
Real time response to streaming data on

Linux clusters

Beth Plale1, George Turner2, and Akshay Sharma1
1 Computer Science Department, Indiana University
2 University Information Technology Services, Indiana University

Computer Science Department Technical Report TR-569�

November, 2002

Abstract

Beowulf-style cluster computers which have traditionally served batch jobs
via resource managers such as Portable Batch System (PBS) are now under
pressure from the scienti�c community to support real time response to data
stream applications. That is, applications supporting events streamed from
remote sensors or instruments at high rates. Cluster management must
be agile and timely in its response to resource demands prompted by the
unpredictable occurrence of real-world events.

Streaming applications di�er in fundamental ways from interactive ap-
plications. While solutions exist to support interactive applications, the
solutions are not well suited to streaming applications. In this paper we
experimentally evaluate two approaches to supporting streaming applica-
tions on Linux clusters. Both are coexistence schemes, that is, streaming
applications share nodes with traditional batch jobs on nodes scheduled by
a batch job manager. One approach works with the batch job manager
(i.e., PBS) to reallocate computational resources to meet the needs of real
time data analysis. The second approach works outside of PBS utilizing
Linux real time scheduling features. We also introduce a software architec-
ture for streaming applications that we developed. Its purpose is a general
reusable software structure for IU scientists requiring streaming solutions
for acquisition of resources necessary for real time stream analysis.

�Supported in part by the National Science Foundation under Grant No. 0116050

1



1 Introduction

Beowulf-style clusters have traditionally used resource managers such as
PBS Pro [11] to optimize the utilization of a cluster's resources, to ensure
fairness among users, and to maximize cluster throughput. Today there is a
growing need for these clusters to be responsive to non-deterministic event
driven data streams occurring in applications we refer to as streaming ap-
plications [10, 8, 1, 2]. Streaming applications di�er from event-driven (i.e.,
interactive) applications in their high event generation rates, and near ab-
sence of human interaction. Event-driven applications respond to frequent
user input, and are evaluated in terms of human response times. Stream-
ing applications, on the other hand, respond to timestamped events owing
from sensors, scienti�c instruments, or to a lesser degree users, and are eval-
uated based on their responsiveness to remote complex, scienti�c events.

Administrators of large-scale production clusters have workable tech-
niques to support interactive jobs. One site administrator we spoke with
approaches the problem by partitioning o� a small fraction of nodes that
are dedicated to interactive use. A second we spoke to makes a set of nodes
available to PBS for 12 hours out of the 24 hour day. The remaining 12
(daylight) hours are for interactive use. The latter approach has the ad-
vantage over the former in that by leveraging the known diurnal pattern of
human usage [4], the cluster can provide higher batch production capacity
during times when interactivity is likely to be low anyway.

Streaming applications interact with, and must be responsive to, the
needs of a remote entity. This is no di�erent from an interactive appli-
cation. But whereas for an interactive application the remote entity is a
human, for the streaming application the remote entity is a complex event
such as a thunderstorm, or ood. As natural events have shown no propen-
sity toward honoring human slumber times by occurring during waking
hours, accommodating streaming applications using a strategy based on
the diurnal pattern of human usage is ine�ectual. For the small number
of streaming applications we envision having to support, the �rst approach
of dedicated nodes will likely result in unacceptably high levels of idle re-
sources. Our work explores other approaches to managing streaming jobs
in a batch scheduled production cluster.

We base our solution on the idea of coexistence as a means to support
streaming applications in batch clusters. In a coexistence scheme, streaming
jobs coexist with batch jobs on production cluster nodes that are schedu-
lable for batch jobs. That is, the streaming jobs use the same set of nodes
as the batch jobs. The approach o�ers the bene�t that no nodes need be
permanently or cyclically removed from the scheduling pool as is the case
in the interactive schemes. A coexistence scheme, however, has potential
drawbacks for both streaming jobs and batch jobs. Response latency is
a key metric for evaluating performance of a streaming application. Re-
sponse latency is the time between when a complex event occurs and when

2



a response is initiated at the remote site. Response latency will su�er if
initiating a response requires lengthy setup time for amassing necessary re-
sources. The second drawback is a potential loss of throughput for both the
streaming applications and the batch job manager when both must coexist
on cluster nodes.

