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Abstract

We present a method for estimating the position and scale
of occluder objects present in images of any of a number of
modeled scenes. The background scenes are modeled us-
ing eigenspaces. If models of possible occluder objects are
available we can then classify the detected foreground ob-
jects based on the available models. A segmentation of the
object from the scene is also obtained in the process. We fur-
ther handle the case when the foreground object region thus
detected actually consists of mutually occluding objects and
we locate, segment, de-occlude and recognize each object
individually. We present numerical experiments to prove
the validity of the method and demonstrate the utility of the
algorithm in the detection, de-occlusion, segmentation and
recognition of multiple objects in an office environment.

1. Introduction and background
We address the problem of recognizing objects included in
a known scene regardless of location, scale, or occlusions.
More precisely, we are given: (i) an eigenspace model for
the background scenes (ii) a set of object eigenspaces, one
for each of several foreground objects that can be placed at
various locations within a given scene. The objects may oc-
clude one another. Given an image of a scene containing
several foreground objects, our goals are: (i) reconstruct
the background scene by removing the occlusions created
by the foreground objects, and (ii) detect and recognize
the foreground objects and reconstruct their missing parts
caused by occlusions.

The applicability of the eigenspace model [14] to 3-D
object recognition has been limited by its limited intrinsic
ability of coping with occlusion or image transforms like
translation, rotation and scaling. The viewpoint variabil-
ity problem can be solved by using enough views. Murase
and Nayar improved on this approach by adding structure to
eigenspace, joining the viewpoints according to their neigh-
borhood relations on the viewing sphere, thus obtaining a
discrete approximation of the views manifold of the object
[10]. Distance to the manifold is a better recognition crite-

rion than distance to eigenspace. The algorithm presented
in this paper could easily be modified to incorporate this
measure. Pentland, Moghaddam and Starner approach the
problem of face recognition under general viewing condi-
tions with a view-based multiple-observer eigenspace tech-
nique [12]. Given images of faces of N individuals under
M different views their approach was to build a view-based
set of M separate eigenspaces, each capturing the variation
of the N individuals in a common view. The view-based
eigenspace is essentially an extension of the eigenface tech-
nique to multiple sets of eigenvectors, one for each combi-
nation of scale and orientation. The first-step is to determine
the location and orientation of the target object by select-
ing the eigenspace which best describes the input image, by
calculating the error (distance from face space metric) using
each eigenspaces’ eigenvectors. After this step, the image is
encoded using the eigenvectors of that view-space and then
recognized. Black and Jepson address general affine trans-
formations [2]. They define a subspace constancy assump-
tion for eigenspaces similar to the brightness constancy as-
sumption. For eigenspaces it can be assumed that there is
a view of the object, as represented by some linear combi-
nation of the basis vectors (represented coefficients c) and
some parametric spatial distortion (denoted as a), such that
pixels in the reconstruction have the same brightness as the
corresponding pixels in the image. The recognition goal is
then to find c and a which minimize this objective function,
thus resulting in a continuous optimization problem as op-
posed to an exhaustive search. In addition, the authors pro-
posed a multi-scale eigenspace representation and a coarse-
to-fine matching strategy in order to account for large affine
transformations between eigenspace and the image.

A method for dealing with occlusions in eigenspace-
based object recognition was described in [8, 9]. Instead
of determining the eigenspace coefficients by projecting the
entire input image onto the model eigenspace, the authors
project a subset of the image pixels, thus achieving robust-
ness to occlusion. If the resulting reconstructed image is
close enough to the input image, and if the number of im-
age pixels giving rise to the coefficients is large enough, an
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acceptable hypothesis is said to have been formulated. A
set of such hypotheses is generated using different sets of
pixels. Competing hypotheses are then subject to a selec-
tion procedure based on the Minimum Description Length
(MDL) principle. The authors’ experiments indicate that
their approach can reject outliers (noise) as well as deal with
occlusions.

