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Abstract. We consider the problem of how best to combine optimiza-
tions in imperative compilers. It is known that combined optimizations
(or \super-analyses") can be strictly better than iterating separate im-
provement passes. We propose an explanation of why this is so by draw-
ing connections between program analysis and the algebraic and coal-
gebraic views of programs and processes. We argue that \optimistic"
analyses decide coinductively-de�ned relations and are based on bisim-
ilarity. We relate combining program improvements to the problem of
deciding combinations of theories. Iterating program improvements is
similar to the Nelson-Oppen method of deciding combined theories: in
Nelson-Oppen decision procedures communicate equalities, and iterated
improvement passes implicitly communicate equalities via term replace-
ments. To decide combined theories of bisimilarity, some \co-Nelson-
Oppen" procedure is needed that propagates inequalities amongst deci-
sion procedures. Hence, iterating optimistic analyses fails to be e�ective
because inequalities cannot be communicated by semantics-preserving
rewrites. Superanalysis is conjectured to overcome this failing by behav-
ing like a \co-Nelson-Oppen" decision procedure.

1 Introduction

The literature on compiler optimizations is vast, but comparatively little of it ad-
dresses the problem of how to e�ectively combine optimizations. A key problem
is that no one sequence of improvement passes works well for all programs: the
phase ordering problem. It is known that in the presence of loops and recursion,
simultaneous improvements can be strictly better than iterating improvement
passes. Although examples have been reported, there is no explanation of why
this is so. Three important open questions are: (1) Why should combined im-
provements be better than separate, iterated improvement passes? (2) Which
improvements are more e�ective if combined? (3) Are there e�ective methods to
automatically combine analyses without manually specifying their interaction?
The answers to these questions impact the structure of optimizing compilers in
a fundamental way.

We investigate these questions by relating two 
avours of imperative pro-
gram improvement often called pessimism and optimism (e.g. [WZ91,CC95])
to ideas from algebra and coalgebra. We consider a restricted subset of pro-
gram improvements that �t the following model: the improvement decides some
relation (for example, def-use, congruence, must-alias) and then transforms the



program based on this relation. Within this model we contend that the following
correspondences hold:

Pessimistic Optimistic

Improvement Improvement

Intermediate results are sound unsound
Relations are de�ned inductively coinductively
Guiding notion of equivalence congruence bisimilarity
Improvement corresponds to proofs

of equivalence by rewrite proofs coinduction
E�ective method of iterating improvement \superanalysis"
combining improvements passes
Underlying theme is algebraic coalgebraic
We use these correspondences to draw connections between combining improve-
ments and the theorem-proving literature on deciding combinations of theories.
This leads to useful insights on why and when improvements should be combined.

Organization. We start by reviewing phase ordering problems in compilers
(Section 1.1), combined improvements (Section 1.2), and pessimistic and opti-
mistic analyses (Section 2). We use the example of unreachable code elimination
(Section 2.1) to show how optimism and pessimism relate to induction and coin-
duction (Section 2.2). In Section 2.3 we compare congruence and bisimulation,
and in Section 2.4 we discuss how these relate to the problem of removing redun-
dant computations. The second half of our paper draws connections between
program improvement and theorem proving. In Section 3.1, we describe a corre-
spondence between iterating program improvements and the Nelson-Oppen pro-
cedure for deciding combined theories. In Section 3.2 we argue that optimistic
improvers decide coinductively-de�ned equivalences. In Section 3.3, we argue
that a coinductive version of Nelson-Oppen is required to decide combinations
of theories of bisimilarity, and this o�ers an explanation of why superanalysis is
strictly better than iterating improvements.

1.1 Phase ordering problems

Suppose we have improvement passes A and B, and for a speci�c example we
take A to be unreachable code elimination and B to be constant propagation.
We assume A;B : Program! Program, so we can sequence these improvements
either as A Æ B or B Æ A. These two compositions are generally not equal. For
example, both the programs of Figure 1 are equivalent to \return 1." For the
�rst program, we'd like to do unreachable (or dead) code elimination �rst (to
remove the if), then constant propagation. For the second program, we'd like to
do constant propagation �rst (to propagate y = false) followed by unreachable
code elimination. In general for a program p, (B Æ A)(p) 6= (A Æ B)(p), which
creates the so-called phase ordering problem. A common solution is to iterate
the passes until a �xpoint is reached (e.g. [Muc00]). We'll call this approach
iterating improvement passes.