This paper examines two approaches to supporting streaming applica-
tions on a Linux production-oriented batch cluster. Both are coexistence
schemes, that is, they allow the streaming application to use nodes that
are controlled by a resource manager such as PBS. Our �rst approach is to
work within the PBS domain to allocate resources and provide job startup
services in response to the detection of developing real-world phenomenon.
The second approach explores a 'bullying' relationship with PBS in which
the real time scheduling features of the Linux kernel are utilized to preempt
resources already allocated by PBS. The �rst contributions of the paper is
an experimental evaluation of response response latency. We are currently
evaluating the long-term implications of coexistence on both streaming and
batch jobs. The second contribution is a software architecture for stream-
ing applications. Its purpose is a general reusable software structure for our
scientists in need of streaming solutions.

2 Motivation

An atmospheric scientist at Indiana University (IU) studies atmosphere-
surface exchange of trace chemicals such as CO2, water, and energy from a
variety of ecosystems. These atmospheric ux measurements generate large
streams of data; sensors operating at rates up to 10 Hz can generate data
at rates of hundreds of MB/day/sensor. The remote sensors use wireless
802.11b to communicate to a central computer remotely located within the
Morgan Monroe State Forest north of IU. The remote computer is connected
to the IU campus network via a radio link having a bandwidth of roughly 4.3
Mbits/second. Under normal operation the data from the remote sensors are
collected at the remote site and streamed to IU at a nominal rate of 1-3 Hz.
At IU the event data are analyzed for particular meteorological conditions.
An appropriate response to the detection of a meteorological condition is
to increase the event rate to 10Hz and to enlist additional additional CPU
cycles to handle high �delity analysis for the duration of the meteorological
condition.

This work is being carried out on the prototype AVIDD (Analyzing and
Visualizing Instrument Driven Data) cluster called proto-AVIDD located
at the Bloomington campus of Indiana University. The prototype cluster
consists of �ve dual Pentium-IV Xeon nodes, two Itaniuim dual processor
IA64 nodes, and a RAID-5 �le system NFS served internally to the cluster.
Proto-AVIDD runs RedHat 7.2 with cluster management tools provided by
Oscar 1.2 [5]. Proto-AVIDD is a testbed cluster used to study the issues of

3



interactive and stream data analysis in a production-level Linux cluster.
The production AVIDD cluster is a geographically distributed data anal-

ysis cluster sited at three of the IU campuses: Bloomington (IU), Indianapo-
lis (IUPUI), and Gary (IUN). Due to ongoing vendor negotiations, an ex-
plicit description of the AVIDD cluster is not possible at this time; however,
it is expect to be in the range of 0.5 { 1 TFOPS aggregate, 6 TBytes of dis-
tributed cluster storage and will leverage IU's existing HPSS based massive
data storage system. Local intra-cluster networking will be provided by a
Myrinet fabric with the inter-cluster networking utilizing Indiana's 1 Tb/s
I-Light infrastructure. AVIDD is expected to be operational late Fall, 2002.

3 Approach

Streaming applications encompass a broad range of functionality including
performance monitoring [7, 6], remote visualization [3], and stream �lter-
ing [9]. The streaming applications we target in this work di�er from these
other types of streaming applications because, unlike the others, they meet
the following three criteria. That is, the

� Response is resource intense { requires a signi�cant allocation of re-
sources such as CPU cycles, network bandwidth, and I/O,

� Occurrence of complex conditions (e.g., tornado) is sporadic and un-
predictable, and

� Duration of complex condition is limited.

It is these conditions that make a coexistence scheme both possible and nec-
essary. For instance, a complex event that is predictable could be scheduled
using the batch management system. A complex event that occurs fre-
quently and/or lasts for days or weeks would consume too many resources,
causing a signi�cant negative impact on batch management system through-
put.

