Multiple Eigenspace Models for Scene
Segmentation and Occlusion Removal

Arnab Dhua!, Florin Cutzu!, Durgesh Dewoolkar!, and Stephen Kiselewich?

! Indiana University, Bloomington IN 47405, USA,
adhua@cs.indiana.edu
2 Delphi Corporation, Kokomo, IN 46904, USA

Abstract. We present a method that uses eigenspace models to seg-
ment an input image into a foreground and a background component.
The algorithm segments the input image into the two components, re-
moves the mutual occlusions among the objects of the foreground and
background component, and reconstructs the occluded portions of both
the foreground and the background component. The problem is formu-
lated as a nonlinear optimization and an approximate solution is found
by an iterative process that alternates between input image segmentation
and component reconstruction, gradually improving the two components
extracted from the input image. The novelty of this approach lies in the
use of multiple eigenspaces to achieve a model-based segmentation of
the input image in an iterative framework. This method yields segments
that correspond to meaningful real-world objects even in the presence
of occlusions, and these segments can be directly used for other tasks
like object recognition. This method differs from the traditional segmen-
tation algorithms as it is not obtained in the usual bottom-up manner
but is model-guided. We demonstrate the utility of the algorithm in the
segmentation and recognition of partially occluded humans in an office
environment.

1 Introduction and Background

We introduce a model-based approach to image segmentation and occlusion re-
moval. Our method requires models (currently, eigenspaces) for the objects of
interest (the foreground image component) as well as for the space of back-
grounds. The algorithm labels the pixels of the input image as background or
foreground. In addition, the algorithm reconstructs the occluded parts of both
the foreground and the background components. The reconstructed foreground
component can then be passed on to an object recognition module.
Traditionally, image segmentation has been based on bottom-up, model-free
methods. Broadly speaking, segmentation techniques [1,2] are contour-based,
which work by linking image edges into smooth closed contours, or region-based,
which seek an optimal partitioning of the image into regions of homogeneous
texture or color. However, segmenting an image into homogeneous regions is
not equivalent to segmenting the individual objects in the scene, for at least



two reasons. First, an object can be composed of several homogeneous regions.
Second, objects of interest can be occluded. The grouping of the homogeneous
object sub-regions or the reconstruction of the occluded object parts is possible
if prior knowledge—a model—of the class of objects of interest is available. Our
method uses eigenmodels to segment and reconstruct the objects of interest,
even if they are composed of regions with different textures.

The eigenface method [3] forms the basis of numerous appearance-based ob-
ject recognition schemes, for example [4]. Unfortunately, the eigenspace method
breaks down in the presence of occlusions. One of the contributions of the present
work is a new method for handling occlusions. A method for dealing with occlu-
sions in eigenspace-based object recognition was described in [5]. Instead of deter-
mining the eigenspace coefficients by projecting the entire input image onto the
model eigenspace, the authors project a subset of the image pixels, thus achieving
robustness to occlusion. The resulting reconstructed image is compared with the
input image. If the two images are close enough, and if the number of image pix-
els giving rise to the coefficients is large enough, an acceptable hypothesis is said
to have been formulated. A set of such hypotheses is generated using different
sets of pixels. Competing hypotheses are then subject to a selection procedure
based on the Minimum Description Length (MDL) principle. The authors’ ex-
periments indicate that their approach can reject outliers (noise) as well as deal
with occlusions. Leonardis and Bischof [6] proposed a constrained search method
which assumes that the eigenspace coordinates of the models are discrete points
or lie on a parametric manifold. Thus, the process of generating the hypotheses
in [5] was replaced by search for the closest training point in the eigenspace (or
the parametric manifold). Bischof and Leonardis [7] showed that their method
can be applied to convolved and sub-sampled images yielding the same value
of coefficients. This allowed for an efficient multi-resolution approach, where the
values of the coefficients can be propagated through scales. In [8] Hadjidemetriou
and Nayar propose improvements to [5]. The authors derive criteria for selecting
subsets of image pixels that maximize the recognition rate. The method is based
on an analysis of sensitivity of the subspace to image noise. The authors present
a window selection algorithm as well as a pixel selection algorithm. Paulus et
al. have extended the work of Leonardis and Bischof and put it to practical use
[9]. They propose that the random selection scheme in [5] can be improved by
incorporating additional knowledge about object properties e.g., local texture,
color, average intensity. The implementation has been tested on typical objects
from office environments and also on objects commonly found in hospitals. A
different approach to the problem of occlusions is given in [10]. The authors pro-
pose a view-based recognition method based on an eigenspace approximation
to the Hausdorff measure. The authors address the problem of occlusions and
clutter by matching intensity edges robustly via the Hausdorff measure, rather
than directly comparing the views themselves. This combination of eigenspaces
and the Hausdorff measure yields a system that has both the speed of subspace
methods and the robustness of the Hausdorff measure.



