
Survey of Publish Subscribe Event Systems

Ying Liu Beth Plale

Computer Science Dept.
Indiana University

Bloomington, IN 47405-7104
fyingliu,plaleg @cs.indiana.edu

TR 574

Abstract

The Internet has changed considerably the scale of distributed systems, moti-
vating the demand for more flexible communication models and systems. Individ-
ual point-to-point and synchronous communications, which tend to lead to rigid
and static applications, are making way for the more loosely coupled interaction
such as is supported by a publish-subscribe paradigm.

In this paper, we define a taxonomy for comparing and contrasting publish
subscribe systems, citing examples from the systems included in the survey. We
then survey existing publish subscribe systems, and discuss their features with
respect to the taxonomy. The appendix contains a code example that demonstrates
use of a typical publish subscribe system.

1 Introduction

The Internet has considerably changed the scale of distributed systems. Distributed
systems now involve thousands of entities – potentially distributed worldwide – whose
location and behaviors may vary throughout the lifetime of the system. These con-
straints motivate the demand for more flexible communication models and systems,
which reflects the dynamic and decoupled nature of the applications. Individual point-
to-point and synchronous communications tend to lead to rigid and static applications,
and make the development of dynamic large scale applications cumbersome. To reduce
the burden of application designers, the glue between the different entities in such large
scale settings should rather be provided by a flexible loosely coupled communication
infrastructure.

The publish-subscribe paradigm is receiving increased attention for the loosely cou-
pled form of interaction it provides in large scale settings. In general, subscribers reg-
ister their interests in a topic or a pattern of events and then asynchronously receive
events matching their interest, regardless of the events’ publisher. The strength of an

1

event-based interaction style is drawn from full decoupling in time, space and flow
between publishers and subscribers. However, because of the multiplicity of these sys-
tems and prototypes, it is rather difficult to capture their commonalities, and to draw a
sharp distinction between their main variations [11].

In this paper, we first define a taxonomy for comparing and contrasting publish
subscribe systems, citing examples from the systems included in the survey. Then we
give several examples of existing publish subscribe systems. The systems examined in
this survey are drawn from standalone publish-subscribe systems in the public domain.
Thus though systems like Legion [14], MPI, and Gnutella [13] may provide support for
data streams, their purpose is broader than standalone support for the communication
paradigm so they are not included here. At last, we present a simple code example of a
publisher and subscriber using the Siena [5] system as the example API.

2 Mechanisms of Publish-Subscribe Systems

Publish-subscribe sytems differ on a number of fundamental characteristics. The most
popular decomposition of systems is into the general categories of subject-based or
content-based systems. Systems differ on their architectures as well. Publish-subscribe
systems can be push-based, pull-based, or both. In push-based, messages are automat-
ically broadcast to subscribers. This model provides tight consistency and stores min-
imal data. Pull-based models can be more responsive to user needs. Publish-subscribe
systems must address scalability, in terms of subscription management, and in terms
of efficient matching of an event. against a large numbe rof subscribers, and efficient
distribution of events.

In this section we introduce a taxonomy of key features of publish-subscribe system
consisting of:

� Subject-based versus content-based systems,
� System architectures,
� Matching algorithms,
� Multicast algorithms, and
� Reliability and security.

2.1 Subject-based vs. Content-based

There are two general categories of publish-subscribe systems, subject-based or content-
based. In subject-based systems, a message belongs to one of a fixed set of what are var-
iously referred to as groups, channels, or topics. Subscription targets a group, channel,
or topic, and the user receives all events that are associated with that group. Brokering
a connection between publishers and subscribers is the act of connecting a channel sup-
plier with a channel consumer, similar to the reader-writer problem in that the buffer is
the communication medium. For example, in a subject- based system for stock trading,
a participant could select one or two stocks then subscribe based on stock name if that
were one of valid groups. If it were only PE-ratio she were interested in, she would
likely receive much more information than needed.

2

Content-based systems, on the other hand, are not constrained to the notion that a
message must belong to a particular group. Instead, the decision of to whom a mes-
sage is directed is made on a message-by-message basis based on a query or predicate
issued by a subscriber. The advantage of a content-based system is its flexibility. It pro-
vides the subscriber just the information he/she needs. The subscriber need not have to
learn a set of topic names and their content before subscribing. Returning to our stock
trading example, it is not necessary for a participant to spend time learning informa-
tion of all stocks. Instead she can simply list the conditions for her ideal stock then
subscribe using those conditions, for instance, fprice(15,20), PE-ratio< 20, Earning-
Per-Share> 0:5 g. The system will automatically select relevant stocks for her, for ex-
ample, Oracle and IBM. If she were to need Average Volume information of the stocks
she holds, she could subscribe using a predicate such as fattribute=avgVolg. A disad-
vantage of content-based systems is the burden it places on the underlying system to
match messages to the subscriptions. The number of unique subscriptions can be orders
of magnitude larger than the number of groups that must be managed in the subject-
based system. Hence matching must be done extremely efficiently. The problem of
matching arriving events against a large number of queries has also been addressed
in the database community with data dissemination systems such as Xyleme [19] and
XFilter [2].

