MATRIX FACTORIZATION USING A
BLOCK-RECURSIVE STRUCTURE AND
BLOCK-RECURSIVE ALGORITHMS

Jeremy D. Frens

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the Department of Computer Science

Indiana University

August 2002



Accepted by the Graduate Faculty, Indiana University, in partial ful-

fillment of the requirements of the degree of Doctor of Philosophy.

Doctoral Committee

May 22, 2002

David S. Wise
(Principal Advisor)

Randall Bramley

Dennis Gannon

Daniel Maki

i



Acknowledgements

This work was supported, in part, by the National Science Foundation under
grant number CDA93-03189 and by the U.S. Department of Education under grant
numbered P200A50237.

I first thank the members of my committee for helping me through this disserta-
tion. Thanks especially to my advisor David S. Wise for all of his help and encour-
agement. Thanks to the other members of the committee, Randy Bramley, Dennis
Gannon, and Daniel Maki, who had to stretch their memories to recall who I was
when I started scheduling my defense. A special thanks to Randy who reminded me

exactly what I needed to do.

For technical assistance, my thanks to Bruce Shei who helped me many times when
I had problems with and questions about the various machines. Without Bruce, this
dissertation wouldn’t be here. Also, thanks to Greg Alexander who wrote a library
for parallel dispatch system for quadtree matrices. I'm not sure what I would have

done without that library.

Thanks also to all of my colleagues at both Northwestern College and Calvin Col-
lege. Thanks for the support and encouragement that everyone from both institutions

gave me.

il



My friends in Bloomington, Orange City, and Grand Rapids also deserve a lot
of thanks. Those I knew in Bloomington: Dave Wilson for agreeing to room with
me for three years; Kyle and Amy Wagner for their friendship and spaghetti nights;
Peter Weingartner, Eric Hilsdale, and Susan Lato for their friendships and tollerance
of lengthy discussions, usually about nothing; and all of my other friends at IU who
aren’t listed here. Those I knew in Orange City: Jeff and Jana Boersma who were
familiar faces from a previous era; Mark Vellinga who was an excellent colleague; and
all of the students I knew at Northwestern. And now those I knew and know in Grand
Rapids, especially to Marie Albers who still remains a best friend after so many years.
Also thanks to my Computer Science colleagues at Calvin; a special thanks to Joel

Adams and David Laverell for proofreading my dissertation at the last minute.

Finally, my greatest thanks goes to my family. First to my family at United
Presbyterian Church in Bloomington. You were my family for six years while I lived
there, and I owe you more than I could ever repay. A special thanks to David Bremer
who was a good cross between a brother and a father for me. Most importantly,
I thank my biological family. Thanks to my Uncle Bud and Aunt Ruth who look
after me now just as they did earlier. Thanks to my grandparents who have been
supportive throughout my education. Thanks to sister Staci, brother Joel, and sister-
in-law Rachel who befriended me while we were all at Calvin. And thanks to my
parents who have done more for me than should be required of any parents; it was
because of your encouragement and examples that got me here. This dissertation is

for you, Mom and Dad.

v



Abstract

The divide-and-conquer paradigm yields algorithms that parallelize easily, a very
important consideration in high-performance computing. However, high-performance
computing also relies on local reuse of data in a memory hierarchy of registers, caches,

main memory, and swapping disks.

I have worked with a sequential representation of quadtree matrices that is a
divide-and-conquer data structure. This representation uses an indexing scheme,
Morton ordering, that automatically blocks the elements of the matrix and promotes
memory locality in recursive algorithms over the quadtree. This work focuses on
using this representation for two important matrix algorithms, matrix multiplication

and QR factorization.

Techniques for generating independant and local code were discovered while imple-
menting a recursive matrix-matrix multiplication over the sequential quadtree matrix.
For good memory locality the basic multiplication routine was written as two dual,
mutually recursive functions with the recursive calls in each version precisely ordered

to reuse data already in cache.

To avoid unncessary work, minimal decorations annotate each submatrix of the

matrix; these decorations are used to ignore zero blocks and to ellide the zero tests on



blocks known to be dense. Finally, a strategy was developed for dispatching parallel

processes in the multiplication algorithm.

These lessons were then used to develop an efficient QR factorization algorithm
for quadtree matrices. It also uses recursive functions that localize data in blocks and

that balance parallel processing.

The sequential quadtree matrix and multiplication functions are implemented in
C because of its optimizing compilers. Since C optimizers favor iterative code and
are deficient for recursive code, some base optimizations were done by hand. These

hand optimizations could and should be done by some future optimizing compiler.

