements/attributes;
R-7 create new elements/attributes;

Having these in mind, we introduce a Security Speci-
fication Language for XML (SSX) in the form of a set of
primitives. Each primitive takes an XML schema tree as
input, and outputs an XML schema tree. The parameters
and functions of the primitives are defined as follows (pa-
rameters within square brackets are optional):

create(destSPE, newName) : newName is a string. The
create primitive creates a new element with tag ‘new-
Name’, as a child of each element that matches the
destSPE in the input schema.

delete(destXPath): The delete primitive removes
the sub-trees rooted at the elements/attributes that
matches the destXPath in the input schema.

copy(sourceXPath, destSPE, [newName], [scope],
[preserve]) : NewName – a string, scope – an SPE,
and preserve – a boolean, are optional. For each
element that matches the scope, the copy primitive
creates an identical copy of the sub-trees rooted at
the nodes that match the sourceXPath in the original
schema with respect to the scope, and makes them the
children of the elements that match the destSPE in the
input schema. If a new name is provided, a new ele-
ment tag is assigned to the root element of the copied
sub-trees; otherwise, the original element tag is used.

The default value for scope is ‘/’. The fifth parameter
‘preserve’ is a flag that specifies if the copy primitive
should preserve (the default) or break the document
order between instances being copied.

rename(destSPE, newName): The rename primitive as-
signs a new name (newName) to the elements (at-
tributes) that matches the destSPE in the input schema.

A security view specification is then written in the form
of a sequence of these primitives. The primitives are ap-
plied sequentially, and they are not necessarily symmetric
(23�5462%�87 2%��492��). Each primitive takes the result of the
sub-sequence in front of it as input. The final result is the
secured schema for the security view defined by the SSX
sequence. The secured schema is internally represented as
a SAS (See Sec. 4).

To facilitate the reading/writing of an SSX sequence, we
also introduce a set of secondary operations, which are de-
rived from the primitives. An example is provided below.

Move(sourceXPath, destSPE, [newName], [scope],
[preserve]): The parameters of a move primitive are
the same as that of the copy primitive. The move
primitive moves sub-trees that match the sourceX-
Path in the original schema and makes them chil-
dren of the elements that match the destSPE in the
input schema, within the scope, if specified. A new
name, if specified, is assigned to the root of the moved
sub-trees. The move operation is defined as the con-
catenation of the copy primitive and the delete prim-
itive: :;2*<�=�&>
�?A@B?DCE?AF3?G
"F*) IH 2J
BK!&>
�?A@B?DCE?AF3?G
"F*) 	@L= � =0MN=�&>
�) .

Proposition 3.1 The primitives (create, delete, copy, re-
name) can address all the schema transformations that are
necessary to enforce XML access control according to [R-
1] through [R-7].

Proof sketch: The proof follows by construction:

R-1 Blocking sub-trees rooted at a particular element can
be achieved by a delete operation on that element.

R-2 This can be achieved by a delete operation on each
child that needs to be dissociated. In the case the dis-
sociated children need to be retained, the delete oper-
ations should be preceded by a copy.

R-3 This security concern involves copying children of an
element to a higher level, and can be achieved by a
copy operation to the destination node. In case of a
move, the secondary primitive move can be used.

R-4 This is achieved by performing a scoped copy (with
the parent being the scope). In case of a move, the
move primitive can be used.

R-5 This security concern requires breaking the order be-
tween instance nodes, and can be achieved by using
the unordered copy that breaks document order, and
hence association between instances.

4

R-6.7 Renaming/Creating elements can be done by using the
rename and the create primitives.

Example 3.1 Let’s reconsider the security concerns and
security view tree structures in Examples 1.1 and 1.2.
The following are the security view specification sequences,
written in SSX that specify the security views shown in Fig-
ure 2:

Security View Tree Structure 1:
delete(/HR/Dept/Employee/Age)
delete(/HR/Dept/Employee/Salary)

Security View Tree Structure 2:
copy(/HR/Dept/Employee, /HR/Dept, Emp, /HR/Dept)
delete(/HR/Dept/Employee/Age)
delete(/HR/Dept/Employee/Salary)
delete(/HR/Dept/Emp/Emp#)
delete(/HR/Dept/Emp/Name)
delete(/HR/Dept/Emp/Phone)

Security View Tree Structure 3:
copy(/HR/Dept/Employee, /HR, Emp, /HR)
delete(/HR/Dept/Employee/Age)
delete(/HR/Dept/Employee/Salary)
delete(/HR/Emp/Emp#)
delete(/HR/Emp/Name)
delete(/HR/Emp/Phone)

Security View Tree Structure 4:
create (/HR/Dept, ‘Sensitive Info’);
move(/HR/Dept/Employee/Age,

/HR/Dept/Sensitive Info, ,/HR/Dept)
move(/HR/Dept/Employee/Salary,

/HR/Dept/Sensitive Info, ,/HR/Dept)

Given the general definition of the primitives as stated
above, one can come up with sequences that are counterin-
tuitive or ambiguous as shown below in Example 3.2.

Example 3.2 Using the XML schema tree shown in Fig-
ure 1 as the original schema, let’s examine the following
security view specification.
copy(/HR/Dept/Employee/salary, /HR, ‘sal’, /HR/Dept,
false)
This expression copies the salary information of all the em-
ployees in a dept (specified by the scope /HR/Dept) and
makes them children of each HR element. This operation is
counterintuitive and is not an legal security view specifica-
tion in SSX under the restrictions described below.