Program 1

x 1
if false then

x 2
return x

Program 2

y false
if y then

return 2
return 1

Fig. 1: Two programs to illustrate a phase-ordering problem.

1.2 Combining improvements

Surprisingly, iterating improvement passes is not always the optimal solution.
Wegman and Zadeck [WZ91] describe a combination of unreachable code elimi-
nation with constant propagation called conditional constant propagation (CCP).
CCP achieves results strictly better than iterating the two passes separately.
Consider the program code:

x 0
loop : if x = 0 then

return x

else

x 1
goto loop

Neither unreachable code nor constant propagation (in their usual versions) can
improve this code: unreachable code cannot eliminate the if branch because the
value of x = 0 is not decided, and constant propagation cannot decide x = 0
at the branch because both the assignments x  0 and x  1 might reach
the use of x. However, CCP is able to transform this program to \return 0" be-
cause it performs both analyses simultaneously using what are called optimistic

assumptions.

The observation that combined analyses can be stronger than separate anal-
yses goes back to early work of Cousot and Cousot [CC77,CC79] who considered
combined abstract interpretation domains and showed that \automatic combi-
nation" of domains would not yield optimal results, and introduced the idea of
a \reduced product." More recent work on combining abstract interpretations
can be found in [CMB+93,CCH94]. In the imperative world, Click and Cooper
[CC95] took CCP as inspiration and developed a general approach to combining
analyses. In their approach, one formulates each analysis as a system of lat-
tice equations, and encodes interactions between them using special terms. The
equations are then solved simultaneously using a global \optimistic" assumption.
Click also demonstrated an eÆcient combined analysis for unreachable code, con-
stant propagation and global value numbering. See [CDG96,PH99,LGC02] for
recent developments in combining imperative program analyses.



2 Pessimism and Optimism

In this section we compare two 
avours of program analysis known as pessimism

and optimism in the imperative compilers literature. We prefer these terms to
least and greatest �xpoints since optimism generally refers to least �xpoints in
abstract interpretation, and greatest �xpoints in the imperative compilers lit-
erature. In a pessimistic analysis, intermediate results are semantics-preserving.
An optimistic analysis assumes that a program may be transformed maximally;
intermediate results are not sound.

We start by noting that there are two major approaches to program improve-
ment: the �rst is term rewriting (see e.g. [Vis01]), in which we apply semantics-
preserving rules such as:

if true then a else b 7! a

if false then a else b 7! b

Rewrite systems are an example of the pessimistic approach, in the sense that a
term is transformed via a sequence of semantics-preserving steps.

The second, more common approach is to perform a program analysis fol-
lowed by a transformation. Analyses are usually lattice-based, and are usually
abstract interpretations [CC77,JN95] in the functional community, and data
ow
analyses (or more generally, monotone analysis frameworks e.g. [KU77]) in the
imperative community.

2.1 Unreachable code elimination

To illustrate the di�erence between pessimism and optimism we consider the
problem of unreachable code elimination, that is, removing code that is unreach-
able in any execution of a program. We review two well-known approaches, one
pessimistic and one optimistic. For the purposes of unreachable code elimina-
tion a program may be modelled as a graph G = (V;E) whose vertices represent
sequential code (basic blocks) and edges model control 
ow; Figure 2 shows an
example. We de�ne a set U0 of unreachable vertices by x 2 U0 if and only if ver-
tex x is unreachable in any execution. Obviously U0 is undecidable in general;
instead we decide a conservative approximation U � U0, and delete all program
points x 2 U found by our analysis to be unreachable.

We assume a distinguished start node Start 2 V , and we de�ne pred(x) and
succ(x) to be the predecessors and successors of x (i.e. pred(x) = fy j (y; x) 2
Eg). We write U = V n U for the complement: the set of reachable vertices.
How we handle if branches is not relevant to this example; we can put in both
possibilities, and optionally handle if true : : : and if false : : : with a single edge.