2.2 System Architecture

An event system is a distributed communication paradigm consisting of software com-
ponents that realize the event service and a unique communication paradigm. The
software components can be event servers, event clients, or both. The architecture of
publish-subscribe system can be classified into the general categories of client-server
or peer-to-peer.

2.2.1 Client-Server Model

In the client-server model, a component serves as an event server or an event client.
Event servers receive events, possibly store them, and forward them. Event servers
communicate with other event servers to achieve such properties as scalability. Clients
act as publishers, subscribers, or both. The general kinds of topologies [15] by which
servers are related include:

� Star topology (Centralized server)
� Hierarchical topology
� Ring topology
� Irregular polygon topology

Star (Centralized server) topology. An event system with a centralized server topol-
ogy relies upon a single event server to broker between publishers and subscribers. As
is shown in Figure 1, four providers, P1 thru P4, publish events to be received by sub-
scribers S1 thru S4. A subscriber may receive events from any of the providers; the
key notion is the existence of a single server that brokers between publishers and sub-
scribers. This simple topology does not scale well and such is not realized in practice.

3

Notification

S4

S3

S2

S1

P4

P3

P2

 P1

Server

Figure 1: Centralized server topology

S1

S2 S3

c3 c4
c2

(Root)

c1

S4

S5

c5 c6 message

Publication

Subscribe

Figure 2: Hierarchical server topology

Hierarchical server topology. The hierarchical topology is distinguished by a hierar-
chical relationship between event servers. As shown in Figure 2, each server, identified
as S1 thru S5, serves a number of clients, C1 thru C6. Clients can either be publishers
or subscribers. Event servers connect to a parent server. In this topology, the com-
munication between server-server and client-server follows the same protocol. Thus a
server does not distinguish between other servers and its clients. The purpose of the hi-
erarchical organization is scalability. A parent server will receive published events and
subscriptions from all of its clients but will forward to its subtree only events destined
for that subtree. The parent server acts as a gatekeeper in this regard, keeping general
traffic off the subtree.

Ring topology In the ring topology, as shown in Figure 3, the servers exist in a
peer-to-peer relationship with one another, and the server connection graph is a ring.
The communication between servers is via a bidirectional communication protocol for
exchanging subscriptions and notifications. The server-server protocol is different from
the client-server protocol in the type and amount of information exchanged. For a
server-server communication, the two end nodes maintain information for each other.
But for a client-server connection, a client can generate subscription and be the final
recipient for the published message, but the server on the other hands serves as an
access point or router to pass on messages.

4

S2 S3

S4 S5

c2 c3

c4 c5
c6

c7

c8 c9

client−server protocol

Server−Server protocol

c1

Figure 3: Ring topology

S1

S2 S3

S4 S5

c1

c2 c3

c4 c5
c6

c7

c8 c9

client−server protocol

Server−Server protocol

Figure 4: Irregular polygon topology

Irregular polygon topology The irregular polygon topology is a generalized ring
topology absent of the constraint that all servers connect as a ring. Thus the network
graph is a generic graph (see Figure 4). Similar to the ring topology, this topology
allows bi-directional communications between two servers.

2.2.2 Peer-to-Peer Model

In the peer-to-peer model, all nodes are equal, as shown in Figure 5. That is, each node
can act as a publisher, subscriber, root of a multicast tree, internal node of a multicast
tree, or any reasonable combination thereof. That is there are no server nodes or client
nodes in this model. Some of the server functionality(i.e. persistence, transactions,
security) is embedded as a local part of each node.

2.3 Matching Algorithm

The matching algorithm controls the way in which events are delivered to subscribers.
In subject-based systems, where messages are grouped into logical units in the form
of a group, channel, or topic, the purpose of the matching algorithm is to manage
these channels. Managing channels can be accomplished in a straightforward manner
through a centralized server that does a lookup on the topic ID of an arriving message
to determine the connection information for the subscribers. More complex matching

5

connection protocol

n6

n5

n4

n3

n2

n1

Figure 5: Peer-to-peer model

algorithms also exist. Bayeux [26] uses a hashed-suffix mesh algorithm [20] to locate
subscribers and routes messages across arbitrarily large networks while using a routing
map with size logarithmic to the network name-space at each hop [26]. ECho [7] estab-
lishes a direct connection between a publisher and subscriber at the time a subscriber
subscribes to a channel. In this way, the centralized server is only employed at con-
nection establishment; published events are efficiently routed directly from publisher
to the subscribing clients.