Bischof and Leonardis [1] showed that their method can
be applied to convolved and sub-sampled images yielding
the same value of coefficients. Using the robust method pro-
posed by the authors the coefficients need to be calculated
at only one resolution (generally the lowest resolution) and
can just be refined at higher resolutions. The authors also
estimate the scale along with the coefficients. Starting with
an initial estimate for coefficients, they minimize, with re-
spect to the scale factor, the squared difference between the
input image scaled by a factor and the reconstruction from
the computed coefficients. Using the scale estimate the co-
efficient vector is re-estimated. This process continues till
the convergence is reached. This step is repeated for each
level in the eigenspace pyramid.

In [5] Hadjidemetriou and Nayar propose improvements
to [8]. The authors derive criteria for selecting subsets
of image pixels that maximize the recognition rate. The
method is based on an analysis of sensitivity of the subspace
to image noise. The authors present a window selection al-
gorithm as well as a pixel selection algorithm.

Paulus et al. have extended the work of Leonardis and
Bischof and put it to practical use [11]. They propose that
the random selection scheme in [8] can be improved by in-
corporating additional knowledge about object properties
e.g., local texture, color, average intensity. The implemen-
tation has been tested on typical objects from office envi-
ronments and also on objects commonly found in hospitals.

A different approach to the problem of occlusions is
given in [6]. The authors propose a view-based recognition
method based on an eigenspace approximation to the Haus-
dorff measure. The authors address the problem of occlu-
sions and clutter by matching intensity edges robustly via
the Hausdorff measure, rather than directly comparing the
views themselves. This combination of eigenspaces and the
Hausdorff measure yields a system that has both the speed
of subspace methods and the robustness of the Hausdorff
measure.

2. Previous work

In the present paper we build on previous work. In [3] we
addressed a related problem: given an eigenspace model for
the background scenes, an eigenspace model for the fore-
ground objects, and an input image of a background scene
containing a foreground object at a known location and
scale but partially occluded by the background, we showed

how to reconstruct the occluded portions of the background
and object, and recognize both background and the fore-
ground object. We briefly review the aspects of that work
that are directly relevant to the present paper. Let F ,B
be the background and foreground eigenspaces. The input
image g is produced by two mutually occluding compo-
nents, foreground f ∈ F and background b ∈ B. The
two components are combined using an unknown binary
image-sized mask m that allows only one of the two com-
ponents to be visible at any pixel location. If at a pixel i,
m(i) = 1 then only the foreground component is visible; if
m(i) = 0 only the background component is visible. Thus:
g = Mf +(I −M)b, where M is a diagonal matrix with
the vector m on the diagonal and I is the unit matrix. If
φ, β are the unknown coordinate vectors of f and b in F ,
B, and the (known) means in the two spaces, respectively,
f̄ and b̄, then the relation above becomes:

g = M(Fφ + f̄) + (I − M)(Bβ + b̄). (1)

Our problem reduced to estimating φ, β and M given g, F ,
B, and f̄ and b̄. This problem was under-determined, and
therefore we imposed smoothness constraints on the mask.
The steps of the algorithm, call it Algorithm A, were:

(1) Obtain initial estimates of the foreground: f̂ =
FF T (x− f̄)+ f̄ , and background b̂ = BBT (x− b̄)+ b̄.

(2) Estimate the mask m̂ by comparing locally the orig-
inal image x to f̂ , b̂. Generally, subject to smoothness con-
straints, if at pixel i the x is more similar to f̂ than to b̂ then
m̂(i) = 1, otherwise m̂(i) = 0. The actual computation of
m̂ was carried out by finding a minimum cut in the image
graph, where the sink and source nodes correspond to the
estimated foreground and background.

(3) Using the estimated mask M̂ , re-estimate the
foreground and background components: (φ̂, β̂) =
arg minφ,β ‖g − M̂(Fφ + f̄) − (I − M̂)(Bβ + b̄)‖1.
Then, f̂ = F φ̂ + f̄ and b̂ = Bβ̂ + b̄.

(3) Go to Step 2, or stop when changes in f̂ , b̂ are small.
Thus, algorithm A, given the input image, extracts and

de-occludes its foreground and background components.

