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1. Introduction: The idea and the purpose 
PageRank algorithm is one of the most commonly used algorithms that determine the 
global importance of web pages. Due to the size of web graph which contains billions of 
nodes, computing a PageRank vector is very computational intensive and it may takes 
any time between months to hours depending on the efficiency of the algorithm. This 
promoted many researchers to propose techniques to enhance the PageRank algorithm. 
The researchers investigated all aspects of PageRank algorithm that covers stability, 
convergence speed, memory consumption, I/O efficiency, and the connectivity matrix 
properties [2-7, 11]. However, some aspects of PageRank algorithm are left unstudied. In 
addition, very few techniques are building on the results of the others. In this work we 
investigate some PageRank properties and report our findings. 

2. Review of PageRank 
The PageRank concept was first introduced in [1] and it is the mechanism used in Google 
search engine. PageRank function assigns every web page a value that reflects the 
importance of such page. The documents that match a certain query are presented in a 
decreasing order of their PageRank value. In order to better understand the PageRank 
algorithm, we treat the web as a directed graph G = (V,E), where the set of V vertices of 
n pages, and the set E of directed edges (i,j), which exists only if there is a link from page 
i to page j.  
 
The PageRank algorithm assigns a rank value ri for  a page i as a function of the rank of 
the pages that point to it: 
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Where di is the number of outgoing links of a page i. This recursive definition gives a 
page a fraction of the rank of each value pointing to it that is weighted by the out-degree 
number. In order to be able to numerically calculate the above equation it is important to 
guarantee it is convergence. Strongly connected graphs are guaranteed to converge and 
this is done by adding a new set of complete outgoing transitions with a small probability 
for all pages in the web graph. This leads to the following modified equation:  
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Equation 2 can be rewritten in a matrix form to obtain the following equivalent equation: 
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Where e is the vector of all 1’s, and A is the matrix where ijij da /1=  if there is a link 

between i and j and zero otherwise. Usually the value of c is taken to be 0.85 or 0.9. In 
addition it is very important to remove all rows and columns in the matrix A with all zero 
entries. This corresponds to removing the pages with zero out-degree called sink pages or 
dangling pages. 
 
The intuition behind the above PageRank algorithm can be better understood with the 
random surfer model. The random surfer browses the web by going from one page to the 
next. Given the current location of the surfer, the successor location is a page that can be 
reached by following the link of from the current page uniformly at random. In addition if 
the case the surfer reaches a page without any out-going links, he jumps at random to any 
other page. The PageRank value for a page is the probability that at some time step the 
surfer is at that page. 

3. Experimental Setup 
The used both Stanford and Stanford-Berkeley links graph that we obtained via 
personal contact with people from Stanford WebBase project. Stanford link graph we 
crawled in September 2002 and it contains around 282,000 pages. Stanford-Berkeley 
link graph was crawled in December 2002 and it contains around 683,000 unique 
pages. The sparsity representation of the Stanford-Berkeley link graph is plotted in 
Figure 1, where the upper dense square shows Berkeley links and the lower dense 
square shows Stanford links, and everything else is the interconnected links between 
Stanford and Berkeley pages. 
 

 
Figure 1: The graph shows the sparsity of the Stanford-Berkeley Link Graph 
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4. Results and Discussion 

1. In-degree out-degree distributions 
In this part we just plotted the in-degree and out-degree distribution for both the 
collected and simulated data. The idea is to investigate how our data collections 
conform to the well-known results for both the in-degree and out-degree 
distribution. Figure 2 and 3 are log-log plots for the in-degree and out-degree 
distributions for Stanford-Berkeley data respectively. Best fit line for figure 2 
gives a power law with exponent of 2.1 while figure 3 gives and exponent of 2.4. 
These results are in a good agreement with previous research [10, 11, 12]. We 
also repeated the same experiment for Stanford data and we obtained very similar 
results. 