Content-based systems, on the other hand, have no notion of a group, as the unit to
which one subscribes as in subject-based systems. Hence these systems require differ-
ent approaches of matching messages to subscribers. The consequence of the additional
flexibility is that the number of unique subscriptions may be orders of magnitude larger
than the number of groups that must be managed in the subject-based system. Many
content-based systems use a matching tree algorithm. This algorithm preprocesses a
set of subscriptions into a matching tree, with each node a partial condition on the at-
tributes of a predicate. Each lower level of the tree is a refinement of the test performed
at the next higher level. Subscriptions are resident at the leaves of the tree. Upon arrival
of an event, the subscriptions matching the event are found by navigating the decision
tree starting at the root. This algorithm’s sub-linear time complexity with respect to
the number of subscriptions, and linear space complexity is efficient for most publish-
subscribe systems [1]. Other matching algorithms are considered in the discussions of
the individual systems.

2.4 Event distribution scheme

Publish-subscribe systems must support a large number of geographically distributed
publishers and subscribers. As the system scales, and the number of subscribers to a
channel or topic grows, the need arises for some forms of efficient event distribution.
This is particularly true for subject-based systems where the number of topics is small
relative to the number of subscribers. The solution is often a form of software-based
multicast. Multicast in a publish-subscribe system is the broadcasting of a message
from one broker to subscribers that are associated with one of a group of brokers,
usually in such a way that membership is transparent to the sender.

Publish-subscribe systems must support a large number of geographically distributed

6

1111

1101 1110

0101

(root)

(forwarder)

(subscriber)

Publish

Subscribe

Figure 6: Simple example for Multi-cast tree

publishers and subscribers, so efficient communication between these brokers is paramount.
Considering that brokers are often connected via relatively slow WAN (compared to
fast LAN) and a publish-subscribe system needs good scalability, multicast algorithm’s
known good efficiency is crucial for the whole system.

For a subject-based system, a multicast algorithm can define a multicast group and
corresponding multicast tree per subject. When a subscriber subscribes to this subject,
the subscriber node is added to the corresponding multi-cast tree. When an event for a
subject is published, it is disseminated using the multi-cast tree. This is illustrated in
Figure 6. In this part of multi-cast tree, each node has a binary code as its identification.
When a node publishes or forwards message, it sends a message only to the nodes
whose binary code is one-bit different from its own code. So in this graph, node (1111)
can send a message to nodes (1101 and 1110). However, node (1111) can not directly
send a message to node (0101), although node (0101) is the real subscriber for this
message.

But this subject-based multicast technique cannot be readily applied to a content-
based system because in a content-based system, each subscriber may have a unique
subscription, and therefore, we can not easily find common characters to group many
subscribers together.1 We discuss some novel and efficient distributed multicast algo-
rithms for content-based systems in the context of the surveyed systems.

2.5 Reliability

Publish-subscribe systems provide various guarantees regarding reliability and fault
tolerance ranging from best-effort to guaranteed and timely. Some systems are based
on TCP and provide the guarantees that TCP provides, namely reliable point-to-point

1To naively map these subscribers into groups may require a number of groups exponential in the number
of subscribers (i.e 2N).

7

byte stream protocol. In the Scribe system, Tapestry, which is built on top of UDP, can
repair the multicast tree through periodically sending heartbeat messages. Thus, Scribe
guarantees fault tolerant delivery in the presence of failed brokers. Other systems use
a mesh network [26]. The redundancy of a mesh network can guarantee the reliable
delivery when a path is broken due to a faulty broker. Bayeux and Gryphon achieve
reliability in this manner.

2.6 Security

A publish-subscribe system must handle information dissemination across distinct au-
thoritative domains, heterogeneous platforms and a large, dynamic population of pub-
lishers and subscribers. Such environments raise new security concerns[24]. Our dis-
cussion in this section focuses on content-based systems because this kind of system
is more vulnerable to security problems. The key aspects of security can be defined
by example, where the scenario is Alice who sends a message via a publish-subscribe
system to Bob:

� Authentication: Bob wants to make sure Alice sent the message
� Confidentiality: Alice wants to ensure only Bob can read the message
� Integrity: Alice wants to ensure Bob receives the message, and exactly the mes-

sage she sent
� Accountability: Bob wants to prove only Alice could have sent the message