3. Method
Our method of dealing with translation and scale vari-
ation requires the construction of a single background
eigenspace, B, using sample images of the different back-
ground scenes in which the foreground objects can be en-
countered. Let the n possible foreground objects be de-
noted by O1, . . . , On. The individual eigenspaces of the
foreground objects, F1, . . . , Fn are obtained by taking dif-
ferent views of each object. In addition to the eigenvectors,
the corresponding mean images are also retained.

Given an input image, we first detect the region of the in-
put image that corresponds to the occluding foreground ob-
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ject and thus cannot be explained by B (Section3.1). Then,
various object models Fk are tested against this region and
the best-fitting models are determined, segmented, recon-
structed, and recognized (Section 3.2). We now describe
the method in detail.

3.1 Detecting the occluding objects

The goal at this stage is the detection of the image re-
gion corresponding to the occluder, “foreground”, object(s).
Since the identity, scale, and location of the foreign object is
not known, the algorithm described in Section 2 cannot be
applied without modifications: we do not have a foreground
space F ; we only have the background eigenspace B.

Below, the input image is g; the occlusion mask m(i) =
1 if pixel i ∈ background and m(i) = 0 if i ∈ occluder;
M is a diagonal matrix with m on the diagonal; B is the
background eigenspace; β are the eigenspace coordinates
of the background part of the input image; b̄ is the mean
background image. Then:

Mg = M(Bβ + b̄). (2)

We must solve for M and β. This is achieved by way
of the following algorithm, call it Algorithm B. First, we
project input image g on the background eigenspace, ob-
taining an initial estimate of the background component:
b̂ = BBT (g− b̄)+ b̄. Then iterate the following two steps,
until convergence:

(1) Use b̂ to estimate the mask: if at pixel i, |g(i) −
b̄(i)| < θt, then m̂(i) = 1; else m̂(i) = 0. The thresh-
old θt is determined automatically at every iteration t by
using the fact that the histogram of the pixel reconstruction
errors, P (|g(i)− b̄(i)|), is bimodal–one mode, at low error
levels, corresponds to background, and one mode, at high
error levels, corresponds to the occluder [13, 4].

(2) Use the estimated mask to re-estimate b̂: β̂ =
arg minβ ‖M̂g − M̂(Bβ + b̄)‖, and b̂ = β̂B + b̄.

Convergence is quickly reached, typically within 5 itera-
tions.

Due to viewpoint and illumination variability the back-
ground scene in the input image does not exactly fit the
background eigenspace. Therefore, the mask derived by the
above algorithm is, typically, noisy: although it finds a large
group of pixels (not necessarily connected) that roughly
correspond to the foreground object, it incorrectly labels a
number of pixels, scattered across the image. Therefore, be-
fore further use, the mask is cleaned. Since the foreground
object is known to be blob-like, the marginal (row and col-
umn) densities of the mask pixels that correspond to the
foreground object are unimodal and strongly peaked at the
center of mass of the occluder. By thresholding (using the
same histogram-based method, [13, 4]) the row and column
histograms, a bounding box around the occluder is found.

Let the bounding box be denoted by D. Only the portion of
the mask within the bounding box is kept. Let this sub-mask
be denoted by R.

3.2 Identifying the occluders

The bounding box D can contain one or more of the objects
Ok, at unknown scales, partially occluding each other. Our
goal is to identify all the objects contained in the D, and
remove their mutual occlusions.

We fit all models to D. Due to illumination and view-
point variability, it is possible that certain pixels of R in
fact belong to the background. Therefore, it is possible that
a certain model fits only a sub-region of R. It is also pos-
sible that pixels outside D belong in fact to the occluder.
Therefore, D is only used as a guideline in narrowing down
the image search.

For clarity of exposition, we present the case where only
one object is present within D. Consider model Ok. Its
eigenspace is Fk. To fit it to the image, the eigenspace must
be re-scaled. D is used a guideline in setting a range of
possible scales and locations for Ok.

