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Abstract Deutsch and Bobrow propose a storage reclamation scheme
for a heap which is a hybrid of garbage collection and reference
counting. The point of the hybrid scheme is to keep track of very
low reference counts between necessary invocation of garbage collec-
tion so that nodes which are allocated and rather quickly abandoned
can be returned to available space, delaying necessity for garbage
collection. We show how such a scheme may be implemented using the
mark bit already required in every node by the garbage collector.
Between garbage collections that bit is used to distinguilsh nodes

with a reference count known to be one. A significant feature of our

scheme is a small cache of references to nodes whose implemented
counts "ought to be higher" which prevents the loss of logical count

information in simple manipulations of uniquely referenced structures.
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Introduction

Deutsch and Bobrow [4] have recently proposed a hybrid stor-
age management scheme which combines the features of garbage collec-
tion and reference counts in order to overcome the problems of. each.
Garbage collection [8 §2.3.5] is a sufficient strategy for recovering
any unused nodes in a heap. One invocation requires time proportional
to the heap size which often disrupts real-time performance of the
program using it since the processor usually is dedicated to garbage
collection at the indeterminate times when it becomes necessary. In
instances where freshly allocated nodes are formed into simple struc-
tures and then quickly released, the overhead per node for recovery
through garbage collection seems expensive in comparison to the
trivial nature of such structures. Reference counts [3] are a scheme
for recovering such space directly and cheaply as soon as it 1is
released. They require extra work at every assignment statement
(discussed below) and they cannot handle generalized circular struct-
tures. Furthermore, they require a count field in every node which
may be smaller than a pointer only if we are willing to allow the
counts to reach a maximum whence they cannot be decreased, with the

result that some nodes enter a state in which they become unrecoverable.



We propose a hybrid system inspired by Deutsch and Bobrow
which uses a very limited reference count scheme to delay invocation
of garbage collection. Ours, however, is motivated by the con-
straints of a heap maintained in main memory. A suitable applica-
tion of such a heap is within a classic LISP [10] implementation
for a mini-computer or for an unpaged multiprocessor with a word
size that restricts a node to two flags and two pointers. It applies
as well to storage management in other languages, just like the
garbage collector of Schorr and Waite [11] which was conceived under
identical constraints. Our hybrid is designed to be conservative
with regard to space without consideration for the problems of
data structures which may be partially resident in secondary memory.
While the transaction file and hashing scheme of Deutsch and
Bobrow [4] may be applied in our scheme, their treatment of
secondary storage 1is inapplicable with the environment envisioned

here.



Reference counts

The main-idea of our system is a one-bit reference count field
which is used between garbage collections to distinguish between
nodes with reference counts known to be one and other nodes in the
heap. We describe relevant algorithms with the idea that this bit
will colincide with the mark bit required in every node by the gar-
bage collector. This assumption implies that some reference count
infprmation may be lost when garbage collections finally occurs -

In compacting the reference count field to the minimum, however, we
reduce the space overhead per node to that of garbage collection
schemes, and in making that bit coincide with the mark bit of gar-
bage collection we achieve the double use of a bit just as Schorr
and Waite [11] used the ATOM bit [8 §2.3.5] in two ways between and

during garbage collections.

Since one bit plays two roles we shall allude to its value in
two non-conflicting ways. As the mark bit within garbage collection
its value determines whether the node containing 1t 1s "marked" or
"unmarked" as béing in use. As the reference count between gar-
bage collections its value will determine whether the number of
references to this node is "one" or "unknown/greater-than-one." It
is convenient in implementations to have the wvalues of the bit for
"unmarked" and "one" coincide in order to simplify the first alloca-
tion of unused nodes, but the equivalence of these values is

immaterial for this discussion.



In any reference count system the nodes with only one refer-
ence are of the most interest to the storage management scheme;
they are the only ones which might be returned to available space.
On creation a node is in this class. Clark and Green point out
something else interesting for an approximation to this class of
nodes in the LISP system they studied [2]: shortly after creation
a node tends to get "nailed down" by more references or (less
frequently) it tends to be "abandoned".¥ Like the scheme of
Deutsch and Bobrow, ours keeps track of nodes allocated between
garbage collections to detect such early abandonment. Nodes which
carry a reference count of more than one can only be recovered
through eventual garbage collection. Immediately abandoned nodes,

however, will be recovered directly and returned to availlable space.

¥Almost all the development of storage management algorithms
is indirectly due to problems of implementing list processing languages,
notably LISP. In this footnote we deal briefly with problems specific
to LISP implementation while the body of the paper is written inde-
pendently of any specific application; a PASCAL heap manager might
use it as well.

