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1 Introduction

Frequent itemset mining has been studied extensively in the last ten years. It has become one of the core

sub-areas of data mining. Several algorithms have been developed and studied e.g. Apriori [3] and FP-growth

[21] (see [1] and [20] for detailed surveys up to 2001). Ideas from frequent itemset mining and their associated

methods have been used in a number of areas: association rule mining [3], sequential pattern mining [4],

structured pattern mining [27], iceberg cube computation [6], cube gradient analysis [24], etc..

Recently, the mining and management of stream data has received considerable attention. In this model

the data arrives as a potentially in�nite stream of elements. It is assumed that the stream can only be

scanned once, hence, once an element has passed, the element cannot be revisited unless it is stored in main

memory. Some applications for which this model is appropriate include network tra�c analysis, web click

stream mining, power consumption measurement, sensor network data analysis, and dynamic tracing of stock


uctuation.

Several systems for managing and querying stream data are currently under development [5]. In addition to

managing and querying data streams, mining streams for interesting patterns is also an important challenge.

Recently, several studies on mining data streams have appeared including classi�cation [15,17,23,25,32],

clustering [2,19,29], and mining frequent itemsets [7,18,28].

In this paper, we study the problem of mining frequent itemsets over arbitrary time intervals on stream

data. We examine a novel data structure, an FP-stream, for maintaining information about itemset frequency

histories. This data structure is dynamically updated after each new batch of transactions arrives. At any

time, a request for itemsets frequent over a user-de�ned interval can be serviced by scanning the maintained

FP-stream. An approximate answer is given whose error is guaranteed to be no greater than user-speci�ed

frequency and temporal thresholds.

Itemset frequency histories are maintained using logarithmic tilted-time window tables. These tables store

frequencies over exponentially increasing time granularities (e.g. every second for the last minute, every two

seconds for the previous minute, every four seconds for the minute before that, etc.). Moreover, entries in the

time window table are weighted by an aging function. Older entries are weighted less.

A tree structure (similar to the FP-tree [21]) is used to store a collection of itemsets with their tilted-

time window tables. With the arrival of a new batch of transactions, the FP-stream is updated. Pre-existing

itemsets may be dropped or part of their tilted-time window table entries may be dropped. New itemsets may
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be added. The dropping condition guarantees that no itemset which is frequent over arbitrary time intervals

consistent with pre-de�ned exponential time granularities will be absent from the FP-stream. Moreover, for

each itemset in the structure, its frequency approximation will not be di�erent than the true frequency by

more than a user-de�ned fraction (taking into account age weighting).

Previous work [28] studied the problem of maintaining all frequent itemsets over the entire history of the

stream. This will not be desirable in circumstances where the goals of mining the stream are time sensitive.

For example, consider a shopping transaction stream that began a year ago. Itemsets frequent over the life

of the stream will be of no use in detecting purchasing trends or combinations of items that have become

popular only recently. As another example, in network monitoring, changes in the frequent patterns in the

past several minutes are valuable and can be used for detection of network intrusions [14].

Our approach addresses these weaknesses by allowing the user, at any time, to issue queries requesting

itemsets frequent over arbitrary time intervals.

We summarize the contributions of the paper. First, we describe a novel data structure, an FP-stream,

for maintaining information about itemset frequency histories. We develop an algorithm to build and incre-

mentally maintain an FP-stream. By scanning the maintained FP-stream, arbitrary time interval or arbitrary

sliding window queries can be answered over data streams with user-de�ned error bound guarantees. We

present experiments demonstrating the behavior of the algorithm over a variety of parameter settings.

Paper Layout: Section 2 describes related work, basic notation, and the goal we are trying to reach. Sec-

tion 3 addresses the problem of maintaining frequency history information about a single itemset. Logarithmic

tilted-time window tables are de�ned and their update algorithm presented. Section 4 describes how a time

window query is answered for a single itemset. We describe how temporal and frequency errors arise and are

managed. Section 5 addresses the problem of maintaining frequency history information about a collection

of itemsets. The FP-stream data structure is presented. Section 6 describes the algorithm for updating an

FP-stream and for answering queries. Section 7 describes the experimental set-up and data used to study the

behavior of our algorithm. Section 8 reports the results of our experiments. Section 9 describes our previous

work on the FP-stream data structure. Section 10 concludes the paper.
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2 Related Work, Basic Notation, and Goal

2.1 Related Work

Recently we introduced the FP-stream data structure for mining frequent itemsets in streams over arbitrary

time intervals [18]. However, we did not develop query answering techniques, we considered maintenance

only for a restricted form of tilted-time window tables, and we did not consider age weighting on the time

windows. Moreover, the details of the correctness proofs for the maintenance algorithms were not included.

In this paper, we develop query answering, a maintenance algorithm for a more general class of tilted-time

window tables (including age weights), and we provide complete details of all correctness proofs. See Section

9 for a more detailed description of the di�erences between [18] and this paper.

Manku and Motwani [28] propose a method for mining all itemsets frequent over the life of the stream. They

store itemsets in a tree structure. With each itemset stored, they record an under-estimate of the frequency

and an error term. Upon the arrival of a new batch of transactions, the tree is updated; some itemsets may

be dropped and others may be added. The dropping and adding conditions ensure that: (1) the estimated

frequency of all itemsets in the tree are less than the true frequency by no more than �N (N is the length

of the stream and � is a user-de�ned error bound) and (2) no frequent itemset is omitted from the tree. By

scanning the tree and returning all itemsets whose estimated frequency is greater than (� � �)N (� is the

support threshold), an approximation1 to the frequent itemsets can be produced. We address a more general

problem than Manku and Motwani: produce itemsets frequent over arbitrary time intervals and over sliding

time intervals.

Chang and Lee [7] develop an algorithm for maintaining frequent itemsets in stream data assuming each

transaction has a weight. The weights decrease with age; in a�ect, older transactions contribute less toward

itemset frequencies. They maintain a tree of itemsets and use some basic anti-monotonicity inequalities to

reduce update cost. Like us, they take into account age when maintaining itemsets. However, they do not

allow the user to query for frequent itemsets over many time intervals (as we do). They provide itemsets

frequent over the life of the stream (similar to [28]). We address a more general problem.

Datar et al. [12] propose a method for maintaining aggregates involving the last W elements in a stream (a

sliding window). They consider the following basic problem and show how an algorithm for it can be adapted to

1 The estimated frequency of each itemset will be an approximation of the true frequency and some itemsets will be

returned which are not truly frequent.
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more general problems: given a stream of 1s and 0s, maintain a count of the 1s over the lastW elements. Their

approach is to maintain a histogram with O(log2(W )) buckets each recording the number of 1s in a collection of

consecutive elements (covering all elements in W ). They do not consider the problem of maintaining frequent

itemsets over the last W transactions. But their histograms (called exponential histograms) are similar to our

logarithmic tilted-time window tables.

Cohen and Strauss [10] consider a generalization of the basic problem of Datar et al.: maintain a weighted

count of 1's encountered thus far in the stream. The weights are a monotonically increasing function of age (a

sliding window of size W can be expressed as the last W time units get weight one, all older get weight zero).

Cohen and Strauss develop algorithms for maintaining an approximation to the weighted count in small space

for several classes of weighting functions. They do not consider the problem of maintaining frequent itemsets

over age weighted transactions. But their work is similar to ours in that we consider age weighted batches of

transactions.

Cormode and Muthukrishnan [11] develop a one-pass, probabilistic algorithm for addressing the following

problem over a stream of item insertions and deletions. Given integer k and reals �; �, produce at any time

with probability 1� � the items whose frequency is at least 1=(k+1) times the number of items seen thus far

(less deletions); they call these \hot" items. Their solution requires space O(klogk+ klog(1=�)) (independent

of the stream length).

Charikar et al. [8] develop a one-pass randomized algorithm for addressing the following problem on streams

of items. Given integer k and reals �; �, maintain a list of k items such that, with probability 1 � �, every

item in the list had frequency at least 1� � times the frequency of the kth most frequent item. Their solution

requires space at most logarithmic in the length of the stream, linear in k, and linear in the sum of the squares

of the top k + 1 frequencies.

The problems addressed in [11] and [8] di�er from ours in two ways. First, we consider itemsets rather

than just items. While itemsets could be encoded as individual items then the methods of [11] and [8] applied,

it remains to be seen the potential di�culties that might arise. A study along these lines would be quite

interesting. Second, we consider the discovery of frequent itemsets over arbitrary time intervals rather than

the life of the stream. It is not clear how the methods of [11] and [8] can be extended to address this problem.

