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Abstract

This paper continues our work on the analysis and formalization of enterprise archi-

tecture frameworks, proposing a number of principles related to the construction and use

of these frameworks. These principles are intended to guide the development of a formal

foundation for frameworks. Enterprise architecture frameworks organize, manage, and

interrelate the wide variety of models used to structure and operate an enterprise. The

principles are drawn from analyses of a number of existing frameworks and from obser-

vation of and participation in framework development. Since these frameworks involve

modeling, some of the principles apply to broader aspects of modeling; other principles

apply only to frameworks. As the goal of this work is a requirements speci�cation for

formalization of frameworks, the paper ends with a sketch of how the identi�ed principles

might guide this formalization.

1. Introduction

An enterprise architecture framework is a means to understand an enterprise or class

of enterprises by organizing and presenting artifacts that conceptualize and describe the

enterprise. An enterprise1 is a collective activity in a particular domain, with actors

sharing a common purpose; an enterprise can be a business, a collection of businesses with

a common market, a government agency, etc. Architecture is a metaphor to the realm of

o�ce towers and bridges, intended to capture the use-oriented, as opposed to construction-

oriented, aspects of the design of those structures. A framework is a structured container

for holding and interconnecting things2 { in the remainder of this document those things

y Supported by NSF grant ISS-82407.
1. The word \organization" is a common synonym for enterprise, but we must often use \organization" to
denote the way things are organized and thus restrict it to that use.
2. As another metaphor, think of a framework for electronic components which both holds circuit boards
and provides for wiring between those boards.
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are artifacts that comprise the enterprise architecture. In framework contexts, artifacts

are almost always models of some kind, which we sometimes call \components" to indicate

that they are pieces of the entire framework. In the following, \framework" will always be

a shorthand for \enterprise architecture framework".

Frameworks have been widely used. The Information Technology Management Re-

form Act of 1997 led to the US Government's Federal Enterprise Architecture Framework

(FEAF), which \describes an approach, including models and de�nitions, for developing

and documenting architecture descriptions"[22]. It is being deployed in all non-military

agencies of the US Government. The annual ZIFA Forums[33, register as a \friend"] have

included nearly 100 case studies highlighting the bene�ts of frameworks. Bernus et al.[3]

give several thorough case studies (along with an extensive discussion of enterprise archi-

tecture issues).

Whether the frameworks address manufacturing operations, process control, informa-

tion systems, or government bureaucracy, the artifacts produced to describe the enterprise

comprise a valuable asset requiring its own distinct management. Managing and gaining

full value from that asset is the reason enterprise architecture frameworks are conceived,

built, and used. Professional practice has taught us about the fragility of isolated appli-

cation silos on islands of automation and about the di�culty in achieving interoperability

under such circumstances. While these are typically called \data silos," the signi�cant

problem is that they are in fact model silos. That is, the mismatch of underlying models

is the greatest impediment to interoperability.

In spite of their wide use and importance, frameworks have all been de�ned only

descriptively. This means that it is currently impossible to formally relate di�erent frame-

works, to say nothing of implementing tools that properly support these frameworks.3 This

paper works toward correcting that de�ciency, as part of a larger project which seeks to

characterize and formalize frameworks.

This work is about frameworks in general and not about any one particular framework.

Although our original motivation was the Zachman Framework for Enterprise Architec-

ture[32,33], we examined and incorporated several other frameworks, which are itemized

in section 2. Moreover, this work is about structure and not about contents. Thus \frame-

3. There are software packages that purport to implement various frameworks, but these packages only im-
plement the \holding" aspect of frameworks. That is, they are tools for editing and managing representations
which populate a framework instance, without respect to the semantics that the framework provides.
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work" by itself indicates a collection of descriptions and principles for organizing framework

contents while \framework instance" indicates the use of a framework describing one par-

ticular enterprise. In the latter context, the pre�x \meta-" is used to explicitly indicate

some non-instance aspect.4

The primary goal of this paper is the development of principles for guidance in un-

derstanding frameworks and for formalizing the use of frameworks to support organization

and interaction of the many models associated with an enterprise. This work therefore con-

tinues our e�ort to formalize the ways in which these particular frameworks manifest the

architecture of an enterprise[18], with an eye toward (i) connecting a framework instance's

contents, (ii) manipulating those contents and connections, and hence (iii) relating di�er-

ent frameworks and recasting instances from one framework standard to another. While

our primary goal in developing these principles is to use them to guide our formaliza-

tion activities, we hope that many are directly useful in the development of individual

frameworks.