The software architecture we developed to support streaming applica-
tions on an HPC cluster is shown in Figure 1. It consists of four components:
a client at the remote location, shown in the lower left, that streams events
from the remote sensors or instruments; a server resident on the cluster that
looks for interesting conditions, an event cache to save incoming events, and
worker tasks that are kicked o� in response to detection of a complex, sci-
enti�c event.

The usage scenario is as follows. Under normal, non-eventful conditions,
the remote client pushes low resolution data to the server at a low frequency.
The server, resident on a dedicated communications node within the AVIDD
cluster, monitors the stream using an application-speci�c algorithm to de-
termine when an interesting condition is developing. All events it receives
are written to the event cache. When an interesting condition occurs, a me-
teorological event for instance, the event detection server responds with two
actions. The �rst is to send a message to the remote client. The directive is

4



application speci�c, but generally involves commanding it take to recon�g-
ure its sensor system for higher �delity data acquisition. This is shown in
the �gure as Step 1. The second is to enlist additional resources within the
cluster to process the higher �delity streams. This is Step 2 in the �gure.
Once a worker task becomes active, it receives the data stream from the
remote source. Parallelization of computation among the worker tasks and
of the data stream is application dependent so is not discussed here. One
could envision parallelization of the 2D grid by a spatial decomposition;
streaming could be multicast.

The event cache exists as a �le managed by NFS and resident on a storage
server with fast, uniform connectivity to the cluster nodes. The event cache
provides historical trace for the worker nodes should they need access to
events that arrive before the worker is running. The �le implementation
achieves the real time sharing, though we are currently optimizing this part
of the system for more e�cient, synchronized �le access.

We explore two variations of coexistence whereupon streaming applica-
tions and batch jobs can coexist on PBS scheduled nodes of the AVIDD
cluster. The key metrics in evaluating di�erent approaches are minimized
latency, and acceptable levels of degradation for batch job throughput. This
paper presents a quantitative evaluation of response latency for the coex-
istence approaches. The long running tests required to assess acceptable
levels of degradation are part of our ongoing work. Our �rst coexistence
scheme works within the PBS domain to allocate resources and provide
job startup services in response to the detection of developing real-world
phenomenon. The second approach explores a 'bullying' relationship with
PBS in which the real time scheduling features of the Linux kernel are uti-
lized to preempt resources already allocated by PBS. Both approaches will
clearly have a strong negative impact on throughput of batch jobs if the
worker tasks are long running. But recall that a de�ning characteristic of
the streaming applications we support is the infrequency of interesting con-
ditions, and the �nite, limited duration over which the condition persists.
Longer conditions, such as hurricanes or ood, would have to be dealt with
as a special case. The approaches are discussed in detail in the following
subsections.

3.1 Startup Within Context of PBS

Resource managers such as PBS have a coherent global view of a cluster's
state. They also have the tools necessary to stop, start, and signal jobs
running under their control. It would appear to be a natural choice to use a
resource manager's preexisting infrastructure to implement cluster resource
reallocation. This approach works as follows for the architecture shown in
Figure 1; the event detection server runs outside of PBS control on a dedi-
cated communications node of the AVIDD cluster. When a meteorological
condition is detected, the server submits a job to PBS using either the Qsub

5



sampling

worker1
processing
fidelity 
kick off high

response #2 

activate higher−resolution

gathering
data
remote

metrological
sensors

high
fidelity

high

streams

fidelity
worker2

high
fidelity
worker3

data

response #1

event
cache

meterological
events

AVIDD cluster

detection
server

event

Figure 1: Data stream processing response to application event of interest.

command line call or the pbs submit library call. Results for the former is
given in Section 4.

The job description passed to PBS includes a count of the number of
worker tasks to spawn. The job is submitted to a queue having a high
priority (of 150). The workers retrieve connection information about the
remote client from the startup script. PBS preemption is enabled so that
when a worker is scheduled to a machine, it preempts existing jobs on the
machine for the duration of the worker task.