We propose the following restrictions to avoid such
counterintuitive primitives.
	 Restrict the destPath of create, copy and rename

to be an SPE . This means that the parent of a newly
created element, the element/attribute to be renamed,
and the destination of the copy have to be uncondi-
tionally identified in the input schema. All security
specifications that are restricted by this constraint can
be expressed alternatively.	 Restrict the sourcePath of copy to the original
schema/data. We restrict the sourcePath of the copy
primitive to be evaluated against the source schema,
rather than the input schema to the primitive. This

means, one cannot copy anything that has been mod-
ified by primitives prior to the copy operation in the
SSX sequence, to a new location. This constraint
also specifies that the condition on the sourcePath of
the copy operation has to be evaluated against the
source data. Since security specifications are writ-
ten by the DBAs, who are seasoned database profes-
sionals and are familiar with the schema and transfor-
mation processes, most meaningful security specifica-
tion can still be specified using SSX with this con-
straint. Although seemingly a limitation, this restric-
tion is needed to ensure the tractability of the rewrite
operations.	 Restrict the scope in the copy primitive. We restrict
the scope of a copy primitive to be an SPE that eval-
uates to a common ancestor of the elements that are
identified by the sourceXPath and the destSPE. This
restriction is necessary as the semantics of a scoped
copy is similar to that of a ’grouping’ operation. This
constraint will only eliminate some counter-intuitive
specifications.	 Restrict the target node in the rename primitive.
We restrict the target node of a rename primitive to
be a node that has not been modified. This restric-
tion does not limit the power of the operations as any
newly constructed node can be set to the correct name
by directly using the newName argument of the create
and the copy primitives.

The above restrictions do not limit the expressiveness
of SSX, as it restricts only ambiguous security constraints.
Meaningful constraints can still be expressed as shown in
Example 3.3. The reader should note that the goal of this
research is not to mimic all possible transformations of
XML trees, but only the potential security constraints.

Example 3.3 The operation rename(/HR/Dept/Employee
[salary O 100,000] ,‘Rank-Emp’) is a meaningful speci-
fication. It cannot be done with the restriction that the
destination path be an SPE. However, it can be accom-
plished by the sequence
copy(/HR/Dept/Employee[salary P 100000], /HR/Dept, ‘Rank-Emp’,

/HR/Dept)
delete(HR/Dept/Employee[salary P 100000])

Given that security view specifications are defined as a se-
quence of primitives with each primitive accepting the re-
sult of the previous primitive as the input, there is a de-
pendency amongst the primitives in the sequence, based on
their position in the sequence as shown below.

Example 3.4 Let’s revisit the SSX sequences in Exam-
ple 3.1. The two delete operations in the sequence that
construct the security view tree structure 1 are independent
of each other. Switching the two operations in the sequence
results in the same security view. Such is not the case, how-
ever, for the sequence that constructs the security view tree
structure 2. The two delete operations that remove the Age
and Salary nodes from Employee can be placed anywhere
in the sequence. However, the three delete operations that

5

remove Emp#, Name and Phone have to follow the copy
operation.Consider two other SSX sequences:	 sequence1:

delete(/HR/Dept/Employee[age O 50]/salary)
delete(/HR/Dept/Employee/age[. O 55])	 sequence2:
delete(/HR/Dept/Employee/age[. O 55])
delete(/HR/Dept/Employee[age O 50]/salary)

Sequence 1 hides the salary of all employees over 50
years old and the age information of all employees older
than 55. Sequence 2, by switching the two delete opera-
tions, ends up hiding the age information of all employees
that are over 55, but only the salary of the ones between 50
and 55. Hence there is clearly an dependency between the
two operations.

Definition 2 An operation 2J
!� logically depends on an op-
eration 2J
�� if the XPath expressions specified as parame-
ters of 2J
�� depends on the elements that match the destina-
tion path of 2J
�� for its evaluation.

With this definition, given an SSX sequence, there is a
chronological order among the operations. Given that the
dependency is not linear, switching operations could possi-
bly change the semantics of the security view being con-
structed. Furthermore, SSX sequences that specify the
same security view can be substantially different.

4 Security Annotated Schema
To facilitate query answering and rewriting, we propose an
internal representation - Security Annotated Schema (SAS)
for the schema transformation specified by an SSX se-
quence. This section introduces the SAS and proposes an
algorithm to construct it.

4.1 Schema Annotation

We introduce a set of schema annotations, to reflect the
primitives that modify the schema tree structure. All the
annotations are associated with the element/attribute node
that was modified.

	 Delete Annotation identifies that the node has
been removed, with additional parameters identifying
whether the node was removed conditionally. In case
of a conditional delete the condition used to delete the
node is also stored.	 NewNode Annotation identifies that the node has
been newly constructed. A NewNode annotation with
parameter ‘newname’ can be the result of a create
or a rename primitive. A copy primitive also results
in a NewNode annotation, with additional parameters
identifying the sourcePath, scope and whether the or-
dering among sub-trees are to be preserved.	 Scope Stamp A node Q is stamped ‘Scope’ if any of
its descendants has the NewNode annotation, and its
scope parameter is a path that matches to Q .

HR

Emp#

Employee

Dept

Location

*

*

Emp

*

Dirty

Dirty
Scope

Dirty

Name Phone

*

SalaryAge Name Phone

*

SalaryAgeEmp#

Dirty
Delete: TP# = 2

Conditional = false

Dirty
Delete: TP# = 1

Conditional = false

Dirty
Delete: TP# = 5

Conditional = false

Dirty
Delete: TP# = 4

Conditional = false

Dirty
Delete: TP# = 3

Conditional = false

Dirty
NewNode: TP# = 0

 Name = “Emp”,
 Source = “/HR/Dept/Employee”,
 Scope = /HR/Dept

Figure 4: Security Annotated Schema for the Schema Tree Struc-
ture 2 in Figure 2

	 Dirty Stamp A node is stamped ‘Dirty’ if any of its
descendants (including itself) is annotated.