Section 2 begins this paper with a discussion of the origin and (to the extent possible)

validation of the principles. Section 3 introduces a few principles that are general in nature,

applicable to any modeling and analysis endeavor,5 while section 4 discusses principles

especially pertinent to frameworks. We then conclude this document by considering how

these principles guide the formalization of frameworks.

2. Origins of the Principles

The principles described below come from (i) evaluation and comparison of di�erent

frameworks, (ii) observation of the process of de�ning frameworks, and (iii) participation

in this same process.

Principles are largely based on analysis of the framework architectures: Zachman[33],

a revision to the European pre-standard ENV 40003:1990 Computer Integrated Manufac-

turing: Systems Architecture Framework for Modeling[27], ISO Standard 15288 Systems

Engineering { System Life Cycle Processes[14], and the US Defense Department's C4ISR

4. This terminology is borrowed from the world of relational databases, where \relation" typically indicates
the general structure, or schema, while \relation instance" indicates such a structure containing particular
instance values and where names of columns are called \meta-data" while the values in those columns are
\data".
5. We are still using \framework" as a shorthand for \enterprise architecture framework", but it would be a
valuable exercise to see which of these principles hold for other classes of frameworks.
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Architecture Framework[5], an analysis which we reported in [19,20].

Principles are also based on professional observation and participation { often expe-

rience of the di�culties which arise when these principles are not followed. Draft working

notes from ISO e�orts illustrate such di�culties, as in the statement \Something is not

very clear - the distinction between the interoperability of process models and the in-

teroperability of processes"[16, Nov. 2003], which reects principle 4 about meta-levels.

Our own professional experience includes constructing and analyzing models in an enter-

prise context, teaching modeling, and participating in the development of international

standards for enterprise architectures.6

We do not claim to have originated all these principles. Several are simply our state-

ments of well-established suggestions (e.g. 6, \Do not hide architecture in methodology",

which is a rephrasing of the data independence principle[4]). Principles reecting some of

the same concerns as ours have been identi�ed elsewhere [7,15,28], although these other

principles are largely directed at insuring the �delity of the modeling process; intersections

with our principles will be mentioned as they occur. We include them all because we intend

this compendium as a basis for the formalization that we will briey sketch in section 5.

Occasionally speci�c facts are given in evidence. Only a few principles can be sup-

ported so concisely. One such principle (11), that states the independence of three com-

monly correlated scales, is supported by examples high in one scale but low in another.

Unfortunately, principles that describe general behavior do not admit such concise support.

This is very loosely similar to the di�erence between existential and universal propositions,

in that one instance proves the former.

Perhaps the most insightful principle is principle 10, which recognizes that decomposi-

tion uses both grids and trees. We �rst observed this duality in the context of adding detail

within a Zachman framework[9], necessitating the use of recursion within a frame. This

principle has been validated by its use in comparing frameworks[20] and its value in the de-

velopment of international standards, particularly ISO 15704:2000 Industrial Automation

Systems - Requirements for Enterprise Architecture Methodologies[13].

Many principles focus on highlighting and re�ning distinctions (such as principle 5,

which distinguishes dependency and temporal order). They arise from observation of the

6. Richard Martin is convener of TC 184/SC 5/WG 1, \Modeling and architecture", of the International
Standards Organization.
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ways in which people model, and the successes and the di�culties encountered therein.

Principles may be descriptive, describing the way that model artifacts are constructed

and organized, or prescriptive, recommending how they should be. However, prescriptive

principles all began as observations of the form \People have trouble with : : :." Prescriptive

principles of course guide practice; but they also guide the formalization e�ort, indicating

what should be facilitated or discouraged.

3. General Principles of Modeling

Modeling as we mean it is a conceptual exercise, only analogously related to physical

modeling as in, say, model railroads.7 Conceptual modeling does yield representations in

a particular medium, not necessarily a medium with physical manifestations, but these

are representations of the modeled concepts. Thus principles apply to both concepts and

representations.

Each of the following principles begins with a short phrase (indicated in that manner)

which identi�es and hopefully summarizes the principle.

1 Communication is a goal of modeling. Models (including frameworks) are formal arti-

facts but they are developed and used by people. Therefore any modeling formalism

must be robust and tractable in interaction with non-formal components - people.

This principle is discussed at great length in [28] and related psychological factors are

discussed in [25].

2 Complexity tradeo�. There is typically a tradeo� between complexity in the mod-

eling medium and complexity in model instances constructed using that medium.

