TREE SIZE BY PARTIAL BACKTRACKING

Paul W. Purdom
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecunicaL ReporT No. 60
Tree S1ze BY PARTIAL BACKTRACKING

PauL W. Purpom

FEBRUARY, 1977

TREE SIZE BY PARTIAL BACKTRACKING

Abstract: Knuth (1) recently showed how to estimate the size
of a backtrack tree by repeatedly following random paths from
the root. Often the efficiency of his method can be greatly
improved by occasionally following more than one path from a
node. This results in estimating the size of the backtrack
tree by doing a very abbreviated partial backtrack search. An
analysis shows that this modification results in an improve-
ment which 1ncreases exponentially with the height of the tree.
Experimental results for a particular tree of height 84 show
an order of magnitude improvement. The measuring method is

easy to add to a backtrack program.

1. Introduction

The author had been trying to develop an improved method for
multiplying 3 by 3 matrices using a backtrack program when he
heard of Knuth's (1) method of estimating the efficiency of back-
track programs. The author had planned to make extensive use of
Knuth's method, but found that for his particular trees a huge
number of runs were required to obtain even an order of magnitude
estimate of the tree sizes. This experience was quite different
from that of several others (1,2). The author finally defermined
that the important characteristic of his trees was thelr great
height combined with the large fraction of nodes on each level
which had no sons. Eventually the 'author discovered a slight modi-
fication of Knuth's algorithm which produces a large increase in
efficiency.

Knuth (1) gives a good discussion of the uses of backtrack
programs, which will not be repeated here. The method he proposes
for measuring the size of a backtrack tree is to repeatedly follow
random paths from the root and to estimate that the number of nodes
in the tree is the average over several runs of 1+d; + d; d, + . . .
where di is the number of successors to the node on level i. This
gives an unbiased estimate of the number of nodes in the tree. It
1s particularly efficient when used to estimate the size of a com-
plete binary tree of height h, since it concludes that the size is
Qh-l after examining 2h-1 nodes. On the other hand it has trouble
with a tree in which each node has zero or two sons, and no more than
one node per level has sons which have sons themselves. Part of such
a tree is shown in figure 1, where only the nodes which Knuth's

algorithm considers expanding (i.e., nodes with sons) are shown.

The original tree can be obtained by adding two sons to each node
with no sons. For such a tree Knuth's algorithm will examine an

average of 7-2_h+3

nodes. While the expected value of the estimate
is 4h-1, the most frequent result of a single run will be 7. ZXnuth's
algorithm would have to be run Eh_l times to have a reasonable chance
o examining the bottom level. The best way to find the size of a
tree of the type shown in figure 1 is to examine all the nodes,

using a complete backtrack algorithm.

Tall skinny trees can thus best be measured by doing a complete
backtrack search, while short fat trees can be efficiently measured
using Knuth's algorithm. For intermediate trees neither of these
methods works well. The tree can have so many nodes that it is not
practical to do a complete backtrack search, while at the same time
it has so many nodes with no successors at each level that Knuth's
algorithm has difficulty learning about the deeper levels of the
tree. While Knuth (1) offers several suggestions that help in this
situation, they are often difficult to apply, and none of them get
to the heart of the problem. What is needed is an algorithm that
will sample the deeper levels, which usually contain most of the
nodes, with about the same probability as the upper levels. The
way to increase the number of nodes observed at the deeper levels
is to occasionally investigate more than one branch out of a node.
If the average number of branches to follow is selected properly
then one may be able to look at an average of about one node per
level. Doing this will greatly improve the efficiency of the es-

timating program.

2. Backtrack Measuring Algorithms

A general backtrack program finds all the vectors (xl,xz,...,xn)
which satisfy some property Pn(xl, xz,...,xn). There are also
intermediate properties Pk(xl, xz,...,xk) such that
Pk+1(X1’X2""’xk+l

is false, backtracking saves considerable work since no extension

)DPk(Xl...Xk) for o<k<n. When Pk(xl,xz,...,xk)

& (xl,xz,...,xk) needs to be considered as a possible solution.

