
Polymer Processors
Jonathan W. Mills

Computer Science Department
Indiana University

Bloomington, Indiana 47405

Abstract

A recent paradigm for analog computation is
suited to conductive organic polymers. Partial
differential equation solvers and continuous-
valued logic cells implemented as conductive
sheets and diode arrays have canonical
structures that can be reconfigured digitally. An
example application, a pattern-recognizing
sensor, is presented as a general example of a
polymer processor.

1. Introduction

The architecture of polymer processors is based
on a recent theoretical model of analog
computation called the extended analog
computer [Rubel 1993]. This model is not a
general purpose analog computer (GPAC)
[Shannon 1941], nor is it one of the many analog
neural network models implemented in silicon
VLSI [Mead 1989] and studied theoretically
[Siegelman/Sontag 1992]. It is a new paradigm
for computer architecture that even recently was
believed to have no physical realization
[Campagnolo/Moore/Costa 2000].

But a general, and probably universal, extended
analog computer exists with an electronic
implementation. It requires a new design
methodology, and new ways to think about
compiling "programs", in this case
configurations overlaid onto a standard analog
machine. The extended analog computer can be
implemented with both silicon VLSI and
conductive polymers. Conductive organic
polymers were discovered by condensed matter
physicists Heeger, MacDiarmid, and Shirakawa.
The polymer field-effect transistor was
developed by Garnier. Polymer processors use
these technologies in simple but novel ways to
solve a broad range of problems more rapidly
and efficiently than digital computers. While
polymer processors cannot efficiently implement
symbolic applications, such as word processing,

for those applications within their scope they are
high-performance, inexpensive non-silicon
computers.

2. Theoretical Model

The general purpose analog computer (GPAC)
is the mathematical model of what is usually
thought of when an "analog computer" is
mentioned. The archetypal analog computer in
this class is the differential analyzer, a
mechanical computer invented by Vannevar
Bush of MIT. Using various gears, curve
plotters, and cams, the differential analyzer
solved systems of ordinary differential
equations. Several years later, advances in
circuitry permitted electronic differential
analyzers to be built. These analyzers used
integrators (operational amplifiers), constants,
multipliers, and addition circuits in application-
specific configurations to solve ordinary
differential equations. However, GPACs could
not directly solve systems of partial differential
equations. These problems, known as field
problems, were solved with various conductive
solids, liquids, or resistive meshes [Karplus
1958]. After the advent of digital computers,
hybrid digital-analog computers solved field
problems by iterating "across" the field, varying
the boundary conditions with each trial.

The extended analog computer (EAC) is
composed of a general purpose analog computer
to which is added a "quintessential boundary-
value problem solver". In practice this is a
partial differential equation solver. Those partial
differential equations that are strictly boundary-
value problems are Laplacian; those that have
internal conditions are Poisson. Many problems
described by these equations, such as heat
diffusion and internal mechanical stress, may be
solved electronically [Karplus 1958].
Observations that vertebrate brains solve field
problems to generate spatio-temporal maps led

Rubel to extend the GPAC with functional
elements that performed field computation
directly [Rubel 1985, Rubel 1993]. Rubel's
assertion that “...the problem of implementation
is to describe physical, chemical, and/or
biological devices that do in the real world what
the black boxes are supposed to do. Since the
EAC is so broad, this can never be done in
practice...", suggested that no practical extended
analog computer architecture would be possible.
However, research into the continuous-valued
Lukasiewicz logic as a computational paradigm
led to an electronic implementation of the
extended analog computer.

Lukasiewicz logic has a denumerably infinite
number of truth values. It describes the class of
ideal analog circuits that have an infinite
maximum precision. Real analog circuits, which
have a finite maximum precision, are classified
by the number of data values encoded on
individual wires in the circuit. Boolean logic is
the most familiar subset of Lukasiewicz logic: it
describes binary digital circuits. Discrete
multiple-valued circuits are described by logics
with 2 < n ≤ 16. Continuous-valued analog
circuits are described by subsets of Lukasiewicz

logic with 2 ≤ n ≤ 2p, where p is the maximum
precision of the circuit in bits. Typically p falls
in the range 6 ≤ p ≤ 12.

A Lukasiewicz logic array (LLA) is an H-tree
array that implements a schema for sentences of
Lukasiewicz logic [Mills/Beavers/Daffinger
1990]. The processing elements of the array
correspond to either implications or negated
implications in the sentence schema (Figure 1).
Lukasiewicz implication is defined by the
valuation function min(1, 1-a+b). Negated
implication has a valuation function defined as
max(0, a-b).