Fundamental reference material for this paper [2, 4] deals
specifically with the problems of a "standard" LISP which uses a
sequential stack and "shallow bindings". References from program
variables and the stack are distinguished from user-created structure.
Only the latter are included in the implemented reference counts;
the former are handled separately [4]. The term, "nailed down"
there refers to the creation of a first reference of the latter
sort to a node hitherto only accessible through the former kind
of reference [1]. System behavior or user style results in the
fact that nodes are not always nailled down.

OQur idea of a LISP system [5] does not differentiate between
such references; all logical references are included in some imple-
mented reference count, either in each node or in the cache. The
stack 1is used in an entirely different manner because of output-
driven evaluation [6] and the required "deep bindings"™ [5]. We
anticipate that careful use of continuations [12] will avoid multiple
references to argument structures, so that logical reference counts of
one will indeed be frequent where the "standard" interpreter would
have multiple (redundant) references from the stack. The operation
analagous to "nailing down" a ncde here is adding a second reference,
and we have used that term consistently with the analogy. In the
one-bit reference count scheme, moreover, any second reference

(no longer cached) truely nails down a node since it thereby
becomes irretrievable through reference counting.



Reference Assignments

Under any reference count scheme the expensive operation is
assignment to a reference variable. The node whose address is the
value being assigned gains a new reference, and so its reference
count must be incremented. The node referred to by the former
value loses a reference, (as a side-effect of the assignment of
statement) and so its reference count must be decremented. If the
decremented count is zero then the node (and possibly others indi-
rectly referenced through it) should be returned to available space.
The expense of an assignment under this regime should be correlated
with other works which demonstrate the dangers of assignment state-
ments [5, 7, 15]. Barth [1] has shown how some of this expense may
be avoided.

The one-bit reference count system can only discriminate

between nodes with a reference count of one which are candidates
for immediate recovery and those with unknown/larger counts which
can only be recovered through garbage collection. In order to
make the reference count scheme more effective in delaying gar-
bage collection we propose using a cache to avoid temporary incre-
ments of a node's reference count above one. Such behavior may
occur, for instance, as a result of the assignment r:=f(r) where
r refers to a node whose reference count is one and f is an ele-
mentary function (e.g. a field accessing function) which returns

a new reference to part of the structure hitherto uniquely referenced

from r. Certainly the substructure is irretrievably lost if the struc-
ture referenced by r is dereferenced and destroyed before the refer-
ence count of its substructure, f(r), is incremented. If the refer-
ence count of f(r) is incremented first, however, this reference count
is raised above one and the ability to decrement it back to one during

the subsequent destruction of r is lost.



To avoid the incrementation-decrementation difficulty, we
propose a cache of N references to nodes whose 1lmplemented reference counts
"ought to be two" but are still set to one. We define exactly
two operations on the cache: hit(r) and insert(r). The predicate
hit(r) succeeds precisely when r 1is a reference already in the
cache; a side-effect of the success of hit(r) is the removal of r
from the cache.

An invocation of insert(r) immediately tests hit(r). On suc-
cess (with its side-effect) the reference count in the node refer-
enced by r 1is incremented. (The "ought to be two" becomes "in fact
three;" there is little hope of decrementing three to one before
being bumped from the cache by two "hits.") On failure, r is
added to the cache; if insertion results in an overfull cache,
then some previous entry, p, must be bumped+ and p's reference
count must at last be incremented to "in fact" two. (Henceforth
node p can only be recovered through garbage collection.)

Since the contents of the cache are therefore ephemeral, it
is 1mportant to release references as soon as possible; after the
last use of a reference it is likely to remain in the cache. If
the compller can determine, say through an immediate predominator
analysis [9,1], or if the programmer indicates, say by the assign-
ment of a special constant, that the value of a temporary refer-
ence variable, t , is unnecessary beyond a certain point in the
program, then the reference count effects of releasing that refer-

ence should be initiated there. These may be effected by assigning

Ta reasonable strategy for choosing p 1is least-recently-used.



the null pointer to t, t:=NIL, at that point, but the assignment
itself need not occur if the reference count operations implied by
it are compiled there and just before all immediately following
assignments to t.