First, we scale Fk so that the training-set average width
of Ok is equal to the width of D. If height(Fk) <
height(D), we try all possible locations of (the rescaled)
Fk within D. At each location, we apply algorithm A, de-
scribed in Section 2, and then we determine the quality of
the match as described below. If height(Fk) > height(D),
we center the rescaled Fk on D and apply algorithm A.

The process is then repeated by using the height of D
as the guideline i.e., we rescale Fk so that the training-set
average height of Ok is equal to the height of D. As before
we try different placements of the scaled Fk within D.

For each position of the rescaled Fk obtained using the
height and width as guidelines, we derive new occlusion
masks and reconstructions of Ok. The goodness score for
the (position, scale) pair is defined such that it increases
with the quality of the reconstruction of the input image us-
ing Fk, and decreases with the number of pixels in R left
un-explained by Fk. Using this measure we find the best
position and scale combination in the set of potential (posi-
tion, scale) pairs.

Next, starting from the values for scale and position that
maximize the goodness score, the fit of Fk to the image is
further increased. This is done by using an iterative process
in which we alternate between improving the location and
scale fit by locally searching in scale and location (±10%
steps). These iterations converge to a local maximum of the
goodness score.

Once the best position and scale of each model Ok are
determined, the goodness scores of the various models are
compared, to determine the object that best explains the in-
put image.
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Figure 1: Testing algorithm B. From left to right: 1. Mask.
2. Input image 3. Recovered mask, iteration #1. 4. Recov-
ered mask, iteration #4.

In general, more than one object is present in the bound-
ing box D. The procedure for multiple inter-occluding ob-
jects is, initially, as described above. At the end of the above
process, we delete from the mask R the pixels that were ex-
plained by the recognized model. If enough pixels remain
in R (say, ≥ 2% of all image pixels) we continue the pro-
cess and detect another object that gives the best fit to the
remaining pixels in the mask R.

At the conclusion of the process, the occluded parts of
the foreground objects are reconstructed and identified, and
the parts of the background hidden by the foreground ob-
jects are restored.

4. Experiments

4.1 Artificial images

We tested algorithm B on artificial images. We used the
MIT Vision Texture database for generating foreground
and background texture eigenspaces. The background
eigenspace, B was derived from artificial textures, and the
foreground eigenspace F from natural textures. All images
were 128 × 128 pixels. Each eigenspace had 100 com-
ponents; the angle between the two eigenspaces was 86◦,
indicating global, but not necessarily local, lack of corre-
lation between the texture images. A background image
b was generated using the basis B, and a foreground im-
age, f , was generated using the basis F . The input image
x was generated combining b and f using the binary oc-
clusion mask shown on the left in Fig. 1: the black pixels
in the mask were replaced with the corresponding pixels
of the foreground image, and the white mask pixels were
replaced with the corresponding pixels of the background
image. Algorithm B was given as inputs the background
eigenspace B and the input image. Even though the fore-
ground eigenspace F was unknown, the algorithm quickly
recovered the correct mask, as can be seen in Figure 1.

4.2 Real-world images

Our experimental setup consisted of two office scenes as
backgrounds and three soft toys (a giraffe, a leopard and a
lion) used as foreground objects. The toys were placed in
the office background scenes to form the test images. The

Figure 2: Examples of training images used for creating the
object spaces: Each column shows the two extreme posi-
tions of each animal. COLUMN 1: Giraffe. COLUMN 2:
Leopard. COLUMN 3: Lion.

goal was to detect, segment, de-occlude the foreground ob-
jects in the scene and recognize them as one of the three
toys.

We took 25 training images of each scene to construct
the background eigenspace. The training images were taken
with the camera panning by approximately ±10◦. Each
background scene was 480 × 640 pixels in size.

We took 27 training images of each of the three soft
toys. The training images covered the subject rotating ±90◦

about the mean frontal position, thus accounting for 180◦ of
rotation about the vertical axis of the subject. As the objects
were not completely rigid the positions of the limbs varied
during acquisition. We did not restrict the possible move-
ments of the limbs. The images of the soft toys were taken
at a resolution of 480 × 640. We determined the tightest
bounding box encompassing all views of a given foreground
object. The size of the eigenspace for each object was de-
termined by the size of this bounding box. The sizes of
the images used for creating the eigenspace for each fore-
ground object were 205× 361 for the giraffe, 399× 195 for
the leopard and 269 × 247 for the lion.