Several two-pass algorithms for frequent itemset mining have been developed: [22], [30], [31] (see [28]

section 2.3 for a more detailed survey of two pass algorithms). Recently a two-pass algorithm for �nding all
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frequent items in a stream has been developed independently in [13] and [26]. This algorithm requires very

small space and time. However, stream mining requires one pass algorithms, so all of these two-pass methods

are not directly applicable.

A variety of other problems have been addressed on stream data: random sample maintenance, estimation

of frequency moments, estimation of Lp norms, histogram and wavelet construction, quantile computation,

etc.. See [5] for a good survey of methods for these problems up to 2002.

2.2 Basic Notation

Let �0; �1; : : : ; �N denote the time units elapsed thus far in the stream, �0 is the oldest, �N most recent. Given

integers N � b; a � 0, let T b
a denote the time interval consisting of the time units �a; �b�1; : : : ; �b.

2 Ta is used

as shorthand for the interval T a
a consisting of time unit �a. The length of T b

a , denoted jjT
b
a jj, is the number of

time units in T b
a , i.e. jjT

b
a jj = b� a+ 1.

Let I denote a set of items. An itemset (transaction) is a non-empty subset of I. A stream, S, is a sequence

of transactions: s0; s1; : : : (s0 is the oldest). More than one stream transaction can arrive during a time unit.

Given any collection of consecutive transactions S from S and an itemset I , let fI(S) denote the number of

transactions si in S such that I � si (i.e. the frequency of I over S). We sometimes write f(S) as shorthand

for fI(S) when clear from context. jSj denotes the number of transactions in S.

The collection of transactions from S that arrived during the ith time unit (i � 0) is called the ith batch

and is denoted Bi. Notice that the batches may be of di�ering sizes. For b; a � 0, let Bb
a denote

Sb

i=a Bi.
3

fI(T
b
a) denotes the frequency of itemset I over T b

a , formally stated, fI(T
b
a) = fI(B

b
a).

Let � : N ! [1;1) be called the aging function; it assigns an age to collections of batches. The age of

collection Bb
a at time unit �N is �(N � a). We assume that a collection consisting of the newest batch, BN

N ,

has age one (�(0) = 1) and that age is monotonically increasing (�(x) � �(y), if x � y).

Let 
 � 0 and assume that time unit �N has just elapsed. I is said to be 
�frequent over T b
a at N if

fI(T
b
a) � �(N � a)
jBb

aj. This is a generalization of the standard notion of frequent itemsets. If � = 1 (maps

always to one), then 
�frequent over T b
a at N is equivalent to the standard meaning of 
�frequent.

2 If a > b, then T b
a is the empty time interval.

3 If a > b, Bb
a is the empty collection of transactions.
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2.3 Goal

Let 1 � � > 0 be called the support threshold and � > �f � 0 be called the frequency error threshold.

Often an itemset will be said to be frequent over a collection of transactions at N (the current time unit) as

shorthand for ��frequent at N . Let 1 � �t � 0 be called the temporal error threshold (explained below).

Our goal is to develop an algorithm which, at any time unit �N , can be issued a query requesting itemsets

frequent over T b
a at N and will produce an approximate answer: a set of itemsets and their approximate

frequencies over T b̂
â (an approximation of T b

a). The approximate answer must satisfy three error guarantees

with respect to thresholds �f and �t as explained next.

There are two types of errors that can occur in the approximate answer: temporal error and frequency

error. Temporal error results from the fact that the frequencies returned are assumed to be over a time period

T b̂
â . We de�ne the temporal error as the sum of the di�erences between the starting and ending points of each

interval:

jb� b̂j+ ja� âj: (1)

Frequency error results from the fact that the frequencies returned with the itemsets are approximations

to the true frequencies over T b̂
â . For each itemset I returned, let f̂I(T

b̂
â) denote the approximate frequency.

We de�ne the frequency error of I to be the di�erence between the true and approximate frequency:

jfI(T
b̂
â)� f̂I(T

b̂
â)j: (2)

The result is required to meet the following error guarantees (assuming time unit �N has just elapsed):

1. jb�b̂j
N�b+1 +

ja�âj
N�a+1 � �t;

2. for any itemset I , if I is ��frequent at N , then I is in the result;

3. for any itemset I in the result, fI(T
b̂
â) � f̂I(T

b̂
â) > fI(T

b̂
â)� �(N � â)�f jB

b̂
âj.

The �rst guarantee ensures that the temporal error, normalized to account for the age of the query, does not

exceed a pre-de�ned threshold. The second ensures that no frequent itemsets are omitted from the returned

result. The third ensures that the frequency error of any itemset does not exceed a pre-de�ned threshold

(taking into account aging) and that the approximate frequency does not exceed the true frequency. The

second and third guarantees are similar to that in [28].
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3 Logarithmic Tilted-Time Window Tables

This section addresses the issue of maintaining frequency history information about a single itemset. We

maintain exact itemset frequencies. In Section 4 we describe how approximations to the maintained frequencies

are introduced to save storage space and in Section 5 we describe how to extend our approach to collections

of itemsets. The complete algorithm for answering queries is described in Section 6.2.

In order to maintain itemset frequency history information, we use a tilted-time window framework [9]. Its

design is based on the fact that people are likely interested in recent changes at �ne time granularities, but

old changes at coarse granularities. We use a logarithmic tilted-time frame. Here the granularities from most

�ne to most coarse are: one unit, two units, four units, etc.

3.1 De�nition

A logarithmic tilted-time window table is based on a strati�ed partition of the time units that have passed.

The partition represents levels of increasing time granularity and consists of a collection of time windows

(intervals): T bm
am

; T
bm�1
am�1 ; : : : ; T

b0
a0

where bi � ai; 0 � i � m. These windows are consecutive and cover all

units of time seen thus far: bm = N; a0 = 0; and ai = bi�1 + 1 for 1 � i � m. Moreover, the windows are

strati�ed in terms of their length. Each strata is called a granularity level. The �rst granularity level consists

of T bm
am

; : : : ; T
b`1
a`1

; the second consists of T
b`1�1
a`1�1 ; : : : ; T

b`2
a`2

; the kth consists of T
b`k�1�1

a`k�1�1 ; : : : ; T
b0
a0
.

At any level 1 � L � k, all of the windows have the same time length 2L�1. This is called the granularity

of level L. For example, jjT bm
am
jj = � � � = jjT

b`1
a`1
jj = 1. Each level L is assumed to contain at most maxL � 2

windows and at leastmaxL�1 (except before the �rstmaxL�1 windows at level L are created, e.g. before the

�rstmax1�1 batches are encountered, level one will have less thanmax1�1 windows).max1;max2; : : : ;maxu

(u � 1) are user speci�ed constants used to control the granularity and size of the table; they are called

granularity constants. If maxu = 1, then the table contains only u levels. The uth level grows inde�nitely

long. If maxu 6=1, then the table contains an unbounded number of levels but the uth level and every level

after are assumed to contain at most maxu windows and at least maxu � 1.

The batch sizes associated with windows at each level are stored in the global partition structure. This

structure records a list of batch sizes at each level: jBbm
am
j, : : :, jB

b`1
a`1
j; jB

b`1�1
a`1�1 j, : : :, jB

b`2
a`2
j; � � � � � � ; jB

b`k�1�1

a`k�1�1 j,

: : :, jBb0
a0
j. The time window lengths need not be recorded since all windows at level L have length 2L�1.
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The logarithmic tilted table for every itemset, I , records a list of frequencies at each level fI(T
bm
am

), : : :,

fI(T
b`1
a`1

); fI(T
b`1�1
a`1�1 ), : : :, fI(T

b`2
a`2

); � � � � � � ; fI(T
b`k�1�1

a`k�1�1 ), : : :, fI(T
b0
a0
). Note: there is only one global partition

structure but a separate tilted time window table for each itemset.

3.2 Updating

Next we show how the global partition structure is updated.

Upon arrival of a new batch, BN , a new entry jBN
N j is created for level one. If level one has less than

max1 + 1 entries (after the creation of the new entry), then the algorithm stops. If level one has max1 + 1

entries then the last (oldest) two entries jBN�max1
N�max1

j and jBN�max1+1
N�max1+1

j are merged and the result becomes a

new entry at level two jBN�max1+1
N�max1

j. The merger removes the last two entries from level one. If level two has

fewer than max2+1 entries, then the algorithm stops. Otherwise, the last two entries at level two are merged

and the result becomes a new entry at level three. This process continues until a level is reached with fewer

than max2 + 1 entries after the addition of the new entry.

To illustrate, consider the following global partition table (max1 = 2) after three batches have arrived:

jB2
2 j; jB

1
0 j. This table has two levels, each allowing at most max1 = 2 entries.

