
Portal Access to Parallel Visualization of Scientific Data on the Grid

Charles Moad Beth Plale

Computer Science Department
Indiana University
Bloomington, IN

Technical Report TR593

Abstract

Visualizing extremely large and time-variant data
presents a challenge in overcoming slow disk and net-
work access. The Weather Research and Forecast-
ing (WRF) model, used to model mesoscale weather
phenomena, generates large amounts of storm sys-
tem information that is visualized to better under-
stand storm formation. WRF faces these caveats in
disk and network bandwidth limitations. Using the
open-source Visualization ToolKit (VTK) and the ad-
ditional functionality of ParallelVTK, we devised an
effective solution to view these data sets at a visually
pleasing frame rate. In addition to viewing the data
sets in real-time, it is also feasible to render off-screen
and create a movie for reusable viewing. These re-
mote jobs can be formed and launched from a remote
portal environment using grid tools.

1 Introduction

The primary goal of this project is to effectively visu-
alize the Weather Research and Forecasting (WRF)
data model. Effective visualization entails a frame
rate that is pleasing to the eye. In order to process
the large data sets an open source and parallel vi-
sualization framework is needed. The solution does
not have to be restrained to commodity hardware,
since just the transfer time of the data set on a single
IDE drive would yield less than desired results. A
pre-existing cluster and storage array is available to
distribute and parallelize the task.

The goal of the system is not to visualize the entire
contents of the WRF model, but rather to visualize
portions of the data. This model could then be ex-
tended to visualize the entire dataset if desired.

This paper describes the WRF data model and the
components that are to be visualized. Next, the ar-

chitecture of the hardware platform used for the ren-
dering will be described. Understanding of the hard-
ware will help the discussion of how to best distribute
the work load. The software platform that is to be
used will be discussed in some detail, as well as the
different parallelism models that are available on that
platform. Next, the proposed solution is explained in
detail. This will include justifications and descrip-
tions of the data and task distribution. Finally, a
methodology for converting the visualization to be
usable in a remote web/portal atmosphere will be
described.

2 WRF Data Model

The Weather Research and Forecasting Data Model
is a well known model for meteorological research in
mesoscale storm formation. Due to the sheer vol-
ume of data generated by the model, the output files
present a challenge for rendering and visualization in
a real-time manner.

The WRF generated files are encoded in the
network Common Data Form (NetCDF)[5] format.
This self-describing binary encoding allows for eas-
ier transfer and portability of the data. NetCDF li-
braries are available for many languages, hence a user
is not restricted to a specific programming environ-
ment.

The WRF files used for this project were generated
at NCSA. A WRF execution consists of 150 times
steps modeling a collision of two storm systems con-
verging into one. Each time step is a self-contained
NetCDF file of approximately 15MB. Thus a time
series is roughly 4.2GB of data. The NCSA reposi-
tory contains 290 time series, but each time series is
a self-contained storm system.

A time step contains roughly 70 data variable.
Some of these variables contains an array of data for

1

SAN STORAGE

Shared
(~1TB)

Local
Local
Local
Local
Local
Local
Local
Local

(~100GB)

NFS 2Gb Fiber Channels

Figure 1: Visual diagram of Thor hardware architec-
ture.

the sample area, and the dimension of these are 90
by 90 by 59. The location of the data points are in
a grid-mapped box, which does not necessarily have
even divisions. Additional discussion of the data lay-
out is discussed in section 5. These variables rep-
resent information such as temperature, pressure, or
precipitation. For the visualization of concern, the
values for clouds and rain are extracted and summed
for each point. This yields an overall precipitation
value.

3 Hardware Architecture

In order to achieve the best possible frame rate and
throughput of data it is important to know the hard-
ware architecture of the target system as it controlled
several design decisions. In this section we describe
the platform that was used for the project.

As part of a NSF Research Infrastructure grant,
the Computer Science Department of Indiana Uni-
versity recently purchased a leading edge Linux clus-
ter and storage system1. The Thor cluster consists
of nine 2.8GHz dual Xeon machines. Each machine
has 2GB of RAM and is currently running RedHat
8.0. The machines are organized as one head node,
thor, which is primarily used to launch jobs and the
remaining 8 machines, thor1-8, as compute and IO
nodes. Network communication is currently gigabit
ethernet, myrinet, and infiniband.