Authentication establishes the identity of the originator of an action. In the case of our
example, Bob wants to ensure Alice is the sender of the message. But content-based
systems allow anonymous subscribers, implying the content should be authenticated
instead of the sender. Public Key Infrastructure (PKI) can be used for this, however,
the overhead of authenticating every message is high.
Confidentiality is the ability to keep others from accessing messages. In traditional
situation, Alice wants only Bob to read the message. But in publish-subscribe systems,
there are different parties involved: a subscriber, a publisher, and servers, the latter of
whom are needed to route the message based on its content. So complete confidentiality
is difficult to obtain. A promising technique for this problem may be computing with
encrypted data[18].
Integrity is the requirement of keeping the message in its original form. For instance,
ensuring that the message Bob received is identical to the one Alice sent. Normally,
cryptography is used to maintain the integrity of information. For publish subscribe
systems there are different integrity problems: Information integrity, subscription in-
tegrity and service integrity.
Accountability can easily be satisfied if explicit addresses are known. For example, if
Bob and Alice know each other, Alice can easily prove only Bob could have got the
message. However, no direct relationship between publisher and subscriber exists in
publish-subscribe systems so it is impossible for a publisher to know which subscribers
can receive the message. One solution for this accountability problem is that publishers
can sell keys to subscribers and with those keys, subscribers can decrypt selected data.
An alternative is to ensure credibility of the publish-subscribe infrastructure.

8

3 Surveyed Publish-Subscribe Systems

In this section, we survey eight existing publish-subscribe systems and discuss them in
the context of the taxonomy developed earlier. Their characteristics are summarized in
Table 1).

3.1 Gryphon

Gryphon [3, 17] is targeted toward the distribution of large volumes of data in real-time
to thousands of clients distributed throughout a large public network. It is a content-
based publish subscribe system with an architecture that we categorize as client-server
model. Events are matched to subscribers using a matching tree that is constructed
in the preprocessing phase. The matching tree consists of nodes that are expressions
evaluated over attributes, and edges that are traversed as a result of the evaluation of
the expression. Each lower-level of the tree is a refinement of the condition evaluated
at the higher level; the leaves of the tree are individual subscriptions. Matching occurs
by traversing the tree starting at the root; at each node, the expression is evaluated and
the edges are followed that are consistent with the result (there is often more than one
edge.) The leaves that are ultimately visited correspond to the subscriptions that match
the event.

Multicast is performed by the link matching algorithm. In this algorithm, brokers
are assembled in a decision tree which an individual broker uses to determine which
subset of its neighbors it should send an event, that is, it determines the subset of links
along which it should transmit the event [17]. Gryphon uses a broker organization
protocol to organize servers into cells for fault tolerant delivery. Servers belonging to
a cell are fully connected. Redundant links are constructed between cells.

Gryphon provides a full suite of security features for client authentication includ-
ing: simple (telnet-like) password, mutual password authentication, asymmetric password-
certificate SSL authentication and symmetric certificate SSL. Clients negotiate an au-
thentication protocol with a server upon connection. Access Control Lists(ACLs) are
used to limit the topics to which an authenticated client may publish messages or sub-
scribe. Both positive and negative access controls may be specified for any region of
the topic hierarchy.

3.2 Scribe

Scribe [6, 22, 21] is a scalable subject-based system. Its fully decentralized architecture
is characterized as generic peer to peer model. It is built on top of Pastry [21], a
generic peer-to-peer object location and routing substrate overlayed on the Internet.
As such, Scribe can leverage Pastry for features such as reliability, fault tolerance and
multicast. Scribe and Pastry are fully decentralized in that all decisions are based on
local information and that each node has identical capabilities. Each node can act as
a publisher, a root of a multicast tree, an subscriber to a topic, a node within a tree,
or any sensible combination thereof [22]. Self organization is the quality where each
node is able to route client requests and interacts with local instances of one or more
applications.

9

Scribe’s matching algorithm is based on numeric keys and nodeIDs. The numeric
key is a number which can be used to identify the topic. Each node in the network has a
unique numeric identifier(nodeId). When presented with a message and a numeric key,
a Pastry node efficiently routes the message to the node with a nodeId that is numeri-
cally closet to the key, among all currently live Pastry nodes. The expected number of
routing steps is O(logN) where N is the number of Pastry nodes in the network. At
each Pastry node along the route that a message takes, the application is notified and
may perform application-specific computations related to the message [21].

Scribe uses group-based multicast algorithm. It creates a multicast tree, rooted at
a rendezvous point, to disseminate the events published in the topic. The rendezvous
point is the node whose nodeId is numerically closest to the numeric key. The multicast
tree is created using a scheme similar to reverse path forwarding. The tree is formed by
joining the Pastry routes from each subscriber to the rendezvous point. Subscriptions
to a topic are managed in a decentralized manner to support large and dynamic sets of
subscribers [6].