That is, if the underlying mechanism is too simple, then instances become com-

plex to compensate; if the mechanism is too complex, it becomes the plaything of

a very few specialists. Modeling mechanisms therefore should be de�ned with an at-

tempt to �nd a \sweet spot" where these complexities are in balance. The success

of Entity-Relationship (ER) models is attributable to this balance[2]. Of course we

must remember that di�erent modeling e�orts have di�erent sweet spots. The Uni-

�ed Modeling Language[21] is an aggregation of several modeling mechanisms, each

of which seeks to establish a \sweet spot" with respect to the representational needs

7. We draw this distinction because, for most people, the �rst connotation of \make a model" is to construct
a model railroad or something similar. Model railroads diminish function but primarily reduce physical scale;
indeed, the �rst descriptor applied to a model railroad is its \gauge", or physical scale.
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of the content being modeled.

3 Naming matters. Naming, i.e. the assignment of a string8 to a concept or artifact,

serves as the bridge between formal artifacts and human interpretation. That is,

there are two sides to naming: \external" (relating to the real world) and \internal"

(relating to the mechanism and models of a framework). Said another way, internal

naming involves formal meaning while external naming involves human understanding

of that meaning.

Because names serve a role in human communication as well as one related to for-

mal structure, naming must be done with great care. Of course the formalism works

equally well whether the names used are well understood by human participants or

are merely nonsense terms, as long as meaning is unambiguous (This fact is quite

bene�cial, since it allows the focus to be on the human/ontological aspects of name

choice). Naming has important (and sometimes unexpected) consequences because

that name typically has other associations. Even professionals often use the same

names with di�erent meanings. Thus, the development of ontologies and ontological

methods to manage naming is complementary to the study of formalisms for frame-

work expression.

We experienced an interesting example of the impact of name choices at a recent WG

1 meeting[16, April 2004]. In discussions concerning principle 5, the conventional

Zachman row identi�ers \specify", \design", and \build" were considered too similar

to lifecycle stages and thus easily thought of as chronology. The terms \conceptual",

\logical", and \physical", equivalent in this context, were easily distinguished as a

time-independent dimension.

Concern over naming has broadened the study of ontologies from a few philosophers

to many technical, scienti�c, and management circles[8,23,10]. A particular focus

for ontology use is the need to distinguish how term usage is related to context { a

concern that must be addressed by formal frameworks[6,26].

4 Use \meta" with great care, because the term is seriously overloaded. This particu-

larly applies when discussing meta-levels. This is particularly true because \meta" is

a relative term, not an absolute.

One obvious example of the relativeness of \meta" is observable in the realm of ER

8. We do not use \label" because we want to restrict that term to a speci�c use.
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modeling. There, the meta-model level decomposes all models into Entities and Re-

lationships; the model level may decompose a particular model for corporations into

Department, Employee, Project (instances of Entity), Works For (instance of Rela-

tionship), etc.; the model population level (for a �xed corporation) into Sales, Human

Resources, Accounting, etc. (instances of Department). Thus the model level is meta

with respect to the model population and ER notation is the meta-meta level for

the model population. Notice that \instance" is also a relative term, in that it does

not indicate an absolute level but only the level below X when used in the phrase

\instance of X".9 Also, \meta" is roughly the inverse of \instance of", in that the

meta of an instance of X is in fact X . However, since our interest focuses on models

and meta-models, henceforth \instance" shall denote artifacts at the model level; that

is, Department, Employee, Works for, etc in the above example.

5 Dependency is not chronology. That is, just because B depends upon A, it is not

necessary that B follows A in time. For example, there is a dependency in the general

activities of Sales Shipping Production, in that the purpose of Shipping is to ful�ll

Sales and the purpose of Production is to enable Shipping. While an individual sale

(an operation deriving from Sales) is followed by a shipment, in an ongoing enterprise

(where sales occur over a long time) it is not the case that Sales as a unit precedes

Shipping. Moreover, an operation of Production must occur before the corresponding

Shipping and might even occur before the corresponding Sales event, even though

the purpose of the �rst followed from the second. Indeed, this aspect of anticipation

- separating timing from dependency - is a central reason for enterprise modeling

(whether formal or informal). The widely-used PERT (or Critical Path) algorithm

explicitly maps a network of dependencies into a schedule.

While much of the evidence for this principle comes out of di�culties arising when it

is not followed, ISO 14258 Industrial Automation Systems { Concepts and Rules for

Enterprise Models[12] makes this distinction explicit.

6 Do not hide architecture in methodology. It is wrong to bury characterizations of

things in methods that are used to construct them. This is not to claim that methods

do not constrain results (to claim so would be most foolish) but rather to observe that

such constraints must be made explicit and external to the construction process. In

particular, the architectural form should survive changes in method and technology.

9. By analogy, the \meta/instance" distinction should be thought of as similar to \up/down" rather than
\top/bottom".
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Di�culties arising from failure to follow this principle occur when methodology is

framed in order to constrain the results produced. Results added from the outside

then do not �t those constraints. The explicit \views" of ISO 15704 exemplify this

problem; factoring these views out of the methodology motivates current e�orts to

amend this standard.