Upon arrival of the fourth batch, a new entry is created for level 1. Since there are not enough entries at

level 1 (2 < max2 + 1 = 3), then a merger does not occur. The table appears as: jB3
3 j, jB

2
2 j; jB

1
0 j.

Upon arrival of the �fth batch, a new entry is created for level 1. There are enough entries for a merger,

so the last two entries are merged a new entry is created for level 2. Level 2 now has two entries (so no merger

occurs). The table appears as: jB4
4 j; jB

3
2 j; jB

1
0 j.

The updating method for the tilted-time window table for each itemset is analogous. After the �rst three

batches have arrived, the table is fI(T
2
2 ), fI(T

1
0 ). After the arrival of the �fth batch the table is fI(T

4
4 ),

fI(T
3
2 ), fI(T

1
0 ). Each window in the table represents the frequency of its corresponding entry in the partition

structure.

4 Answering Queries

Our goal (Section 2.3) is to develop a method which, given a user-de�ned query for itemsets frequent over

T b
a at N , will produce an approximate answer satisfying certain error guarantees. As a �rst step, we describe

how this goal can be met for a single itemset, I . In this section, we describe how queries are answered over a
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single tilted-time window table (for I). In Section 5 we discuss how the method is extended to collections of

itemsets.

We maintain the global partition structure and the tilted-time window table for I . When the user issues

a query, the �rst step is to scan the global partition structure and �nd the best time window endpoints to

approximate a and b. Let T bm
am

; T
bm�1
am�1 ; : : : ; T

b0
a0

be the tilted-time windows represented by the global partition

table. If a and b are not in the same window then set â to the closest ai, i.e. i = argminfja�aij : 0 � i � mg

(if two such i's exist, choose the smaller). Set b̂ to the closest bj , i.e. j = argminfjb� bj j : 0 � j � mg (if two

such j's exist, choose the smaller). Note, it's possible that â > b̂.

If a and b are in the same window, T bk
ak
, then â and b̂ are not set as described above. In this case, if

b� a+ 1 < jjT bk
ak
jj=2, set b̂ to b and â to b̂+ 1 (the empty time interval). Otherwise, set b̂ to bk and â to ak.

Once â and b̂ have been computed, the tilted-time window table is scanned to produce the desired frequency.

4.1 Temporal Approximation

We develop an upper-bound on the temporal error in terms of the granularity constants max1; : : : ;maxu � 2

(Theorem 1). This theorem shows how the granularity constants can be set to ensure the temporal error

bound guarantee described in Section 2.3 (guarantee 1) is met (Corollary 1). Theorem 2 shows how setting

the constants a�ects the space required to store the partition table.

If maxu 6= 1, let Mn = minfmax1, : : :, maxug and Mx = maxfmax1, : : :, maxug, otherwise, if u > 1,

let Mn = minfmax1, : : :, maxu�1g and Mx = maxfmax1, : : :, maxu�1g. Recall that N is the number of

time units that have elapsed thus far.

Theorem 1 Let Terr = jb�b̂j
N�b+1 + ja�âj

N�a+1 : Assume a appears inside window T bi
ai

at level Li and b inside

window T
bj
aj at level Lj (note, aj � bi and Lj � Li).

1. If Li = Lj = 1, then Terr = 0.

2. If Lj = 1; Li > 1, then Terr � 1
Mn�1 [

2Li�2

2Li�1�1
]:

3. If Li; Lj > 1, then Terr � 1
Mn�1 [

2Lj�2

2Lj�1�1
+ 2Li�2

2Li�1�1
]:

Proof: 1. If Li = Lj = 1, then jjT bi
ai
jj = jjT

bj
aj jj = 1, thus, a = ai and b = bi. Therefore, â = a and b̂ = b.

2. If Lj = 1; Li > 1, then b̂ = b so Terr = ja�âj
N�a+1 : It can be seen from the way â is de�ned, that

ja � âj � jjT bi
ai
jj=2 = 2Li�2: We assert that N � a � 1 is bounded below by (Mn � 1)2Li�1 � 1. Since

Li;Mn > 1, then this bound is greater than zero. Hence, the desired result follows.
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To see the assertion, consider that N � a � 1 is the number of time units a lies from the current time

unit. This is bounded below by the number of time units in levels 1; : : : ; Li�1. Let mxk denote the minimum

number of windows that must appear in level 1 � k � Li � 1. If k � u, then mxk = maxk � 1, otherwise

mxk = maxu � 1.4 Clearly, Mn � 1 � minfmxk : 1 � k � Li � 1g. Since each window at level k has 2k�1

units, then

N � a� 1 �

Li�1X
k=1

mxk2
k�1

� (Mn� 1)

L�i�1X
k=1

2k�1

= (Mn� 1)[2Li�1 � 1]:

3. An analogous argument to part 2 shows the desired result. �

Corollary 1 If Mn � 2
�t
+1, then guarantee 1 in Section 2.3 is met. Moreover, for the class of sliding window

queries (i.e. b = N), the guarantee is met if Mn � 1
�t
+ 1:

A larger Mn implies that a smaller �t guarantee can be met. However, a larger Mn implies a larger

partition structure (and hence a larger tilted time window table).

Theorem 2 Let m denote the number of windows that appear in the partition table and L denote the last

level.

1. Assume maxu 6=1, we have m � (Mn� 1)(log2(
N
Mx

+ 1)� 1):

2. Assume maxu = 1. If L = 1, then m = N . If 1 < L < u, then m � (Mn � 1)(log2(
N
Mx

+ 1) � 1). If

1 < L = u, then m � (Mn� 1)(2u�1 � 1) + N
2u�1 �Mx(1� 1

2u�1 ):

Proof: 1. The number of time windows in levels 1; : : : ; L� 1 is a lower bound on m. The minimum number

of windows that may appear in each level 1 � k � L� 1, is mxk (see proof of Theorem 1 part 2). Hence

m �

L�1X
k=1

mxk � (Mn� 1)(L� 1): (3)

4 The number of windows in level Li may be less than mxu � 1 if Li is the last level (not enough time units may

have passed to �ll level Li). However, enough time units will have passed to �ll all before the last, including levels

1; : : : ; Li � 1.
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L must be large enough to cover all N time units. The maximum number of time units that could be

contained in a table with L levels is
PL

k=1(mxk + 1)2k�1 �Mx
PL

k=1 2
k�1 = Mx(2L � 1). Hence L must be

at least log2(
N
Mx

+ 1). Plugging into (3) we get m � (Mn� 1)(log2(
N
Mx

+ 1)� 1) as desired.

2. If L = 1, then all windows in the table are of size one, hence m = N . Assume 1 < L < u, then the same

argument from part 1 can be applied.

Assume 1 < L = u. The minimum number of windows that appear in levels 1; : : : ; u� 1 is
Pu�1

k=1(maxk �

1)2k�1 � (Mn� 1)(2u�1 � 1). This is also a lower bound on m, but not a very good one since the uth level

may be quite large. To improve the bound we develop a rough lower-bound on the number of windows in the

uth level. The number of time units in the uth level is at least N �
Pu�1

k=1 maxk2
k�1 � N �Mx(2u�1 � 1).

Thus the number of time windows at the uth level is at least

N �Mx(2u�1 � 1)

2u�1
=

N

2u�1
�Mx(1�

1

2u�1
):

�

To get a better sense of the trade-o� between meeting the temporal error guarantee and the size of the

table, consider the case where u = 1, max1 6= 1, �t = 0:1, and assume 106 time units have elapsed (if the

units are minutes, then 695 days have elapsed). To meet the guarantee, max1 � 21 (or max1 � 11 for sliding

window queries). The partition table, and hence the tilted time window table will contain at least 291 windows

(or at least 155 for sliding window queries).

4.2 Frequency Approximation

We describe next how parts of the tilted-time window table for a �xed I are maintained. Table entries are

dropped (and new entries ignored) to save space at the expense of producing frequency approximations. While

this space is not critical for maintaining a single tilted-time window table, it likely will be for maintaining the

collection of itemsets required to address a query requesting all itemsets frequent over T b
a at N .

To reduce the storage space required, we selectively drop parts of the tilted time window table and

selectively ignore new entries. The dropping and adding conditions are designed to ensure that the guarantees

from Section 2.3 related to frequency error (2 and 3) are met.

Suppose the tilted-time window is empty. Upon arrival of a new time unit �N , jB
N
N j is always added to

the global partition structure. However, fI(T
N
N ) is added to the table only if the following condition is met.