Each machine has a fibre connect to the Storage
Area Network (SAN). Each connect runs to a 2Gbps
switch which connects the 2.2TB raid array. For file
system protection each machine has its own partition
on the array. The head node has a 1TB partition,
while each subnode has 100GB partitions. A visual
depiction appears in Figure 1. The head node’s par-

1More detailed information can be found at http://www.

cs.indiana.edu/Facilities/notices/HagarThor.html

Figure 2: Sample divisions of data parallelism. The
left represents 2 processes and the right shows the
division of 18 processes.

tition is NFS mounted on all subnodes as a shared
partition, and the subnode’s partitions are not acces-
sible by other nodes. To utilize the fibre connect of
the SAN on all nodes the data sets are distributed to
each of the subnode partitions.

4 Parallel VTK

The task of visualizing the WRF datasets presents
the challenge of overcoming the high disk IO required
to yield pleasing frame rates. In order to facilitate
this and make efficient use of the Thor cluster and
the SAN storage, a scalable and parallel framework
was used. The Visualization ToolKit (VTK) and ex-
tension, Parallel VTK[1], offer an open source and
multi-platform solution. Parallel VTK builds on top
of the MPI of choice for parallel computation.

Parallel VTK offers three distinct parallel models.
For extremely large, single time-step data, data par-
allelism evenly divides the data among the processes
to be rendered. As can be seen in Figure 2, one has
no control over the data division. Each time step in
the WRF dataset is actually small enough that one
process is quite capable of rendering the entire scene
easily.

The second parallel option, pipeline parallelism,
makes data parallelism less useful. It is intended for
large, time-varying datasets and is relevant for use
cases such as WRF. It allows one process to perform
the disk IO, while another process can do the render-
ing. These processes can be performed concurrently,
so process 1 can start reading in time step 2 while
process 2 is still rendering time step 1. Communica-
tion is performed by input/output port classes that
abstract the MPI sends/receives.

The final parallel model is task parallelism. This
allows for a step in a VTK data flow to be performed

2

http://www.cs.indiana.edu/Facilities/notices/HagarThor.html
http://www.cs.indiana.edu/Facilities/notices/HagarThor.html

in parallel. As described in the next section, I use this
functionality to read in time steps of the data series
in parallel. Rendering the data I pull from the WRF
files does not require more than one process, since
it is overpowered by the disk IO bottleneck incurred
from reading in the data.

5 Implementation

A VTK visualization consists of a visualization
pipeline (not to be confused with pipeline paral-
lelism). The pipeline used for this visualization can
be seen in Figure 3.

Traditionally a pipeline starts with a data source.
In this case the data source is a vtkRectilinearGrid. A
rectilinear grid is a 3-dimensional grid of data points
with a fixed number of values in the x, y, and z di-
rections. It also allows for the divisions in each coor-
dinate direction to be arbitrary.

The input and output ports are VTK classes which
allow processes to send and receive data sources.
These processes could lie anywhere in a MPI envi-
ronment, so they are most likely on separate ma-
chines. This communication method will allow the
visualization to take advantage of pipeline and task
parallelism. vtkInputPorts are designed to be “sin-
gle source”, so only parameters to a data set can be
altered after the source is pushed across the network
the first time. Since each time step is an entirely new
data source a new instance of the input port is made
for each time step. This forces the output port to
push over the entire data source upon each update
request.

Next the data source is passed to a contour filter.
Contour filters perform isosurfacing of the data. A
rectilinear grid is just a 3-dimensional array of val-
ues and not a traditional 3-dimensional object that is
part of a visualization scene. Given a certain thresh-
old the contour filter will convert the data source to
the polygonal representation wanted for viewing.

Finally, VTK pipelines are often closed with a data
mapper and an actor. The data mapper converts
the object representation to a representation that the
graphics card will better understand. Actors are tra-
ditional in scene graphs to represent objects and their
appearance. All actors are added to the window to
create the entire scene. Text, bounding boxes, and
objects are all represented by different actors, so Fig-
ure 3 does not contain any of these other items that
may appear in the scene. A view of the mapping of
the visualization pipeline onto the cluster is shown in
Figure 4.

Since reading in each time step from disk presents

vtkRectilinearGrid

vtkOutputPort

vtkInputPort

vtkPolyDataMapper

vtkActor

vtkKitwareContourFilter

Figure 3: Abstract view of the VTK pipeline for this
system.

thor1-8: Reader

thor: Renderer

C++

VTK

NetCDF

VTK

Return
vtkRectilinearGrid

Request
Time StepSAN Storage:

thorN Partition

Read in WRF
time step

Convert data to from
float arrays to

vtkRectilinearGrid

Figure 4: Flow of WRF data to VTK format. Read-
ers/Renderer communication.

the largest time consumption, we identified this task
for parallelization. Isosurfacing and rendering each
time step is relatively fast and these tasks are per-
formed by one node, which will be referenced as the
rendering node. The remaining processes will be re-
ferred to as reader nodes.