4. Principles Speci�c to Frameworks

7 Frameworks organize artifacts. A framework is a means to facilitate understanding

of enterprises and to communicate that understanding, principally by organizing and

connecting artifacts used to represent a particular enterprise. Frameworks help us to

take very richly textured descriptive artifacts and arrange them for practical under-

standing. Frameworks help to simplify complex presentations which are composed of

many inter-related artifacts. The organizational mechanism of a framework is primar-

ily a collection of dimensions along which the artifacts are placed and hence classi�ed.

It is in the number and di�erent natures of these dimensions that frameworks vary.

Many further principles relate to the characterization of these dimensions. Zachman

was the �rst to identify speci�c artifacts that belong in frameworks[32], followed soon

by the PERA group[31].

8 Distinguish structure from connectivity. Structure and connectivity are distinct as-

pects of frameworks10 and a framework formalization (or standard) should distinguish

them. The clarity of this distinction directly impacts the quality of a framework; un-

fortunately many frameworks do not achieve their intended impacts because they do

not exhibit this distinction with su�cient clarity. Furthermore, useful reorganiza-

tions of a framework (discussed below in terms of view de�nitions) can be tractably

expressed when phrased in structural terms, whereas desired views involving connec-

tions may be di�cult to specify and expensive to compute.

Modeling that confounds structure and relationship is prone to both inaccuracy and

brittleness. Thus we strongly recommend that the models used within a framework

exhibit the same distinction; fortunately many common models do, including entity{

relationship, process{ow, personnel{reporting line in an organization chart. This

10. We �nd it helpful to visualize a computer room where frames both hold devices (servers, disk drives,
communications interfaces, etc.) and provide channels for wiring these devices together. A second metaphor
is between bone (structure) and muscle (connection); this emphasizes that operation largely occurs through
the connections.
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principle harkens back to the \data independence" dictum11 which was so essential

to the maturation of database management systems out of the more ad hoc realm of

data processing.

9 Separate policy from mechanism. That is, policy should be found in framework con-

tents and not framework structure. As their goal is to facilitate understanding, frame-

works provide (structural and connective) mechanism rather than delineate policy

concerning enterprise management. Within an instance of a framework, representa-

tion of such understanding may constrain the operation of a particular enterprise and

that framework may of course de�ne policies. This parallels a distinction between

mechanism and policy that was popularized in the conceptualization of computer

operating systems[17].

10 Two aspects of organization. There are two general ways in which items within a

framework are (typically) arranged: (i) in an ordinant structure (that is, a table,

grid, or matrix) or (ii) in a decompositional structure (that is, a tree). We call either

of these dimensions of the arrangement. Dimensions of either kind are discrete12 and

ordinant dimensions typically have only a few coordinate positions. The coordinate

positions of an ordinant dimension may be ordered (e.g. rank) or unordered (e.g.

gender), while a decompositional dimension is always ordered only by its containment

relation.

The signi�cance of this principle is beyond merely that both structures occur { they

co-occur regularly. In the enterprise context, we are aware of this �rst in Inmon et

al.[9], where the Zachman grid structure appeared at all levels of a re�nement tree

(see also principle 13).

An important step in organizing artifacts is to identify and characterize (as ordinant

or decompositional) the dimensions that de�ne the structure. The de�nition of an

ordinant dimension is the identi�cation of its coordinates and, where relevant, the

order of those coordinates. Recall that dimensions only describe the placement of

items (in a real or conceptual space) and not the interconnection of these items,

which is typically much richer and more complex.

11. Data independence is a content-representation distinction, so the analogy made here is not to the particular
distinction but to the great bene�t derived from such clean distinctions.

12. This statement necessarily holds for decompositional dimensions but is sometimes relevant to distinguish
meta-coordinates from instance coordinates where ordinant dimensions are involved.
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Individual artifacts, in turn, are identi�ed within a framework by name. A name can

indicate a coordinate position along a particular ordinant dimension or indicate one

member of a collection. When a string is used as a name in one of these contexts,

we will refer to it as a label. Such a label has meaning �xed by formalism within a

formal context; but when viewed in isolation that �xed meaning may be lost. An

ordered dimension induces an ordering on its coordinate labels and we typically do

not distinguish between these orders.