The following algorithm is the common backtrack algorithm with
modifications for measuring tree sizes. The values X, are kept on
a stack, where k is the stack pointer. The parameter n is the

length of the vectors (xl,xz,...,xn) which satisfy the final

property Pn(xl,xz,...,x

n). The function C(XI,Xz,...,Xk) gives the

cost of examining node (x;,x2,...,xk). Setting C to one for all nodes
results in a total cost equal to the number of nodes in the tree. The
stack entry Ty contains the number of sons remaining to be selected
from the node on level k-1. The variable t accumulates the estimated
cost of the tree. To monitor the performance of the algorithm the
optional arrays Cq and fk accumulate the estimated cost of examining
the nodes on level k and the number of nodes investigated on level k.
For convenlience the algorithm assumes that the values for X, are
consecutive integers starting with one. Only minor changes are needed
to handle arbitrary discrete Xpee
Basic Backtrack Estimating Algorithm

Step Bl. [Initialize] Set k to 0, t to 0, and do to 1. TFor
1<j<n set cj to 0 and fj to 0.
Step B2. [Go down] If k=n then output the solution (X1,X2,...,Xn)

and go to step B6. Otherwise set k to k+l. Set a to the number of

values that x, can take on. If a 1s zero then go to step B6. Set

k
m to number of wvalues that will be investigated. This must be an

integer such that l<m=<a. 3Set dk to dk—l a/m, Lg% to m, and X to

atl.,

Step B3. [More] If x, is 1 then go to step B6.

k

Step B4. [Next] Set x, to x,-1. With probability 1—rk/xk

k k
reject Xy by going to step B3. Otherwise set T to rk—l, to to

c to ok+dkc(xl, Xps wees xk), and fk to £ +1.

k)’ k
Step B5. [Test] 1If Pk(x

t+dkC(X1, Koy weey X
19K5s e Xk) is true then go to step
B2,

Step B6. [Go up]l Set k to k-1. If k=0 then stop. Otherwise
go to step B3.

This algorithm is the traditional backtrack algorithm with
additions at steps Bl, B2, and B4 for measuring tree size. Step Bl
has the algorithm for selecting m of a values at random (3,4). The
efficiency of the algorithm depends on the value of m selected at step B2.
How to select m will be considered in detail later. However m is
selected, the expected value of the sum over all nodes visited on
level k of dkC(X1°X2""’Xk) is the sum of the cost of the nodes on
level k.

Knuth's algorithm for measuring tree size modifies the standard
backtrack algorithm by first testing all the successors to a node
before selecting which one to follow. The following algorithm com-
bines this idea with partial backtracking. It replaces the stack
Ty with a stack of sets Sk' The stack Sy contains the set of
values remaining to be considered for X The set Q contains all

the values of X, for which P(xl,x2,...,xk) is true.

Modified Backtrack Estimating Algorithm

Step M1. [Initialize] Set k to 0, t to 0, and dO to 1. TFor

i to 0 and fk to 0.

Step M2. [Go down] If k=n output solution (Xl’XZ""’ xn)

l<k<n set c

and go to step M5. Set k to k+l. Set Q to the set of all X such
; s . .
that Pk(xl’x2""’xk) is true. For each x, tested for inclusion in
Q, set t to t+dk_lC(xl,X2,...,xk), and £, to f +1. Set a to the
number of elements in Q. If Q is empty then go to step M5. Set m
to the number of values that will be investigated, so that l<m=a.

Set dk to d a/m.

k-1

Step M3. [Select values] Set S, to a randomly selected subset

k
of m values from Q.
Step M4. [Next] If S) is empty then go to step M5. Otherwise
remove an element from Sk and set X to the element. Go to step M2.
Step M5. [Go up] Set k to k-1. If k=0 then stop. Otherwise
go to step Mi.

The stack of sets S can be replaced by a stack of wvalues if

k
one is willing to test each node twice. Simplifications can also be

made if m < 2 at all times. The modified algorithm does.not test Po’

which is nearly always true.

The modified algorithm looks at all the successors of a node,
Xp 7> to see where Pk(xl’x2""’xk) is true, but follows only m of
them during partial backtracking. If Pk(xl,xg,..., Xk) is always
false when (Xl’XQ""’Xk) has no successors (and is not a solution)
then the tree of nodes considered for expansion by the modified
algorithm can be obtained from the original backtrack tree by

deleting the nonsolution nodes which have no successors. Usually

the resulting tree will also have some nodes with no successors.
Knuth's (1) algorithm is the modified algorithm with m always equal
to one.

