TREETRAV
An Interactive PLATO Lesson on

Binary Tree Traversals
Edwin W. Brown III

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecunicAL ReporT No. 58
TREETRAV
AN INTERACTIVE PLATO LEsson ON
BiNARY TREE TRAVERSALS

Epwin W. Brown III
STUART C. SHAPIRO
NoveMBER 22, 1976

TREETRAV
An Interactive PLATO Lesson on

Binary Tree Traversals

Edwin W. Brown III
Stuart C. Shapiro
Computer Science Department

Indiana University
Bloomington, Indiana 47401

PURPOSE

A basic concept taught in any data structures course is that
of binary tree traversals. The recursive definitions of the vari-
ous traversal orders are simple and straightforward, and for this
reason the student may consider them easily mastered and not worthy
of detailed coverage. However, when the student is presented with
a binary tree for which he must provide the correct order of node
visits corresponding to a particular traversal type, he will often
encounter difficulties unless he has previously taken time to drill
himself in this type of exercise. It is for this purpose that les-
son TREETRAV is available for interactive use on the PLATO computer-
based education system.
DESCRIPTION

Upon entering lesson TREETRAV (figure 1), the student is pro-
vided with a master index (figure 2) from which he can choose either
to begin the lesson at the normal starting point or to proceed
directly to a specific section. If he chooses the former, he will

be presented with a brief review of the definition of a binary

tree, using the notation found in Section 2.3.1 of Knuth [1]. It
is assumed that the student has had previous exposure to the general
concepts of linked structures, trees, and more specifically, binary
trees.

This 1s followed by a session in which the student designs a
binary tree to be used later in learning the traversal orders. In
this work area (figure 3), the student dictates the structure of

his tree by entering commands that perform various functions.

leftn -- creates a left subtree to node n
rightn -- creates a right subtree to node n
deleten —- deletes the subtree with root node n
generate -- randomly generates an entire tree
replot -- replots the screen

The "n" above represents the numeric label of the node to which the
student is referring (e.g., leftl). To specify a position on the
screen for placing a newly created subtree, the student presses
keys marked with arrows until the cursor is positioned in a desired
location.

When the student completes his tree, he is presented with the
concept of traversing binary trees. Recursive definitions are given
for the three types of traversal orders -- preorder, inorder, and
postorder -- as stated in Knuth 2.3.1 [1]. The student is also given
a set of abbreviations that correspond to the different steps that
make up the traversal methods.

tL -- traverse the left subtree

tR -- traverse the right subtree

Vv -- visit the root
These abbreviations are to be used in the next two work areas
where the student will be taught how to traverse his tree.

The student then proceeds to the second work area (figure 4),
where his tree is replotted. Here he is given the opportunity to
see it traversed by the lesson in any traversal order he chooses
and at his own pace. During the traversal, each step that is about
to be executed is displayed next to the appropriate node, using the
abbreviations listed above. 1In this way a visible record is kept
of the last step executed at a particular level before going to the
next, so that upon return to an uncompleted level, it will be clear
which step is to be executed next. Completion of all three steps
at a certain level is indicated by displaying "ok" next to the
appropriate node. As each node is visited it is circled, and its
label is listed at the bottom of the screen, so that when the tra-
versal 1s complete, a record of the order of visits is available.
At the end of the traversal, the student is encouraged to try some
other traversal orders on different trees until he feels confident
of his understanding.

When he has decided that he fully understands the traversal
definitions, the student may proceed to the third work area (figure
5), where he must enter each step to be executed rather than having
it provided for him as it was in the last area. Both this and the
next area are examples of the "monitored tasks" referred to in
Shapiro [2]. That is, the student is constantly being monitored

during the exercise -- if he enters the correct step it is executed,

otherwise he is informed of his error. At any time in this tra-
versal session, as well as in the others, the student may press the
HELP key to see the recursive definition for the traversal order
that is being carried out. Again, upon completion of this section,
he is urged to repeat it with other traversal orders.

The final work area (figure 6) consists of a randomly genera-
ted tree for which the student must provide the correct order of
node visits that corresponds to a traversal order of his choosing.
He does this by simply entering the numeric label of each node as
it is to be visited, with no record kept of the traversal steps
occurring between visits. This provides a true test of what he has
learned, for in order to succeed, he must be able to mentally keep
track of the steps to be executed and the levels completed. As in
the previous session, the student is monitored for the accuracy of
his answers and has access to the HELP key.

When he leaves the final work area, the student is given a
score (percentage of correct first choices) that reflects his per-
formance during the exercise. At this point he is given the option
of repeating the last exercise with a new randomly generated tree,
or returning to the master index (figure 2), from which he can go to
any portion of the lesson. The index may be accessed at any point
in the lesson, thus allowing the student complete freedom to enter
any work area he wishes. A comment facility is also provided in
order that the student may voice any opinions or questions he may

have about the lesson.

IMPLEMENTATION

The structure of the student's tree is stored as an array of

screen coordinates corresponding to the positions of the nodes.