In Pastry, each non-leaf node in the tree sends a periodical heartbeat message to
its children. Through these heartbeat messages, a child can detect whether its parent
is live. If it suspects its parent has failed, it will call Pastry to route a Subscribe mes-
sage with the topicId. Then it will get the new parent, thus repairing the multi-cast
tree. Based on Pastry, Scribe can provide fault-tolerance delivery. However, Scribe
just guarantees best-effort delivery. For reliable and ordered delivery events, we need
stronger reliability models on top of Scribe.

Three versions exist for Pastry: FreePastry, SimPastry and Vispastry. FreePastry is
Java based. SimPastry is an implementation of Pastry provided by Mircrosoft Research
and VisPastry means the package of Pastry/Scribe Visualizer which is often included
in the package of SimPastry. But we can get separate version for these two packages
now. SimPastry and VisPastry are C based.

3.3 Bayeux

Bayeux [26] is an efficient application-level multicast system that scales to arbitrarily
large receiver groups while tolerating failures in routers and network links. It is based
on Tapestry [25] which has the decentralized peer-to-peer architecture. Each Tapestry
node can assume the roles of server (which stores and serves objects), router (which
forwards messages), and client (which serves as originator of requests). Its matching
algorithm is very similar to the hashed-suffix mesh mechanisms[20].

It is novel in that it allows messages to locate objects and route to them across
an arbitrarily-sized network, while using a routing map with size logarithmic to the
network name-space at each hop.

Bayeux provides, on top of Tapestry, an application level multicasting protocol
to organize receivers into a multicast tree rooted at the source. The Tapestry unicast
routing underneath provides a natural base for application-level multicasting by for-
warding packets according to suffixes of listener node IDs. A multicast system needs
only to duplicate a packet when the receiver node identifiers become divergent in the
next digit. In addition, the maximum number of hops taken in the overlay network by

10

such a delivery mechanism is bounded by the total number of digits in Tapestry node
IDs.

In Tapestry, each entry in the neighbor map keeps secondary neighbors in addi-
tion to the closest primary neighbor. Leveraging this redundancy, Bayeux can provide
reliable delivery when the primary route broker fails. Tapestry Release 1.0 is now
available, which is java based.

3.4 Siena

Siena [5] is a content-based scalable event-notification service. Its architecture is cate-
gorized as a client-server model in that two types of clients, publishers and subscribers,
exchange messages through a Siena server. Publishers connect to a Siena server to
publish events they want to make the world aware of, and subscribers connect to the
server to establish subscriptions, in which they specify the set of messages they are
interested in receiving. Matching is accomplished at the server with a Binary Decision
Diagram [4], a variation of the matching tree algorithm discussed in Section 2.3.

To use the system, a subscriber must implement a Notifiable interface. Siena deliv-
ers notifications to a subscriber by invoking the notify method on the subscriber object.
’Notifiable’ has two variants for the notify method: notify(Notification n) is called to
notify a single notification, while notify(Notification s[]) is called to notify a sequence
of notifications. Siena’s routing paths for notifications are set at time of subscription.
A new subscription is stored and forwarded from the originating server to all servers
in the network. This forms a tree that connects subscriber with servers. Notifications
are then routed towards the subscriber following the reverse path of the tree. Siena
provides a Java-based version and a C++-based version.

We have an small code example of a publish-subscribe system using Siena system.
We have Interest Generator class as publisher and InterestReceiver class as subscriber.
In that example, subscriber subscribes with the filter of fmake=’Ford’ , year>1999g,
publisher keeps publishing events fmake=’Ford’ , model=’Focus’ , year=2000, color=’read’g,
fmake=’Ford’ , model=’Tauras’ ,year=2001, color=’silver’g, and fmake=’Buick’ , model=’Century’ ,
year=2000, color=’white’g. Subscriber gets events he needs and prints them out. I
used several publishers to sent events to subscriber at the same time to see how fast the
subscriber(receiver) can receive messages.

3.5 NaradaBrokering

NaradaBrokering [12] is a distributed event brokering system for wide area applications
where many distributed cooperating broker nodes are required. NaradaBrokering can
be categorized as a content-based publish subscribe system with a hierarchical topol-
ogy of servers for event dissimenation within a cell and a peer to peer graph between
cells. Matching is accomplished through the construction of a matching tree from the
content of subscriptions. When an event arrives, the matching tree is traversed to lo-
cate matched subscribers. NaradaBrokering provides additional matching engines for:
SQL 92 queries based on the JMS specification and XML attribute-value pairs for topic
subscription. Dissemination is through software multicast.