Here are two approaches to de�ning the set U , the �rst pessimistic and the
second optimistic:

1. Initially assume all vertices are reachable i.e. U  ; and U  V , a pessimistic

assumption. To de�ne U we use the rule: A vertex is unreachable if all its



B C D

EAStart

Fig. 2: A simple example for unreachable code elimination. Basic blocks are
represented by vertices. The vertex Start is reachable, as is B; the remaining
vertices are unreachable. Such a graph might result from function calls, with
each vertex viewed as a procedure.

predecessors are unreachable; or, more formally:

` pred(v) � U

` fvg � U

from which we can inductively de�ne the set U of unreachable vertices. In-
termediate results of the analysis are semantics-preserving: we can halt the
analysis at any point, delete the vertices in U and have a correct program.
(We can view this approach as akin to a graph rewrite system that recognizes
single vertices with no incident edges and removes them from the graph.)
Figure 3(a) illustrates this approach for the graph of Figure 2.

2. Initially assume all vertices are unreachable i.e. U  V and U  ;, an
optimistic assumption. We build the set of reachable vertices U from the
rules: (i) Start is reachable; (ii) All successors of a reachable vertex are
reachable; or:

` fStartg � U

` fvg � U

` succ(v) � U

from which we can inductively de�ne the set U of reachable vertices. In-
termediate results are not semantics-preserving, since we start by assuming
we can throw out all the code in the program. Figure 3(b) illustrates this
approach for the graph of Figure 2.

These two approaches are not equivalent, as seen in Figure 3. One might won-
der whether we could strengthen the pessimistic approach to make it equivalent
to the optimistic approach. We could make the pessimistic approach stronger
by adding new rules to handle, for example, pairs of mutually reachable ver-
tices (such as vertices C and D in Figure 2). However, a �nite number of graph
replacement rules that replace �nite-size subgraphs can never remove all un-
reachable vertices: if the rules allow replacement of a subgraph of size at most
k vertices, then a clique of size k + 1 is not removable. If we added a rule of
the form \Any subgraph whose predecessors are unreachable is unreachable,"
this would require a global analysis to implement, which would turn it into an
optimistic, analyze-then-transform approach. If one takes the view that rewrites
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Start
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Fig. 3: Unreachable code analysis for the graph of Figure 2. (a) Results of the
pessimistic approach: all vertices are initially assumed reachable and are moved
into the unreachable set if they have no reachable predecessors. This allows E
and then A to be moved into the set U . (b) The optimistic approach, in which
vertices are initially assumed unreachable; Start is moved into the reachable set,
as are any vertices with reachable predecessors. In the �nal state only Start and
B are in the set U .

are \oriented axioms," then it is known that in the presence of cycles, a �nite
number of axioms cannot capture interesting notions of equivalence (see e.g.
[Sew94,BE00]). This implies that traditional rewriting cannot produce normal
forms of interesting cyclic structures (note, though, that there is a literature on
cyclic rewriting e.g. [AK96,Plu98] although we are unsure how this relates.)

2.2 Induction and Coinduction

We can better understand the di�erence between the pessimistic and optimistic
approaches in terms of inductive and coinductive de�nitions of a set in some
universe X :

{ Informally, to de�ne a set inductively we start with an empty set and add
elements until everything is there that ought to be. That is, we have a func-
tion f : }(X)! }(X) that given some subset of X , gives us a larger subset:
A � f(A). The least �xpoint lfp f is the set de�ned inductively by f .

{ To de�ne a set coinductively, we start with the full set X and remove ele-
ments until everything that ought not to be in the set is gone. That is, we
have a function g : }(X) ! }(X) that given some subset of X , gives us
a smaller subset: g(B) � B. The greatest �xpoint gfp g is the set de�ned
coinductively by g. (There are various notions of coinduction; the version we
use here is sometimes called set-theoretic coinduction. Also, coinduction is
often presented in terms of a proof principle such as B � g(B)) B � gfp g;
our presentation is equivalent.)