Results are mostly favorable; while the quadtree-matrix algorithms do not always
perform at the same level as decades-old routines (i.e., BLAS and LAPACK), which
are fine-tuned for traditional storage, the quadtree algorithms are competitive and

even expose some flaws in these old routines.
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1

Introduction

1.1 Divide-and-Conquer Paradigm for

High-Performance Computing

This dissertation addresses the divide-and-conquer paradigm in the context of
high-performance computing, where data sets are huge and algorithms take a long
time to run. High-performance computing has two main concerns for efficient pro-
grams. The first concern is parallelism [50] which has long been a promise of the
divide-and-conquer paradigm: compute all independent expressions in parallel [13,
Section 1.3.1][3]. The second concern of high-performance computing is the reuse of
a computer’s memory [37, Chapter 7], respecting the different types of memory in a
computer and programming accordingly. This concern also has a divide-and-conquer

solution.

Divide-and-conquer is a common tool in algorithm design, but crucial to func-

tional programming [8] which motivated this research. Functional programming is a

1



paradigm where computations are expressed using only functions and arguments, ex-
cluding side-effects and hence unnecessary sequentiality; so syntactically independent,
subexpressions are computationally independent as well. The divide-and-conquer

paradigm splits a problem into a few independent and local subproblems.

1.2 Parallelism

The divide-and-conquer paradigm has long promised and delivered good paral-

lelism. A couple of classic examples demonstrate how.

1.2.1 Divide-and-Conquer Algorithms

A divide-and-conquer algorithm divides a problem into multiple subproblems, and
often the subproblems can be solved independently of each other. Solutions for the

subproblems are later combined together to yield a solution for the original problem.

The canonical example of functional programming is the factorial function as
written in Figure 1.1 [13, p. 6] using Haskell [8]. However, this formulation does not
use divide-and-conquer since there is only one function call (i.e., one subproblem) in
the recursive case. Divide-and-conquer is used in the second version of the factorial
function in Figure 1.2 [13, p. 6] through the use of a second function prod. The
function prod multiplies a sequence of consecutive integers by splitting the sequence

in two and calling itself recursively on each half.

The divide-and-conquer paradigm can also be used for sorting elements in a list.

Quicksort [27] is one such algorithm, presented in Figure 1.3 [38, p. 119] also using

2



facA O

1

facA n = n *x facA (n-1)

Figure 1.1: Factorial function (Version A)
facB 0 = 1
facBn =prod 1 n

prod n m = if m=n then m
else (prod m halfway) * (prod halfway+1l n)
where halfway = m + ((n-m) div 2)

Figure 1.2: Factorial function (Version B)

gsort [1 = [I
gsort (pivot:rest) = gsort lower ++ [pivot] ++ gsort upper
where lower = [ x | x <- rest, x<= pivot]
upper = [ x | x <- rest, x > pivot]

Figure 1.3: Quicksort function

Haskell. The inductive case for the gsort function receives a list as indicated by
the colon operator': the first element of the list is called pivot, and the rest of the
list is aptly named rest. The rest of the list is partitioned into two separate lists,
upper and lower, by “pivoting” around pivot using two list comprehensions?. The
list lower will contain elements less than or equal to the pivot; the list upper will
contain elements greater than the pivot. Both of these lists are sorted recursively and

then concatenated into a result with the infix list-concatenation operator ++.

' The colon operator is the infix cons operator; Haskell allows the operator to be used in the
pattern matching of parameters. [8, Section 4.1.1]

2Read list comprehensions as set notation with the vertical bar | meaning “such that” and the
left arrow operator <- meaning “element of”. [8, Section 4.3.2]



1.2.2 Divide-and-Conquer Parallelism

An essential step in writing parallel algorithms is partitioning computations into
processes that can be executed in parallel. The divide-and-conquer paradigm offers a
straightforward way of writing parallel code: take the divide-and-conquer algorithm

and solve independent subproblems in parallel.

For example, the two recursive calls in prod in Figure 1.2 might be done in par-
allel. The quicksort algorithm of Figure 1.3 has two opportunities for parallelism:

(1) computing upper and lower, and (2) the two recursive calls to gsort.

Scheduling the processes is complicated by several factors. One factor is inter-
process communication [1, 14, 28] which must be minimized. When the divide-and-
conquer paradigm schedules independent computations in parallel, there is no inter-
process communication while these processes execute. Inter-process communication is
needed only as parallel processes are dispatched and after they end. Consequently, the
number of dispatches should be minimized, and this is accomplished by dispatching

parallel processes early in the recursive decomposition.

Even more importantly, all of the available processors must be kept busy with
useful work. Omne simple solution is to dispatch parallel processes that are given
the same amount of work as each other; each process is given an equal number of
processors for further dispatch. The function prod (Figure 1.2) balances its parallel
processes quite well: each process is given half of the sequence to multiply together.

Each process would be given half of the available processors for further dispatch.