11

Routing is accomplished through shortest path computations. Every broker, either
targeted or en route to one, computes the shortest path to reach target destinations, con-
sidering only those links and brokers that have not failed or been failure-suspected.[12]
The routing for NaradaBrokering system is near optimal since for every event the tar-
geted set of brokers are usually the only ones involved in dissemination.

A goal of NaradaBrokering is to provide a unified messaging environment that in-
tegrates Grid Services, JMS and JXTA. Additionally, it can serve as a gateway between
centralized systems like JMS compliant implementations and P2P implementations
such as JXTA. Release 0.85 of NaradaBrokering is available. The security framework
of NaradaBrokering is under development. The wire representation of messages is seri-
alized Java objects. NaradaBrokering supports multiple underlying transport protocols
including TCP, UDP, RTP, SSL, and HTTP.

3.6 XMessages

XMessages [23] is a hybrid subject-based and content-based publish-subscribe system.
First it uses lookup table to get the reference of XMessage channel for building the
connection. After that, it can use SQL-like query to filter messages from this channel.
This filtering is based on the content of messages. So XMessage has characteristics
of both systems. Its architecture can be characterized as a client-server graph. Its use
of XML for its data representation format gives XMessages flexibility in platform and
language independence.

XMessages uses a filtering matching algorithm where simpler predicates can be
applied to select attributes of a message while more complex predicates may result
in the execution of an SQL-like query. This matching is similar to JMS matching,
the latter of which uses message selectors based on a subset of SQL92 conditional
expression syntax.

The event listener (subscriber) and publisher can interact with each other directly
through an event channel as is the traditional form of communication in publish-subscribe
system or can communicate with each other via third parties, or agents. For instance,
a publisher can access a listener’s URL to obtain its Remote reference. Then write the
event, or message, to the socket referenced by the remote reference.

XMessages is a reliable event service in the sense that when the network is down
and target nodes are unreachable, the service will automatically keep trying until the
network connection is up and running. Reliability is further enhanced by the mainte-
nance of a message log of messages not yet delivered so that messages are not lost if
they cannot be delivered immediately. Java-based and C++-based APIs are available
for XMessages [23]. XMessages uses SOAP and XML as the wire format. A JMS
Bridge is also available that allows for messages to be exchanged between JMS peers
and the XMessage framework.

3.7 Echo

Echo [8] is also a hybrid of subject-based and content-based event communication sys-
tem. Its architecture we categorize as peer-to-peer graph topology. ECho provides an
efficient lightweight implementation of CORBA-style event channels. Event channels

12

are created by a provider and subscribed by subscribers. The process who creates a
channel is considered the contact point for that channel. Once a channel is created, it is
assigned a unique channelId which includes host name and IP port number of the cre-
ating process. Other processes can use channelId to open this channel. Derived event
channels extend ECho with content-based functionality. A Derived event channel for
some subscriber � is an event channel whose events pass through a user-defined filter
function � on their way from publisher to subscriber �. ECho will take care of moving
the filter function to all the publishers for that channel. The filter is executed locally at
the source. The filter is a side-effect free function that the user writes from a limited C-
style language. the binary code for the function is generated dynamically at the source.
Because ECho is essentially a content-based system, matching is the straightforward
mapping from topics to the IDs of channels providing the topics. In the case of typed
event channels, where a channel is restricted to carrying events of the same format,
matching is accomplished at time of subscription. By inquiring to ECho on a particu-
lar data type, a subscriber can receive a list of channels supporting that particular data
type. This is easier than keeping track of each channel individually.

ECho, which has its roots in DataExchange[10], has efficient event transfer through
binary encoding of data using Portable Binary IO (PBIO)[9].

3.8 JMS

The Java Message Service (JMS) is a vendor-agnostic Java API that allows applciations
to create, send, receive and understand messages. It defines a common set of interfaces
that can be used by different Message-Oriented Middleware (MOM) vendors. In this
sense JMS is analogous to JDBC in that application developers use the same API to
access many different systems. JMS provides two types of messaging models, publish-
subscribe and point-to-point queuing. In publish-subscribe model, JMS uses topics
as intermediaries and as such is a subject-based system. One producer can send a
message to many consumers through a virtual channel called a topic. Publish-subscribe
is a push-based model. JMS can be implemented as Client-Server model, Peer-to-Peer
model or both. Durable subscription is an option for JMS publish-subscribe messaging
model, which allow consumers to disconnect and later reconnect and collect messages
that were published while they were disconnected. There are several implementations
of JMS including IBM MQSeries, Progress SonicMQ, Fiorano FioranoMQ and Sun
JMQ.