Compare these to the unreachable code analyses:

{ In the pessimistic approach, we initially assumed U  ; and had rules by
which we added vertices to U . Thus, U was de�ned inductively.

{ In the optimistic approach, we initially assumed U  V and had rules by
which we moved vertices out of U and into U . Thus, U was de�ned coinduc-
tively.

The opposite view { that U is de�ned coinductively by the pessimistic anal-
ysis and inductively by the optimistic analysis { is also valid. Induction and
coinduction are duals: we can de�ne operators f?(A) = X n f(X n A) and
g?(A) = X ng(X nA) that give a coinductive construction of X n lfp f and an in-
ductive construction ofXngfp g; that is, Xnlfp f = gfp f? and Xngfp g = lfp g?.
Thus, if a set is de�ned inductively by f then its complement is de�ned coin-
ductively by f?, and vice versa.

In general for some relation R we can argue that an analysis is inductive or
coinductive depending on whether we talk about R or its complement R. For
this paper we take the view that larger relations should cause more program
improvement. Intuitively, a program improvement is a function that maps a
program p to a \better" version of p. We formalize this idea by assuming some
preorder � capturing an intuitive notion of \better" programs. If p is a program
and A is an improver, then we require A p to be better:

p � A p (1)

Also, we expect that for a �nite program (in the sense of �nite textual size),
there is a \most improved program" corresponding to any p0; that is, there are
no in�nite ascending chains p0 < p1 < : : :. Two plausible de�nitions of � are (i)
p1 � p2 only if p2 is textually smaller (or the same size as) p1; (ii) p1 � p2 only
if p2 requires fewer (or as many) computational steps than p1 in any execution.

We investigate a subset of program improvements that might be called relation-

based improvements. Such improvements decide a relation R, then use this to
transform a program p. We use the notation p0 = Tp(R) to indicate transforma-
tion of p by Tp using a relation R; we adopt the convention that a larger relation
causes more improvement:

R1 � R2 ) Tp(R1) � Tp(R2) (2)

Using this convention, the pessimistic (rewrite-like) unreachable code elimi-
nation is inductive, since we pick U as the relation; and the optimistic ap-
proach is coinductive. We justify this apparently arbitrary convention later
by observing that pessimistic improvement appears to correspond to deciding
inductively-de�ned notions of equivalence, and optimistic improvement corre-
sponds to coinductively-de�ned bisimilarity.

This convention implies some counter-intuitive choices of relations for com-
mon analyses. For example, def-use is usually thought of in terms of a binary
relation reaches(x; y) which is true only if some de�nition x might reach a use



y. (In the program \a (1)2; return (2)a", the program point (1) is a de�nition,
and (2) is a use, and we'd say reaches(1; 2)). However, the larger the reaches

relation, the less improvement we can perform; thus, for this paper we'd think
instead about a relation notreaches(x; y) { the more reaching de�nitions we can
rule out, the more we can improve a program.

We contend that \optimistic" program improvement might properly be called
coinductive program improvement: in optimistic analysis one starts from an as-
sumption that allows the program to be improved maximally; thus if an op-
timistic improvement decides a relation R, by our convention of Eqn. (2), R
is de�ned coinductively. (Later we strengthen this connection by arguing that
under reasonable assumptions, optimistic analyses decide coinductively-de�ned
equivalences). An intuitive view of coinductive program improvement is shown
in Figure 4.

improvement

all programs

program p

semantic−preserving

coinductive

rewrites (inductive)

improvement

bisimilar to p

Fig. 4: Coinductive (optimistic) program improvement. The shaded region rep-
resents the set of programs bisimilar to p. More improved versions of p are higher;
less-improved versions are lower, and the shaded region extends in�nitely down-
wards. Inductive program improvement, based on semantics-preserving steps,
follows a path from p upwards. Coinductive program improvement starts from
a \maximally improved" program and retreats until a program is found in (a
decidable approximation of) the bisimilarity class of p.