3.2 Linux Real-time Scheduling Startup

The second coexistence scheme bypasses PBS, and on PBS scheduled nodes
starts the worker process as real time tasks using Linux real time scheduling
features. Scheduling the worker tasks as real time processes ensures that
the kernel scheduler will schedule the tasks on CPUs as soon as they are
computable. Resources already in use by an existing PBS batch job would
only be consumed as needed. For example, memory previously used by
the PBS job would be swapped out only as needed. This works as follows
for our architecture: as in the case described above, the event detection
server resides on a dedicated communications node. When a meteorological
condition occurs, the server forks worker tasks using rsh or ssh (both are
evaluated in Section 4), passing connection information about the remote
client in the command line.

6



The worker thread issues a call to a resident root owned process that
issues a sched setscheduler command to elevate the priority of the vali-
dated caller and changes the scheduling policy to SCHED FIFO. Linux's
real time support is intended to serve tasks that should not be blocked by
lower-priority processes; require short response time, and require a response
time with minimum variance. The demands imposed upon the worker task
of serving the incoming event stream while simultaneously executing com-
putationally intense functions over the events make it a suitable candidate
for real time support. Linux real time support is not intended for hard
real time applications because the kernel is non preemptive. As in the PBS
approach described above, the viability of the approach in a coexistence
setting depends upon the short-lived behavior of the worker processes.

4 Experimental Evaluation

We undertook an experimental evaluation of response latency for the stream-
ing application illustrated in Figure 1 under several conditions for both co-
existence schemes. Response latency is the time from when a complex event
occurs until a response is generated at the monitoring entity. 1 The �rst
scheme, in which we work within the PBS context to allocate resources and
provide job startup services, is referred to in this section as 'PBS'. The
second, in which the real time scheduling features of the Linux kernel are
utilized to preempt resources, is referred to as 'Linux real time'.

The environment in which we conducted the experiments is depicted in
Figure 2. The event detection server and worker processes run on the �ve
IA32 nodes of the proto-AVIDD cluster. Proto-AVIDD is located in a build-
ing on the Indiana University campus that houses campus-wide resources
managed by UITS, University Information Technology Services. The event
cache resides as a �le managed by NFS and resident on a storage server.
The experiment was conducted for three remote clients, one located at the
Morgan Monroe State Forest (MMSF), connected to IU by a radio link
(the bandwidth from the remote host to the Avidd cluster is roughly 4.3
Mbits/sec as measured by Iperf 1.6.2.) The other is located in the Com-
puter Science Dept at IU. The latter's connection to the Avidd cluster is
measured at roughly 94.1 Mbits/sec. The �nal has gigabit Ethernet WAN
connectivity to the AVIDD communication node.

We measured startup latency under the two coexistence schemes dis-
cussed earlier, 'PBS' and 'Linux real time'. Within each scheme we tested
variations. A list of tested combinations is as follows:

� PBS/Qsub: submitting via PBS using Qsub command line interface,
no running jobs

1Since a complex event may only be detectable by a global view over distributed

sources, we say a complex event occurs when it is �rst detected at the event detection

server.

7



client
sensor

event
cache

4.3 Mbits/sec (Iperf)

worker 2 worker 4

communication node

client
sensor

remote

remote

metrological
sensors

worker 1

94.1 Mbits/sec (Iperf)

MMSF located

avidd32−03

node)

worker 3

AVIDD cluster

dedicated

avidd32−01 avidd32−02 avidd32−04

IU Computer Science machine

94.1 Mbits/sec (Iperf)

(or 4.3 Mbits/sec
if over radio 
link to MMSF

server
detection
event

Figure 2: Experiment setup.