2 The Proposed Method: Image Segmentation and
Occluder Removal using Multiple Eigenspaces

We represent a scene by two eigenspaces, each corresponding to a subset of
objects in the scene. The two sets of objects making up the scene occlude each
other: one can think of them as constituting the “foreground” and “background”
of the image, although we allow the background to occlude the foreground as
well. The goal of the algorithm is, given an image of the scene, to remove the
occlusions and separate the two sets of objects.

Let these eigenspaces be F' (foreground) and B (background). The input
image x is modeled as consisting of two mutually occluding components, a fore-
ground component f € F and a background component b € B. These two
components are combined using a binary image-sized mask m that allows only
one of the two components to be visible at any pixel location. If at a pixel lo-
cation the mask is one then only the foreground component is visible and if the
mask is zero then only the background component is visible. Thus:

x=Mf+ (I—-M)b (1)

where M is a diagonal matrix with the vector m on the diagonal and I is the
unit matrix. The goal of this paper is the estimation of f, b and m using x,
F, B and certain smoothness assumptions about the mask m. If ¢, are the
unknown coordinate vectors of f and b in the spaces F' and B, and the (known)
means corresponding to the two spaces, respectively, f and b, then the relation
above becomes:

x=M(F¢+f)+ (I~ M)(Bj+b) (2)
Our problem reduces to estimating ¢, 8 and M given «, F, B, and f and b.
The problem is ill-posed if the spaces F' and B are linearly dependent. However,
linear independence is not necessary. The degree of linear dependency of two
spaces is measured by the angle they form, an angle of 90° corresponding to
linear independence and an angle of 0° to linear dependence. For the problem
to be solvable, the angle should not be very close to 0°.

Separation algorithm Solving for the image-sized vectors f and b requires deter-
mining the coeflicient vectors ¢ and 3 as well as the image-sized occlusion mask
m. Typically, under the eigenspace model, the coefficient vectors ¢, 3 are much
smaller than f and b. However, the problem remains under-determined.

To render the problem well-posed, we imposed a smoothness constraint on
the mask m. We assumed that the binary occlusion mask m is “smooth”: its
neighboring pixels tend to be similar. This constraint is used in Step 2 of the
algorithm below.

The steps of the algorithm are as follows:

1. Reconstruct the input image @ using the space F' obtaining an initial esti-
mate f of the foreground component, and the space B obtaining an initial
estimate b of the background component:

F=FF (x—f)+F and b=BB (x—b)+b.



2. Obtain an estimate of the mask m (and therefore M ) by comparing locally
the original image « with the estimated component images f and b. Roughly
speaking, subject to smoothness constraints, if at pixel ¢ the input image «
is more similar to f than to b then (i) = 1, otherwise 7i2(i) = 0. The
computation of the mask is carried out using an efficient graph algorithm
detailed below.

3. Use the estimated mask M to obtain an improved estimate of the foreground
and background components. This is achieved by finding the eigenspace co-
ordinate vectors qg and /4 that minimize the image reconstruction error:

(6,3) = argmin @ = M(F¢ + f) - (I - M)(BE+b)li  (3)

Note that we use the L; norm above, as it gives much better results than the
L5 norm in practice. Due to the use of the 1-norm, the minimization must
be carried out numerically. Then assign:

f=F¢+f and b=BS3+b. (4)

4. Go to Step 2, or stop when changes in f,l; are small.
5. Return the estimates f, b, m.

The Mask as a Minimal Cut in a Graph The computation of the mask in Step
2 of the separation algorithm above is achieved by finding the minimum cut in
a graph [11]. The input image x is modeled as an undirected graph: the pixels
are nodes, and only adjacent pixels are connected by graph edges. The cost of
a graph edge is the similarity s of the two pixels. The similarity of pixels ¢ and
jiss(i,j) =1—1g(i) — g(j)| where g is image intensity normalized to a range
between zero and one. Thus, cuts between similar pixels are discouraged. This
implements the smoothness constraint on the mask.