The images were taken without attempting to make the
lighting conditions identical in both background scenes. We
did however, try to minimize the number of shadows cast on
the scene.

We retained 90% of the variance in the background
eigenspace which gave us only 4 eigenvectors for the back-
ground eigenspace, for the 50 training images used. The
small number of eigenvectors was caused by the fact that
the variation between the two scenes is much larger than
the variation within each scene and this causes the largest
component to be very dominant.

Similarly, we retained 90% of the variance for the object
spaces, which gave us 10 for the giraffe, 15 for the leopard
and 11 eigenvectors for the lion.

The test images were taken with roughly the same cam-
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era location as the background training images with the toys
placed at different positions in the scene. In both scenes we
took a few test images with just one object and a few other
images with multiple objects occluding each other. As be-
fore, the images are 480 × 640 pixels in size.

4.2.1 Object detection results

Sample results of the foreground object detection algorithm
are shown in Figure 3. In the images shown here the red
pixels indicate the mask (R in Section 3.1) and the green
box is the detected bounding box (D in Section 3.1) en-
compassing the object. As can be seen in the figures, for the
most part the masks and bounding boxes are quite accurate.
However, in some images, parts of the foreground object are
outside the bounding box, for example, in the second image
in Figure 3 the nose of the giraffe has been excluded. Also,
in some images, parts of the background are included in the
mask region, for example, in the second image in Figure 3
the shadow of the giraffe was also included in the mask re-
gion.

Detected Foreground Object: Mask and Bounding Box Detected Foreground Object: Mask and Bounding Box

Detected Foreground Object: Mask and Bounding Box Detected Foreground Object: Mask and Bounding Box

Figure 3: Detection of foreground object mask and bound-
ing box, obtained by applying algorithm B. The red pixels
indicate the foreign object mask R and the rectangles in
green indicate the bounding boxes D (see Section 3.1).

4.2.2 Recognition results

Our goal was to detect a foreign object in the scene, de-
termine its scale and location in the image, de-occlude it,
segment it from the background, and finally recognize it.

Examples of the results obtained by the recognition al-
gorithm described in Section 3.2 are shown in Figures 4–9.
Figures 4 and 5 show the detection of a single object in each

of the two scenes. Figures 6 and 7 show the detection of the
lion and the giraffe appearing together in the same scene.
Figures 8 and 9 show the detection of the leopard and the gi-
raffe appearing together in the same scene. As can be seen,
the foreground reconstruction contains the correct object in
approximately the correct pose.

In the case of test images with only a single foreign ob-
ject in the scene the algorithm was correctly able to recog-
nize and segment 11 out of 12 such test images. For the case
of test images with two mutually occluding foreign objects
in the scene the algorithm was able to correctly recognize
and segment 12 of the 16 objects present in a total of eight
images.

An example of the kind of errors we get during the re-
constructions is shown in Figure 10. As we can see, the
neck and head of the giraffe have also been included in the
foreground object mask obtained for the lion. During the
deletion of the lion from the mask these pixels are removed
and at the next step there are insufficient pixels to classify
another object. So the giraffe ends up remaining undetected.

In Figures 4–9 the background reconstructions are accu-
rate and the foreground object segmentation masks corre-
spond to the object locations.

5 Discussion

We presented a method for dealing with occlusions and
viewing transformations (translation, rotation and scaling)
of an object of interest, included in known scene, using
eigenspace models, without using an exhaustive search.