The indexes of this array serve as labels for the nodes, and are

also used in the pointer fields to designate the left and right links
of each node.

The randomly generated trees are created by using a random
number generator (system provided) to decide whether to create a
left, a right, or no subtree, and then consulting a table contain-
ing screen coordinates of possible node positions to determine where
to place the generated subtrees. A system of tagging and level
indexing is used to prevent placing two nodes at the same position,
or placing a subtree of a node at a higher level than itself.

The traversals are accomplished using a simple stacking algor-
ithm, in which the node label corresponding to an uncompleted level
is placed on a stack before proceeding to the next level. When all
steps at a particular level are completed, the top of the stack is
removed and that level returned to. An empty stack indicates comple-
tion of the traversal. A flowchart describing the algorithm in more
detail appears in figure 7.

REMARKS

It is hoped that lesson TREETRAV will find a genuine use by
those engaged in teaching a data structures course and whose stu-
dents have access to a PLATO terminal. The lesson can be found
listed under Information Processing in the main index of PLATO
computer science lessons (lesson CSLESSONS). In writing the les-

son, attention was given to the criteria set forth in Shapiro [2]

for a well-structured CAI (Computer-Assisted Instruction) lesson.
Every effort will be made to review the lesson regularly, read the

users' comments, and make appropriate modifications.

REFERENCES

1

Knuth, Donald E., The Art of Computer Programming, Vol. 1:
Fundamental Algorithms, Second Edition, Addison-Wesley, Reading,

Massachusetts, 1973.

Shapiro, Stuart C., PLATO Lessons for a Data Structures Course,
Technical Report No. 15, Computer Science Department, Indiana

University, August, 19T74.

'REETRAV

a

-

3

lesson on binary tree traversals

Ted Brown & Stuart C. Shapire
Computer Science Department
Indiana University

Cgpyright'@ 19?6,_Iﬁﬂiahé University Foundation

Jo S, T

figure 1

Title Page

et i

T

.

E

Lo

TREETRAV INDEX

Press the number of the zection wou would like to.choose:

Introduction: You should start here if this is your "
first time 1n this lesson. This-mill'allmu'yﬁu to,,

progress through the.entire lesson in proper seguence,
which 13 ﬂc;;'i@fﬁ’ before wou can understand how to

t
ns 2 through 5 below.

r..l_

T

i1
il

LIS

Tres Laboratery: To kbuild or modify your binary tree.

Traversal Lakoratory I To traverse your tree .with

L

tep dizplayed before being executed,.

i
il

i

2 |

1l

Traversal Lakboratory II: . To traverse your

entering each aiep efore 1t 15 ewscuied.

Traversal Lakoratory III: To test wour knowledge of
fhe traversal orders by entering the correct order of

i

made visits for a randomly g.Nzrnted'tre

Commert : To leave a comment about the l e=son.
Ewit: To return to the lesson wou cams from.

Fre==35 qﬁIFT-wH‘h at ar tlme ﬁﬁ return to this ﬂdtm.

.

figure 2

Master Index

10

TREE LARCRATORY

ot 1ons:

l=ftn, rightﬁ;_ﬂel&{éﬁ; cenerate, replot, end
. 3 _ _

o

& 5 left2] |
rode 21 already has a left sukbtres
figure 3

Tree Bulilding Work Area

CTRAVERSHL LADUSHRTORY T .
5 ”
s ” %_'*-.
P N e T i
AT T
—_ _I‘{I{ ____1’ ...".J "y
S _'_._\\ = / .
St
‘\ - :‘:“‘ - - ‘\ - .--'J_ b e
.

) Al

tL !’l 1;:* H E]j;l -ﬂ

MEXT to execute next step

5
e
Nl
[fi

e
;AR i

figure 4

First Traversal Work Area

in PRECRDER

i §

12

- TRAVERSAL LABCRATORY II

= oo :
g ., e LS 5
e ED

erter newt step to be swecuted in POSTORDER
- Ty tR | :
(press HELP to zes correct sequence of steps)

figure 5

Second Traversal Work Area

e N R

EA Ry IIT

- ",
i *
A
.
™, =

: S ;‘/‘ 4 . = ;.\‘ i

i = £ = =/ =
i F N\~ N E
I i H .3 1 .f:-'
R = :"" = e
- =

Visited in INORDER.

&

3

i

s
=5

(press HELF to ses correct sequence of st

figure 6

Third Traversal Work Area

14

TRANTY P
= PREDRLR?

-

ToP<+ToP41
STALK (MP)<PIR
PTRELLINK(PTR)
TRANTYR
= INDRDER?
LV
NAS\T PTRERLINK (PTR)
A
Tob&ToP+ 1
STRK (ToP)«PTR
TRANTYP PTR< STRCK (ToF)
=PoUSTOoRDT /—) ToP&Top-1 |
s yes yes
i - :
PIR € STRCR(TP) i
ToP<ToP-1 AR I

P TR & 5100k 0P|
TOP«TopP-1

figure 7

Traversal Algorithm