12



Adding Condition 1 fI(T
N
N ) � �f jB

N
N j:

If the tilted-time window table is not empty, fI(T
N
N ) is always added, but may be dropped as described

next.

Let fI(T
bm
am

); : : : ; fI(T
b0
a0
) denote the time windows in the table. We drop tail fI(T

bk
ak
); : : : ; fI(T

b0
a0
), for

some 0 � k � m, if a certain dropping condition is satis�ed. When issued a query over T
bj
ai , an approximation

f̂I(T
bj
ai ) is returned. If k = m (the entire tilted-time window table is dropped), then f̂I(T

bj
ai ) is de�ned to be

zero, otherwise f̂I(T
bj
ai ) is de�ned to be fI(T

bj
a0 ) where a

0 = maxfai; ak+1g. If m � i > k, the approximation

is exact, however, if k � i � 0, then the approximation may be less than the true frequency, fI(T
bj
ai ).

Once windows have been dropped, an additional problem may emerge during updating. Recall that the

tilted-time window table is updated along side the global partition structure. Moreover, each window in the

table is assumed to represent the frequency over its corresponding entry in the partition structure. Once

windows have been dropped and the table and partition are updated with new time units, every window in

the table may not match the frequency over its corresponding entry in the partition. Consider the following

example.

Example 1 Suppose u = 1, maxu = 2, and four time units have arrived. The global partition is jB3
3 j; jB

2
2 j; jB

1
0 j

and the tilted table is fI(B
3
3), fI(B

2
2); fI(B

1
0). Suppose the last two windows are dropped. When the next time

unit arrives, the partition is updated to jB4
4 j; jB

3
2 j, jB

1
0 j and the table becomes fI(B

4
4); fI(B

3
3). The corre-

sponding entry in the partition for fI(B
3
3) is B

3
2 y(fI(B

3
3) is the second entry in the table and B3

2 is the second

entry in the partition). However, the frequency over B3
2 may not be the same as fI(B

3
3).

This inaccuracy is inevitable, but the next theorem shows that only the last (oldest) window in the table

is inaccurate.

Theorem 3 Suppose that a global partition structure and a corresponding tilted-time window table are main-

tained; periodically tails of the table are dropped. After each time unit is processed (the structure and table

are updated, dropping is carried out, if necessary), all windows in the table, except the last (oldest), match the

frequency over their corresponding entry in the partition structure.

Proof: By induction on the number of time units that have elapsed. In the base case, only one time unit has

elapsed; clearly the result holds.

Now assume the result holds immediately after time unit i > 1 has elapsed. The processing of the (i+1)st

unit consists of two steps: (i) insert jBi+1j into the partition and fI(Ti+1) into the table; (ii) drop a tail of the

13



table, if the dropping conditions are met. Let Wm; : : : ;W1 denote the time windows in the table immediately

after step (i) of the (i+ 1)st unit is processed (Wm is the most recent window).

Wm is I 0s frequency over the (i+ 1)st time unit and its corresponding entry in the structure is the batch

at the (i+ 1)st time unit. Hence, Wm matches the frequency over its corresponding entry in the partition at

the end of step (i). Now consider Wj with 1 < j < m. It was produced in one of two ways: Wj is simply one of

the windows, W j , among those at the end of the ith unit; Wj if formed by merging two consecutive windows

W
1
j ;W

2
j among those at the end of the ith unit. In either case, since Wj is not the last window at the end

of step (i), then none of W j , W
1

j , and W
2

j is the last window at the end of the ith time unit. By induction,

all of these windows match the frequency over their corresponding entries in the partition table at the end of

unit i. Therefore, Wj matches the frequency over its corresponding entry in the partition at the end of step

(i) during the (i+ 1)st unit.

If a tail is dropped during step (ii), clearly the last window not dropped is among Wj , 1 < j � m (since

W1 is the oldest and must have been dropped). Thus, the result holds. �

The last window in the table represents the frequency over some batch of transactions (not necessarily

that over its corresponding entry in the partition). To account for this, we store the batch size of the batch

matching the frequency in the tilted-time window table; we call this the last batch entry. Therefore, each

window in the table (except the last) matches the frequency over its corresponding entry in the partition

structure and the last window match the frequency over the last batch entry (stored in the tilted-time window

table). Consider Example 1. The last window is fI(B
3
3). So we would store jB3

3 j as the last batch entry.

Tilted-time window table update algorithm: Upon arrival of a new time unit �N , the partition

structure is updated exactly as described in Section 3.2. The tilted-time window table is updated as follows.

If the table is empty, then insert fI(T
N
N ) into the table if the adding condition is met. Store jBN

N j in the table

as the last batch entry. If the table is not empty, then insert fI(T
N
N ). The merging of windows follows the

merging done in inserting jBN
N j into the partition structure with some additional work done to maintain the

last batch. We illustrate with an example.

Example 2 Let u = 1, maxu = 2. After the �rst two time units have arrived (assume no dropping and that

the adding condition is met), the global partition structure is jB1
1 j, jB

0
0 j and the tilted-time window table is

fI(T
1
1 ); fI(T

0
0 ) with last batch entry jB0

0 j. Upon arrival of the next time unit the partition structure and the

table are updated. The partition becomes jB2
2 j; jB

1
0 j and the table becomes fI(T

2
2 ); fI(T

1
0 ). The last batch entry

14



must be updated to re
ect the merger of fI(T
0
0 ) and fI(T

1
1 ). It is updated to jB1

0 j by adding the last batch from

the previous step (jB0
0 j) to the batch size for fI(T

1
1 ), jB

1
1 j (the partition table contains jB1

1 j). Next we check if

the dropping conditions apply (assume they do not).

Upon arrival of the fourth time unit the partition and table are updated to jB3
3 j; jB

2
2 j; jB

1
0 j and fI(T

3
3 ),

fI(T
2
2 ); fI(T

1
0 ) with last batch entry jB1

0 j. Suppose the dropping conditions apply and the last two windows are

dropped. The table becomes fI(T
3
3 ) and the last batch becomes jB3

3 j (the partition table contains jB3
3 j). Upon

arrival of the �fth batch (assume no dropping) the partition and table become jB4
4 j; jB

3
2 j; jB

1
0 j and fI(T

4
4 ); fI(T

3
3 )

with last batch entry jB3
3 j.

Lemma 1 Suppose that a global partition structure and a corresponding tilted-time window table are main-

tained as described above. After each time unit is processed all windows in the table, except the last (oldest),

match the frequency over their corresponding entry in the partition structure; the last matches the frequency

over the batch corresponding to the last batch entry in the tilted-time window table.

Proof: Follows from Theorem 3. �

4.3 Dropping Condition

This condition is designed to ensure that frequency error guarantee 3 in Section 2.3 is met. Let fI(T
bm
am

),

: : :, fI(T
b0
a0
) denote the time windows in the table (T b0

a0
) is the time window corresponding to the last batch

entry; assume time unit �N has just elapsed. Consider the following condition on tail fI(T
bk
ak
), : : :, fI(T

b0
a0
)

(0 � k � m).

Dropping Condition 1 (Arbitrary Query) For all 0 � i � k; fI(T
bi
ai
) < �(N � ai)�f jB

bi
ai
j;

Notice that computation of the dropping condition requires knowledge of the sizes of the batches associated

with each time window. Lemma 1 shows that these computations can be carried out using the global partition

table and the tilted-time window table (with last batch entry).

Recall that to answer a query over T b
a , we �rst compute T b̂

â , then scan the tilted-time window table over

T b̂
â . The next theorem shows that guarantee 3 is met.

Theorem 4 Suppose that a global partition structure and a corresponding tilted-time window table are main-

tained as described in Section 4.2. Assume that N time units have passed. Then for any T b
a , fI(T

b̂
â) � f̂I(T

b̂
â) >

fI(T
b̂
â)� �(N � â)�f jB

b̂
âj.
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Proof: If â > b̂, then fI(T
b̂
â) = 0 = f̂I(T

b̂
â), so the result holds. Assume â � b̂.

Let BN ; BN�1; : : : ; B0 represent the batches that have arrived thus far (time units �N ; : : : ; �0). We treat

the case of an incoming batch ignored due to adding conditions as if it were inserted into the tilted-time

window table, then immediately dropped. Hence, we can model the behavior of the algorithm as a series of

pairs (kp; dp); : : : (k1; d1) indicating Bki ; : : : ; Bk(i�1)+1 were dropped at the end of time unit di for 1 � i � p

(assuming k0 = �1). Take note: N � kp > kp�1 > : : : > k1 � 0 and di � ki.