2.3 Congruence and bisimilarity

Improvements aim to �nd faster or smaller programs that \do the same thing."
There are two relevant notions of what programs do, each leading to a di�erent
idea of what it means for two programs to do the same thing :

1. Programs are algorithms which take an input, perform a computation and
(ideally) halt with an output. We say two programs are equivalent if by



examining their text we can prove they produce the same output for the
same input. This version of program equivalence draws on the algebraic
idea of congruence, that operations on equivalent inputs produce equivalent
outputs. (In an algebra, if �= is a congruence and f is a k-ary function, then
f(a1; : : : ; ak) �= f(b1; : : : ; bk) if ai �= bi for 1 � i � k). Such equivalences are
de�ned inductively over terms.

2. Programs are processes which communicate with their environment and may
be designed to never halt (Figure 5). To decide whether two programs are
equivalent, we take a black box view: all we can observe are the interactions
of a program with its environment, called its behaviour. Two programs are
equivalent if we can't prove they have di�erent behaviour. This equivalence is
called bisimilarity or behavioural equivalence, and has its roots in concurrent
communicating processes [Mil89], non-well-founded sets [Acz88,BM96], and
coalgebra, which is becoming a popular theory of systems and in�nite objects
[Rut00,Kur01]. Bisimilarity relations are de�ned coinductively.

OS Kernel

Shared
Memory

Console

Disk

Network

Other processes
Process

EnvironmentProgram

Fig. 5: A program viewed as a process that communicates with the operating
system kernel and other processes via shared memory. The dotted line is the
interface through which communication occurs.

Yet another notion of equivalence is observational equivalence in pure functional
languages. This does not relate directly to the arguments we wish to make.

2.4 Removing redundant computations

For a more obvious example of coinductive program improvement we turn to the
problem of removing redundant computations. This is an old and well-studied
improvement, known in various incarnations as common subexpression elimina-
tion [CS70], value numbering [BCS97], lazy code motion [KRS94] and partial
redundancy elimination [KCL+99] (see e.g. [Muc00] for a survey). The inductive
approach is straightforward: given some straight-line code such as

w  +(b; c)
x  +(a; w)
y  +(b; c)
z  +(a; y)



one wishes to eliminate redundant computations { in this example, y and z are
redundant since y �= w and z �= x. The classic inductive approach to this problem
is congruence closure (e.g. [DST80]), based on algebraic congruence in term
algebras. Inductive approaches use partition merging : that is, the congruence
quotient is a partition on variables, which are initially assumed to be in separate
partitions, and the algorithms advance by merging partitions (deciding variables
are congruent).

Unsurprisingly, the inductive approach fails to �nd all congruences in the
presence of loops and recursion. There is a corresponding literature on what we
would call coinductive approaches, exempli�ed by the Alpern-Wegman-Zadeck
(AWZ) algorithm [AWZ88]. In this approach, variable de�nitions in an SSA-form
program are viewed as a set of corecursive de�nitions, and Hopcroft's DFA-
minimization algorithm [Hop71] is used to �nd a maximal \congruence." This
approach is based on partition re�nement (e.g. [PT87]), in which all variables
are initially assumed equal and are moved into separate partitions as inequali-
ties are discovered. DFA minimization is the canonical example of bisimulation
in coalgebra e.g. [Rut98,Kur01]. Clearly, the \congruence" found by the AWZ
algorithm is a bisimulation, and has a coinductive de�nition.

3 Combining Optimizations, Combining Theories

In this section we draw connections between the problem of combining program
improvements and the theorem-proving literature on deciding combinations of
theories. We consider the ability of improvements to decide whether two com-
putations are equal. If an improver is sound, we can use it to decide (a decidable
approximation of) equivalence between two computations. For example, to de-
cide whether the identity y + 1 � 1 + y held in the integers, we could pose this
problem as a set of variable de�nitions, encode those de�nitions as a program,
run an improver A on it, and examine the output to determine the equivalence
decided by the improver:

x1 = y + 1
x2 = 1 + y

encode
!

...
x1 y + 1
x2 1 + y

print x1
print x2

A
!

...
x1 y + 1
print x1
print x1

! x1 � x2

The de�nitions of x1; x2 are encoded as a program which is then improved by A,
and we deduce from the improved program that x1 � x2 by examining the argu-
ments of the \print" statements. More interestingly, we can encode bisimilarity
decision problems by encoding corecursive de�nitions using recursion, loops, or
laziness; the corresponding \print" sections might iterate over in�nite objects.