11 Three aspects of scale. There are (at least) three distinct dimensions that reect

conceptual (as opposed to physical) scale: (i) abstractness, ranging from abstract to

concrete, (ii) scope, from general (generic) to special (speci�c), and (iii) re�nement,

from coarse to �ne. Using the terminology of principle 10, abstractness, and scope

are ordinant-ordered and re�nement is decompositional.13

Because it is common to have co-occurrence of the origin or extreme endpoints in

all three dimensions (as a module that is concrete, speci�c, and �nely re�ned), these

three dimensions are often confused. But they are in fact independent. Examples

validating this independence occur in: (i) ER models (fully developed, with all at-

tributes, relationship constraints, etc), which are both abstract and �nely re�ned; (ii)

ISO 19439, where the \Generic" plane includes items across the range from abstract

to concrete; and (iii) C4ISR, where technically detailed products span a range of

operational abstraction.

Understanding (and distinguishing) conceptual scales is essential because they gov-

ern the ways in which framework dimensions are conceived, ordered, populated, and

constrained.

The fourth principle of Greenspan et al.[7, x2] focuses on abstraction and re�nement,

although without a �rm distinction between the two.

The following principles seem less likely to guide practice than those itemized above.

That is, they are more purely speci�cations for our intended formalism development.

12 One dimension manifests purpose within a framework. One, and typically only one,

of a framework's ordinant-ordered dimensions reects the purposive nature expressed

within a framework. Note that such a \purposive dimension" does not represent the

purpose of the framework (which is to support a particular methodology or standard,

13. In fact, re�nement is often the canonical hierarchy.
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and all dimensions should support that purpose) but instead represents the fact that

artifacts derive their purpose from artifacts earlier in the dimension's order (most often

through elaboration). Examples of such purposive dimension are Role in the Zachman

framework, Model Phase in ISO 19439, Process Group in ISO 15288, and Guidance

in C4ISR. Derived dimensions, produced through views (see principle 16 below), may

also exhibit a purposive order; the C4ISR's \Force Integration" dimension, derived

from a command-structure hierarchy, exhibits the purpose inherent in any chain of

command.

The ordering of a purposive dimension often manifests itself as causality, dependency,

or chronology. However, it is not merely a time dimension, even though purpose in a

framework often leads to temporal ordering in the operations of the enterprise. This

indeed follows from general principle 5.

Within framework instances, components at one level of the purposive dimension

inform those at the next. Furthermore, connections running along the purposive

dimension convey this purposive information. While connections can and do occur

arbitrarily within a framework instance, they always occur along the purposive di-

mension.

13 Re�nement is recursive. The decompositional scale dimension, re�nement, is funda-

mentally di�erent in that it works (or at least works best) through decomposition

and successive re�nement. Thus frameworks should be recursive in their application.

Inmon et al.[9] illustrate a recursive re�nement in an enterprise framework.

A major bene�t of recursion in framework structure is that it directly supports a

\drill-down" approach to framework development and exploration. To manage and

comprehend the richness present in a framework, it is necessary to separate the ar-

tifacts such that detail is hidden until revealed for consideration. Recursion is the

mechanism for providing this layered approach. Furthermore, recursion greatly facil-

itates building one uni�ed framework out of several here-to-fore independent ones.

Unfortunately, practice often foreshortens the recursion, forcing a �xed (albeit hier-

archical) or attened structure.

14 All context is relevant. It seems necessary, as one moves through a framework along

its purposive dimension, from row to row in a Zachman framework for example, that

the entire framework structure at one row is potentially relevant when describing a
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component at the next. This is not a claim that an entire row is in fact materially

relevant for each component in the next; it is merely a recognition that all of the

models from prior coordinates can be useful in understanding and constructing the

next. Moreover, it is sometimes as important to know which concerns are not needed

as it is to know which are. Perhaps this principle just reects the fact that frame-

works, and the enterprise domains with which they are concerned, are not suitable for

minimally descriptive artifacts. Without considering the entirety of the previous row,

redundancy is more di�cult to eliminate and comprehensiveness is more di�cult to

achieve.

Evidence for this principle abounds. In the Zachman model, process designs draw not

only from process speci�cations, but also from the information (ER) model, business

rules, and even sta�ng considerations.

15 Connections can be of arbitrary arity. Connections between framework artifacts can be

of arbitrary arity, although binary ones are most common. However, it is su�cient to

provide for the construction of arbitrary connections using binary ones. For example,

a Relationship in an ER model may be constructed to have any degree, but the basic

connections are always between a single Entity and a single Relationship.