The renderer lies on the head node of thor. All
communication between the renderer and the read-
ers is performed through the vtk input/output ports
as discussed previously. The renderer will actively
request data sets from the readers in a round-robin
manner, modulo the number of reader nodes, hence
requesting time step 1 from thor1, time step 2 from
thor2, and so on. Time step 9 will be requested from
thor1.

In order to make use of the fast fibre disk connect
on each of the subnodes of thor we distribute the

3

data set of the time series being rendered amongst
the 100GB partitions such that each node has sole
access. Fortunately, since the renderer is requesting
time steps from the sub nodes in modulo 8 the entire
time series need not be loaded onto each node’s SAN
partition, thus eliminating data redundency.

The MPI environment must be prepared to facil-
itate the needs as described thus far. For pipeline
parallelism each process type is defined by a method
and set via vtkMPIController.SetMultipleMethod
call. Therefore, there is one method that defines
the renderer process and one method that defines
the reading process. As coded, the last MPI process
will be the renderer and processes 0 through N-2 are
readers. LAM MPI was used for the project, and the
mpirun parameters best describe the environment:
mpirun c2,4,6,8,10,12,14,16,3,5,7,9,11,13,15,17,0
The LAM environment is launched stating that thor
and thor1-8 each have two processors. When assign-
ing the destination of processes to a machine, one can
specify the machine, with an ’n’, or cpu, as seen with
a ’c’. It is important to note that the process will not
truly be bound to a specific processor, but ideally
the operating system will delegate the processes to
different processors on each machine since there will
be two reading processes on each subnode. As seen
in the mpirun example the final process, c0, will lie
on thor and be the renderer. Processes bound to
c2 and c3 will be bound to thor1, c4 and c5 will be
bound to thor2, and so on. By assigning the order
these processes are bound to machines it assures
that we can distribute the data set without having
any redundency. It also assures that the round-robin
scheduling will hold. This evenly distributes the
workload and presents the most concurrency possible
in the SAN storage IO.

All processes have access to a shared vtkMPICon-
troller object that allow the process to identify its
index. These indices are used to set tags in the input
and output port objects. The techniques allow the
renderer to actively prepare an input port to request
the next sequential time step from the corresponding
process that lies on the machine with the time step
on its SAN partition.

6 Web/Portal Access

Many users do not have access to the caliber of hard-
ware used in this study. Further, running the same
visualization job repeatedly may not be practical on
machines under user contention. A bottleneck we
found during remote displaying the visualization is a
100Mb Ethernet connection, typically used between

a cluster and a personal laptop or workstation. Re-
mote visualization saturates the network and slows
down the vis as more appears in the vis window. Most
users do not have access to a gigabit network to over-
come this bottleneck. A more practical solution is to
submit a job to the rendering cluster and save the
output for reuse.

The first problem associated with rendering re-
motely is that a user will typically not have access
to a X server to remotely display the visualization.
VTK addresses this by offering the ability to render
off-screen. Off-screen rendering allows the visualiza-
tion to be rendered on the graphics card as normal,
but the result does not have to be displayed on the
rendering machine’s screen. Instead, the output can
be sent to a stream or in our case, a file. Each time
step is saved to an individual image file. VTK offers
several file formats such as TIFF, JPEG, and GIF.

The end user does not wish to see a collection of im-
ages, so the images must be adjoined into some sort of
movie. Many libraries exist that can convert a series
of images into a movie format such as MPEG, Quick-
time, or animated GIF. We chose animated GIF since
it can be viewed easily on all platforms and does not
require a browser plugin. ImageMagick is a freely
available collection of utilities for image manipula-
tion. One such tool, convert, allows one to adjoin a
collection of images from an recognizable image for-
mat to an animated GIF. It also allows for compres-
sion over the result leading to a result file of only
a few megabytes, as opposed to tens of megabytes
which is typical for an uncompressed animated GIF
or MPEG movie.

The final problem exists in transferring the result
to the user. GridFTP is a grid enabled file trans-
fer protocol and serves to transfer a file directly to
the web browser for immediate viewing or to another
machine for reuse.

The steps described above we implemented in a
workflow. Globus Toolkit 3 (GT3) offers several tools
to manage work flow, one such tool is GridAnt[3]. In
GridAnt a work flow is described in a xml/ant format.
In the portal context a generic factory service can
be used to create a service that performs the tasks
described by the workflow. Status tracking is another
feature that one gains from GridAnt, and the user can
move around or even leave the portal as the workflow
is being executed. Once the workflow has completed
execution GridFTP is used to store the result in the
user’s context on the portal. The result can then
be viewed, manipulated, or deleted from the user’s
context as desired. A layout of this process can be
seen in Figure 5.