Thé efficiency of either version of the algorithm depends on how
m is chosen. If it is always one, then one has essentially Knuth's
original algorithm. If it is always set to a then one has complete
backtracking. Small values of m make it difficult to observe deep levels
in the tree, while large values of m require that a huge number of nodes
be examined. There is often an intermediate value of m which will
largely avoid the first problem without causing the second.
3: Analysis

Figure 2 shows the first three members of a sequence of sets of
trees which are useful for studying the effect of the value of m.
For each tree in a set, there is a probability indicating how often
the tree is selected from the set. The set T has the tree 0,
consisting of just a root, with probability one. For i > 1 set Ti
has tree 0 with probability 1-b. It alsc has each tree of the form
(fl,tg), which has a root, left subtree tl, and right subtree t2’
where tl and t2 are selected from Ti—l‘ The tree (tl,t2) ocecurs
with probability bp(tl)p(t2) where p(tl) is the probability that
t, is selected from T, , and p(tg) is the probability that t, is
selected from Ti—l' The parameter b controls the average size of
the trees in Ti.

In the following the efficiency of a tree size estimating program
will be measured by the product of the expected number of nodes
examined (averaged over all trees in Ti) times the expected variance

of the estimate of tree size (averaged over all trees in Ti).

Sincé this is a measﬁremént of work timés érrof,.loﬁ nﬁmbers indicate
high efficiency. This quantity was selected because 1t is easy to
calculate. Although other measures of efficiency might be better, the
method of selecting m should apply with 1little change even with

slightly different measures.

Let pit(n) be the probability that tree t has n nodes and that

tree t 1s selected from Ti. Then pit(n) obeys the recurrence

P1g(n) = 8y1s

P;g(n) = (1-b)8 , for i>1, and
. n) = bEp. (m)p. {n-1-m) for isl:
pl(tl,tz)() moi-1,t, P11,
The expected number of nodes for a tree in Ti is
¥ () hes (2b) =1
n. = np.,(n) = 1+ bn._ =
1) AR Vil i i-1 ob-1
The variance is given by
S S~ 2 _
Yy T iotD Pyplthl-fy = 145Dy, ¥V g
2(1-b) 1 o
- e [=2ba{Pb=1) (P2=1)1{2b J "+ {2h)]
(2b-1)

For most values of b and i the standard deviation is
the same order of magnitude as the average.

When the baslic algorithm selects m to be 1 with probability
l1-p and to be 2 with probability p, it estimates the size of binary
trees according to the recurrences

E(0) = 1, 2E(t,) with probability (1-p)/2
E(tl,tz) = 1+ 2E(t,) with probability (1-p)/2

E(tl)+E(t2) with probability p.

Let pit(ﬁ) be the probability that £ nodes are examined when

estimating the size of t and that tree t is selected from Ti' Then

Pio(®)

p (%)
(ty5t5)

(l—b)ﬁzl and

b et .
g th) Lfiul,tl(2—1)%p1-1,t2(m)+pi-lst ok lszl L tl(™

) 1
+bpmpj.-:1.3tl(m)pi—l,t2(2’—l—m) fOP i>l- J
The expected number of nodes examined (averaging over all trees in

T, and repeated runs of the algorithm) is
[b(1+p)17-1

b(1l+p)-1

£, = K%%ﬂpit(ﬂ) = 1+b(1+p)l; ; =

Let pit(e) be the probability that e 1s the estimate of the
size of tree t and that tree t is selected from Ti‘ Then

pio(e) = (1-b)$_; and

; b ==
P1(t,t,) = 5(1-p) pi—l,tl(;) égpl Ly (m)+py_, t2(_5_'ébi—l,tl(m)]

+pﬁzpl 1,4, WPy _q B (e-=1-m)

1
The expected value of the estimate is
= Z — == (Zb)l"'
8y = £ thpte) = WBbes g S mpy

The expected value of the square of the estimate is

_ 2 _ 2
oy = g}te pit(e) = 1+2b(2ei—1+pei-l)+2b(2-p)Si-l

— u 2]
= L 4b -2bp-1 , 2(3-p)(1-b)(2b-1) PR
) 2 [fb‘gbp‘l * Bo=2p-1) (p-1) (Zo¥p-zy o0 2P

(2b-1) N
2[2b-p-1 1, p(4p2)?t
* [p—? : (2b)7* gb+p—2 J

the total variance can be calculated from S, - Of more interest,

however, is the internal variance, which measures the expected

variation of the estimate for the size of a tree about the expected
value of the estimate of the size of that tree. The internal var-
iance is equal to the total variance minus the variance in the size
of the various trees about the expected tree size. Furthermore,
variance in the size of the trees is independent of p while the

internal variance is zero for p=1l. Therefore, the internal variance

isg
vy = si-si(p=1)
_ 2(1-b) #Lbz(l-gl ¥ (20-1) X2 4 o3 (op)1 4 L=P (4p°)*
" (2p-1)3 |Bp-2bp-1 - -p = °* ob+p=2