Combining multiple improvers corresponds in a straightforward way to the
literature on deciding combined theories. This leads to an interesting view of
superanalysis as deciding combinations of theories of bisimilarity, which in turn
suggests a reason why iterated improvements are not as good as superanalysis.



3.1 The Nelson-Oppen procedure

Recall that a �rst-order language consists of logical symbols 8; 9;:;^;_;!,
relation symbols such as =;� and function symbols such as +;�; and that a
structure gives semantic interpretation to the relation and function symbols in
some universe. For example, the integers (Z; =;�;+;�) are a structure for a
�rst-order language with relations =;� and function symbols +;�. The theory

of a structure Z is the set Th(Z) of all sentences true in the structure. For
example, 8x(x � x + 1) 2 Th(Z), but 8x(�x � x) 62 Th(Z) since �(�2) 6� �2.
A decision procedure for Z decides whether or not a sentence ' is in Th(Z).

Suppose we have several theories, for example a theory Th(E) of unevaluated
function symbols, a theory Th(List) of lists under car, cdr and cons, and a theory
Th(Z) of the integers, and decision procedures for each of these. The problem of
deciding combined theories is to decide sentences of mixed function and predicate
symbols; for example, does f(z + 1) = f(1 + car(cons(z; w))) hold?

There are several well-known approaches, of which the two most widely used
are Nelson-Oppen [NO79] and Shostak's [Sho84]. Of these, the Nelson-Oppen
method [NO79] for deciding quanti�er-free (or ground) combined theories has
an interesting correspondence to combining program improvements. The main
idea behind Nelson-Oppen is to split a mixed sentence such as f(z + 1) =
f(1 + car(cons(z; w))) into smaller sentences, each of which contain function
and relation symbols of a single theory (here, we introduce new variables a; d; e
to split the sentence into fragments):

Th(Z) Th(List) Th(E)
a = z + 1
e = 1 + d

d = car(cons(z; w)) f(a) = f(e)

Each decision procedure is responsible for �nding equalities implied by their
theories; these equalities are then propagated to the other decision procedures.
Nelson-Oppen only applies when there are no predicate symbols shared between
theories. Each decision procedure may decide things about its own predicate
symbols, but this information only becomes visible to other decision procedures
when it implies an equality. (For example, the decision procedure for Th(Z) may
deduce from x � y and y � x that x = y).

In the above example, the decision procedure for Th(List) can deduce car(cons(z,
w)) = z and therefore d = z. The equality d = z is then propagated to the other
theories. The decision procedure for Th(Z) can then deduce z+1 = 1+ d (since
1 + d = 1 + z = z + 1) and therefore a = e. Since a = e, the decision procedure
for Th(E) deduces f(a) = f(e). (We're assuming the function f is free of side
e�ects.) Therefore f(z+1) = f(1+ car(cons(z))) is true in the combined theory.
Nelson-Oppen uses an inductively de�ned notion of equality-across-theories, and
follows a partition merging approach (c.f. Section 2.4).

Compare this to how an optimizing compiler composed of separate improve-
ment passes would transform a program containing the expression f(z + 1) =
f(1+ car(cons(z))). In a typical intermediate language this expression would be



lowered to a set of simple de�nitions in A-normal [FSDF93] or quad form [Muc00].
Figure 6 illustrates how an optimizing compiler might improve the code.

(1) (2) (3) (4) (5)

a  z + 1
b  f(a)
c  cons(z; w)
d  car(c)
e  1 + d

g  f(e)
h b = g

a  z + 1
b  f(a)
e  1 + z

g  f(e)
h  b = g

a  z + 1
b  f(a)
g  f(a)
h  b = g

a  z + 1
b  f(a)
h b = b

h  true

Fig. 6: Example of how an optimizing compiler might optimize the expression
f(z + 1) = f(1 + car(cons(z; w))) in a sequence of improvement passes: (1) the
initial program in lowered form; (2) after list optimizations; (3) after an integer
arithmetic pass; (4) after common subexpression elimination (we assume the
function f is free of side-e�ects); (5) after dead variable elimination, assuming
h is needed at later program points but a; b are not.