16 Views are important in standards and methodologies. A framework formalism should

provide a general mechanism for de�ning views. Views are used in enterprise modeling

because the complexity of an enterprise makes it impossible for a single descriptive

representation to be humanly comprehensible in its entirety. The notion of view is

inherent in any large, complex structure observed and managed by many individu-

als who neither can nor should attempt to analyze, design, or implement the entire

structure. ISO 15704 requires four views: \Function", \Information", \Resource",

and \Organization".14

The view mechanism should be general and dynamic. It must be general because

there is little commonality of particular views across frameworks. Although 15704

de�ned four �xed views, recent deliberations on amendment of the standard have

included consideration of additional �xed views, along with increasing awareness that

views must be dynamically de�nable. Furthermore, views can be quite simple or very

elaborate depending upon the intended use. The view mechanism should facilitate

14. Such views are often described as if they comprise a distinct dimension, but such a collection of views is
an artifact of the process rather than part of the underlying framework.
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dynamic extraction and restructuring of an enterprise model from various conceptual

perspectives.

17 Construction through views. Views are not merely used for viewing; they are often

used for constructing and populating frameworks. This is indeed an important reason

for views in ISO 19439 Enterprise Integration - Framework for Enterprise Model-

ing[11]. Analogously, entities are placed in the ER model through the \information

view" rather than into the complete framework. Thus the \view update" problem

from the world of relational database reappears in the context of frameworks.

18 Constraint mechanisms are necessary. Framework standardization, as currently prac-

ticed, augments the frameworks themselves with voluminous texts constraining how

frameworks are to be constructed or applied. In spite of considerable e�ort, such

texts are inconsistent, ambiguous, and di�cult to apply. Such application is of course

limited by the degree to which constraints fall wholly within a framework, since a con-

straint that is even partially outside of the framework is not enforceable within the

framework. Framework formalization should provide a foundation upon which unam-

biguous, concise, and e�ectively computable constraint mechanisms can and should

be built.

Beyond the simple observations that informal constraints exist and formal ones are

highly desirable, at this point we can draw no further principles concerning con-

straints. Because current frameworks are largely structural, the constraints we observe

are also structural. We do caution that constraints are also subject to considerations

about meta-levels { in particular, model constraints must be distinguished from in-

stance constraints.

The above principles characterize many of the frameworks that are concerned with

domains at the enterprise level, although we have found no framework that exhibits all of

these principles. Collectively, these principles constitute the foundation upon which useful

enterprise frameworks are constructed.
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5. Toward Framework Formalizations

While the previous sections discussed principles obtained from observation and anal-

ysis of existing frameworks, this section outlines how these principles guide formalizing

enterprise frameworks. Although the individual framework instance is of course the for-

malized artifact, the following discussion is directed toward \architectural" standards that

prescribe how a collection of frameworks is to be formalized.

There are four major aspects of a formalism that follow from the above principles.

We itemize these four, justify why they should be treated distinctly, and then delve more

deeply into each aspect.

structure: the way that components and sub-components of an enterprise are placed

within a framework.

connections: the manner in which components and sub-components of an enterprise

are interconnected within a framework. It is through these connections that the

operations of an enterprise are manifest.

views: formal mechanisms for restructuring a framework to emphasize features from a

particular conceptual or operational perspective.

constraints: formal mechanisms by which the conformance of a particular instance to a

standard or architecture may be evaluated.

The deliberate separation of structure and connections is a direct consequence of

principle 8. A framework is thus a structure for holding artifacts and a mechanism for

connecting them.

The needs for views and constraints are enunciated in principles 16 and 18 respec-

tively. While it is necessary to draw distinctions between structure and connections, it

is advantageous to do the opposite, drawing parallels between views and constraints. In

particular, the ability to de�ne views immediately enables constraints de�nable in terms

of views, as in \view A is a subset of view B".

A formalism for framework structures provides the foundation upon which formaliz-

able, and therefore precise and coherent, view mechanisms can be built; and, conversely,

view mechanisms provide the formalism through which one single overarching structure is

coherently and consistently created by these many individuals.
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5.1. Structure

A structural formalism is the mechanism through which sub-components of a compo-

nent are both identi�ed and organized. Because this formalism is symbolic, in the model

space, identi�cation and organization are not distinguished within the formalism, but are

distinct in uses of the formalism. Speci�cally, the heart of a structural formalism is a set

C of components and a function s that maps components (artifacts) into sub-components,

designated by one or more identi�ers.15 In particular, s : C � identifier� �! C (the choice

of a value for � is discussed below). Thus the major di�erence between structural for-

malisms is in the way that identi�ers (names, labels, ...) are used to select sub-components

of a given component.

We now return to the ordinant/decompositional distinction of principle 10, recognizing

that a complete formalism must provide both kinds of structure. Recall that ordinant

dimensions classify components in a tabular structure, while decompositional dimensions

indicate sub-components in a hierarchical structure. We consider each in turn.

A ordinant dimension has a �xed set of values and every component must be labeled

by exactly one of those values. The number of dimensional identi�ers and the label set

for each are typically �xed by a framework standard or architecture (although a standard

might specify a minimal set of labels, which could be expanded for particular instances).