Some algorithms are not as elegant. For example, balancing the parallel processes

of quicksort (Figure 1.3) cannot use the same elegant solution as prod. The two list

4



comprehensions can be done in parallel; both list comprehensions take about the same
amount of work (i.e., both process the whole original list) resulting in well balanced
processes. However, depending on the pivot element, the lengths of upper and lower
may be quite different from each other, resulting in significantly different amounts of
work to sort each one individually. For these parallel processes, each process could
be given a number of processors proportional to the length of the list given to that

process.

1.3 Efficient Memory Use

The divide-and-conquer paradigm has long been used to design a variety of ab-
stract data structures. However, often in functional programming, the implementa-
tions of these data structures have been done using linked structures. Linked struc-
tures tend to suffer in performance in high-performance computing because of data
locality problems, so other solutions must be used. The divide-and-conquer paradigm

offers one solution.

1.3.1 Divide-and-Conquer Data Structures

Divide-and-conquer can be applied in at least two ways for a data structure.

First, the divide-and-conquer paradigm can be used in the design of the abstract

data structure. Trees are the most common divide-and-conquer data structures. (See

5



Section 1.6.1 for a more formal discussion of trees.) Binary search trees [30, Sec-
tion 6.2.2] and multi-way trees like B-trees [30, Section 6.2.4] are dictionary struc-
tures that partition the data, one partition for each subtree. The partitioning is
done deliberately so that common operations like insert and search are very efficient,

proportional to the height of the tree.

Divide-and-conquer algorithms arise naturally from exploiting the substructures
of a divide-and-conquer data structure. Tree traversals [29, Section 2.3.1] can be

divide-and-conquer algorithms.

Second, the divide-and-conquer paradigm can also be applied to the manifestation
of a data structure; that is, it can be used to determine how to map the abstract
data structure directly into a computer’s memory. Row-major storage of a matrix
(see Section 1.5) follows this approach: divide the matrix into rows, and map each
element of each row into consecutive locations in memory. The sequential storage of
the heap used in heapsort [30, p. 144] also follows this approach: store the levels of

the heap (a tree) in consecutive location in memory.

1.3.2 The Memory Hierarchy

The memory of a modern computer is layered in a hierarchy, top to bottom?:
primary cache, secondary cache, main memory, virtual memory, and distributed

memory—with more levels to come in the future.

Definition 1.1 The transfer block of a level of the memory hierarchy is the smallest

3This dissertation follows the tradition that memories closer to the processor are higher in the
hierarchy (see Patterson and Hennessy [37, p. 542]); this is by no means universal (see Whaley and
Dongarra [45]).



block of contiguous memory uploaded to that level of the memory hierarchy.

This is a generalization of familiar concepts: a cache line is the transfer block of a
cache; a page of virtual memory is the transfer block of a virtual memory system
into main memory. Patterson and Hennessy [37, p. 542] use the term “block” for this

same concept.

Definition 1.2 A memory miss is a memory access that triggers the transfer of a

transfer block into a level of the memory hierarchy.

This, too, is a generalization of familiar concepts: a cache miss is a memory miss in
a cache; a page fault is a memory miss in virtual memory. Again, see Patterson and

Hennessy [37, p. 542].

The different types of memory in the hierarchy have different relative speeds and
sizes. The top of the hierarchy is very fast; the bottom of the hierarchy is very slow.
The size of transfer blocks tend to be small at the top and large on the bottom. The

memories themselves are similarly small at the top and large on the bottom.

The large problems of high-performance computing and the cost of faster memories
force the use of the slower memories lower in the hierarchy, and efficiency demands
that algorithms minimize the number of times that the slower memories are accessed.
As memory speeds fall further and further behind processor speeds [49], this demand

becomes more and more important.

The number of memory misses can be reduced by increasing data locality. The
memory hierarchy is managed with two types of locality in mind, temporal and spatial.

Temporal locality suggests that once a data item is used, it will be used again soon.

7



Spatial locality suggests that if a program accesses one memory location, it will also
access nearby memory locations. (See Patterson and Hennesy [37, p. 540].) Spatial
locality explains why transfer blocks are blocks of contiguous memory. Temporal
locality in turn suggests a programming style: when a memory location is accessed,
use it and nearby data as much as possible, where “nearby” is defined by the transfer

blocks of each level of the memory hierarchy.

Traditional analysis of algorithms ignores memory accesses by focusing on compu-
tational operations and assuming all accesses are done in constant time. Due to the
variety of access times at different levels of the memory hierarchy, this assumption
results in a misleading analysis. A more realistic analysis would account for the in-
evitable memory misses and the amount of time needed to access different memories.
Asymptotically, this careful analysis is the same as the naive analysis; the difference
is only apparent on the coefficients of the formulas for the analyses. Yet, often these
coefficients are extremely significant. (After all, parallel speed-up is usually just a

modification of the coefficient of the analysis.)