	 Chronological Operation Sequence # This is a se-
quence # assigned to each operation in an SSX se-
quence. It reflects the potential dependency of a prim-
itive on preceding primitives in the sequence.

Example 4.1 The SAS that derives the security view tree
structure 2 in Figure 2 is shown in Figure 4.

The annotation associated with Emp reflects that it is a
new element created via a copy primitive. The source is
‘/HR/Dept/Employee’ within the scope ‘/HR/Dept’. In ad-
dition, the scope stamp associated with the Dept node re-
flects that it has been used as a scope. The Chronological
Operation Sequence # (TP#) associated with the NewNode
annotation identifies that it is the result of operation #1 in
the SSX sequence. The delete annotations with the condi-
tional flag set to false indicate that the corresponding nodes
have been deleted unconditionally. Note that a dirty stamp
simply indicates that either the node or its descendants has
been modified.

4.2 Security Annotated Schema Derivation Algorithm

The annotation algorithm takes a schema and a SSX se-
quence as input (dealing with one operator at a time),
and creates an SAS which can be used for rewriting user
queries. The annotation algorithm is presented in Figure 5.
Associated helper functions are presented in Figure 6.

The algorithm iterates through the sequence of primi-
tives using the output schema from the previous primitive
as input. For each primitive, the destination XPath is eval-
uated on its input schema and a node is created, deleted,
renamed or copied depending on the operation. The newly
modified node is suitably annotated by making use of the
input arguments of the operation along with the current
primitive’s sequence #. The current primitive’s sequence
is used to establish the chronological order. The copy op-
eration alone utilizes both the original schema as well as
the output schema from the previous operation. The nodes
to be copied are obtained from the source schema and the
modification is performed on the output schema obtained
from the previous operation.

6

CreateAnnotation(sch: Schema DOM,
op: Sequence of operations)R

outputschema = sch;
currentop = 0;
for each o in op do

R
switch o

R
case o = delete operation arguments(p1):
nlist = S UTUVXWJY�T[Z(\ (outputschema, p1);
for each node t in nlist

RT^]J][_!`#`�a1Z(T[ZcbdaD` (t, p1, ’delete’, currentop);e S Z(][bgfDZch (t);i
case o = create operation arguments(p1, name) :
nlist = S UTUVXWJY�T[Z(\ (outputschema, p1);
for each node t in nlist

R
if (t is leaf)
convert t to complextype;

create new node n1(name) as child of t;T^]J][_!`#`�a1Z(T[ZcbdaD` (n2, p1, ’newnode’,’create’,
currentop);e S Z(][bgfDZch (n1);i

case o = rename operation arguments(p1, newname) :
nlist = S UTUVXWJY�T[Z(\ (outputschema, p1);
for each node t in nlist

R
change name of t to newname;T^]J][_!`#`�a1Z(T[ZcbdaD` (n2, p1, ’newnode’,’rename’,

currentop);e S Z(][bgfDZch (t);i
case o = copy operation arguments(p1, p2,

newname,scope, preserve):
sourcenl = S UTUVXWJY�T[Z(\ (sch,p1);
destnl = S UTUVXWJY�T[Z(\ (outputschema,p2);
for each node s in sourcenl

R
n2 = j akY^h^]Ja1l (s)
if (newname != null)
root tag of n2 = newname;
for each node t in destnl

R
if (t is leaf)

convert t to complextype;
add n2 as child of t;TU]J][_!`�`�aNZ(TJZcbdaD` (n2, p1, ’newnode’,’copy’,

currentop,scope, preserve);e S Z(][bgfDZch (n2);
if scope !=‘/’;e S Z e j a/Y S (scope);i
end for destnlii

// end switch
currentop++;i
// end for

return outputschema;i
// end CreateAnnotation

Figure 5: SAS Construction Algorithm

5 Security View Based Query Rewrite
Once the SAS has been constructed, it is trivial to derive
the security view schema and expose it to the end users.
The next and the most intriguing problem is to answer user
queries, guaranteeing all security restrictions, without ma-
terializing the views. This section introduces a set of rules
to rewrite user queries and describes an algorithm to imple-
ment the rules.

We chose to rewrite the user queries (in XPath) to
queries (in XQuery) against the source schema. This is
non-trivial, due to the following facts about the way secu-
rity restrictions are specified and the manner in which the
SAS is constructed:	 The impact of the annotations added to a specific ele-

ment is on the sub-tree rooted at that element.	 There is a partial ordering among the annotations, i.e.,
some annotations may depend on others, and during

S UTJVXWUY�T[Z(\ (outputschema,p1) evaluates the XPath expression
p1 on the outputschema and returns the list of all the
nodes that match p1;e S Z(][bdf1Zch (node) recursively attaches dirty stamps
at the node and all its ancestors;e S Z e j akY S (node) Set scope flag for the node;TU]J][_!`#`�a1Z(T[Zcbma1` (...) adds annotation attributes to a
node. In case of a newnode annotation a flag is set,
indicating the actual operation that was performed;j a/Y^h^]JaDl (node) makes a duplicate copy of the entire
DOM tree of the schema rooted at node and returns
the root node of the duplicate version.

Figure 6: Helper Functions for the SAS Construction Al-
gorithm

query rewriting, this order cannot be violated, even
when the annotations are on different nodes.	 Even though the annotations are on the schema, con-
ditions (if any) have to be evaluated on the data.	 The uncertainty introduced by the wild card and ‘//’.