There are two additional nodes that are connected to all the pixel nodes: a
source node s and a sink node ¢t. The source node corresponds to the foreground
component, and the sink node corresponds to the background component. The
cost of the edge linking a pixel to s is the similarity of the pixel to the corre-
sponding pixel in the foreground component. The cost of the edge linking a pixel
to t is the similarity of the pixel to the corresponding pixel in the background
component. The minimal cut in this graph separates the source from the sink.

As a result of the cut, the nodes (image pixels) will be separated into two
disjoint groups: a group of foreground (source) pixels and a group of background
(sink) pixels. Pixels in the foreground group will tend to be similar to the pixels
in the foreground component; pixels in the background group will tend to be
similar to the pixels in the background component; and the boundaries between
the foreground and background pixel groups in the input image will tend to
conform to the edges (contours) of the input image, since cutting of links between
adjacent dissimilar pixels is encouraged. The mask m is derived from the minimal
cut by setting the m (i) = 1 for the pixels i in the subset of nodes linked to the
source and m(i) = 0 for the pixels in the subset of nodes linked to the sink.
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Fig. 1. LEFT: first iteration. From top to bottom: foreground component, background
component, mask. Black: true signals. Red: estimated signals. MIDDLE: final iteration.
Same curves as on the left. The correlation between the true components and the recon-
structions exceeds 0.98. The angle between the foreground and background eigenspaces
is 34°. RIGHT: correlation between the estimated mask and the true mask as a function
of number of iterations.

Note that this segmentation procedure does not depend directly on the tex-
ture or grayscale values at any region in the image, rather it depends on the
similarity of the pixel location to either the foreground component or the back-
ground component.

3 Numerical experiments

One-dimensional signals The algorithm was first tested on 1-D signals. An im-
age displaying a collage of face images was used as source of data. Half of the
pixel rows of the image, randomly selected, were used to generate the foreground
eigenspace F'; the remaining rows generated the background eigenspace B. The
foreground and the background components were generated by taking random
linear combinations of these two bases (and adding the means). Depending on
how the image rows were assigned to the two spaces, the degree of linear de-
pendency between F and B varied (row correlation decays with distance). This
dependency was measured by the angle between the two spaces: a small an-
gle indicates that the two spaces are nearly linearly dependent. We conducted
several experiments, at different degrees of linear dependency between F and
B. A typical result is displayed in Fig. 1, demonstrating good reconstruction
despite a small angle between spaces F' and B. In all our experiments, the cor-
relation between true and reconstructed signals exceeded 0.95. The mask was
almost always perfectly reconstructed, while the estimated foreground and the
background components displayed imperfections in the regions where they were
occluded in the observed signal. We observed that smaller the angle between the
foreground eigenspace and the background eigenspace, slower the convergence
of the algorithm.

Texture separation In a second set of experiments, we used the Vision Texture
(downloaded from www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex‘html) tex-
ture database to generate foreground and background eigenspaces. Each type of
texture was used to derive an eigenspace. In one experiment, the two eigenspaces



Fig. 2. LEFT TO RIGHT: 1. True foreground component. 2. Reconstructed foreground
component. 3. True background component. 4. Reconstructed background component.
5. True mask. 6. Reconstructed mask.

were derived from, respectively, rock and fabric texture images. All images
were 256 x 256 pixels. The fabric eigenspace had 79 components, and the rock
eigenspace, 99. The angle between the two eigenspaces was 85°. The random
mask had 50% of its pixels opaque (zero). The result, shown in Fig. 2, was typ-
ical: the foreground and background components were always nearly perfectly
recovered (the correlations to the true components exceeded 0.95 for all tex-
tures), but the reconstruction of the mask was noisy.

4 Segmenting and De-occluding People in an Office
Environment

The algorithm was tested on a difficult real-world task: the segmentation and
extraction of humans in an office environment. The segmented images were used
for the recognition of the human subjects in a recognition experiment.