If â > kp, then f̂I(T
b̂
â) = fI(T

b̂
â), so the result holds. Assume â � kp. Let Mn = minfkp; b̂g. We have

fI(T
b̂
â) = fI(T

Mn
â ) + fI(T

b̂
kp+1

): By de�nition of f̂I it follows that fI(T
b̂
â) = fI(T

Mn
â ) + f̂I(T

b̂
â). Hence fI(T

b̂
â)

� f̂I(T
b̂
â):

We assert that fI(T
Mn
â ) < �(N � â)�f jB

Mn
â j. Since Mn � b̂, it will follow that fI(T

Mn
â ) < �(N � â)�f jB

b̂
âj

and thus, f̂I(T
b̂
â) > fI(T

b̂
â) � �(N � â)�f jB

b̂
âj (the desired result will hold).

Assume â and Mn fall in the same region as determined by kp; : : : ; k0 (i.e. there exists p � h � 1, such

that k(h�1) + 1 � â;Mn � kh). Then Mn = b̂. By de�nition â falls on the right end of a time window at the

current time and b̂ falls on the left end of a time window. Thus, â falls on the right end of a time window at

time dh (the time when Bkh ; : : : ; Bk(h�1)+1 were dropped) and b̂ on the left end of a time window. Let T b̂
i`
,

T i`�1
i(`�1)

, : : :, T i2�1
i1

where â = i1 denote the time windows between â and b̂ at time dh. Note: N � dh � i` >

i`�1 > � � � > i1 = â.

These windows were dropped so, fI(T
b̂
i`
) < �(dh� i`)�f jB

b̂
i`
j, fI(T

i`�1
i(`�1)

) < �(dh� i(`�1))�f jB
i`�1
i(`�1)

j, � � � � � � ,

fI(T
i2�1
i1

) < �(dh � ii1)�f jB
i2�1
i1

j.

Since � is monotonically increasing, we have �(N � â) � �(dh � i1) > �(dh � i2) > � � � > �(dh � i`).

Therefore, it follows by summing the inequalities in previous paragraph that fI(T
b̂
â) < �(N � â)�f jB

b̂
âj, as

desired.

Assume â and Mn fall in di�erent regions as determined by kp; : : : ; k0. Let 1 � z(â) � p be the smallest

integer such that â � kz(â) (since â � kp such an integer exists). Let 0 � z(M) � p be the largest integer such

that Mn � kz(M) (since Mn � �1 = k0 such an integer exists). We have

fI(T
Mn
â ) = fI(T

kz(â)
â ) +

z(M)�1X
i=z(â)

fI(T
k(i+1)

ki+1
) + fI(T

Mn
kz(M)+1

): (4)

Using a similar argument as above concerning the window endpoints, the dropping condition can be

applied to show fI(T
kz(â)
â ) < �(N � â)�f jB

kz(â)
â j and fI(T

b̂
kz(M)+1

) < �(N � â)�f jB
b̂
kz(M)+1

j and fI(T
k(i+1)

ki+1
)
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< �(N � â)�f jB
k(i+1)

ki+1
j for all z(â) � i � z(M) � 1. The assertion follows from plugging the inequalities into

equation (4). �

5 The FP-stream Data Structure

A logarithmic tilted-time window table is used to maintain history information for a single itemset. But, our

stream of transactions contains information about a potentially large number of itemsets. An e�cient method

of storing a large collection of itemsets and their tilted-time window tables is needed.

We propose that the collection be represented using a tree structure.5 As an example, Figure 1 depicts

the representation of a collection of itemsets with a single associated frequency (support). Each node in the

tree represents a itemset (from root to node). The frequency is recorded at each node.

Pattern Tree

a: 100

b: 78

c:63

c:75

frequent pattern support
a 100

b 92

c 80

ab 78

ac 75

bc 70

abc 63

Frequent Patterns

b: 92

c:70

c:80

Fig. 1 An itemset tree

Since we are interested in storing tilted-time window tables with itemsets, the structure in Figure 1 is

extended. A tilted-time window table is embedded at each node. Figure 2 depicts an example of an itemset

tree with tilted-time window tables embedded. This structure along with a global partition table is called an

FP-stream.

5.1 Exploiting Anti-Monotonicity

When a new time unit �N arrives, the FP-stream is updated. We saw earlier how tilted-time window tables are

updated independently. N�aively we could update a collection of itemsets by applying the algorithm separately

for each itemset. However, anti-monotonicity of frequency can be exploited to increasing pruning. For example,

given itemsets I 0 ( I , if I 0 can be removed from the FP-stream and preserve the frequency error guarantees,

5 A similar approach was taken to represent a collection of itemsets in [28].
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...

tilt window support
t3 75

t2 63

t1 32

t0 29

Tilted-time Window Table

a

b

c

c

d

ac

Pattern Tree

Fig. 2 itemset tree with tilted-time window tables embedded

then so can I . The following example demonstrates, however, that the update algorithm applied independently

for each itemset does not capture such anti-monotonicity pruning (I 0 will be dropped but I will remain in the

tree).

Example 3 Let u = 1, max1 = 2, and � = 1. Assume seven batches (all of size B) have arrived (B0 is the

oldest). The frequencies for itemsets I 0 ( I are listed below.

B0 B1 B2 B3 B4 B5 B6

I 0 2�fB 0 0 �fB 0 0 0

I �fB 0 0 �fB 0 0 0

After the �rst three batches, the tilted-table of I 0 is 0; 2�fB with last batch entry jB1
0 j. The table for I is

empty as all of its entries are dropped after the third batch. After the sixth batch the tilted-table of I 0 is 0, 0;

�fB, 2�fB (last batch entry jB1
0 j). The table for I 0 is 0, 0; �fB (last batch entry jB3

3 j).

After the seventh batch is inserted (but before dropping) the table for I 0 is 0; 0; 3�fB (jB3
0 j) and the table

for I is 0; 0; �fB (jB3
3 j). Since the last batch for I is of size B, then no entries from I are dropped. However,

the last batch for I 0 is of size 4B, hence all entries in I 0 are dropped.

Note that, after the seventh batch, the last entry in the table for I can be safely dropped (i.e. ensure that

guarantee 3 holds) if fI(T
3
0 ) < �f jB

3
0 j. However, there is not enough information in the table for I to carry out

this comparison, namely, fI(T
2
0 ) is not know due to an earlier dropping. Hence, the algorithm must assume

that fI(T
2
0 ) is as large as possible: �f jB

2
0 j; as a result, the last entry is dropped only if fI(T

3
3 ) < �f jB

3
3 j (which

does not hold).

Information about I can be inferred from anti-monotonicity, because I 0 ( I . Since the last entry in

the table of I 0 was dropped after the seventh batch, we know fI0(T
3
0 ) < �f jB

3
0 j. Thus, fI0(T

2
0 ) < �f jB

2
0 j

+(�f jB
3
3 j�fI0(T

3
3 )). By anti-monotonicity, fI(T

2
0 ) < �f jB

2
0 j+(�f jB

3
3 j�fI(T

3
3 )):We know that fI(T

3
3 ) = �f jB

3
3 j,
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so fI(T
2
0 ) < �f jB

2
0 j. Therefore the algorithm's assumption can be improved and, as a result, the last window

of I can be safely dropped.

Modi�ed dropping condition: The dropping condition can be modi�ed to exploit anti-monotonicity.6

Let fI(T
bm
am

); : : : ; fI(T
b0
a0
) denote the time windows in the table for itemset I after batch BN has been inserted

but no dropping has been carried out. If jI j = 1 use the same dropping condition as before. Assume jI j > 1.

First, consider the set of all I 0 ( I such that, after inserting BN into the table of I 0 then dropping, it has

m0 + 1 < m+ 1 entries. For one such I 0 drop tail fI(T
b(m�m0

�1)
a(m�m0

�1)
); : : : ; fI(T

b0
a0
); if no such I 0 exists nothing is

dropped (i.e. m0 = m).7 Second, �nd the largest m � k � m�m0 such that the dropping condition in Section

4.3 applies, drop tail fI(T
bk
ak
); : : : ; fI(T

b(m�m0)
a(m�m0)

).

Consider Example 3. I 0 is dropped after the seventh batch (has zero entries in its table). Thus all the

entries from the table of I can be dropped.

Theorem 5 Suppose that a global partition structure and a corresponding tilted-time window table are main-

tained using the modi�ed dropping condition above. Assume that N time units have passed. If the modi�ed

dropping condition is used, then for any T b
a , we have fI(T

b̂
â) � f̂I(T

b̂
â) > fI(T

b̂
â)� �(N � â)�f jB

b̂
âj.

Proof: By induction on jI j. The base case of jI j = 1 follows from Theorem 4. Now assume jI j � 2.