We assume that the user queries are written in XPath.
The rewritten query cannot be specified in XPath as well,
since XPath is not expressive enough to handle the group-
ing generated by the ‘scope’ (specified in a copy primi-
tive), and XPath does not have the ability to create new
structures (specified in the copy, rename and create prim-
itives). Hence we chose XQuery as the query language
of the resulting rewritten query. The unordered fea-
ture in XQuery also allows us to break the document order
(and hence prevent the possible inference of relationships
among siblings and sub-trees).

The query rewrite process is rule-based. Given an XML
database $ containing instances conforming to schema � � ,
a security view n , with SAS �� , and an XPath expres-
sion
 MA�#o H �Ap � MN�3o H �Jp �g�d�g� � M ` o H ` p against n , where M b s are
tags (element tags, attribute name or wildcard) and H b s are
XPath expressions serving as branching predicates, we de-
velop a set of rewrite rules to transform
 to � where� rqts6u*v &>
") , such that
w&Gnx)y+r�.&G$z) . To facilitate the
discussion of the rewrite rules and the algorithm, we define
a recursive procedure as follows:� {qts6u*v &g
�?1<.|*?D<�|J�m) :: The function q}s translates an
XPath query
 to an XQuery expression � , referencing the
annotations in a SAS � and under a specific environment,
represented by a set of variable-bindings <.| . <.|�� represents
the new variable-bindings in � . A conceptual presentation
of the rules used by Rewrite is provided below.

RULE 1 Given an SAS � , and an XPath expression

"� � MD�#o H �[p �
B� under environment <�| , where
!� and
B� are
sub-XPath expressions, M[� is an element tag and H � is a
branching condition, taking the form of
�� [2J
y
 �] (please
note that 2J
~
B� is optional), the XQuery expression � qts u v &>
w?1<.|*?1<.|J�m) is defined as follows:

for $i in q}s}u*v &g
"�*?D<�|%?1<.|^�U)
for $j in $i/ MA�
where qts6u*v &g
B��?1<.|^�,� ��� ?'�B�3?D<�|U�^)�2J
qts�u%v &g
 � ?1<.|^�,� ��� ?'�B�L?1<.| �)
return qts6u*v &g
B��?1<.|^�E� ��� ?'�B�3?D<�|U�^)

7

The basic idea behind this rule is that every branching
predicate in an XPath expression can be treated as an XPath
expression, rewritten into an XQuery expression and be a
part of the WHERE clause in the final rewritten XQuery ex-
pression. The comparison operators and any literals found
in conditions can be directly used in the XQuery expression
without any translation. Therefore, we focus our discussion
on rewriting an SPE from now on.

The rewrite algorithm works under the assumption that
given nodes ‘A’ and a descendant ‘B’, all possible paths
from ‘A’ to ‘B’ are precomputed and stored in the SAS.1

RULE 2 Given an SAS �� , and an SPE

 �^��� M �
 � un-
der environment <.| , where
 � and
 � are SPEs, the XQuery
expression � �q}s u v &>
w?1<.|*?1<.|J�m) is defined as follows:

for $i in q}s}u*v &g
"�*?D<�|%?1<.|J��)
return� qts6u*v &cMJ� �
���?1<.|J�,� �0� �3?1<.|^�J)J� ,

...� qts6u*v &cMkC �
��.?D<�|U�E� �0� �L?1<.| `)[�
where

� M � ? ���^� ?DMN`"� are the set of paths that lead to M from
 � .
A ‘Dirty’ stamp associated with a node in the SAS iden-

tifies that either the node itself or its descendant(s) has
been modified by an SSX sequence. Before presenting the
rewrite rules that respond to ‘Dirty’ stamps, we first define
the following important notions:

Definition 3 Given an SAS � and an SPE

MD� � MN� �d�g� � M ` , if there exists MD� , such that MD�0�!� has a ‘dirty’
stamp and none of MD� , M1�U�w� , ..., M ` has a ‘dirty’ stamp,
we call MD� the highest clean element (HCE) of
 on the� , and
�� MD� � MN� �d�g� � M1�*�!� the prefix path w.r.t. � and
 � M ��� M �U�w� �d�d� � MN` the suffix path w.r.t. �! .

The notion of HCE enables us to leave the suffix path as
is in the rewrite.

RULE 3 Given an SAS �� , and an SPE
 under environ-
ment <.| , if there exists an HCE on � such that

�� �
��
(
"� is the prefix path w.r.t. � , and
�� is the suffix path
w.r.t. �), we define the equivalent XQuery expression� -qts6u*v &>
w?1<.|*?1<.|J�m) of
 as follows:

for $i in q}s}u*v &g
"�*?D<�|%?1<.|J��)
return $i/
��

On the contrary, when the tail of the SPE has a ‘Dirty’
stamp, rather than stopping at the node and returning the
whole sub-tree rooted at the node, as an XPath query usu-
ally does, the children of the tail node have to be con-
structed individually as the ‘Dirty’ stamp indicates that
atleast one descendant node has been modified.

1This has been efficiently carried out by recursively walking the tree
at the end of the view generation process.

RULE 4 Given an SAS �� and an SPE
 M �^� M � �g�d� � MN`under environment <�| , if M ` is dirty and has childrenH^� @�� ,... H^� @ l in � , the equivalent XQuery expression � qts6u*v &>
w?1<.|*?1<.|J�m) is defined as follows:

for $i in q}s}u*v &(MD� � MN� �g�d� � M ` ���*?1<.|*?D<�|J�0)
return� M ` O q}s6u*v & H^� @.�*?D<�|J��� �0� �3?1<.|^�[)

...q}s u v & H^� @Ll�?D<�| � � ��� �3?D<�|Jl})� � MN`zO
Each primitive in SSX results in its own annotation in

the SAS. These need to be treated differently in the rewrite
procedure. The rest of the rules explain how the various
primitives are handled.