� PBS/Qsub/preempt: Qsub interface, running PBS jobs exist on worker
processors that are preempted by PBS

� Linux real time/rsh: Linux real time scheduling and rsh
� Linux real time/ssh: Linux real time scheduling and ssh

In the two PBS cases, the event detection server works with PBS, and
using a high priority PBS queue to start up the worker processes. The
second two cases use either RSH or SSH for startup by the event detection
server of the worker processes. In all four cases, the protocol used between
the remote client and the Avidd cluster is SSH.

Startup latency is a broad measure. To better understand where the

Timestamp De�nition

t0 condition �rst detected at server, determined from low rate data

t1 server receives �rst 'high rate' event from remote source

t2 worker 'up and ready', that is,
ready to open socket connection back to remote client.

t3 worker receives �rst 'high rate' data event.

Table 1: Time instances of interest.

8



Interval De�nition

ft1 � t0g interval between when condition detected,
and server receives �rst high rate event.

ft2 � t0g startup time for set of workers

ft3 � t2g worker feedback loop: interval between when worker ready to
receive high rate event, and when �rst high rate event received

Table 2: Intervals of interest.

time is spent, we break latency down into component time intervals that are
de�ned in Tables 1 and 2. The timing results for these individual intervals
under the four cases described above appear in Tables 3 and 4.

Interval PBS/Qsub LAN (sec) PBS/Qsub remote (MMSF) (sec)

ft1 � t0g 0.008414 � 0.001685 0.022217 � 0.004000

ft2 � t0g 1.264183 � 0.463738 1.265159 � 0.490130

ft3 � t2g 0.003163 � 0.006258 0.088769 � 0.182738

Table 3: PBS cases: latency to 'turn up' stream ft1� t0g, latency to worker
startup ft2 � t0g, and worker startup delay ft3 � t2g.

Interval ssh MAN (CS dept) (sec) rsh MAN (CS dept) (sec)

ft1 � t0g 0.053161 � 0.001464 0.056945 � 0.000361

ft2 � t0g 0.757201 � 0.017996 0.0573517 � 0.000181

ft3 � t2g 0.012534 � 0.006820 0.013329 � 0.006804

Table 4: Linux real time cases: latency to 'turn up' stream ft1�t0g, latency
to worker startup ft2 � t0g, and worker startup delay ft3 � t2g.

Table 3 shows the PBS case. The case of 'PBS/Qsub LAN' has the
remote client resident on a machine with a LAN gigabit connection to the
Avidd cluster. 'PBS/Qsub MMSF' is the slow 4.3 Mbits/sec radio link. It
can be seen that the low bandwidth penalizes the MMSF during the �rst and
last intervals where the high �delity stream must be turned on, and where
the worker must delay in waiting for its �rst high �delity event. Worker
startup, the second interval, is the time it takes to start a worker through
PBS channels on an unloaded node. The time is roughly 100 milliseconds
longer if two PBS jobs exist on each of the four dual-processor nodes that
had to be preempted. As can be seen by in comparing Tables 3 and 4, worker
startup dominates total response latency. It can also be seen that PBS is
costlier than either ssh or rsh. Table 4 shows results for ssh (on the left) and
rsh (on the right) cases. In both cases, the remote client is hosted on the

9



remote machine having a relatively fast (94.1 Mbits/sec) MAN connection
to the Avidd cluster.

As can be seen by comparing the LAN and MAN numbers, available
bandwidth obviously matters. Startup time is noticeably less in the rsh/ssh
case. The advantage of rsh over ssh during worker startup, t2 � t0, is due
to the absence of key generation that ssh must undertake.

High rate event �rst detected Response initiated
at server ft1 � t0g (sec) by worker ft3 � t0g (sec)

PBS LAN (local) 0.008414 1.267346

PBS remote (MMSF) 0.022217 1.353928

rsh MAN 0.056945 0.070681

ssh MAN 0.053161 0.769735

Table 5: Response latencies for condition detection, and initiation of re-
sponse

The experiment is summarized in Table 5. The values in the �rst column
of numbers give an indication of the amount of time the event server must
wait after detecting a complex condition before it receives the �rst high
rate event. If a severe thunderstorm is detected in the Morgan Monroe
State Forest, it will take anywhere between 6 ms and 56 ms before the
server receives the �rst high resolution event on which it can crunch. The
second column of numbers give an indication of the amount of time that
passes between when a complex condition is detected and when a worker
can begin the computationally intense processing on the high �delity stream.
Our results show that a response can begin as early as 70 ms after detection
when rsh is employed for remote start up of the worker processes.