As done in the proof of Theorem 4 we model the behavior of the algorithm with pairs (kp; dp); : : : ;

k1. As seen in that proof, it su�ces to show that fI(T
Mn
â ) < �(N � â)�f jB

Mn
â j where Mn = minfkp; b̂g.

Assume â and Mn fall in the same region as determined by kp; : : : ; k0 (i.e. there exists p � h � 1, such that

k(h�1) + 1 � â;Mn � kh). Then Mn = b̂. â falls on the right end of a time window at time dh and b̂ falls on

the left end. Let T b̂
i`
, T i`�1

i(`�1)
, : : :, T i2�1

i1
where â = i1 denote the time windows between â and b̂ at time dh. If

none of the fI(T )
0s above are dropped due to some I 0 ( I , then the proof of Theorem 4 applies unchanged

to show the desired result. Assume fI(T
i(`�m0

�1)�1

i(`�m0
�2)

); : : : ; fI(T
i2�1
i1

) are dropped (at dh) due to some I 0.

By induction (at time unit dh), f̂I0(T
i(`�m0

�1)�1

i1
) > fI0(T

i(`�m0
�1)�1

i1
) � �(dh � i1)jB

i(`�m0
�1)�1

i1
j. Clearly,

f̂I0(T
i(`�m0

�1)�1

i1
) = 0. Hence, by anti-monotonicity

�(N � i1)jB
i(`�m0

�1)�1

i1
j > fI(T

i(`�m0
�1)�1

i1
): (5)

6 The dropping condition becomes recursively de�ned.
7 Later we will describe how such an I 0 (if exists) is chosen. However, we show next that any choice of I 0 preserves

the frequency error guarantees.
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The remaining fI(T
b̂
i`
), : : :, fI(T

i(`�m0)�1

(`�m0�1) ) are dropped because of the old dropping conditions. Hence

an analogous argument to that given in the proof of Theorem 4 shows �(dh � i(`�m0) + 1)�f jB
b̂
i(`�m0

�1)
j >

fI(T
b̂
i(`�m0

�1)
):

By monotonicity of �, the inequality in the previous paragraph, and inequality (5) we get �(N � â)�f jB
b̂
âj

> fI(T
b̂
â) as desired.

The case where â and Mn do not fall in the same region is analogous. �

Theorem 5 allows any I 0 ( I to be used to drop part of the table for I . Ideally, we would like to choose an

I 0 which results in the most dropping. Doing so will require checking all subsets of I (of size one less). This

complicates the procedure for updating an FP-stream. To simplify matters we consider only the immediate

pre�x of I (with respect to an ordering of the items).

Let � be a total linear ordering on I (items). A unique total linear ordering is induced on the collection of

subsets, namely, lexicographic order. Given an itemset I = fa1; : : : ; aqg where aj � ai if j < i, the immediate

pre�x of I is fa1; : : : ; aq�1g. A proper pre�x of I is any I 0 = fa1; : : : ; apg where 1 � p < q (I is a proper

post�x of I 0).

When applying the modi�ed dropping condition to an itemset I we only consider its immediate pre�x. The

process of dropping parts of tilted-time window tables according to the modi�ed dropping condition (using

only immediate pre�xes) is called tail pruning.

The next Lemma shows some facts that are useful for additional pruning and for scanning the FP-stream

to produce answers to queries.

Lemma 2 Let I 0 be a proper pre�x of I. Assume batch BN has been processed using tail pruning.

1. If I 0 is not is the FP-stream, then neither is I.

2. Assume I 0 is in the FP-stream. Let F1; : : : ; Fq0 be the frequencies for the time windows of the table for

I 0 (F1 is the newest) and F̂1; : : : ; F̂q be the frequencies in the table for I. It is the case that: q0 � q and

Fj � F̂j for all 1 � j � q.

Proof: Part 1 is proven by induction on N . In the base case, N = 0, any itemset J is in the FP-stream, if

and only if fJ(T0) � �f jB0j. Assume I 0 is not in. Since I 0 ( I , then it follows that fI(T0) < �f jB0j. Hence, I

must not be in the FP-stream.
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In the induction case, N > 0, assume I 0 is not in the FP-stream after the N th batch. If I 0 was not in after

the (N � 1)st batch, then, by induction, neither was I . Hence a similar argument as in the base case shows

that I cannot be in after the N th batch.

Assume I 0 was in the FP-stream after the (N � 1)st batch. Since I 0 was not in after the N th batch, it

must have been dropped while the batch was being processed. Since I 0 is a proper pre�x of I , then there

exists I1; : : : ; Ip where I1 = I 0, Ip = I and Ij is the immediate pre�x of Ij+1 for 1 � j < p. By the dropping

condition it follows that I1; : : : ; Ip were all dropped while batch N was being processed.

Consider part 2. Since I 0 is a proper pre�x of I , then there exists I1; : : : ; Ip as described in the previous

paragraph. By the dropping condition, the table for Ij has more windows than the table for Ij+1 1 � j < p.

Thus I 0 has more windows than I (q0 � q). By Theorem 3 frequencies F1; : : : ; Fq�1 and F̂1; : : : ; ^Fq�1 match the

frequencies of I 0 and I (respectively) over the �rst q�1 entries in the partition structure. These frequencies are

over the same batches of transactions. Thus, anti-monotonicity applies to show Fj � F̂j for all 1 � j � q � 1.

Let WI denote the collection of transactions corresponding to the last batch entry for I (i.e. Fq is fI(WI )).

Let WI0 denote the collection of transactions corresponding to the last batch entry for I 0. It can be seen that

WI �WI0 . Hence, by anti-monotonicity, Fq = fI0(WI0) � fI(WI ) = F̂q . �

Processing the N th batch consists of two steps.

1) Scan all the itemsets that appear in BN (in lexicographic order). For each itemset, I , do the following.

If I is in the FP-stream, update the table with fI(BN ). Apply the tail pruning and drop from I 0s table as

appropriate. If all of I 0s table is dropped, then drop all its post�xes. We call this type of pruning Type I

pruning and its correctness follows from Lemma 2 part 1.

If I is not in the FP-stream and fI(TN ) � �f jBN j, then insert I (with table fI(TN )). Otherwise (fI(TN ) <

�f jBN j), stop scanning all post�xes of I in BN . We call this type of pruning Type II pruning and its correctness

follows from Lemma 2 part 1.

2) Scan the itemsets in the FP-stream in lexicographic order (equivalent to performing a depth-�rst search

of the itemset tree). For each itemset I , apply tail pruning. If I is completely dropped from the tree, then

drop all post�xes too (Type I pruning). �

In the next section, the algorithm is spelled out in detail. The lexicographic scan of the itemsets that

appear in BN is carried out by �rst creating an FP-tree ([21]), then performing a depth-�rst search.
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6 FP-stream Updating Algorithm and Query Answering

6.1 FP-stream Update

The algorithm treats the �rst batch di�erently from the rest as an initialization step. Scan B0 and compute

the frequency for each item and build an FP-tree. Create ordering � as follows. Let �1; : : : ; �m be the items

that appear in B0; assume i � j if f�i(B0) � f�j (B0) (break ties arbitrarily). De�ne �i � �j if i < j. For the

items, �, not appearing in B0, de�ne an arbitrary ordering so long as �m � �. This ordering remains �xed for

all remaining batches. Finally, an FP-stream structure is created by mining all �f -frequent itemsets from the

FP-tree. The batch in memory and transaction FP-tree are discarded.

All the remaining batches Bi, for i � 1, are processed according to the algorithm below.

Time-stamping To facilitate the insertion of zeros into tilted-time window tables, each table in the

FP-stream has an associated time-stamp. When the table is created the time-stamp is set to the current time

unit. When an insertion is made, the time stamp is reset to the current time unit. The use of time-stamps

will become clear is the algorithm description.

Algorithm 1 Incremental update of the FP-stream structure with incoming stream data

Input: (1) An FP-stream structure, (2) a min support threshold, �, (3) a frequency error rate, �f , (4) an

incoming batch, Bi, of transactions, (5) an item ordering �, and (6) an age function �.

Output: The updated FP-stream structure.

Method:

1. Initialize the FP-tree to empty.

2. Scan Bi sorting each transaction according to � then insert the transaction into the FP-tree(set the

time-stamp to i).

3. Update the FP-stream as follows.

(a) [Step 1] Mine itemsets out of the FP-tree using the FP-growth algorithm in [21] modi�ed as follows

(i.e. perform a depth-�rst search of the FP-tree).