Unconditional delete removes not only an element, but
the whole sub-tree rooted at the element. Therefore, if any
node on an SPE has an unconditional delete annotation, the
SPE evaluates to the empty sequence (). Conditional delete
removes element/attributes based not only on the schema,
but also on the data instance. Conditional delete on a node
being queried is rewritten as a condition in the resultant
query.

RULE 5 Given an SAS � and an SPE
 MD� � MN� ���^� � M ` ,
if M b (�x� � ��C is an unconditional delete annotation in � ,
the equivalent XQuery expression � �qts u v &>
w?1<.|*?1<.|J�m) is
defined as:

return ()

RULE 6 Given an SAS �� , and an SPE
 M �^� M � �g�d� � MN`under environment <.| , if node M � &G� � Cw) is annotated
by conditional delete operation, with condition H 2*C�@ , the
equivalent XQuery expression � ;qts u v &>
�?D<�|%?1<.|J�g) is de-
fined as:

for $i in q}s}u*v &(MD� � MN� �g�d� � M1��?D<�|*?D<�|U��)
where count(qts}u3�v & H 2*C�@B?D<�|%?1<.|^�U)) = 0
return qts6u*v &(M1�U�w� � �d�g� � M ` ?D<�|J���

�0� �L?1<.|J�^)
Here, � � is the prefix of � , up to the operation before the
conditional delete in question.

The copy operation constructs new sub-trees in the
schema tree structure. It is annotated on the new sub-
tree root, with all the required information for the rewrite:
source path, scope, preserve, etc. When a node in the
copied structure is queried, data is retrieved from the
source, along the source path. The retrieved data is compli-
ant to any annotations on the descendant sub tree.

RULE 7 Given an SAS � , and an SPE
 MA� � MN� �g�d� � M `under environment <.| , if node MDh (K � C) is an-
notated as a “new node” generated by the copy op-
eration copy(M �^� M �0� �g�d� � M �#� �d�d� � MNW , M �0� M ��� M ��� �d�g� � MNh �!� , M �W ,� M ��� M ��� �g�d� � M � , ps), where &cM1W MNh���MN�W ��)���MN�W MNh
, the equivalent XQuery expression � �qts u v &>
w?1<.|*?1<.|J�m)
is defined as:

8

for $i in q}s}u*v &(MD� � MN� �g�d� � M1��?D<�|*?D<�|U��)
for $j in q}s}u*v &(M1�U�w� �g�d� � M h �!�%?1<.|J���

��� �3?D<�|��J)
for $k in $i/ MD�^�w� � M1�U�!� � �d�g� � M W
return qts6u*v &(M h �w� � �d�g� � M ` ?1<.|J�5�

��� ?[�"�3?D<�|J��)
Both the rename and the create operations generate new

tags that do not exist in the original schema, at the speci-
fied location. If such a node appears in the middle of an
XPath expression, the rewrite process simply matches it
and moves on to the sub-trees rooted at the node in ques-
tion.

RULE 8 Given an SAS �� , and an SPE
 M �^� M � �g�d� � MN`under environment <�| , if node M h (K � C) is annotated
as a “new node”, generated by the rename operation� =0C��3��=�& � MD� � MN� � �d�g� M h �!� � M W ?DM h) ,the equivalent XQuery ex-
pression � -qts}u*v &>
�?D<�|%?1<.|J�d) is defined as:

for $i in q}s}u*v &(MD� � MN� �g�d� � M h ��� � M W ?1<.|*?1<.|J��)
return qts u v (MNh �w�U� �d�d� � MN`�?1<.| � �

��� �3?D<�| �)
RULE 9 Given an SAS � , and an SPE
 MA� � MN� �g�d� � M `under environment <.| , if node M h (K � C) is anno-
tated as a “new node”, generated by the create opera-
tion H � =*�LMN=L& � M �^� M �*� �d�g� MNh ��� ?1MNh#) or ,the equivalent XQuery
expression � �q}s u v &>
w?1<.|*?1<.| �) is defined as:

for $i in q}s}u*v &(MD� � MN� �g�d� � M h ���*?1<.|*?D<�|J�0)
return qts6u*v (M h �w� � �d�d� � M ` ?1<.|J���

��� �3?D<�|^�U)
A dirty node without annotation does not need to be spe-

cially processed, and the processing can continue along the
path if the node is not the tail node of the input XPath query.

RULE 10 Given an SAS � , and an SPE

MD� � MN� � �g�d� � M h � �d� � M ` under environment <�| , if node M h &(K � Cw)
is dirty without any annotations then we can directly pro-
ceed to the next element in the path.

for $i in q}s u v &(M ��� M � �g�d� � MNh ��� ?1<.|*?D<�| �) � MNh
return qts u v &(MNh �w��� �d� � MN`�?D<�| � �

�0� �3?1<.| �)

Example 5.1 Following the rewrite rules described above,
let’s take a look at a few queries on the security view whose
SAS is as shown in Figure 4.