The foreground image set, from which the foreground eigenspace was derived,
consisted of images of two people (a male and a female). The subjects were
photographed frontally, from approximately the same distance, standing against
a patterned (flowers and leaves) fabric curtain. In the images, the human subjects
assumed various poses—arms parallel to the the body, arms folded, arms held
behind the head, hands on the head, hands on waist, etc. The male subject
was taller than the female, and since all images were taken from roughly the
same distance, their image sizes were different as well. A degree of translational
variability was also introduced, by the subjects being shifted to either side of
the image center in different images, by approximately half the body width
of the subjects. As a result of these manipulations, the foreground image set
exhibited substantial variability. Examples of images used for the construction
of the foreground eigenspace are shown in Fig. 3.

All the images were taken under similar illumination conditions, i.e., under
florescent lights. Image size was 460 x 245 pixels. 50 images of the male subject
and 50 images of the female subject were used to derive a single foreground
eigenspace. We retained 90% of the variance in the eigenspace, thus 41 eigenvec-
tors were used in the foreground eigenspace in our experiments.

The background image set was collected at approximately the same scale
in an office environment that included a mobile chair; the chair served as the
occluder of the human subject in the test images. These images were taken



with slight lateral camera shifts and with the position of the chair being varied
by small translations and rotations. The chair was rotated about its axis by
approximately £50°. The chair was also shifted left and right from an initial
position by approximately half of its width. Examples of images used for the
construction of the background eigenspace are shown in Fig. 4. Again, all the
images were taken under similar illumination conditions, i.e., under florescent
lights. As before, all the images were 460 x 245 pixels. 52 images were used for
computing the background eigenspace. We retained 90% of the variance in the
eigenspace, thus 14 eigenvectors were used in the background eigenspace.

The angle between the two eigenspaces was 88.28° indicating that globally
(but not necessarily locally), their linear dependency is very low.

The test images were taken in the same office environment used in deriv-
ing the background eigenspace, from approximately the same viewpoint as in
the training stage, but with the human subject present and the chair partially
occluding the human, and the human occluding the rest of the office scene back-
ground. Again, all the images were taken under similar illumination conditions,
i.e., under florescent lights. As before, all the images were of size 460 x 245. 18
images, 9 of the male subject and 9 of the female subject were used for testing
the performance of the segmentation. The clothing worn by the subjects was the
same as during the training phase. The poses of the human subject in the test
images were roughly the same as the poses in the foreground training phase.

Segmentation and de-occlusion The algorithm extracted the foreground object
(the human) from the background and de-occluded the human as well as the
background: removed the chair and showed the human behind it and removed
the human and revealed the background behind him/her.

We obtained good segmentation results for all images in the test set. We
found that the segmentation was not dependent on the pose of the person, so
long as the test image has the person in a pose similar to one of the poses
present in the training set. The only defect in segmentation observed in our test
set of 18 images was the incorrect inclusion of the right arm of the male subject
into the background component. This can be accounted to the fact that this
particular pose had only one example in the image set used to construct the
foreground eigenspace. This defect was eliminated when we used an eigenspace
with the entire variance retained. On the whole, the segmentation results were
better for the male subject. The male subject had uniform clothing without much
variation in texture and gray-level values. The clothing of the female subject had
significant variation in texture, and hence the images of the female subject were
more strongly affected by 3-D translation. This accounts for the slightly more
noisy segmentation results, especially below the waist, for the female subject, as
can be seen in Fig. 6.

Typical segmentation results are shown in Figs. 5 and 6. The algorithm ter-
minated when the change (decrease) in the error function dropped below a small
threshold. Plots of the dependence of the error function (3) used for the mini-
mization vs. the iteration index are shown on the right in Figs. 5 and 6: their
monotonic decrease indicates convergence.



Recognition results Next, we tackled the problem of recognizing the human sub-
ject in the input image. Since our goal was to investigate the utility of the sep-
aration algorithm as a preparatory stage to recognition, we simply used nearest
neighbor as recognition method. Given a test image, its nearest neighbors in the
foreground and background training sets were determined. This provided the
baseline recognition rate. Then, the nearest neighbor in the foreground training
set of the foreground component extracted from the input image was determined.
Similarly, the nearest neighbor in the background training set of the background
component of the input image was determined.