4 Conclusion

We have developed a taxonomy for comparing and classifying different publish-subscribe
systems. This taxonomy includes subject-based versus content-based classification,
system architecture, matching algorithm, multicasting algorithm, reliability, and secu-
rity. Based on such a taxonomy, we surveyed several existing publish-subscribe sys-
tems such as IBM Gryphon system, Microsoft Scribe system, Bayeux, Siena, NaradaBro-
kering, XMessages, Echo system, and JMS. We applied our taxonomy to each system,
classified them as topic-based system or content-based system, described their archi-

13

tectures, matching algorithms as well as multicasting algorithms, and also talked about
other features for those sytems.

References

[1] Marcos Kawazoe Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,
and Tushar Deepak Chandra. Matching events in a content-based subscription
system. In Symposium on Principles of Distributed Computing, pages 53–61,
1999.

[2] Mehmet Altinel and Michael J. Franklin. Efficient filtering of XML documents
for selective dissemination of information. In The VLDB Journal, pages 53–64,
2000.

[3] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Storm, and Daniel C. Sturman. An efficient multicast protocol for
content-based publish-subscribe systems. In International Conference on Dis-
tributed Computing Systems, 1999.

[4] Alexis Campailla, Sagar Chaki, Edmund M. Clarke, Somesh Jha, and Helmut
Veith. Efficient filtering in publish-subscribe systems using binary decision. In
International Conference on Software Engineering, pages 443–452, 2001.

[5] Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf. Design and
evaluation of a wide-area event notification service. ACM Transactions on Com-
puter Systems, 19(3):332–383, August 2001.

[6] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.
Scribe: A large-scale and decentralized publish-subscribe infrastructure - prelim-
inary draft submitted for publication.

[7] Greg Eisenhauer. The ECho event delivery system. Technical Report GIT-
CC-99-08, College of Computing, Georgia Institute of Technology, 1999.
http://www.cc.gatech.edu/tech reports.

[8] Greg Eisenhauer, Fabian Bustamente, and Karsten Schwan. Event services for
high performance computing. In Proc. 9th IEEE Intl. High Performance Dis-
tributed Computing (HPDC), Los Alamitos, CA, August 2000. IEEE Computer
Society.

[9] Greg Eisenhauer and Lynn K. Daley. Fast heterogeneous binary data interchange.
In Heterogeneous Computing Workshop (HCW), 2000.

[10] Greg Eisenhauer, Beth (Plale) Schroeder, and Karsten Schwan. Dataexchange:
High performance communication in Distributed Laboratories. Parallel Comput-
ing, 24:1713–1733, 1998. Elsevier, The Netherlands.

[11] P.Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe.

14

[12] Geoffrey Fox and Shrideep Pallickara. An event service to support grid computa-
tional environments. To appear in the Journal of Concurrency and Computation:
Practice and Experience. Special Issue on Grid Computing Environments., 2002.

[13] Gnutella. gnutella.com. 2003.

[14] A. S. Grimshaw, W. A. Wulf, and the Legion Team. The legion vision of a world-
wide virtual computer. Communications of the ACM, 40(1), 1997.

[15] Publish/Subscribe group at Brown University. Publish-subscribe.

[16] Dennis Heimbigner. Adapting publish/subscribe middleware to achieve gnutella-
like functionality. In Selected Areas in Cryptography, pages 176–181, 2001.

[17] Marcos K.Aguilera, Robert E.Strom, Daniel C.Sturman, Mark Astley, and Tushar
D.Chandra. Matching events in a content-based subscription system. In Princi-
ples of Distributed Computing, 1999.

[18] J. Feigenbaum M. Abadi and J. Kilian. On hiding information from an oracle. In
ACM Theory of Computing, pages 195–203, May 1987.

[19] Benjamin Nguyen, Serge Abiteboul, Grégory Cobena, and Mihaı́ Preda. Moni-
toring XML data on the Web. SIGMOD Record (ACM Special Interest Group on
Management of Data), 30(2):437–448, 2001.

[20] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In ACM Symposium on
Parallel Algorithms and Architectures, pages 311–320, 1997.

[21] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218:329–??, 2001.

[22] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. SCRIBE: The design of a large-scale event notification infrastructure. In
Networked Group Communication, pages 30–43, 2001.

[23] Aleksander Slominski, Y. Simmhan, A.L. Rossi, M. Farrellee, and D. Gannon.
Xevents/xmessages: Application events and messaging framework for grid. Tech-
nical report, Indiana University, 2001.

[24] C. Wang, A. Carzaniga, D. Evans, and A. Wolf. Security issues and requirements
in internet-scale publish-subscribe systems.

[25] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-
1141, UC Berkeley, April 2001.

[26] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An archi-
tecture for scalable and fault-tolerant widearea data dissemination, 2001.