δ

α

β

γ

(α ⊃ β) ⊃ (γ ⊃ δ)

⊃ ⊃ ⊃

Figure 1. Sentence in Lukasiewicz logic and
corresponding H-tree array

Lukasiewicz logic arrays approximate GPACs
sufficiently well for practical purposes. An
obscure theorem validates this substitution by
proving that algebraic ordinary differential
equations—the class of equations solved by
GPACs—are approximated arbitrarily closely by
sentences in Lukasiewicz logic [McNaughton
1950].

Although Rubel was unable to restrict the
extended analog computer to a Turing-complete
model, and believed that it might be too
powerful to be mathematically interesting, other
theorists have shown that some variants of the
GPAC on which the extended analog computer
is based, when extended in only one dimension,
are no more powerful than Turing machines
[Campagnolo/Moore/Costa 2000]. In general, in
the presence of noise, no analog computer can
be more than Turing-complete [Maass/Sontag
(no date)]. From the view of a computer
architect these results are more reassuring than
anything else, given the many claims in the early
1990's that analog computers were
computationally more powerful than Turing
machines. Implementing useful extended analog
computers is enough of a challenge.

3. Architecture and Implementation

The high-level architecture of a polymer
processor is a restricted form of extended analog
computer. It is composed of some number of
levels with a "lot" of feedback. The theoretical
model has a finite but unbounded number of
levels. In practice two or three layers of partial
differential equation solvers operating in parallel
are sufficient to implement neural networks,
feedback controllers, and active sensors.

Each level is composed of a conductive sheet
and a Lukasiewicz logic array (Figure 2).
Relatively few interconnections are necessary, a
benefit for both polymer and silicon VLSI
designs.

PDE LLA PDE LLA

Figure 2. Multiple-level extended analog
computer architecture

The original Lukasiewicz implication cell used
twelve transistors (Figure 3a). By applying
algebraic transformations to this circuit, it was
reduced to a single diode (Figure 3b)
[Mills/Beavers/Daffinger 1990, Mills 1998]. It
has been used as a novel edge detector that not
only finds horizontal, vertical and diagonal
edges, but also encodes their orientation [Mills
1992, Mills/Walker/Himebaugh 2003].

Iα

Iβ

Iout

Itrue

(a)

(b)

Figure 3. (a) 12-transistor implication and
(b) pair of diodes for two implications

In a digital computer, wire is necessary to move
data and instructions between memory and the
central processor. This creates the well-known
von Neumann bottleneck. In a polymer
processor computation is pervasive, and often
even the wires compute. While some parts of the
machine may not contribute to the computation,
it is unusual for any part to restrict it. For
example, the pattern-recognizing sensor merges
detection and recognition, and computes
continuously over the entire image (Section 5,
Applications). This device has been built in
silicon and simulated in conductive foam.
Transparent conductive polymers are desirable
for this kind of processor because the sensor and
recognizer can be stacked vertically, unlike the
silicon VLSI version, and the output displayed
through the transparent polymer on the input
image.

The components of a polymer processor fall into
two categories. The first category is
computational: partial differential equation
solvers, piecewise linear function generators,
and wire junctions that perform addition and
subtraction. The partial differential equation
solvers are implemented as conductive sheets.
Piecewise linear function generators are
implemented as reconfigurable Lukasiewicz
logic arrays, which are often nothing more than
binary trees of diode-connected field-effect
transistors. Addition and subtraction is
performed with wire junctions, and is governed
by Kirchhoff's current laws. Components in the
second category manipulate data. Current
mirrors duplicate values for use in multiple
locations. Wires explicitly pass parameters
between spatial locations in the machine.
Conductive sheets serve to communicate values
and simultaneously scale their sum. A
conductive foam prototype of a polymer
processor that uses discrete silicon components
for the Lukasiewicz logic array is publicly
available on the world-wide web at:

http://cgi.cs.indiana.edu/~bhimebau/eac.cgi

It solves a Poisson partial differential equation.
The solution is used to emulate a network of
leaky neurons that compute exclusive-or.

4. Programming and Compiling

All computers have semantics that describe their
structure and operation. In a digital computer
these semantics may be treated independently.
They are related by clearly defined interfaces
between semantic boundaries. Ignoring much
detail, there are two semantics, one for the
architecture and another for the program. These
semantics are usually independent for most
applications. This is a strength of a digital
computer. In principle, a program can be written
that will run on many different architectures. In
practice, this is not as simple as it sounds.