These operations are now specified. Consider the evaluation
of the reference assignment r:=e, where r+4+ is the node to which the
variable r refers just prior to the evaluation of the assignment
and et is the node to which the value of the expression e points.
First, the expression e 1is evaluated to that value. If e4 has a
reference count unknown/greater-than-one or if it has been freshly
allocated from availlable space then nothing else is done at this
first step. If, however, et is a pre-existing node with reference
count of one, insert(e) is invoked implicitly incrementing the refer-
ence count of et in anticipation of the new reference to be created
by the assignment. The second step releases the reference to r+
by sending it and its infrastructure to the "recycling center" des-
cribed below. If r=NIL this second step is trivial. The third

and final step is to store the value of ¢ in r



Recycling

The recycling center 1s an in-place traversal of the node r+
and its infrastructure as long as reference counts are found to be
one. No node with unknown/greater-than-one reference count is pro-
cessed. If the cache is empty then all of the uniquely referenced
structure will be returned to available space. However, as long as
one reference remains in the cache every recyclable (reference count
one) node is handled individually as it is encountered. Before such
a node is treated at all, however, hit is invoked. When hit is
successful the cache entry is removed by side-effect, the traver-
sal goes no deeper, and the node is not returned to available
space. That node's implemented reference count "ought to have been twobut
its discovery in the recycling center cancels its first reference.
Its actual reference count of one therefore becomes correct when the
"owed" count, the cache entry, is cancelled. In this way actual
setting of reference counts above one, whence they cannot be decre-
mented, is avoided.

The necessity to apply the hit function repeatedly for each
recyclable node requires that the entire cache be cheaply accessible.
We intend it to be maintained in high-speed registers with the under-
standing that N will therefore be small. On microprogrammable

machines hit, insert, and perhaps the reference assignment should

be performed close to the hardware level.
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Implementation Options

This completes the explanation of a reference assignment in
our system. Some observations on implementation are appropriate.
The first i1s the impact of different values of N and the second is
a possible curtailing of the recycling traversal when the cache
becomes empty.

The value of N depends on the system. N being one is suf-
ficient for avoiding reference count increments over the assignments
like r:=f(r) as discussed before; such assignments are common in
compiled images of purely applicative code [12]. 1In hand written
iterative code statement sequences like r:=f(s); s:=g(t); t:=h(u)
are common [8 p. 257]. N should be two in interpreting such code in

order to avoilid premature increments of the reference counts in s

‘and t.. In the midst of the second assignment the cache would con-
tain the values of f(s) and g(t); completion of that assignment would
leave only g(t) in the cache.

The choice of N indirectly affects another design option.
When the cache is empty it is possible to return a dereferenced
structure to the available space 1list without traversing it entirely
using a trick due to Weizenbaum [13] which allows the available
space list to have infrastructure. The traversal 1s no longer neces-
sary since there are no "owed" references in the cache to be recon-
ciled. The choice of a small N, like one, increases the likeli-
hood that the cache will be empty and increases the usefulness of

the trick described below.
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Let us first accept the convention that the available space
list is linked via the "A-field" of every node (at its top level).
Nodes returned individually to this list will have NIL in all fields
other than the ﬁ—field and gg any node is removed from this list
(to be allocated) even its A-field will be set to NIL. Under this
convention no spurious references remain in a freshly allocated
node when its various fields are initialized.

If the cache is empty, then a structure to be recycled may be
spliced onto the available space list at the first non-unique refer-

ence encountered on a linear traversal via A-fields. That is, it

is sufficient to traverse only the A-fields in the recycled struc-
ture until a node is encountered with reference count unknown/greater-
than-one. The reference to available space is exchanged with the
reference to that node and then with the reference to the recycled
structure itself. The structure thereby spliced to the front of
available space may have non-null fields aside from the A-field,
so the available space list may have infrastructure. When such
nodes are allocated (into a new incarnation) only the A-field will
certainly be NIL; other archaic references will travel along with
it. When these other fields are subjected to an initializing
assignment, however, their former contents (from their last incar-
nation) will be inspected and, if found to have reference count

one, will be released for recycling.
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If Weizenbaum's trick is not used then the explicit "cleansing"
of a node individually returned to available space, which guarantees
that all fields will be NIL at the start of its next Incarnation,
is not necessary. In this case, the 1nitial assignments within
a new incarnation are not treated like general assignments. Former
values in such fields must be ignored on these initial assignments
and the contents of any node on the linear available space list is

immaterial except for the A-field used to l1link it.
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The Garbage Collector

The garbage collector is invoked when available space 1is
exhausted [11]. Before it traverses all structures in use it must
initialize all mark bits inthe system to their "unmarked" set-—
ting. If these bits are the same as the one-bit reference counts,
then reference counts are lost. The loss of information due to the
obliteration of "one" reference counts is not ultimately fatal
since all useless nodes are recoverable in a garbage collection.

On the assumption that the garbage collection is rela-
tively successful at reclaiming space there will be plenty of
opportunity for the reference count scheme to get going again and

plenty of "abandoned" nodes for it to recycle before garbage
collection is needed again.