Leonardis and Bischof, in their series of papers [8, 9, 1],
address the same problem using a multi-resolution approach
and searching exhaustively at the lowest resolution. Their
method is based upon a hypothesize-and-test paradigm with
random selection of the hypotheses. This random approach
might not be reliable, as suggested by Hadjidemetriou and
Nayar [5], who specify the criteria for selecting hypotheses
that maximize recognition rates. Our approach is different
in the sense that although it uses a subset of the input im-
age to calculate the coefficients, the subset used is not ran-
domly selected. A structured approach is used to determine
an occlusion mask that defines the subset of the image that
should be used to compute the coefficients. This mask is
refined using an iterative algorithm. The introduction of the
mask is not just a computational aid; the mask embodies
prior knowledge about the unknown occluders–for exam-
ple, connectivity, or blob-like shape. In our test images,
the test objects were placed in a real world, 3-D scene. In
addition, our test images include shadows cast by the test
objects and have variations in illumination conditions. Our
algorithm was able to cope with these real world problems
with reasonable success.

5



Input Image

Image Region (scaled)
Region Reconstruction 
on Foreground (scaled)

Region Reconstruction 
on Background (scaled) Foreground Mask (scaled)

Figure 4: Recognition of foreground object and determina-
tion of segmentation mask: LEFT COLUMN: Input image
from first scene. MIDDLE COLUMN, TOP: Image region
where foreground object was detected. RIGHT COLUMN,
TOP: Reconstruction on the detected object space. MID-
DLE COLUMN, BOTTOM: Background behind the detected
object. RIGHT COLUMN, BOTTOM: Segmentation of the
recognized object.

Input Image

Image Region (scaled)
Region Reconstruction 
on Foreground (scaled)

Region Reconstruction 
on Background (scaled) Foreground Mask (scaled)

Figure 5: Recognition of foreground object and determina-
tion of segmentation mask: LEFT COLUMN: Input image
from second scene. MIDDLE COLUMN, TOP: Image region
where foreground object was detected. RIGHT COLUMN,
TOP: Reconstruction on the detected object space. MID-
DLE COLUMN, BOTTOM: Background behind the detected
object. RIGHT COLUMN, BOTTOM: Segmentation of the
recognized object.

Input Image

Image Region (scaled)
Region Reconstruction 
on Foreground (scaled)

Region Reconstruction 
on Background (scaled) Foreground Mask (scaled)

Figure 6: Recognition of foreground object and determi-
nation of segmentation mask: LEFT COLUMN: Input im-
age containing multiple objects. MIDDLE COLUMN, TOP:
Image region where first foreground object was detected.
RIGHT COLUMN, TOP: Reconstruction on the detected ob-
ject space. MIDDLE COLUMN, BOTTOM: Background be-
hind the detected object. RIGHT COLUMN, BOTTOM: Seg-
mentation of the recognized object.

Input Image

Image Region (scaled)
Region Reconstruction 
on Foreground (scaled)

Region Reconstruction 
on Background (scaled) Foreground Mask (scaled)

Figure 7: Recognition of foreground object and determina-
tion of segmentation mask: LEFT COLUMN: Input image
containing multiple objects. MIDDLE COLUMN, TOP: Im-
age region where second foreground object was detected.
RIGHT COLUMN, TOP: Reconstruction on the detected ob-
ject space. MIDDLE COLUMN, BOTTOM: Background be-
hind the detected object. RIGHT COLUMN, BOTTOM: Seg-
mentation of the recognized object.
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Input Image

Image Region (scaled)
Region Reconstruction 
on Foreground (scaled)

Region Reconstruction 
on Background (scaled) Foreground Mask (scaled)

Figure 8: Recognition of foreground object and determi-
nation of segmentation mask: LEFT COLUMN: Input im-
age containing multiple objects. MIDDLE COLUMN, TOP:
Image region where first foreground object was detected.
RIGHT COLUMN, TOP: Reconstruction on the detected ob-
ject space. MIDDLE COLUMN, BOTTOM: Background be-
hind the detected object. RIGHT COLUMN, BOTTOM: Seg-
mentation of the recognized object.

Input Image

Image Region (scaled)
Region Reconstruction 
on Foreground (scaled)

Region Reconstruction 
on Background (scaled) Foreground Mask (scaled)

Figure 9: Recognition of foreground object and determina-
tion of segmentation mask: LEFT COLUMN: Input image
containing multiple objects. MIDDLE COLUMN, TOP: Im-
age region where second foreground object was detected.
RIGHT COLUMN, TOP: Reconstruction on the detected ob-
ject space. MIDDLE COLUMN, BOTTOM: Background be-
hind the detected object. RIGHT COLUMN, BOTTOM: Seg-
mentation of the recognized object.