3 .
" (2b-1) A
(Bo-2bp-1) (1-p) (2b+p-2) EDQ-pﬂ :

The efficiency of the algorithm is indicated by Ri Vi’ where a
low value indicates high efficiency. For % < b £ 1 and i large there
are three values of p of interest. When p is small the term that
grows like [2b(2-p)]i dominates the variance. The size of this term
decreases with increasing p. The number of nodes examined 1s small
if b(1l+p) < 1. Therefore, p=b-l—1 is one wvalue of interest. The
[213(2—13)]:.L term continues to dominate as long as Mbg < 2b(2-p).
Therefore, p=b-2b is a second value of interest. Finally, for p=1
bhe vapdanes is zero. Tor B o=l < p < 2-2b both extreme values for
p produce local minima in 21 vi, provided that one is above % and the
other is below %. If both extreme values are on the same side of %,
then only the more distant one produces a local minimum. For
< b < % V2, p = 2-b produces the lower value, while for

Y2 < b £ 1; p = b_l—l produces the lower value. For % < b < % /2"

Pl Pol =

one may want to set p to bnl—l to avoid looking at the larger number
of nodes required when p = 2-2b, just as one usually does not use

p = 1 because it requires looking at a prohibitive number of nodes.

A constant value of p is often not best. Rather than making many
runs with p=b_l-l.or 2-2b, it 1is better to set p=1 for several consecutive
levels starting at the root and to set p=b_l—l or 2-2b for the remain-
ing levels. In practice one would want to make at least 3 runs since
it is also important to know the variance of the estimate.

Now consider the modified algorithm. Let pit(ﬂ) be the prob-
ability that 2 nodes are examined when estimating the size of tree t

and that tree t 1is selected from Ti. Then

Pig(R) = (1-D)8y1, Dy (g)(8) = B(1-0)%6,,

pi(tl,o)(g) = bﬁl-b)Pi_l’tl(£-2) for t,=0,

pi(O’t2)(£) = b(l—b)Pi_l’t2(£—2) for t2 z= O, and

_ Db

+ bpgpi_l,tl(m)pi_l,t2(2-l—m) for t, = 0 and t, = 0.

The expected number of nodes examined is

p":i_ - ﬂ,tgpit - Therefore El = g 22 = 1+4+2b, and for 1i>2
2 2
.= 1+ +0)+ o 2
Ry = 1+b=(1+p)+(2b-b"(1-p))%; 5

1+b% (1-p)-2b[b(2-b(1-p)) 1172

1-2b+b° (1-p)
Let pit(e) be the probability that the modified method estimates

that tree t 1is of size e and that tree t 1s selected from Ti' Then
— _ 2
piO(e} = (l_b)6e13 pl(0,0)(e) = b(l_b) 583’
pi(tl,O)(e) = b(l—b)pi_l’tl(e—2) for tl z 0

Pi(O,tg)(e) = b(l'b)pi-l,tg(e'2) for t, = 0, and

o

] 2 ..,:

- b e=1 N« :

P, (e) = B(1-p) |p, __{)g _ - e |
iy) =3 Di-1st, (\2 mpl—l:tg(m) P1-1,4; *E{-%pi-l,tl(m)a

< |
+ bpmpi_1’tl(m)pi_l’t2(e-l~m) for tl # 0 and ty, = 0.