The gérbage collection uses a standard marking algorithm
[ 8 §2.3.5] followed by a sweep phase. If a two-pass compaction
algorithm [ 8 §82.3.5-9] replaces the sweep phase then "one" refer-
ence counts may be easily restored in the nodes which are moved. Nodes
which are relocated in the first phase of the compacting algorithm
must have all references to their former addresses reconciled in
tle second phase, a traversal of all active references in

the system. In the relocation phase the contents of the former
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address (previously two pointers and two flags) are established
as a forwarding address and as a zeroced two-bit reference count,
and the repositioned node is established with its reference count
initially set to one. During the traversal of active references
a count of forwarded references (zero, eventually one, perhaps
greater-than-one) is kept in the former location of a relocated
node. If and when a second reference is forwarded, the reference
count in the new location 1s reset to greater-than-one; such a
reset is necessary at most once for each relocated node. Refer-
ence counts of one may thus be restored even though these nodes
being relocated by compacting garbage collection had a far higher
logical reference count temporarily in the past. The garbage
collector can, therefore, assist the reference count scheme by
restoring accuracy after a count had reached its "infinity."

Regardless of whether or not compaction 1is used, the cache
contains information for restoring reference counts of "one," which
"ought to be two" in at most N nodes. Nodes referenced from the
cache should have their reference counts restored to "one."

If a linked list of available space is built during the sweep
phase of garbage collection then it must have the required form of
a linear available space list. If Weilzenbaum's trick for rapid
recycling is used then all fields but that linking the available
space 1list should be NIL. It is convenlent to preset the reference
counts in these nodes to "one" in anticipation of their ultimate
allocation. Since these are the nodes "unmarked" after the mark-
ing phase, the equivalence of the one-bit values for "unmarked"

and "one" becomes a convenience for implementing our scheme.



Conclusion

While the problems of storage management originated in 1list
processing languages like LISP which use the heap for nearly every
user and program structure, they are also relevant to compilable
languages like PASCAL [14,1] whose programs use the heap rarely and
explicitly. We have described a hybrid storage management scheme
which 1is useful for implementations of either type of language.

We assume only that there is one bit per node for use by the stor-
age management scheme and that the entire heap is resident in main
memory. In general the scheme is a garbage collection scheme with
the "bells and whistles" of a limited reference count scheme working
between garbage collections to delay the exhaustion of available
space like Deutsch's and Bobrow's [4 ].

Aside from the space efficiency gained by the dual use of the
one-bit mark/count field in every node, the subtlety in our system
rests in the cache which maintains virtual increments to reference
counts, delaying the increment of physical counts to their maximum,
non-reducible value. Since that maximum is so low, 1.e. two, our
system would collapse without it. With the cache we have the oppor-
tunity to maintain accurate reference counts of one across common
sorts of pointer assignment statements. This allows a good oppor-
tunity of following a uniquely referenced node from its allocation
to its abandonment through many changes in the source of its
reference.

Since the cache contents are ephemeral it is necessary to

traverse abandoned structures as soon as possible in order to make
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the best use of information in the cache which has local relevance,
before it is displaced as a result of more remote--and less rele-
vant--reference assignments. If the reference count field were
a blt larger, then temporary second and third references to a node
would not overflow the reference count so that the cache and the
immediate traversal of released structures would be unnecessary.
The hybrid scheme described by Deutsch and Bobrow [4], which
in fact inspired our scheme, can recover all the space that ours
can without the immediate and thorough traversals required by the
cache. Their design is motivated by the rigors of a paged system
where traversals must be controlled and space for their transaction
file is no problem. Our scheme is motivated by the constraints
of a heap resident in main memory, like PASCAL's or as in the classic
"deep binding" implementations of LISP. It is particularly
sulted to a micro-processor environment where the register size is
a constraint on the address space. If the memory size is 2l6 words
of 16 bits, then our system allows a hybrid storage management
scheme for a LISP system of 215 nodes containing two references:

CAR and CDR, and two bits: the ATOM/Schorr-Waite bit and the

reference-count/MARK bit. Such constraints are typical in general

purpose minicomputers and in special purpose desk-top calculators.
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Postscript: In a recent paper [ 5 ] we made the observation that

a type of frequently created node, called a suspension, is always
referenced uniquely. It has the additional property that every use
of such a node results in its abandonment. The implication of that
observation was that after use of a suspension it should be

returned to available space. Had we not made that observation, or
had it been ignored in implementing the system described there, this
hybrid storage manager would bring the impact of that (obscure, as
colleagues later told us) observation into the system implicitly

We were attempting to anticipate the garbage collector by recover-
ing these nodes immediately after their use -- just as the hybrid

storage management scheme does automatically.

4. —_—
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of the manuscript.
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