Thus a standard de�nes a k-dimensional space which components occupy. Note that these

dimensions are e�ectively orthogonal, in that all k identi�ers must be speci�ed in order to

place an artifact in this space.

A standard may specify that a particular dimension is ordered, so that the set of labels

for that identi�er is given a meaningful order (meaningful with respect to constraints, which

will be discussed later). This order may also reect the process in which frameworks and

framework instances are conceptualized and constructed. Such a shift from dependency

to chronology (cf. PERT) should be supported but not enforced (per principle 5) by the

formalism.

Examples of ordinant dimensions include the Zachman framework's interrogative with

values f\what", \how", \who", \where", \when", \why" g and the CEN Enterprise Inte-

15. The use of the word \identi�er" here picks up two distinct meanings of the word. First, an identi�er does
indeed help identify subcomponents. Second, an identi�er here is similar to an identi�er used as a parameter
in a program.
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gration Framework's genericity with values f \generic", \partial", \particular" g.16 Note

that genericity is ordered, so the set notation here is inadequate for communicating all

that is known about that dimension.

A decompositional dimension allows the decomposition of components into succes-

sively smaller sub-components. This decomposition naturally forms a hierarchy of com-

ponents.17 For example (at the model-population level), an enterprise typically has an

organization chart with levels enterprise > division > department > o�ce > work group

> employee. Since it is highly unlikely that each division will have exactly the same de-

partment as other divisions, this hierarchy does not lend itself to the structure of ordinant

identi�ers.

Although having more than one (independent) decompositional dimension is not ex-

plicitly prohibited, there does not seem to be any modeling advantage from multiple decom-

positions at a single meta-level. In fact, having more than one decompositional dimension

is likely to make matters quite confusing. In our organization chart example, it would be

very strange to say that a department were broken up, simultaneously and independently,

into branches and o�ces at the same level in the organization chart, although independent

parallel hierarchies of organization and location (who and where columns in a Zachman

framework) are common.

The above discussion takes on a di�erent avor when multiple meta-levels are consid-

ered. That is, it is natural and expected that there be meta-level and model-level decompo-

sitions. For example, saying that the hconceptual; whati cell of a Zachman frame contains

Entities and Relationships is a meta-level decomposition of that cell, while saying that

Employee and Department are Entities is a model-level decomposition. Consequently, any

formalism must provide mechanisms for multiple decompositions at di�erent meta-levels.

There are two ways to provide these mechanisms: �rst having multiple independent decom-

positional dimensions and second restricting the form of labels in particular cells. As an

example of the second, we could provide for ER models by requiring that all labels in the

hconceptual; whati cell be either of the form Entity:* or Relationship:*18 , thus achiev-

ing the speci�c model with labels including \Entity:Employee", \Entity:Department",

and \Relationship:WorksIn". Because of this choice, there is a second parameter to

16. In an interesting comparison, Armour[1] has eight values along the genericity dimensions.
17. Note that \smaller" here only applies for components entirely within the enterprise; a decomposition may
also reveal components in the enterprises scope. For example, decomposition of computer system reveals
internet, an external component much larger than the enterprise being analyzed.

18. As in common convention, * indicates an arbitrary character string.
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various formalisms: `, the number of decompositional dimensions. Typically ` ranges from

1 (second method above) to 3 (�rst method with independent dimensions for meta-model,

model, and model-population). While the name used for a decompositional identi�er may

vary with level and context (\division", \department", etc), it is better for the formalism

to treat such identi�ers uniformly independent of context.

Because the notion of enterprise is uid, a collective activity may be considered an

entire enterprise at one time and later may be considered just a sub-component of a larger

enterprise. For example, individual businesses, once considered enterprises, may combine

together in a larger supply-chain enterprise. For this reason, all components must have

the same structural identi�ers available for their decompositions, although all of them may

not be meaningful at lower levels.

In summary, any component in a framework is located through the speci�cation of

successive layers of k + `-vectors of identi�ers (that is, � above is k + `). The identi�er

vectors are thus edge labels for a tree which successively decomposes the entire enterprise

into (typically) smaller and smaller components until the particular component is �nally

reached. An important notion of any formalism is therefore that of a path: a sequence

of (k + `)-vectors that lead to a particular component. The component corresponding

to a particular path is of course unique because s is a function, but there is no general

requirement that each component has a single unique path that leads to it (although a

particular formalism or standard may stipulate this). Thus the set of all paths forms a

tree while the components lie in a directed graph (which seems necessarily acyclic in any

sensible model).