In a GPAC the two semantics are
indis t inguishable . In this kind of analog
computer, the hardware is the software, and vice
versa. To change the program, one changes the
machine. In the 1960s, analog computer
"programs" were separated from the hardware.
The user carried a part of the machine, called a

"patch board" because it was a tangle of wires
and components interconnected on a circuit
board, from the office to the computer where the
"program" was run. The wiring on the patch
board was changed if an error was detected.
After each use the patch board was disconnected
and returned to storage. GPAC programs were
cumbersome, at best.

The structural and functional semantics of
extended analog computers are interdependent.
The canonical structure of the machine provides
a general framework for many different
computations, but the hardware is standardized
like a digital computer rather than a GPAC. The
function of the extended analog computer is
carried out simultaneously at many points in the
architecture, like a GPAC, but these points are
easily reconfigured, in the manner of a digital
computer. Furthermore, the reconfiguration can
be controlled by a vector of bits, similar to a
program for a digital computer. The
configuration is called an overlay, expressing the
idea that the function of the machine changes
over all components, rather than in a restricted
location—the memory—of a stored program
digital computer.

An overlay for a polymer processor is
developed differently than a digital computer
program. The entire overlay must be created, not
parts of it that leave the rest unimplemented.
This is similar to the manner in which
reconfigurable digital processors are designed,
for example, application specific field-
programmable gate arrays. Digital computers
automatically generate overlays for polymer
processors using genetic algorithms and a fluid
model of the conductive sheet (similar to the
fluid model of the field-effect transistor). In a
research seminar conducted at Indiana
University in the fall of 2002, a canonical
extended analog computer was described using a
genome for the overlay. Genetic algorithms were
developed by student researchers for several
diverse applications. The results were
encouraging. Starting with populations of 10,000
individuals, each a randomly generated overlay,
the chosen applications were evolved within
1000 generations. But recognizing the standard
structure of the canonical processor, and
observing that an analog computer has a strong

correlation between the problem semantics and
the overlay, the students reduced the population
to 1000 individuals, the number of generations
to three, and the time to find a solution to several
minutes on a Pentium-class laptop. These results
are still being explored. One possibility is to
dynamically evolve control overlays for polymer
processors used as embedded controllers.

5. Applications

The first applications for extended analog
computers were difficult to design. For example,
finding an implementation of exclusive-or using
an extended analog computer took over one
year. This application is significant because
exclusive-or is the simplest non-linearly
separable function that distinguishes general
neural networks from perceptrons. In retrospect
the solution was simple, but there was no
existing frame of reference within which the
problem could be understood [Hedger 1998]. By
the fall of 2002, a few problems had been
solved, some using conductive plastic.

All applications had a canonical form derived
from the theoretical model of the extended
analog computer. One application, a "single-
pixel" pattern-recognizing sensor, appears in
various guises in a cyclotron beam line
controller, an internet router using the Random
Early Dropout algorithm, and real-time ceramic
spall detection in lubricating systems. This
application will be discussed in detail.

The pattern-recognizing sensor is a one-level
extended analog computer (Figures 4 and 5).

ring diode

analog
inputs

conductive
sheet

sensor/processor

Lukasiewicz
logic arrays
(LLAs)

analog
outputs

digital LLA address bus

digital LLA configuration bus

Figure 4. Pattern-Recognizing Sensor Schematic

Figure 5. Pattern-Recognizing Sensor

When implemented in silicon VLSI, the
conductive sheet and the Lukasiewicz logic
arrays are adjacent to each other. Because
silicon is not translucent, the original image
must be projected onto the sheet, and cannot
pass through it. Nor can multiple layers be
stacked, with communication flowing between
levels, either electrically or optically. Silicon
VLSI is planar, although nanotechnology is
being investigated for three-dimensional
processors) [KleinOsowski/Kiehl/Lilja 2002].

The pattern-recognizing sensor operates as a
trainable character recognizer, a task often
performed by neural networks. A simple
recognizer that distinguishes between "A" and
"T" illustrates how the sensor is trained using
the piecewise linear functions generated by a
Lukasiewicz logic array. A binary encoding for
the characters is chosen, with "A" indicated by
111 and "T" by 000. The functions are initially
set to produce a 1 for every input to the sensor.
Initially presenting an "A" does not generate an
error, so no adjustment is necessary (Figure 6).

3 3 3

L1 L2 L3

L1

L2

L3

.2

.9

.5

1 .0

1 .0

1 .0

Figure 6. Initial presentation of "A"

When the "T" is presented, an error results,
which can be used with the desired output and
the values input to the Lukasiewicz logic arrays
to determine the new functions. A simple rule
for choosing the functions is to minimize the
error between the current presentation and the
most recent but different character presented.
Following this rule, the new functions are shown
in Figure 7.