The expected value of the estimate is
<

e; = é?%epit(e)’ Therefore ey = l,e,=1+2b,
and for i>2, e, = 1l+2be, ., = (p)t-1
+ = 2b-1
The expected value of the square of the estimate is
< _ _ .
s; = éh_;te pit(e)' Therefore 5, = 1, 5, = 1+8b, and for i>2
- 1l _ B e 2
$; = 1-2b(1-p) + 2b%(1-p) + 4b[2-p-b(1-p)le, , + 2bpe] ;
+ 2b(1+b(1-p))s;_,
I 2 2
_ 1 j1+2b-2b" (3-p)-8b° (1-b) (1-p)
(2b-1)3 L 1-2b-2b°(1-p)
2 g
+ 4(2b-1) éb-l)(b—bp+2) [2b(1+b(1-p)) 1+
(1-2b-2b“(1-p)) (1-b(1+p)) (1-p)
.
42-b(5-3p) + 2b2(1—)] i-1 Mbgp 2,1-1 |
+ =P2d (op) T - BB up)TTH
1-p 1-b(1+p) <l
The expected internal variance is
Ty = si-si(p=l). For i>2 B N
v = ucl-b)glub (1_p)2 + (2b-1)]2=30(1-p) _2ip | (2p)i-1
T (2p-1)3|-142b+2b°(1-p) L 1-p B
2 . 3 e 5
_ bE(1-p) (yp2yi-1 (2b=1) “(2+b-bp) [2b+14+b(1-p))1i 1] .
1-b(1+p) (=1+2b+2b°(1-p)) (1-b(1+p)) (1-p) |
1

Again the efficiency is indicated by ﬁivi. For 5 < b < 1 and
large i there are three values of p of interest. These are
p =(b‘l—l)2, p = b'l-l; and p = 1. For (b_l—l)2 < p < b"1-1 both

endpoints produce local minima if b is near % V2. TFor

% < b < % /2, p = R produces the lower local minimum whereas
for % '« bx1l, p= (b_l—l)2 produces the lower local minimum.
The basic and modified algorithms have about the same efficiency
when p 1s set to the best value for each. The dominant exponential
terms have the same base and exponent, and the coefficients do

not differ greatly in value. The analysis indicates that the
modified algorithm is favored for b > .7325 and the basic

algorithm for b < .7325, but this conclusion is dependent on
detalled assumptions made in the analysis. Also, the basic

algorithm is easier to program.

i, Experimental Results

To test the practical application of these methods, a number
of measurements were made. The first set was made on a backtrack
program that found ways to multiply 2 by 2 matrices with 7
multiplications. The program was not very sophisticated and it
produced a 106,283,567 node binary tree of height 84. Level
48 had the largest number of nodes (16,077,754). The results of
these runs are given in tables 1 and 2. Figures 3 and 4
show the efficiency of each method as a function of p, the proba-
bility that both branches of the binary tree are investigated.
Figures 3 and U4 also have a least square fit of the theory for Ti
trees to the data. The value of chi-square is 98.7 for figure 3
and 21.8 for figure 4. The large values of chi-square are prob-
ably caused by using measured standard deviations rather than
exact values. For comparison figure 3 also has the curve for the
parameters that give the best fit to the data in figure 4. The

occasional large standard deviations result from the non-gaussian

nature of the distributions generated by the estimating process.
The experimental results show that values of p # 0 can produce a
considerable improvement in the efficiency of the estimation
process. They also show that the theory for Ti trees provides
a practical guide for selecting p.

The second set of runs was made with a slightly improved
program which looked for methods to multiply 3 by 3 matrices
using 22 multiplications. This program generated a gigantic tree

42

of height 594 with about 10 nodes. The level with the largest

41

number of nodes is near level 300, which has 4 x 10'~ nodes. By

carefully selecting a value of p for each level it was possible

L2

to estimate a size of 7.14 x 10 with a standard deviation of
4.79 x 1042. This required examining 7.8 x 108 nodes. A single
value of p was unsuitable because of the variation in the best
value at different levels in the tree. With previous methods

it would have been impossible to obtain even a rough estimate of
the size of this tree.

The experimental data was collected on a TI980 minicomputer,
which could test about 108 nodes per day.

Partial backtracking results in an exponential improvement
in Knuth's algorithm for estimating tree size. The effect is
particularly important for trees with a lot of dead—-end branches
(b near % in the analysis) and for tall trees. The analysis
suggests that good results can be obtained by choosing the number
of branches to investigate so that each level, from the root down
to the levels with the bulk of the nodes, is examined at about

the same frequency. Further improvement is obtained by looking

at all branches near the root, although one is usually limited by

the number of nodes one can afford to look at.

Acknowledgement: The author wishes to thank Cynthia Brown and

David Seaman who developed programs which led to this work.

References

1. ‘Knuth, D. E. "Estimating the Efficiency of Backtrack Programs,"
Math. of Comp. 1975 (29), pp. 121-236.