There is a straightforward correspondence between Nelson-Oppen and iter-
ated improvement passes: in Nelson-Oppen, decision procedures communicate
by propagating equalities they discover. In iterated improvement passes, there
is an implicit communication of equalities between passes via rewriting and re-
placement. If by a series of improvements the compiler turns a term t into a term
t0, the process is akin to a rewrite proof of t �= t0 (e.g. [Jou95]). Hence one can
think of improvement passes communicating equalities via rewrite proofs.

Both approaches are based on an inductively-de�ned equality relation across
theories, and both approaches require that we iteratively apply decision proce-
dures (improvement passes) to decide a combined theory (combined improve-
ment).

Term graphs (e.g. [Plu98,AK96]) provide a useful view of this problem. Fig-
ure 7 represents the expression f(z+1) = f(1+car(cons(z; w))) as a term graph,
and we have grouped vertices into subgraphs corresponding to their appropriate
theory. Note that this term graph is acyclic; neither Nelson-Oppen nor iterated
improvement passes can decide equivalence of cyclic de�nitions that span theo-
ries, since this would require a coinductive approach.

3.2 Improvements and the equivalences they decide

In this section we o�er evidence that under certain reasonable assumptions, op-
timistic improvements decide coinductively de�ned equivalences, and pessimistic
improvements decide inductively de�ned equivalences. Our approach is to con-
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Fig. 7: Term graph of the expression f(z + 1) = f(1 + car(cons(z; w))); Refer
to Figure 6(1) for the de�nitions of the variables a : : : g. Subgraphs represent
the theories of (from left to right) unevaluated function symbols Th(E), integers
Th(Z), and Th(List).

sider a set of (possibly corecursive) de�nitions:

x1 = F1(x1; : : : ; xn; y1; : : : ; ym)
...

...
xn = Fk(x1; : : : ; xn; y1; : : : ; ym)

We're interested in the power of an improvement A to decide such equivalences.
We assume these de�nitions may be encoded in a program p in such a way that
there exists some function to extract from A p an equivalence that has been
decided on X = fx1; : : : ; xng (see the example of Section 3). That is, we have a
function Eq : Program ! X � X that yields for some improved version A p an
equivalence � = Eq(A p) over X . The improvement A may be implemented
by deciding a relation such as def-use or must-alias that is not an equivalence;
however, we use A to obtain an equivalence over the variables X .

A reasonable assumption is that more improved programs correspond to
larger equivalences on X :

p1 � p2 ) Eq(p1) � Eq(p2) (3)

That is, the more computations are redundant, the more a program can be
improved.

We start with the case of a optimistic (coinductive) improvement A, and
argue that if Eqn. (3) holds then the equivalence Eq(Ap) is de�ned coinductively.
Recall that since A is a coinductive improvement, it decides some relation R

coinductively and A p = Tp(R), where Tp is a transformation satisfying Eqn.
(2); that is, larger relations cause more improvement. Let Rp be the universe
for the relation (that is, R � Rp for any R). Since R is de�ned coinductively,
the analysis computes R via some function gp : }(Rp) ! }(Rp) such that
gp(R

0) � R0 for any R0 and R = gfp gp. We write gip(Rp) to mean g0p(Rp) =

Rp and gi+1
p (Rp) = gp(g

i
p(Rp)). We \peek" at intermediate analysis results

by de�ning A(i)p = Tp(gip(Rp)) for i � 0. From gp(R
0) � R0 for any R0 we

have gi+1
p (Rp) � gip(Rp). By Eqn. (2), A(i+1)(p) � A(i)(p). Then by Eqn. (3),

Eq(A(i+1)(p)) � Eq(A(i)(p)).



Therefore the equivalence Eq(A p) follows a descending chain in � as analysis
progresses (i.e. partition re�nement), and is therefore decided coinductively.