15

System Category System
Architecture

Matching Algorithm
Multicasting
Algorithm

Language
Support

Gryphon Content-
based

Client-Server
model

Matching tree Link matching algo-
rithm

Java-based

Scribe Subject-based Peer-to-peer
model

Lookup table Multicast tree

Java-based
(FreePastry)
and C-based
(SimPas-
try/VisPastry)

Bayuex Subject-based Peer-to-peer
model

Lookup table
Hashed-suffix mesh
algorithm Java-based

Siena
Content-
based

Client-server
model

Filtering algorithm
(Binary Decision
Diagrams)

Event notification
service

Java-based
and C++
based

Narada
Content-
based

Client-server
model

Matching tree algo-
rithm

Link matching algo-
rithm

Java-based

XMessage Hybrid Client-server
model

lookup table and
SQL like queries

Event notification
service

Java-based

Echo Hybrid Peer-to-peer
model

lookup table and fil-
ter function

Event notification
service

Java, C++ and
C

Table 1: Table for comparing different publish-subscribe systems

16

A Source Code for publisher
/***************************
Independent study report
summer 2002
directed by Prof. Beth Plale
@author By Ying Liu

***************************/
import siena.*;

class SimpleNotif implements Notifiable {
Siena siena;

public SimpleNotif(Siena s) {
siena = s;

}

public void notify(Notification e) {
System.out.println("local notifiable: " + e.toString());
try {

siena.unsubscribe(this);
} catch (SienaException ex) {

ex.printStackTrace();
}

}

public void notify(Notification [] s) { }
}

//this class will generate three notifications
//and publish these notifications to its receiver server

public class InterestGenerator {
public static void main(String[] args) {

try {
int i;
HierarchicalDispatcher siena;

siena = new HierarchicalDispatcher();

switch(args.length) {
case 1: siena.setMaster(args[0]);
case 0: break;
default:

System.err.println("Usage: InterestGenerator [server-address]");
System.exit(1);

}

Filter f = new Filter();
f.addConstraint("name", Op.ANY, "");

siena.subscribe(f, new SimpleNotif(siena));

try {
for(i=0;i<10;i++){

Notification alert = new Notification();
alert.putAttribute("make", "Ford");
alert.putAttribute("model", "Focus");

17

alert.putAttribute("year", 2000);
alert.putAttribute("color", "red");
siena.publish(alert);
System.out.println("publishing " + alert.toString());

alert.clear();
alert.putAttribute("make", "Ford");
alert.putAttribute("model", "Tauras");
alert.putAttribute("year", 2001);
alert.putAttribute("color", "silver");
siena.publish(alert);
System.out.println("publishing " + alert.toString());

alert.clear();
alert.putAttribute("make", "Buick");
alert.putAttribute("model", "Century");
alert.putAttribute("year", 2000);
alert.putAttribute("color", "White");
siena.publish(alert);
System.out.println("publishing " + alert.toString());

}
} catch (SienaException ex) {

System.err.println("Siena error:" + ex.toString());
}
System.out.println("shutting down.");
siena.shutdown();

} catch (Exception ex) {
ex.printStackTrace();
System.exit(1);

}
};

}

B Source Code for Subscriber

/***************************
Independent study report
summer 2002
directed by Prof. Beth Plale
@author By Ying Liu

***************************/

import siena.*;

//this class will new a filter and subscribe to the siena server
//then it wait for 5 minutes to get notification which satisfies with that filter
//from the siena server

public class InterestReceiver implements Notifiable {
public void notify(Notification e) {

System.out.println("I just got this event:");
System.out.println(e.toString());

};

18

public void notify(Notification [] s) {
}

public static void main(String[] args) {
if(args.length != 1) {

System.err.println("Usage: InterestReceiver <server-address>");
System.exit(1);

}

HierarchicalDispatcher siena;
try {

siena = new HierarchicalDispatcher();
siena.setMaster(args[0]);

Filter f = new Filter();
f.addConstraint("make", "Ford"); // name = "Antonio"
f.addConstraint("year", Op.GT, 1999); // age > 18

InterestReceiver party = new InterestReceiver();

System.out.println("subscribing for " + f.toString());
try {

siena.subscribe(f, party);
try {

Thread.sleep(300000); // sleeps for five minutes
} catch (java.lang.InterruptedException ex) {

System.out.println("interrupted");
}
System.out.println("unsubscribing");
siena.unsubscribe(f, party);

} catch (SienaException ex) {
System.err.println("Siena error:" + ex.toString());

}
System.out.println("shutting down.");
siena.shutdown();
System.exit(0);

} catch (Exception ex) {
ex.printStackTrace();
System.exit(1);

}
};

}

19