668

L1 L2 L3

L1

L2

L3

.9

.1

.1

0 .0

0 .0

0 .0

Figure 7. Presentation of "T"

Presenting "A" again indicates that this choice of
function settings is acceptable. Finally, the
ability of the sensor to classify characters as
either "A", "T", or similar to one or the other is
tested with four images: a scrawled "A" and a
"T" with a circular patch removed (Figure 8).

L1

L2

L3

.1

.8

.5

1 .0

1 .0

1 .0

L1

L2

L3

.3

.1

.1

1 .0

0 .0

0 .0

Figure 8. Categorization of similar characters

The recognizer is robust because of the
continuity in the induced current gradient and
the piecewise-linear function units. The
conductive sheet is inherently capable of
smoothing discontinuities in the image.

A polymer recognizer improves on this design
because it can be made translucent. Such a
computational sensor could "read" an image,

detect oriented edges and masses within it, and
recognize patterns, all using a series of thin
layers. Anomalies on the original image could
be detected and displayed on top of the visible
image using LEDs built into the polymer sheet.
Such a recognizer, large enough to cover an
entire image, such as an X-ray, could be held up
to the image while it performed these functions
in real time. At best such a device would be a
difficult for silicon digital computers to
duplicate, and in some cases would be
impossible to implement with the form factor
described (thin transparent sheets). A device
such as this is only one possibility within the
scope of today's conductive polymer technology
and the computational paradigm offered by
extended analog computers.

6. Summary

As our understanding of polymer processors
continues to improve, applications that are
computationally challenging for digital
computers are emerging. Most recently,
radiosity-based image rendering has been
simulated [Olowoyeye 2003]. The future of
polymer processors looks bright.

7. References

[Campagnolo/Moore/Costa 2000] Iteration,
Inequalities, and Differentiability in Analog
C o m p u t e r s . S a n t a F e I n s t i t u t e .
http://www.santafe.edu/~moore.

[Hedger 1998] Analog Computation: Everything Old
is New Again. Indiana University Research &
Creative Activities, [XXI:2], pp. 24-27.
http://www.indiana.edu/~rcapub/v21n2/p24.html

[Karplus 1958] Analog Simulation, McGraw-Hill:
New York.

[KleinOsowski/Kiehl/Lilja 2002] Fault-Tolerant
NanoBoxes for Designing Computers Using
Nanotechnology. First Workshop on Non-Silicon
Computation.

[Maass/Sontag (no date)] Analog Neural Nets with
Gaussian or other Common Noise Distributions
Cannot Recognize Arbitrary Regular Languages.
Email: maass@igi.tu-graz.ac.at.

[McNaughton 1950] A Theorem About Infinite-
Valued Sentential Logic. Journal of Symbolic
Logic, 16 (1950), pp. 1-13.

[Mead 1989] Analog VLSI and Neural Systems,
Addison-Wesley: Reading, Massachusetts.

[Mills/Beavers/Daffinger 1990] Lukasiewicz Logic
Arrays. Proceedings of 2oth International
Symposium on Multiple-Valued Logic.
Charlotte, North Carolina: IEEE Press.

[Mills 1992] Area-Efficient Implication Circuits for
Very Dense Lukasiewicz Logic Arrays.
Proceedings of 22nd International Symposium
on Multiple-Valued Logic. Sendai, Japan: IEEE
Press.

[Mills 1998] U.S. Patent 5,770,966. Area-Efficient
Implication Circuits for Very Dense Lukasiewicz
Logic Arrays.

[Mills/Walker/Himebaugh 2003] Lukasiewicz' Insect:
Continuous-Valued Robotic Control after Ten
Years. Int. Jour. Multiple-Valued Logic.

[Olowoyeye 2003] Image Rendering using Wave
Theory of Light and Extended Analog
Computers. Indiana University Computer
Science Department Technical Report 581.

[Rubel 1985] The Brain as an Analog Computer. J.
Theoretical Neurobiology 4 (July 23).

[Rubel 1993] The Extended Analog Computer. Adv.
In Appl. Math. 14, 39-50.

[Seigelmann/Sontag 1992] On the Computational
Power of Neural Nets, Proc. Fifth ACM
Workshop on Computational Learning Theory,
Pittsburgh, July 1992, pp. 440-449.

[Shannon 1941] Mathematical Theory of the
Differential Analyzer, J. Math. Phys. MIT, 20
(1941) pp. 337-354.