XPath Query �3 : /HR/Dept/Employee/Name
Rewrite Query ¡A :

for $i in doc("hr.xml")/HR/Dept/Employee/Name
return $i

XPath Query ��¢ : /HR/Dept/Employee/Salary
Rewrite Query ¡D¢ :

return ()

XPath Query �#£ : /HR/Dept/Employee
Rewrite Query ¡1£ :

for $i in doc("hr.xml")/HR/Dept/Employee
return¤

Employee P¥
$i/Emp# ¦¥
$i/Name ¦¥
$i/Phone ¦

¤
/Employee P

XPath Query �#§ : /HR/Dept/Emp[Salary P 10000]
Rewrite Query ¡1§ :

for $i in doc("hr.xml")/HR/Dept
for $j in $i/Employee
Where ($j/Salary P 10000)
return¤

Emp P¥
$j/Age ¦¥
$j/Salary ¦¤

/Emp P

5.1 Rewrite Algorithm

The rewrite algorithm skeleton is presented in Figure 7.
The rules discussed above as well as the presentation of
the algorithm only deal with elements. However, the rules
as well as the algorithm can be easily adapted to handle
attributes. For the presentation of the algorithm, we are as-
suming a schema which has been annotated as described in
Section 4. The algorithm accepts as input an XPath query
(q) that needs to be rewritten. It iterates through the input
XPath query and walks the schema tree based on the tokens
found in the input XPath Query. Annotations, if found dur-
ing the tree walk, are appropriately handled to generate the
final XQuery expression. In case of a condition in the in-
put XPath, the condition expression is treated as an XPath
expression and the procedure is recursively called to gen-
erate a XQuery expression for the condition. Operators,
if encountered in a condition, are substituted with equiva-
lent XQuery operators while literals are carried over to the
XQuery expression without any changes.

Following the rules, the algorithm needs to be provided
with an environment that includes information such as cur-
rent node (curnode) of the schema that is being processed,
the current variable count (vcount) for keeping track of
variable bindings, the variable binding to be used for the
current element (tailexpr), keep track of scope paths and
variables associated with them and a flag (indelete) that
determines whether processing is within a delete annota-
tion (since deletes, especially conditional deletes have to be
handled differently than the other operations. See Rule 6).
We refer to the environment parameters as env.paramname,
e.g., env.curnode, etc in the algorithm. To process a
user XPath query, rewrite needs to be bootstrapped as fol-
lows:

set env{curnode = node(xs:schema), vcount=1,
tailexp=’’, indelete = false}) Rewrite(q)

Note that all the special cases have not been included in
the algorithm because of space limitations, however, the al-
gorithm is true to the rules described above and exhaustive
experimentation indicates the algorithm to be a complete
representation of the rewrite rules. A proof of concept pro-
totype of the view generation and the query rewrite process
has been developed using Java, JAXP and Galax [8] and is
available for download at [15].

9

Rewrite(q:Parsed XPath)
R

nexttoken = Obtain next token from input XPath
if (nexttoken = ‘‘//’’)

// Apply Rule 2
else if (nexttoken = ‘‘/’’)

// Continue loop with next token
else if (currtoken is XPath condition c)

// APPLY RULE 1
else if (nexttoken is an element)

R
if (env.curnode has no children on the desired path)

output ‘‘return ()’’
if (env.curnode is not dirty)

// APPLY RULE 3 for HCE
else if (annotation A in curnode)

switch A
R

case A = ‘udelete’:
// APPLY RULE 5

case A = ‘create’:
// APPLY RULE 9

case A = ‘copy’:
// APPLY RULE 7

case A = ‘rename’:
// APPLY RULE 8

case A = ‘Cond del’:
// APPLY RULE 6i

else if (Dirty node with no annotation)
// APPLY RULE 10

if (current element is last Token)
// APPLY RULE 4ii

// end Rewrite

Figure 7: Rewrite Algorithm

5.2 Soundness and Completeness Properties

The rewrite algorithm is sound (all security operations are
properly handled) and complete (no more than what is
specified is blocked). Full proofs of these properties are
beyond the scope of this paper, but short proof sketches are
presented below.

Theorem 5.1 Soundness. Given a document $ conform-
ing to a schema ¨ , and a sequence of security view oper-
ations © that blocks access to a secure path
 in $, then
there is no user XPath query � such that ªL«¬�$ �
���«¬qts u v &(�#)^&($z) .
Proof sketch. This theorem can be proved by contradic-
tion. Assume that there is a query � such that for some
node «®¬¯$ �
 , running q}s u v &G�#) on $ exposes « . The
proof follows a case-by-case analysis of each of the rules,
ensuring that the data returned by the rules do not include
any suppressed node. Note that Rules 1, 2, 4, 6, 7, 8 , 9 and
10 all call q}s}u*v recursively, and only Rules 3 and 5 return
actual nodes of the tree. Rule 5 definitively blocks any sup-
pressed element by returning nothing, and Rule 3 clearly
only returns clean elements. Analysis of the for statements
of the other rules demonstrate that no information is passed
in the recursive calls that can expose any blocked node.
So « could not have been exposed, and is a contradiction.
Hence the proof.

Theorem 5.2 Completeness. Given a document $ con-
forming to schema ¨ , and a sequence of security view oper-
ations © , if there exists a node « in $ which is not blocked
by any operation 2J
°¬°© , then there exists a user XPath
query � that can retrieve « .

Proof sketch. The proof of this statement is more involved
since it requires an analysis of how the annotations are
done. Regardless, the intuition behind this proof comes
from the fact that only non-dirty nodes are exposed ver-
batim from the source in the generated XQuery expres-
sion. Any dirty node is recreated in our query rewrite
algorithm, blocking any suppressed nodes and exposing
only non-suppressed nodes. Hence, for sub-trees that are
not stamped dirty, no blocking operations are performed,
and hence can always be reached by user XPath queries.
As shown in Figure 4, nodes that users have access to
are not marked dirty (e.g., nodes referred to by paths like
/HR/Dept/Emp/Age), and through a case by case analysis
it can be shown that every such “clean” node will have a
corresponding XPath. Hence the proof.