A correct match in the foreground set corresponds to the retrieval of the
same subject (male or female) in a similar pose as in the input image. A correct
match in the background set corresponds to the retrieval of a similar position of
the chair and a similar camera angle as in the input image. The nearest neighbor
match in the foreground image set using the original input image obtained the
wrong person in nine out of the 18 test images and obtained the wrong pose in
12 out of the 18 test images. The nearest neighbor match in foreground image set
using the foreground component extracted from the input image obtained the
wrong person in just one out of the 18 test images and obtained a wrong pose in
only six out of the 18 test images. The nearest neighbor match in the background
image set using the original input image obtained a completely wrong position
of the chair in five out of the 18 test images. The matches using the background
component of the input image obtained a wrong position of the chair in only two
of the 18 test images. The matches using the segmented input image were better
(the position of the chair was more similar) than the ones using the original input
image in 11 out of the 18 test images. In Fig. 7 the nearest neighbor match in the
foreground set (the second image), of the original image is incorrect. When the
foreground component extracted from the image is used for matching a better
match is obtained (fourth image). In this example, the background match is
good using either the original or the segmented image. Similarly, in Fig. 8 the
nearest neighbor match in the background set using the original image is not
as good as the closest match to the background component of the image. In
this example the foreground match is correct using either the original or the
segmented image. It is interesting to note how the nearest neighbor matches
improve over the iterations. Fig. 9 shows the nearest neighbor match obtained
during successive iterations. The figure displays, from left to right the input
image and the nearest neighbor matches obtained with: the segmented image
after the first, second, third, fourth and fifth iterations respectively. The match
gradually improves in quality through the iterations. From the fifth iteration
onwards the nearest neighbor match does not change for the example presented.

5 Discussion

Our algorithm uses information provided by the background and foreground
eigenspaces to segment the input image. To obtain a correct solution, the fore-
ground and background eigenspaces must have a low degree of linear dependency,



Fig. 4. Some of the training images used to generate the background eigenspace.

therefore the angle between the two spaces must not be small. However, even
if the foreground and background image spaces are nearly orthogonal, it is pos-
sible (and even likely) that the angle between the subspaces of corresponding
image sub-regions be small: in other words, the two spaces can be locally cor-
related even if globally they are not. Therefore, quasi-orthogonality of the two
eigenspaces does not render the problem trivial. The computation of the mask is
a crucial element of the algorithm. In principle, given estimates of the foreground
and background components, the mask can be derived by direct minimization of
the image reconstruction error. However, the discrete nature and large number
of mask variables make direct minimization impractical—thus the need for the
heuristic approach based on graph-cuts. In the definition of the image graph we
used the simplest possible arc weight measure: difference of pixel intensity. More
sophisticated measures are conceivable—for example, derived from correlations
between image windows. Another possibility is to compute the gradient of the
input image and encourage cuts at the locations where the gradient magnitude is
large. Since our algorithm finds an approximate solution to the nonlinear system
of equations (2) by an iterative process, the question of its convergence arises.
In our experiments, the algorithm has always converged. We found that while
the initial mask estimate is very rough and noisy, it improves gradually, and
after 10-15 iteration steps, stops changing significantly. Plots of the decreasing
reconstruction error (3) during the iteration process are shown on the right in
Figs. 5 and 6. The proposed scheme inherits the fundamental limitation of the
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Fig. 5. Segmentation and de-occlusion at the end of six iterations. LEFT TO RIGHT:
1. Input Image 2. Mask indicating foreground regions 3. Foreground reconstruction 4.
Background reconstruction 5. Error (Equation 3) vs. iteration index
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Fig. 6. Segmentation and de-occlusion at the end of eight iterations. LEFT TO RIGHT:
1. Input Image 2. Mask indicating foreground regions 3. Foreground reconstruction 4.
Background reconstruction 5. Error (Equation 3) vs. iteration index