By a similar argument, if A is a pessimistic (inductive) improvement then
Eq(A p) follows an ascending chain in � as analysis progresses (i.e. partition
merging), and therefore is decided inductively.

From this we have strong evidence that iterating improvement passes is an
e�ective method of combining pessimistic improvements, since pessimistic im-
provements decide inductively-de�ned equivalences, and combinations can be de-
cided by communicating equalities via rewriting and term replacements. In the
next section we consider the problem of deciding combinations of coinductively-
de�ned equivalences, i.e. combining optimistic improvements.

3.3 Co-Nelson-Oppen?

In this section we consider the problem of deciding combinations of theories of
bisimilarity. To our knowledge a coinductive version of Nelson-Oppen has not
been described in the literature; we don't tackle this (ambitious) problem here,
but merely sketch a plausible approach and relate this to superanalysis.

Recall that bisimilarity is de�ned coinductively, and thus by duality the
complement of bisimilarity (let's call it inequivalence) is inductively de�ned.
Typically it is this inequivalence relation for which we have a useful inductive
de�nition, leading to a partition re�nement scheme. A classic example is the
Myhill-Nerode theorem (see e.g. [Hop71]) and its characterization of inequiva-
lent (or distinguishable) states of a DFA.

Since inequivalence is inductively de�ned, intuition suggests that a coinduc-
tive version of Nelson-Oppen should propagate inequalities amongst the theories.
That is, as in Myhill-Nerode, one should initially assume that all computations
are bisimilar, and follow a partition re�nement approach, splitting bisimilarity
classes when inequivalences are discovered. This is close in spirit to the approach
proposed in [CKV74] for minimizing mutually recursive equations, in which the
complement of bisimulation is constructed; for a modern account see [AK96].

If this intuition about a coinductive Nelson-Oppen is correct, it suggests the
following observation about combining coinductive program improvements: If we
require that intermediate programs between improvement passes be sound, then
improvement passes can communicate only equalities through rewriting. There-
fore iterated improvement passes cannot e�ectively communicate inequalities. A
plausible explanation for the e�ectiveness of superanalysis is that it combines
coinductive theories by allowing the propagation of inequalities amongst theo-
ries. Figure 8 summarizes our arguments about combining improvements and
combining theories.

4 Conclusions

We now return to the questions posed in the introduction. From the arguments
of this paper we are able to make the following conjectures:



(a) Acyclic de�nitions: decidable by
iterating pessimistic improvement
passes. Rewriting propagates equal-
ities amongst theories, �a la Nelson-
Oppen.

Th(A) Th(B)

(b) Cycles within theories: decidable
by iterating optimistic improvement
passes. Coinduction within theories,
induction between theories. Rewrit-
ing propagates equalities amongst
theories.

Th(A) Th(B)

(c) Cycles across theories: requires
simultaneous coinduction across
theories. Super-analysis propagates
inequalities amongst theories.

Th(A) Th(B)

Fig. 8: E�ectiveness of combined-theory deciders at deciding equivalences. The
�gures illustrate several cases of cyclic de�nitions in term graphs (Section 3.1).

We believe that iterating improvement passes is an e�ective means of com-
bining pessimistic improvements due to the correspondence with Nelson-Oppen
outlined in Section 3.1. We believe there is no reason (other than eÆciency) to
perform pessimistic improvements simultaneously.

We argued that optimistic improvements decide equivalences coinductively.
In Section 3.3 we argued that deciding combinations of coinductive theories of
equivalence would require propagating inequalities amongst decision procedures.
Separate improvement passes can only communicate equalities via semantics-
preserving term replacements. This suggests that optimistic improvements are
better if combined, since \superanalysis" allows analyses to communicate di-
rectly.

We have not attempted to address the third question { of automatically
combining analyses without specifying their interaction. Lerner et al. [LGC02]
have proposed a clever method that relies on analyses communicating implicitly
through replacement operations. Our arguments suggest that their approach may
not be optimal; although they prove their approach is as e�ective as iterating
analyses, they do not prove it is as e�ective as a manual combination (although
they demonstrate this experimentally for some sample analyses). In our view,
the third question remains open, and we hope that the connections drawn in
this paper may spur research in this direction.
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