Rsh/ssh are shown to be superior in reducing startup latency for data
driven applications. But startup latency is only one of the relevant metrics
by which performance is measured. In ongoing work below, we discuss
additional metrics.

5 Conclusion

We have addressed the problem of supporting streaming applications on pro-
duction clusters. We identi�ed characteristics of the streaming applications
that make traditional approaches for supporting interactive applications not
applicable. We identi�ed two schemes for supporting streaming applications
based on coexistence, that is, the ability of streaming tasks and batch jobs
to share the same set of nodes. We identi�ed a set of restrictions on the
type of streaming applications we support to make coexistence feasible.

We undertook the experimental evaluation of a key metric for streaming
applications: response latency. That is, the time between when a complex

10



event occurs and when it is detected and responded to at the cluster. We
evaluated response latency with multiple variations within each of the two
coexistence schemes. Current work includes evaluating a second important
metric, that is, the long running impact to both batch job throughput and
streaming application performance. Finally we are exploring scalability,
particularly in number of workers. We suspect response latency numbers
are sensitive to scalability. For instance, the PBS/Qsub/preempt time will
likely grow exponentially with number of nodes and number of existing jobs.

6 Acknowledgments

We would like to take the opportunity to thank Randy Bramley for his
helpful comments on an earlier version of this paper.

References

[1] Shivnath Babu and Jennifer Widom. Continuous queries over data
streams. In International Conference on Management of Data (SIG-
MOD), 2001.

[2] Fabi�an E. Bustamante and Karsten Schwan. Active I/O streams for
heterogeneous high performance computing. In Parallel Computing
(ParCo) 99, Delft, The Netherlands, August 1999.

[3] Ian Foster, Joseph Insley, Gregor von Laszewski, Carl Kesselman, and
Marcus Thiebaux. Distance visualization: Data exploration on the
grid. Computer, 32(12):36{43, December 1999.

[4] Steven Gribble and Eric Brewer. System design issues for internet
middleware services: deductions from a large client trace. In USENIX
Symposium on Internet Technologies and Systems, 1997.

[5] Open Cluster Group. OSCAR: Open source cluster application re-
sources. 2002.

[6] Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Je�rey Vetter.
Falcon: On-line monitoring for steering parallel programs. Concur-
rency: Practice and Experience, 10(9):699{736, Aug. 1998.

[7] Dan Gunter, Brian Tierney, Brian Crowley, Keith Jackson, Jason Lee,
and Martin Stoufer. Dynamic monitoring of high-performance dis-
tributed applications. In Proc. 11th IEEE Intl. High Performance Dis-
tributed Computing (HPDC), Los Alamitos, CA, August 2002. IEEE
Computer Society.

11



[8] Sam Madden and Michael J. Franklin. Fjording the stream: An archi-
tecture for queries over streaming sensor data. In International Con-
ference on Data Engineering ICDE, 2002.

[9] Beth Plale. Leveraging run time knowledge about event rates
to improve memory utilization in wide area data stream �ltering.
In Proc. 11th IEEE Intl. High Performance Distributed Computing
(HPDC), Los Alamitos, CA, August 2002. IEEE Computer Society.

[10] Beth Plale and Karsten Schwan. dQUOB: Managing large data ows
using dynamic embedded queries. In Proc. 9th IEEE Intl. High Per-
formance Distributed Computing (HPDC), Los Alamitos, CA, August
2000. IEEE Computer Society.

[11] PBS Pro. Portable Batch System. http://www.pbspro.com/, 2002.

12