For each itemset I visited during the FP-growth algorithm, if I is not in the FP-stream do the following.

i. If fI(B) � �f jBj, insert I into the FP-stream (set the time-stamp to i).

ii. Otherwise, FP-growth stops mining post�xes of I in the FP-tree (Type I pruning).

If I is in the FP-stream, do the following.
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i. Let j be the time-stamp for I . Insert i�1�j zeros into the tilted-time window table for I according

to the algorithm in Section 4.2 (updates the table with missing zeros). Add fI(B) to the tilted-time

window table and set the time-stamp to i.

ii. Apply tail pruning to drop windows from I 0s table (using the modi�ed dropping condition of

Section 5.1).

iii. If I 0s table becomes empty, drop I and all its post�xes from the FP-stream (Type II Pruning).

FP-growth stops mining post�xes of I in the FP-tree (Type I Pruning).

iv. If I 0s table is not empty, then FP-growth continues mining post�xes of I in the FP-tree.

(b) [Step 2] Scan the FP-stream structure (depth-�rst search). For each itemset I encountered, let j be

its time-stamp and do the following.

i. If j < i (I was not updated when Bi was mined), then insert i � 1 � j zeros into I 0s table. Set

I 0s time-stamp to i. Apply tail pruning to I 0s table. If all of I 0s windows are dropped then drop

I and all its post�xes from the FP-stream (Type II pruning). The scan immediately backtracks to

I 0 the pre�x of I in the FP-stream. Since I 0 has already been scanned (and not dropped), continue

the search with the new leftmost child of I 0 (the nearest post�x to I 0 in the FP-stream).

ii. If j = i (I was updated when Bi was mined), then continue to scan the FP-stream with the leftmost

child of I (i.e. the nearest post�x of I in the FP-stream).

6.2 Query Answering

When the user issues a query requesting itemsets frequent over T b
a at N , we �rst compute â and b̂ (Section

4). Next the FP-stream is scanned and all itemsets, I , found such that f̂I(T
b̂
â) � �(N � â)(� � �f )jB

b̂
âj are

returned (along with f̂I(T
b̂
â)).

If granularity constants max1; : : : ;maxu are set according to Theorem 1, then guarantee 1 from Section

2.3 will be met. Theorem 5 shows that guarantee 3 holds. Note that for any itemset, I , if I is ��frequent

at time unit �N , then guarantee shows that f̂I(T
b̂
â) > �(N � â)(� � �f )jB

b̂
âj. Hence I will be included in the

output, so guarantee 2 holds.

A straight-forward, depth-�rst scan of the FP-stream is used to extract the itemsets which form the result.

Lemma 2 part 2 shows that anti-monotonicity pruning can be used: when an itemset I 0 is found to not be

included in the result, none of its post�xes are considered.
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7 Experimental Set-up and Data Used

In this section, we describe the data and experiment set-up used to study the behavior of our algorithm. Our

goal is to measure the time and space usage of the maintenance algorithm from Section 6. We do not examine

query answering. This is left to future work.

7.1 Synthetic Data

The stream data was generated by the IBM synthetic market-basket data generator

www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html/#assocSynData

In all the experiments, transactions were generated using 1K distinct items at 10 items per transaction on

average. The default values for all other parameters of the synthetic data generator were used (i.e., number

of patterns 10000, average length of the maximal pattern 4, correlation coe�cient between patterns 0.25, and

average con�dence in a rule 0.75).

The underlying statistical model used to generate the transactions does not change as the stream pro-

gresses. We feel that this does not re
ect reality well. In reality, seasonal variations may cause the underlying

model (or parameters of it) to shift in time. A simple-minded way to capture some of this shifting e�ect

is to periodically, randomly permute some item names. To do this, we use an item mapping table, M . The

table initially maps all item names to themselves (i.e. M(i) = i). However, every �ve batches, 100 random

permutations are applied to the table8.

7.2 Real Data

We used the KDD Cup 2000 \BMS-POS" dataset [33]. It consists of point-of-sales data from an electronics

retailer. Items are product categories and each transaction represents all of the product categories purchased

by a customer at one time. This dataset contains 515,597 transactions, 1,657 di�erent items, and average of

6.5 items per transaction, and a maximum of 164 items per transaction.

8 A random permutation of table entries i and j means that M(i) is swapped with M(j). When each transaction

fi1; : : : ; ikg is read from input, before it is processed, it is transformed to fM(i1); : : : ;M(ik)g.
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7.3 Experimental Set-up

To simplify matters we assume all batches are of the same size: 10K transactions. We recorded the time to

process each batch, the space occupied by the FP-stream and the number of itemsets maintained after each

batch was processed. Our algorithm was implemented in Visual Studio C++ 6.0 with the default compiler

settings and debug building model. All experiments were run on a PC with 1GB of RAM, 2.5GB of virtual

memory, an Intel Pentium 4, 1.5GHz CPU, under Windows XP professional with no other users active.

Since the algorithm has many parameters, conducting an exhaustive array of experiments is very di�cult.

Instead, we have focused on three parameters and �xed the rest: �f , the aging function, and the granularity

constants. We used an aging function of the following form

�(x) =

8>><
>>:

1 if x = 0

x� if x = 1; 2; 3; : : :

where � is a non-negative real number. Note, when � = 0, � = 1 (no aging is applied). This aging function

is very similar to the polynomial decay studied in [10].9 We vary � in our experiments. For the granularity

constants, we use u = 1 and max1 6=1. In other words, the tilted time window tables (and global partition

structure) contains an unbounded number of levels, each with a maximum of max1 windows and minimum

of max1 � 1 (see Section 3.1 for more details). We vary max1 in our experiments. Finally, we vary �f in our

experiments. Since � does not play a role in the construction and maintenance of the FP-stream (only in query

answering), it is not considered in our experiments. We leave the examination of query answering as future

work.

7.4 Goals

The goal of our experiments is to examine the time and space behavior of our algorithm over a variety of

parameter settings. More speci�cally our goals are to determine the following: the e�ective processing rate,

the existence of a time and space usage upper-bound, and the time and space sensitivity to �f ; �;max1.

The e�ective processing rate of a batch refers to size of the batch (in our case 10000) divided by the time

required to process the batch. Since the purpose of our algorithm is to process an unbounded data stream,

9 In [10] the frequencies are multiplied by the reciprocal of � while we multiply the number of transactions by �.

The overall e�ect is the same.
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it is essential that the algorithm not fall behind the stream (i.e. complete processing a batch before the

next arrives). As such the e�ective processing rate of the stream can be measured as the maximum e�ective

processing rate over all batches (excluding unusual outliers).

The time and space usage upper-bound refers to an upper-bound on the time and space used by the

algorithm over an unbounded number of batches (if such a bound exists). Again, since our purpose is to

process an unbounded stream, we cannot allow unbounded time and space consumption. Finally, the time

and space sensitivity to �f ; �;max1 refers to the e�ect of varying each of these parameters on the time and

space usage of our algorithm.

8 Experimental Results

Figure 3 describes the presentation of our experimental results.

Parameters Data set Figure

�f = 0:001; 0:00075; 0:0005 Synthetic 4

� = 0:1; max1 = 7

�f = 0:0015; 0:002 KDD Cup (Real) 5

� = 0:1; max1 = 7

�f = 0:0025; 0:003 KDD Cup (Real) 6

� = 0:1; max1 = 7

� = 0:05; 0:1; 0:2 Synthetic 7

� = 0:00075; max1 = 7

� = 0:05; 0:1; 0:2 KDD Cup (Real) 8

�f = 0:0025; max1 = 7

max1 = 2; 7; 12 Synthetic 9

�f = 0:00075; � = 0:1;

max1 = 2; 7; 12 KDD Cup (Real) 10

�f = 0:0025; � = 0:1

Fig. 3 Experimental results

All �gures depict the status of the FP-stream after each batch of transactions is processed (the x-axis

is labeled by batch number). For �gures with three graphs, the top shows time, the middle space, and the
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bottom the number of itemsets in the FP-stream. For �gures with two graphs, the top shows time and the

bottom space.

8.1 Varying �f
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Fig. 4 Synthetic data; � = 0:1; max1 = 7

Figure 4 depicts the behavior of the algorithm on synthetic data with �f varying. We see the time and

space usage are bounded above and relatively stable. As expected, the time and space usage increase as �f

decreases. Even for �f = 0:0005, the maximum batch processing time is relatively modest: 10 seconds. The

e�ective processing rate is approximately 1000 transactions per second (maintaining approximately 300000

itemsets in the FP-stream). For �f = 0:00075 the e�ective processing rate is approximately 2500 transactions

per second (maintaining approximately 110000 itemsets).
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Fig. 5 KDD Cup data; � = 0:1, max1 = 7

Figures 5, 6 depict the behavior on the KDD Cup real data set with �f varying. The overall trends

demonstrate that the time and space usage is bounded above. The space usage is quite stable, but the time

usage is spiky.