Input Image

Image Region (scaled)
Region Reconstruction 
on Foreground (scaled)

Region Reconstruction 
on Background (scaled) Foreground Mask (scaled)

Figure 10: Example of error in recognition of foreground
object and determination of segmentation mask: LEFT

COLUMN: Input image containing multiple objects. MID-
DLE COLUMN, TOP: Image region where foreground object
was detected. RIGHT COLUMN, TOP: Reconstruction on
the detected object space. MIDDLE COLUMN, BOTTOM:
Background behind the detected object. RIGHT COLUMN,
BOTTOM: Segmentation of the recognized object.

In their work on dealing with affine transformations in
eigenspace models Black and Jepson [2] propose a robust
error norm ρ to address the problem of outliers in the
eigenspace representation and they define an outlier mask
m based on a thresholding of the residual errors. We de-
fine a mask using a piecewise constancy assumption and we
solve for the mask iteratively as shown in Section 2. The de-
rived mask is useful for more than just outlier removal, it is
actually the segmentation mask that can be used to separate
the foreground regions from the background.

In the first step of our method (algorithm B) we use the
pixel-wise differences of the input image to the reconstruc-
tion (in the background space) to arrive at an initial estimate
of the location of the foreground object. This differs from
the traditional eigenspace methods that use only the object
eigenspace to locate the position of the foreground object.
However, unlike other methods we also need to model the
range of expected backgrounds.

Our algorithm uses an iterative framework to obtain the
segmentation of the object of interest from cluttered back-
ground scenes. The methods discussed above do not per-
form this type of real world segmentation. The segmen-
tation step is not just a byproduct of the method, but it
also enhances the quality of the reconstructions and thereby
the accuracy of the recognition. Note that the proposed
method achieves segmentation not by a traditional bottom-
up process of organizing smaller homogeneous segments
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into meaningful real world objects, but by the use of models
for the objects of interest.

A limitation of our method is that it tolerates only a lim-
ited amount of occlusion of the foreground objects by the
background. If, say, only the giraffe’s neck was occluded,
its reconstruction and recognition would still be possible,
as its bounding box computed by algorithm B would still
be correct. However, if only its neck and head were visible,
its reconstruction and recognition would fail. Another lim-
itation is that in its current form, the method uses pixels as
features, hence its sensitivity to illumination change. There-
fore, it is important to generalize the method to spaces other
than eigenspaces, and features other than pixels–for exam-
ple, edge maps, as suggested in [6]. One possibility is the
exploration of the bases obtained by non-negative matrix
factorization [7].

Algorithm A is readily generalizable to N > 2
eigenspaces, thus modeling N groups of objects and their
mutual occlusions. The difficulty that will have to be ad-
dressed is the computation of the mask, which will be N -
valued, not binary. Our proposed method can benefit (in
the reconstruction of both background and foreground, and
in error-calculation steps) from the use of view and illumi-
nation eigenspace manifolds introduced in [10]. Our cur-
rent view sets were too small to adequately sample the view
manifolds. An interesting possibility is the replacement of
the hard occlusion mask with of soft, or semi-transparent
mixing masks. Thus, pixel i of the image is a mixture of
the corresponding pixels generated by various models. An
immediate generalization is the inclusion of color informa-
tion, which should result in much-improved masks. One
could separately compute masks in the red, green, and blue
channels and then merge them using, say, a majority vote.

6 Summary and conclusions

We present a recognition scheme that locates the position
and scale of a foreground object in an input image. Once the
foreground object has been roughly located we accurately
determine its exact position using an object model and a lo-
cal search method. In this process we obtain a segmentation
mask for the scene. Moreover, the proposed scheme is able
to correctly segment and recognize multiple objects that oc-
clude each other. We present the successful application of
our method to real world office scenes in locating, segment-
ing, de-occluding and recognizing 3D objects.
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