4

Web Browser
Portal

thor (w/globus)
thor8

thor7
thor6

thor5
thor4

thor3
thor2

thor1

2. LAM/MPI

GridAnt
Factory
Service

1. GridAnt
Workflow

Submission
3. GridFTP

Renderer

Readers

Figure 5: 1. GridAnt submits the work flow via
GRAM job launch submissions. 2. The work-
flow consists of launching and running the LAM-
MPI/ParallelVTK rendering job. The animated GIF
is also generated using ImageMagick. 3. Finally a
launch of GridFTP is used to bring the final movie
back to the browser or the user’s context in the por-
tal.

Figure 6: A sample Grid context for a user in a portal
environment.

In the Grid portal each user has a Grid context.
This is a small online locker that can be used to save
anything from files to services. Each of the items in
a user’s context is represented by a moc file. This file
could contain a GridAnt script to launch a job when
clicked, or it could contain the html wrapping needed
to display an applet. In Figure 6 we show an instance
of the visualization running in a user’s context. One
link can be created to launch the GridAnt workflow to
remotely render the parallel visualization on a cluster,
copy the resulting movie from the cluster to a user’s
Grid context, and display the result in the browser.
This is all achievable without leaving the portal.

7 Related Work

The problem of visualizing extremely large data sets
remains a computational challenge. Groundwork has
been laid out with ParallelVTK by Kitware and var-
ious national labs[4][1]. They provide the class ex-
tensions to VTK to allow for data, task, and pipeline
parallelism to easily be accomplished. Using these
classes we were able perform parallel computation us-
ing a combination of pipeline and task parallelism.
Pipeline parallelism provides an ideal solution for
time-varying datasets, and in our case task par-
allelism provides an advantage when using several
reader processes pulling from the same disk array.
The combination would prove even more useful when
pulling time steps from separate disks or if the reader
process was more cpu bound.

Similar work has been done in the field of scientific
portal visualization via the grid[6]. Most noticeably is
the collection of services provided with VisPortal[2].
The services provided by VisPortal include file man-
agement to distribute and maintain large data-sets,
MPEG movie generation, AMR Volume Rendering,
AMR WebSheet, and Visapult. All these services aim
to reduce the number of steps that a scientists would
have to enter to perform a distributed grid-enabled
visualization. This lends to an overall goal of ab-
stracting the entire process into a single launch.

8 Conclusion

We have presented a solution for visualizing ex-
tremely large data sets in a real-time high perfor-
mance environment, that can also be easily modified
for use on commodity hardware. Likewise, the result
can be viewed in real-time while being rendered or
can be saved for reuse at a later time.

With the growing need of offering scientists access

5

to remote, high performance applications in a easy
to use context, the Grid and the portal are uniting
to offer a unified and simple solution. Viewing real-
time results is not always necessary or practical, so
by offering the ability to launch a job and come back
later for the results scientists can be more efficient in
their work. The portal also offers web administrators
the ability to package a collection of tools simply into
one context.

References

[1] J. Ahrens, C. Law, W. Schroeder, K. Martin, and
M. Papka. A parallel approach for efficiently vi-
sualizing extremely large, time-varying datasets,
technical report laur-001630, los alamos national
laboratory, 2000., 2000.

[2] E. Wes Bethel C. Siegerist, J. Shalf. Visportal:
Increasing scientific productivity by simplifying
access to and use of remote computational re-
sources, technical report lbnl-pub-893, lawrence
berkeley national laboratory, 2003. 2003.

[3] K. Amin S. Hampton G. von Laszewski,
B. Alunkal and S. Nijsure. Gridant-client-side
workflow management with ant, whitepaper, july,
2002. 2002.

[4] K. Martin B. Geveci C. Law J. Ahrens, K. Bris-
lawn and M. Papka. Large-scale data visualiza-
tion using parallel data streaming. IEEE Com-
puter Graphics and Applications, 21(4):34 – 41,
jul 2000.

[5] R. Rew, G. Davis, and S. Emmerson. Netcdf
user’s guide: An interface for data access, version
2.3, 1993.

[6] Kwan-Liu Ma Bernd Hamann Kenneth I. Joy T.J.
Jankun-Kelly, Oliver Kreylos. Deploying web-
based visual exploration tools on the grid. IEEE
Computer Graphics and Applications, 23(2):40 –
50, mar 2003.

6

	Introduction
	WRF Data Model
	Hardware Architecture
	Parallel VTK
	Implementation
	Web/Portal Access
	Related Work
	Conclusion