eigenspace-based image representation: the location and pose of the objects in
the test image can have only small variations with respect to the training set.
However, there has been work [12] on achieving a degree of invariance with the
eigenspace approach, and these schemes can be incorporated in our method.
Another limitation of the method is that for input images where the spatial ex-
tents the the two components (foreground and background) are very different,
the much larger component will dominate and the iterations may not converge
on the correct solution. The proposed method is readily generalizable to N > 2
eigenspaces, thus modeling N groups of objects and their mutual occlusions.
The difficulty that will have to be addressed is the computation of the mask,
which will be N-valued, not binary. An immediate generalization is the inclusion
of color information, which should result in much-improved masks. One could
separately compute masks in the red, green, and blue channels and then merge
them using, say, a majority vote. An approach that would not require color in-
formation would be the extraction of several ’channels’—for example, responses
of Gabor filters at various scales and orientations—from the intensity images.
At each iteration, the algorithm would derive a mask in each channel; the masks
obtained from different channels can be combined (using a majority vote) and
the resulting mask could be used in the next iteration. A more fundamental gen-



Input Image Match Original Match Original ~ Match Segmented Match Segmented
Fore # 25 Back # 16 Fore # 57 Back # 16

Fig. 7. Nearest neighbor matches: LEFT TO RIGHT: 1. Input Image. 2. Nearest neighbor
from foreground image set, using the original input image 3. Nearest neighbor from
the background image set, using the original input image 4. Nearest neighbor from the
foreground image set, using the foreground component extracted from the input image
5. Nearest neighbor from the background image set, using the background component
extracted from the input image.

eralization is to spaces other than eigenspaces. One possibility is the exploration
of the bases obtained by non-negative matrix factorization [13].

Relation to other approaches The work relating to occlusion removal reported in
the series of papers by Leonardis and Bischof [5, 7, 6] is the most closely related
to our method. We however, solve a different problem: we do not simply remove
a nuisance occluder, but we use one eigenspace model for each group of objects
of interest, and recover and reconstruct them from the input image. In addition,
we introduce a separation mask that assigns pixels to the two components, and
by doing so we regularize the problem by imposing smoothness constraints on
the mask. Another difference is that the algorithm we use to remove occlusions
is different: rather than perform a search in the image, we iteratively minimize
a nonlinear error function, and optimally assign pixels to components by finding
a minimal cut in a graph.

Our algorithm has an interesting relationship to image segmentation. By
generating a binary separation mask, the algorithm effectively segments a group
of objects from the input image. The proposed method achieves segmentation not
by a traditional bottom-up process of organizing smaller homogeneous segments
into meaningful real world objects, but by the use of models for the objects of
interest. In fact, the images used in our experiments would be hard to segment
by traditional methods. For example, the skirt in Fig. 3 would be very difficult to
segment even manually. However, our algorithm generates a good segmentation
because, in addition to information from the input image, it uses prior knowledge
of the class of shapes it segments.

6 Summary and Conclusions

We introduced a method for segmenting an input image into foreground and
background components, removing their mutual occlusions, and reconstructing



Input Image Match Original Match Original ~ Match Segmented Match Segmented
Fore #3 Back # 5 Fore #3 Back # 8

Fig. 8. Nearest neighbor matches: LEFT TO RIGHT: 1. Input Image. 2. Nearest neighbor
from foreground image set, using the original input image 3. Nearest neighbor from
the background image set, using the original input image 4. Nearest neighbor from the
foreground image set, using the foreground component extracted from the input image
5. Nearest neighbor from the background image set, using the background component
extracted from the input image.

Fig. 9. Improvement in nearest neighbor matches over iterations: LEFT TO RIGHT:
1. The input image The nearest neighbor match obtained with: 2. The segmented
image after the first iteration 3. The segmented image after the second iteration 4. The
segmented image after the third iteration. 5. The segmented image after the fourth
iteration 6. The segmented image after the fifth iteration. From the fifth iteration
onwards the nearest neighbor match does not change for this example.

them. The segmentation is not obtained in the usual bottom-up manner, but
is model-guided. The problem is formulated as a nonlinear system of equations,
and the solution is approximated by an iterative process that alternates between
segmentation and reconstruction, gradually improving the two components ex-
tracted from the input image. Once segmented from the input image and re-
constructed, the image of the object of interest can be passed on to an object
recognition module, substantially increasing recognition performance compared
to the original input image. The method was successfully tested on segmenting,
de-occluding, reconstructing, and recognizing humans in an office environment.
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