Except for the large initial time spike, each batch is processed in at most 50 seconds for �f = 0:0015 (while

maintaining 1 million itemsets); this amounts to an e�ective processing rate of 200 transactions per second.10

Recall that �f is the error bound for itemset frequencies. We can guarantee that the frequency returned

from the FP-stream for all itemsets over all time intervals is within (age)100�f percent of the true frequency

where \age" is the weight as determined by the aging function relative to the start of the time interval (the

weight of all intervals starting at the current time is one and the weight increases monotonically with starting

10 We also tried �f = 0:001, but the algorithm was unable to complete. This is probably due to the vast number of

itemsets maintained.
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Fig. 6 KDD Cup data; � = 0:1, max1 = 7

time). So for �f = 0:0005 as seen in �gure 4, 0:005�frequent itemsets (over arbitrary intervals) can be returned

with an error of (age)10 percent.

Interestingly, the space behavior on synthetic data seems to be more erratic than on real data. However,

the time behavior for synthetic data seems less erratic.

8.2 Varying �

Figure 7 depicts the time and space behavior on synthetic data with � varying (the aging function). Since the

number of itemsets demonstrates a similar behavior to space, we only present space. The space and time usage

appears to be bounded from above (although jagged). As � increases, the age weighting increases, hence, more

dropping will occur. As expected, the space usage decreases with increasing �. The time behavior appears

more jagged than the previous synthetic data �gures, however, this is in large part due to the di�erence in

scales on the y-axes. Not surprising, the time usage also decreases with increasing �.
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Fig. 7 Synthetic data; �f = 0:00075; max1 = 7

Figure 8 depicts the time and space behavior with on the KDD Cup real data. Like earlier KDD Cup

graphs, the time behavior is quite spiky with a very large initial spike. However, if one removes the two

spikes at batches 43 and 47, the time and space usage does not appear to grow in an unbounded fashion. As

expected, the space usage decreases with increasing � (due to more dropping). The time usage also exhibits

this behavior but the decrease is very slight.

8.3 Varying max1

Figure 9 depicts the time and space behavior on synthetic data with max1 varying (the length of the tilted-

time-window tables). Since the number of itemsets demonstrates a similar behavior to space, we only present

space. The space and time usage appears to be bounded from above (although jagged). As max1 increases,

the number of entries in the tilted-time-window tables at each granularity level also increases. Therefore, the

FP-stream maintains frequency information at �ner temporal granularities; a smaller temporal error can be
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Fig. 8 KDD Cup data; �f = 0:0025, max1 = 7

guaranteed. As expected, the space usage increases with increasing max1. Not surprising, the time usage does

too.

Figure 10 depicts the time and space behavior on the KDD Cup real data. As seen earlier, the time is

quite spiky with a very large initial spike. But, the time and space usage does not appear to grow in an

unbounded fashion (if the spikes at batches 43 and 47 are removed). As expected, the space usage decreases

with decreasing max1. The time usage also exhibits this behavior but the decrease is very small.

9 Previous FP-stream Work

We introduced the FP-stream data structure in [18]. However, we did not develop its maintenance and query

answering in detail. In doing so, several issues emerged that required changes in the design. In addition we

generalize the work of [18] in several ways.
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Age weights and granularity constants: We generalize by including an age weighting in the dropping

condition. Hence older windows can be dropped more quickly if desired. Also, we generalize the de�nition of

tilted-time window tables by including granularity constants (the user can specify the maximum number of

windows that can appear at each granularity level). [18] deals only with tables allowing at most two windows

per granularity level.

Synchronized tilted-time table updates: A global partition structure was not kept in [18]. Updating

of tables for each itemset was not synchronized i.e. the ith entry in each table did not correspond to the

frequency over the same time window. As a result, choosing the approximate time endpoints (e.g. â; b̂) is

di�cult. Synchronizing the updates with a global partition structure allows these endpoints to be computed

easily.

Temporal error: By creating a global partition structure and synchronizing tilted-time window tables,

we allow the temporal error of our answers to user's queries to be quanti�ed. No such temporal error was

discussed in [18].
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Fig. 10 KDD Cup data; �f = 0:0025; � = 0:1

Dropping condition: The dropping condition from [18] have been changed. There a tail fI(T
bm
am

); : : : ;

fI(T
bk
ak
); : : : ; fI(T

b0
a0
) is dropped if for all k � i � 0, fI(T

bi
ai
) < �jBbi

ai
j and

Pm

j=i fI(T
bj
aj ) < �f

Pm

j=i jB
bj
aj j.

The guarantee provided in [18] is that, for arbitrary queries: if fI(T
b̂
â) � �jBb̂

âj, then f̂I(T
b̂
â) � (���f )jB

b̂
âj.

In other words, ��frequent itemsets are not missed. However, the next example shows that this guarantee

does not hold for the general class of tilted-time window tables we consider (with granularity constants). Since

we do not wish to miss ��frequent itemsets, we modify the dropping condition of [18] to our more general

setting.

Example 4 Let the granularity constant list be max1 = 300. Let �f = 0:1�. Assume 301 batches have arrived

all of size B with frequencies (oldest to most recent): �B; 0:9�B; 1:1�B; 0; : : : ; 0.

After the �rst 300 batches, using the dropping condition of [18] above, the table will be: 0; : : : ; 0; 1:1�B;

0:9�B; �B: Nothing will be dropped because the oldest window is not less than �B.
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Upon the arrival of the next batch but before dropping the table is: 0; : : : ; 0; 1:1�B; 1:9�B: Notice that

the last two batches have been merged to form a batch at the next granularity. Since 1:9�B < 2�B and

3�B < 301�fB = 3:1�B, then the last window is dropped.

Now consider a query over the last three batches (last two windows) fI(T
2
0 ). We have fI(T

2
0 ) = 3�B, so, if

the guarantee of [18] is to hold, then f̂I(T
2
0 ) > 3(��epsilonf)B = 2:7�B. Since the last window was dropped,

f̂I(T
2
0 ) = fI(T

2
2 ) = 1:1�B. Therefore the guarantee does not hold.

10 Conclusions

10.1 Summary

We addressed the problem of mining frequent itemsets in a data stream environment. We developed a data

structure (FP-stream) allowing queries requesting itemsets frequent over arbitrary time intervals to be ad-

dressed. The answer returned is guaranteed to satisfy user-de�ned temporal and frequency errors. We devel-

oped an algorithm for maintaining an FP-stream and demonstrate its performance with experiments over a

variety of parameter settings.

Our approach di�ers from previous ones most importantly in that we allow mining of itemsets over many

time intervals rather than only over the entire stream. As a result our approach can discover patterns that

previous approaches cannot.

10.2 Immediate Future Work

One of the primary directions for immediate future work is based on the following intuition. If the user does

not need queries over arbitrary time intervals, rather, a more restricted class, then more can be dropped from

the FP-stream. The dropping conditions could be made weaker to support a more restricted class of queries.

For example, if the user were only interested in sliding window queries (queries over intervals starting at the

current time to some arbitrary point in the past), the dropping conditions could be made weaker. We are

currently developing a weaker dropping condition in the sliding window query case.

To conclude the paper, we touch on some broader issues.11

11 The next subsection is a paraphrasing of the last subsection in our earlier paper [18].
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10.3 Broader Stream Mining Issues

Dong et al. [16] argue that \online mining of the changes in data streams is one of the core issues" in data

mining streams and that the previous work has not adequately addressed this issue. Dong et al. present

three types of research problems: modeling and representation of changes, mining methods, and interactive

exploration of changes.

Modeling and representation of changes means the development of query languages for specifying mining

queries on changes in streams and the development of techniques of representing and summarizing the mined

changes. Mining methods means the development of e�cient algorithms for evaluating speci�c change mining

queries. Finally, interactive exploration of changes means the development of techniques for supporting a

user's evaluation of changes. For example, initially a user may want to examine changes at a high level, then

more closely study the details of interesting high-level changes.

We envision the FP-stream model as a foundation upon which frequent itemset change mining queries

can be answered. For example, the change in frequency of itemsets across time intervals can be computed.

Moreover, the user can �rst examine the frequent itemsets at a low granularity (less details), then drill-down

to examine the frequent itemsets at higher granularities (more details).

Acknowledgments We thank Xifeng Yan, Phillip Yu, and Jian Pei for their help in the development of

an early manifestation of our ideas [18].
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