5.2. Connections

Recall that principle 8 requires distinguishing structure, which reects organziation

of components and is represented using paths, from the connections between these com-

ponents. Connections are required to express how components interrelate to each other in

the actual enterprise being modeled.

For example, an instance of a Zachman framework may have \factory" and \ware-

house" location components and a \transfer" process component. Since the location and

process components reside in di�erent cells in the framework, an additional mechanism is

necessary to formalize the ow from factory to warehouse via the transfer process.

For uniformity and simplicity, the formalization of this connection is merely a bi-
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nary relationship between components. If desired, this relationship may be extended to

a third element, holding a label (character string) that is used to characterize particular

pairs.19 This triadic approach occurs in work ranging from C. S. Peirce[24] to the \semantic

web"[30] and is supported by principle 15.

The issue of where to connect is still a thorny problem. While it is natural to assume

that a binary connection goes from point to point, we have found it advantageous to

model connections from one set of points to another set of points[18]. The metaphor of a

framework as containing electronic components has already been introduced { now we see

that some frameworks metaphorically have direct component to component wiring while

other frameworks may, in addition, provide buses.20

5.3. Views

A general view mechanism must account for both structure and connections, but this

does not mean that a view should be de�ned in terms of both structure and connections.

Indeed, as noted in principle 8, matching view patterns that include connections is, in gen-

eral, computationally expensive because connections create cycles in the underlying graph

and pattern matches may loop around these cycles. Thus view de�nitions should employ

only structural conditions, including conditions based on the existence of connections but

excluding following connections, although the results returned may include connections.

XSLT[29] makes this distinction clearly: conditions are expressed in patterns, results are

returned by templates.

Any structural view can be accomplished by de�ning path expressions. This allows

for simple views, such as projecting out a row or column with a particular identi�er, as in

the CEN \resource" view[27]. It also allows for substantially more complex views, such as

gathering all components which share a common label or even rearranging tree structures.

Fortunately there has been substantial work on path-based operations, particularly in the

context of XML these days[29].

Incorporating connections in views is more di�cult, not in preserving simple connec-

tions between components that are carried into the view but in de�ning new connections

constructed through complex expressions involving existing connections.

It seems natural to expect more variety in view mechanisms than in other aspects

19. Said another way, connections are expressed as a graph or as a labeled multi-graph between components.
20. A bus is wiring that connects multiple components.
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of formalisms. We certainly suggest that view mechanisms not be programmatic, that is

de�ned by a typical imperative programming language with iteration and conditionals, but

this approach cannot be ruled out.

5.4. Constraints

Considerations concerning contraints divide into targets (\what to constrain") and

mechanisms (\how to constrain"). On the target side, framework constraints can apply to

structure, connections, or even instance contents. On the mechanism side, many formalisms

can be envisioned: operational/algebraic (e.g. regular expressions), �rst-order logic, or

somewhere in between (e.g. PROLOG). Since formal equivalences certainly exist between

various mechanisms, the choice of mechanism is governed by ease-of-use, in accordance

with principle 2.

Of course the \what" and \how" issues cannot always be disentangled. This par-

ticularly applies when views are involved in constraint de�nition, a likely occurrence. A

constraint can either be de�ned directly involving particular view(s) or through the same

path-based operations as used in view de�nitions.

There are several obvious varieties of constraints: those that hold within a single path,

those that hold between paths, and those that hold between sets of paths or the indicated

components. The �rst two of these can be de�ned directly from path expressions, while the

third seems more easily expressed using views. The example restricting hconceptual; whati

cells to Entity:* or Relationship:*, given in section 5.1, is expressable by the �rst sort

of constraint.

Constraints can even go into the semantics behind the model, as in a constraint

requiring use of consistent clocks at various model levels. Such constraints seem beyond

the scope of a general formalization of a framework. However, it seems advantageous to

aid the de�nition of such an external condition, if this is possible. That is, there should

be a way to declare and bind external functions and predicates.
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6. Conclusion

We have identi�ed 18 principles about the ways in which enterprise frameworks are or

should be constructed and used, but this is only one step on a longer path. These principles

will guide the formalization of frameworks, as discussed in section 5, but we are early in

the work of that formalization. It is evident that the structure of a framework is carried

by a tree whose nodes have a tabular, dimensional form, but many details governing the

expression of structure and the interaction of this expression with connections, views, and

constraints are yet unknown. Because existing frameworks do not treat connections in a

disciplined manner, there is less guidance concerning connections from existing practice.

Finally, it is important that the formalization attempts to reach \sweet spots", as

discussed in principle 2.

In as much as the principles enunciated herein are the core of a \requirement specica-

tion" for analysis and formalization of enterprise frameworks, we welcome all suggestions

and comments.
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