6 Experimental Evaluation
To demonstrate the effectiveness and efficiency of the tech-
niques proposed in this paper, we conducted evaluations
of our system using datasets generated by publicly avail-
able XML Benchmarks. Our experimental results clearly
revealed that our approach was superior in terms of effec-
tiveness and performance when compared to materialized
views and other previously available methods for securing
XML documents. Our approach on average had a perfor-
mance which is quite similar to that of materialized views,
but in case of uncertainty (wild card and //) and in the pres-
ence of deeply nested XPaths the improvement is substan-
tial. Our approach also proved to be superior to the recent
work by Fan et al. [6] providing better functionality and
better or comparable performance on common function-
ality. Our experiments were conducted on a 2.8 GHz In-
tel Pentium IV machine with 512 MB of memory running
Linux. The times reported in the graphs were obtained as
an average over 5 runs.

6.1 Experimental Setup

DataSet The data sets that are reported in this section
model a catalog of books (a typical real world scenario)
generated using the XBench [16] Benchmark. Datasets
produced by the XBench test suite were modified to
generate 3 different document sizes - 10, 50 and 75 MB.

Security View Generation Our efforts were targeted at
testing the rewrite and the evaluation performance of the
various primitives, both together as well as independently.
In accordance, we created 7 different security models, with
the first four testing a specific primitive thoroughly while
the last three implemented a good and viable mixture of
the four primitives put together. For each of the above
models, SAS(referred to as the SSX virtual views(vv) in
the graphs) and materialized views (mv) were constructed.
The materialized views were constructed using a specially
written XSL script. The time taken to generate the SAS and
the materialized views for the 10, 50 and 75 MB files are
shown in Figure 8. As can be seen our security view gen-
eration process is independent of the size of the data and

10

therefore the generation is done in constant time while the
time for view materialization grows linearly with the size
of the data. The SAS view is only dependent on the se-
quence of security primitives. Further materialized views
suffer from data maintenance as any update to the data has
to be cascaded to all the materialized views.

For the comparisons against Fan et al. [6] we just con-
sidered the security models that implemented the delete
primitive(the only primitive supported in [6]). Virtual
views used by [6] were not generated as a part of the ex-
periment.

S1 S2 S3 S4 S5 S6 S7
0

5

10

15

20

25

30

35

40

Tim
e (s

ec)

Materialized View vs. SSX View Generation Times

SSX v.v.
m.v. 10MB
m.v. 50MB
m.v. 75MB

Figure 8: Materialized vs SSX View Generation Times

Query Profiles We chose 4 different types of queries to run
on the 7 security models. Type 1 attempted to retrieve the
nodes that were modified by the security primitives while
Type 2 varied from deep paths(for example length O 7) to
small paths (length O 3), Type 3 attempted to retrieve paths
that were not modified and Type 4 attempted to retrieve the
entire document. We also tested paths with “//” to test the
performance in the presence of uncertainty. Queries for the
Fan et al. technique [6] were generated by hand based on
the algorithm described in [6]. Figure 9 presents the results
from 7 sample queries against the materialized views while
Figure 10 presents the results from 5 sample queries (dis-
tinct from the previous test set) against [6]. The generated
queries were tested using Galax [8]. Complete details of
the queries and the timing results are not presented because
of space limitations but can be obtained from [15].

q1 q2 q3 q4 q5 q6 q7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Tim
e (

sec
)

Materialized View vs. SSX View Execution Times

SSX v.v. rewrite
SSX v.v. querying

Tim
e (

sec
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
m.v. execution

Figure 9: Materialized vs SSX View Querying Times

6.2 Experimental Results and Analysis

Based on the comparison against materialized views and
the method proposed by Fan et al. [6] we can arrive at the
following conclusions:

SSX Rewrite Versus Materialized View	 For queries with uncertainty (the presence of a // or a
wild card) the rewrite approach is much faster than the

Q1 Q2 Q3 Q4 Q5
0

0.5

1

1.5

2

2.5

3

3.5

Tim
e (s

ec)

Fan vs. SSX

SSX v.v
Fan v.v

Figure 10: SSX View vs Fan et al. View Querying Times

materialized views (q3 in Figure 9). This is because
the reachability of each node has been computed be-
fore hand.	 For queries with deep paths (Types 1,2) (q1,q6 in Fig-
ure 9) the rewrite mechanism exhibits better or compa-
rable performance with that of the materialized views.
For queries with small paths the performance is com-
parable (Types 1,2) (q2, q4 in Figure 9).	 For queries returning the entire document or a node
high in the XML tree (Type 4), the materialized view
tends to perform better. This is because the return data
has to be constructed (if nodes have been modified) in
case of the rewrite method (q5 in Figure 9).	 For paths which have not been modified (Type 3), both
methods exhibit comparable performances (q7 in Fig-
ure 9).

Overall in most cases the extra overhead due to the
query rewrite does not affect the performance and in some
cases reduces the average querying time. Further view
update complexities and data storage issues as illustrated
in Figure 8 only get worse with multiple security levels
on the same document. This makes our approach more
attractive when compared to materialization.

SSX Rewrite Versus Fan et al. Rewrite
From Figure 10 we can see that our approach provides

enhanced functionality with better or comparable perfor-
mance to the approach introduced in [6].

7 Literature Review
Several models of access control have been proposed in
literature for specifying and enforcing access control in
databases. Access control for relational databases using the
notion of views has been presented earlier by [10, 2, 13].
Halevy [7] provided a comprehensive discussion on an-
swering queries over views by rewriting them over the base
data. The problem of access control for XML has received
comparatively little attention. This section introduces a few
papers that study mechanisms to secure XML documents.