 
Figure 2: in-degree distribution 



 
Figure 3: Out-degree distribution 

2. PageRank value convergence as a function of the web size 
Many topical crawlers use the PageRank techniques to prioritize the crawler 
frontier. By doing so, it is assumed that the PageRank values for the collected 
sites are a good approximation for the real values. This assumption is not limited 
to focused crawlers; general crawlers such as the Google one also assume the 
PageRank for their collection is a good approximation for the real values. By the 
real values for the PageRank we mean the values that obtained from the whole 
web. In this experiment we studied the validity of such assumption, i.e, is the 
PageRank vector for the partial collection a good approximation for the whole 
collection? How good or bad is the approximation? How does this approximation 
change as function of the web size?. To do that, we measured the PageRank 
vector for the complete matrix then we compared the difference of the PageRank 
values when we take part of the whole matrix. Figure 4 shows how PageRank 
values changes as a function of the link graph size. In this experiment we 
considered the real PageRank vector as the vector obtained when we use the 
whole link graph of our data collection. The y-axis is the ratio of the average 
PageRank(Z) values of first 1% of the whole vector to the average of the real 
PageRank values of the same data. We define the PageRank(Z) as the PageRank 
vector obtained when only Z% of the whole matrix size is considered. 
 
From the figure we can see at when we calculate PageRank vector for 60% of the 
whole Stanford-Berkeley graph the average PageRank of the first 1% if the vector 
is double the real value of the PageRank. Only when PageRank is calculated for 
90% and more of the whole link graph we obtain PageRank values close enough 
to the real PageRank values.  



 
 Figure 4: The average PageRank values for the first 1% as a function of the Link graph size 

3. PageRank Convergence as a Function of the Web Size 
The convergence speed of the PageRank vector depends on many factors. It 
depends on numerical solver, the random jump probability value and the size of 
the matrix. In this experiment, we tried to measure the effect of the matrix size of 
the convergence speed. Figure 5 shows the results of PageRank convergence as a 
function of the size of the web graph. The figure shows the smaller the web graph 
the faster it converges. Figure 6 shows PageRank converge with different values 
of C parameter (from equation 3). From the figure we can see that the closer the C 
value to 1 the slower the convergence is. This is due to the reason that the 
convergence speed depends on the difference between the first and the second 
Eigenvalues which in turns depends on the C value [4]. 



 
Figure 5: PageRank convergence as a function of the size of the web graph 

 
Figure 6: PageRank convergence as a function of C 

 
4. PageRank order versus values 



The idea behind calculating the PageRank vector is to order the sites according to 
their importance reflected by the corresponding PageRank value. The absolute 
values themselves are meaningless and what is important is the relative values 
that convey the order. For that reason, the real interesting convergence of 
PageRank vector is when all entries of the vector are ordered in the right place 
within that vector not when we reach the value convergence. The question arise 
when does the order converge? Does it converge long before the values converge 
or around the same time? This is corresponding to answering the question of what 
is the minimum tolerance (L1 norm) value we can use to test for convergence. If 
the order converges at an early stage of the computation then we can stop there 
and save valuable time. In order to measure the order we are using The Kendall 
tau distance [13]. Kendall distance for two partially ordered lists, v1, and v2, each 
of length N is defined as: 

 
 
 
 
 
 

Kendall distance is the probability that v1 and v2 disagree on a relative ordering of 
a randomly selected pair of two distinct nodes. 
Figure 7 shows the plot of Kendall distance as a function of number of iterations. 
From the figure we can see that that Kendall distance converges after iteration 
number 30 for Stanford-Berkeley web and after iteration number 50 for Stanford 
web. This is different from the behavior of L1 norm where it kept decreasing with 
the iterations as shown in Figure 6. This is a very important finding since it 
indicates the iteration number that we can stop our computation at that after which 
we do not achieve any better ordering for the PageRank vector. As opposed to 
using L1 norm to check for PageRank convergence which does not indicate what 
the best value of L1 to use. 
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Figure 7: PageRank Order distance 

 
 

5. Conclusion 
The main conclusion of these experiments is that, using the ordering distance to check 
for PageRank convergence is better than using L1 norm which is most commonly 
used. Ordering Distance provides us with the value at which the PageRank vector 
reaches a stable ordering that hardly changes as we continue the computation.  
 
For future work we are planning to use larger data (from Stanford WebBase) 
collection to validate our previous conclusion. In addition we are investigating using 
iterative numerical solvers to compare it with the speed of the power method which is 
the traditional one used to solve for PageRank vector. 
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