2. Bitner, J. R. and E. M. Reingold. "Backtrack Programming Tech-
niques," C.A.C.M. 1975 (18), pp. 651-655.

3. Fan, C. T., M. E. Muller and Ivan Rezucha. "Development of
Sampling Plans by Using Sequential (Item by Item) Selecting Tech-
niques and Digital Computers," J. A. Stat. A. 1962 (57), pp. 387-
Lho2.

4, Jones, T. G. "A Note on Sampling a Tape-File," C.A.C.M. 1962
(5), p. 343.

Table 1

p runs nodes examined estimate nodes x variance
(x1/16) (x10%) (x10%) (x10°1)
0 4. 89x107 2.000 0.56 0.18 6826
i 3.97}:107 2.000 0.80 £0.30 176161
2 3.15%10" 2.000 1.49 +0.74 109941086
3 2.39x107 2.000 0.757+0.055 6.02+0.66
4 1.66x107 2.000 0.998+0.072 10.4 5.5
5 9.69x106 2.000 0.991+0.027 1.49+0.22
6 4.29x10° 2.000 1.058£0.036 2.65:1.13
7 1.39x10° 2.000 1.064+0.030 1.83+0.82
8 548355 3.000 1.064£0.019 1.16+0.46
9 85854 2.000 1.047%0.018 0.70£0.11
10 31541 3. 322 1.049£0.016 0.86+0.08
11 5959 2.905 1.029%0.026 1.95+0.50
12 860 2.005 1.128+0.057 Gudl: 12
13 195 2.009 1.035+0.074 11.0 #2.4
14 Lo 2.0U45 1.09 #0.10 21.1 %5.7
15 10 2.389 T.01 ®6.2p 119 +36
16 il 1: 063 1.06283576 0

Results of the basic method with various values of p. Numbers
after the % signs are standard deviations. Not all runs were use-

ful for obtaining the standard errors for the last column.

Table 2

P runs nodes examined estimate nodes X variance
(x1/16) (x106) (x108) (x102l)
0 3.85x10° 2.000 0.999£0.030 1.76%0.60
1 2.63x10° 2.000 1.046+0.021 0.87+0.11
2 1.61x10° 2. 000 1.064£0.014 0.40%0.28
3 860153 2.000 1.123+0.053 5.6 £4.9
4 397856 2.000 1.06420.016 0.49+0.11
5 161623 2.000 1.060£0.019 0.76+0. 30
6 6074L 2.000 1.077+0.015 0.47+0.0L
7 21507 2.000 1.055%0.019 0.73+0.18
8 3778 1.000 1.094+0.058 3.4 £2.2
9 1265 1.001 1.08320.044 1.97+0.25
10 Lih 1.005 0.99 £0.13 h.5 #1.3
11 150 1.004 1.044+0.075 6.0 £1.6
12 64 1.021 0.93 +0.13 17.6 £7.3
¥3 21 1.018 1.05 =014 19.8 4.7
14 9 1.354 0.58 +0.38 199 +48
15 5 1.833 1.04 £0.15 89 .48

Results of the modified method with various values of p. Not
all runs were useful for obtaining the standard errors for the last

column.

Figure 1. A tall skinny backtrack tree.

Figure 2. The trees in Tl, T2, and 'I'3 with their associlated

probabilities.

Figure 3. The efficiency in nodes per run times varilance of estimate
of the basic partial backtragk algorithm as a function of the prob-
ability, p, that both branches of the tree are followed. The error
bars indicate one standard deviation. A least-squares fit of the
theory for Ti trees is shown. Also, for comparison, the dotted

curve is for the parameters that best fit the data in figure 4.

Figure 4. The efficiency is p for the modified partial backtrack

algorithm along with a least-square fit to the theory for T, trees.

AR

(9-1) 20 (q-1) n NS..._E q-1

|024__ ‘ BASIC METHOD
—= 1=49.105
b=0.71633
""" 1=51.072
I b=0.7065
1023y .
& \ G LA
\ o ‘.'
' 7
S -
. : Y
} vl ;I{ “
> |
l\
o2l N\
v
L "
¢
A
v
\\ ® c.
\ - } {"
v A
\ ¢ 5
21
_|0 \\ , -‘
\ ..;7
\ P
\ "
\ /
_’l
o 0.5 1.0

MODIFIED METHOD
|023__ :
-- i =51.072 ?
b=0.7065 ’\\
L
\
I, !
|
ol /
S)
| /f
| ¢
T /
-l v
2IT -
10 i\ } i//
\ - 2
b Lo
IOZO__
l
0 0.5 .0