XACL [14] and XACML [12] enforced a generic
method of securing XML content and are not just lim-
ited to data hiding from queries. The policies are enforced
via mechanisms that upon an action request either grant or
deny access. Such mechanisms are too restrictive and in
reality the query must return portions of the result that the

11

user is authorized to access and not just deny the entire re-
quest. An alternative approach was taken by Murata et al.
[11] wherein the queries were executed and each element
of the result was checked for security and returned only if
the user had the requisite authorization to view the element.
They also propose the use of static algorithms to check and
see if a query could potentially return only accessible ele-
ments (safe queries). But the time-complexity of running
such algorithms statically is very high and checking each
returned element for validity can be exponential.

Issues of access-control inheritance, granularity of ac-
cess, access overriding and conflict resolution have been
studied in detail [1, 5]. Damiani et al.[5] was one of the first
works that utilized XPath as a means of specifying security
constraints. The paper proposed an algorithm based on tree
labeling and annotation to compute a security user view of
the data. But the work proposed that the view be material-
ized - a potentially complex and computationally expensive
task. Cryptographic techniques for securing XML content
have been studied by Miklau et al. [9]. They introduced the
notion of keys to ensure that published data is visible to ev-
erybody but only understood by authorized users(achieved
by key enciphering).

Fan et al. [6] is the most complete work on XML ac-
cess control to date. The authors introduced a notion of
specifying security constraints by annotating a DTD which
is then automatically converted to produce the actual secu-
rity model with separate security views for each user group.
The policies were enforced by rewriting XPath queries and
does not require materialization of individual views. How-
ever the paper limited the definition of views to either hid-
ing a node directly or based on a XPath condition. It does
not consider the notion of structure and hierarchy of XML
nodes and does not provide means to hide structural rela-
tionships between nodes and also does not talk about the
possibility of forming new structural relationships.

8 Conclusion and Future Work
With the growing popularity of XML and XML database
systems, the ability to hide data from a group of users is
as important as making the data available to users in an
efficient and friendly manner. Comparing XML to the re-
lational world, the challenge in XML access control lies
in the semi-structured nature of XML documents. In an
XML context, not only can values of elements/attributes
be sensitive, but also the structural relationship among ele-
ments/attributes. We propose an XML security view spec-
ification language SSX for DBAs to specify the security
constraints. Given an SSX sequence and an XML schema,
our system produces a Security Annotated Schema(SAS)
from which a view schema can be derived easily. The
proposed rewrite algorithm rewrites user XPath queries
(against the view schema) to an XQuery expression against
the original schema. This technique guarantees the en-
forcement of security constraints, without the cost of ma-
terializing and maintaining the security views. Our exper-
iments demonstrate the security view annotation algorithm

and rewrite algorithm to be effective and efficient.
The techniques proposed in this paper assume that every

XML database has a schema and that the schema is acyclic.
We are looking forward to extending our work to handle
recursions in XML schema and to tackle the more generic
scenario where partial or no schema is available. We also
propose to study several security models to determine situ-
ations where view materialization will be helpful and factor
in that analysis to come up with a system which can auto-
matically decide whether a given security constraint has to
be modeled as a virtual view or as a materialized view. We
plan to study the proposed primitives from a formal per-
spective to determine useful properties and also perform
algorithmic analysis to calculate bounds for the rewrite al-
gorithm.

9 Acknowledgments
We thank the members of the Database Lab at Indiana Uni-
versity for their comments in improving the content and the
style of this paper.

References
[1] E. Bertino and E. Ferrari. Secure and selective dissemination of

XML documents. ACM Trans. Inf. Syst. Secur., 5(3), 2002.

[2] E. Bertino, S. Jajodia, and P. Samarati. A flexible authorization
mechanism for relational data management systems. ACM Trans.
Inf. Syst., 17(2), 1999.

[3] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Simeon,
and M. Stefanescu. XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery, June 2001. W3C Working Draft.

[4] J. Clark and S. DeRose. XPath version 1.0.
http://www.w3.org/TR/xpath, 1999. W3C Working Draft.

[5] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Sama-
rati. Securing XML documents. In Extending Database Technology,
2000.

[6] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML querying
with security views. In ACM SIGMOD, 2004.

[7] A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4), 2001.

[8] J.Simeon and M.Fernandez. The XQuery implementation at
www.galaxquery.org.

[9] G. Miklau and D. Suciu. Controlling access to published data using
cryptography. In VLDB, September 2003.

[10] A. Motro. An access authorization model for relational databases
based on algebraic manipulation of view definitions. In ICDE. IEEE
Computer Society, 1989.

[11] M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML access control
using static analysis. In ACM conference on Computer and commu-
nications security, 2003.

[12] Oasis. Project at http://www.oasis-open.org/committees/xcaml.

[13] A. Rosenthal, E. Sciore, and V. Doshi. Security administration for
federations, warehouses, and other derived data. In IFIP WG 11.3,
2000.

[14] S.Hada and M.Kudo. XML access control language: Provisional
authorization for XML documents.

[15] S.Mohan, A.Sengupta, Y.Wu, and J.Klinginsmith. XML access con-
trol, at http://www.cs.indiana.edu/ ± jklingin/ac/index.html.

[16] B. B. Yao, M. T. Ozsu, and J. Keenleyside. Xbench - a family
of benchmarks for xml dbmss. In VLDB 2002 Workshop EEXTT.
Springer-Verlag, 2003.

12