Programming with traditional storage requires an expert programmer or an op-
timizing compiler to respect the transfer blocks of the memory hierarchy. Often the
sizes of these transfer blocks are used by this expert programmer, making the code
unportable. This knowledge can be non-trivial since different computers have differ-
ent types of memories with different sizes. It is better to have the compiler deal with
this knowledge since it should be relatively easy for it to collect. Furthermore, since
each type of computer can be configured with differently sized memories (especially

RAM and virtual memory), the code should be compiled for each physical machine.
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The divide-and-conquer paradigm offers a solution to all of these problems. Too
often functional programming has ignored data locality, favoring linked structures
whose components are scattered throughout memory. This oversight causes problems
for computation-intense algorithms since the links may routinely cross transfer blocks
causing many memory misses. But the divide-and-conquer paradigm applied to se-
quential storage offers a solution: map a data structure into memory by allocating
blocks of contiguous memory for the substructures of a data structure. Memory can
be allocated this way recursively down to the base case of the data structure so that
every substructure at every level of the data structure is mapped into contiguous
memory. A program then takes advantage of data locality simply by manipulating

the substructures without knowledge of the machine’s parameters.

1.4 Problems in High-Performance Computing

Typical problems in high-performance computing involve matrices. These prob-
lems are prime candidates for demonstrating how effective the divide-and-conquer

paradigm can be for high-performance computing.

1.4.1 Matrix Terminology

Informally, a matrix is a two-dimensional grid of real numbers represented in the

computer as floating point values [24, Section 2.4]. For example, if A isan m X n
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Symbol | Definition

aij Element of matrix A in row ¢, column j

Aup Block in stripe «, colonnade § in matrix A (see Definition 1.9)
AT the transpose of A

At the inverse of A

1 the identity matrix

VA the zero matrix

Aldd | quadrant dd of matrix A where dd can be nw, ne, sw, or se.

Standard matrix notation taken from Golub and Van Loan [24].

Table 1.1: Matrix notation

matrix (i.e., m rows and n columns), its grid would look like this:

a1

a21

am1

See Table 1.1 for the notation used for matrices.

a2

A22

Am2

Q1n

Q2n

Several basic terms are useful when talking about matrices:

Definition 1.3 The transpose AT of an m x n matriz A is the n X m matric

obtained from A by interchanging the rows with the columns; that is, az;- = aj;. [21,

p. 15]

One of the most common matrix operations is matrix multiplication:

Definition 1.4 Matrix-matrix multiplication is written C' = AB, where A 1is an

10




m X p matriz, B is anp X n matriz, and C is an m X n matriz; it is defined by

P
Cij = Zaikbk]‘, (11)
k=1
foralll <i<m and 1l < j <n. [24, Section 1.1.2]

Definition 1.5 The elements of the identity matrix I are all zero except for the

elements on the main diagonal (where the row and column indices are equal) which

are set to 1. (See Friedberg et al. [21, p. 75].)

The identity matrix is the multiplicative identity; for a square matrix, Al = IA = A.

Definition 1.6 If A and X are n X n matrices and satisfy AX =1, then X is the
inverse of A and is denoted by A='. If A=! exists, then A is said to be nonsingular.

Otherwise, A is singular. [24, p. 50]
Definition 1.7 A square matriz Q) is said to be orthogonal if QTQ = I. [24, p. 69]

With this definition and some algebra, it can be proved that the transpose of an
orthogonal matrix is its own inverse. Since its transpose is well-defined, an orthogonal

matrix is always nonsingular.
Some matrices have particular shapes:

Definition 1.8 Ann x n matriz A is upper triangular if a;; = 0 for all i > j. (See

Golub and Van Loan [24, Section 1.2.1].)

Finally, adjacent rows or columns of a matrix can be conceptually combined to-

gether in groups:
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Definition 1.9 A stripe is a set of adjacent rows in a matriz. A colonnade is a set

of adjacent columns. [46, p. 33|

1.4.2 Matrix Multiplication

Matrix multiplication (Definition 1.4) is one of the most common operations on
matrices, often used as a kernel operation for other algorithms. Multiplication can
be generalized to blocks of the matrices. For the simplification of notation, let A, B,

and C be N x N block matrices with ¢ x ¢ blocks. Then

N
Cap = ZAMBW (1.2)

=1

foralll < a < Nand 1 < g < N [24, Section 1.3.5]. Instead of multiplying
individual rows and columns, a block of C' is computed by multiplying a stripe of
A with a colonnade of B. The blocks of these matrices are square only because the

notation is simpler; the matrices and their blocks could be rectangular.

This definition does not specify how A,,B,s should be multiplied. Equation 1.1

or Equation 1.2 is possible; the choice is the programmer’s.

1.4.3 Solving a Linear System

A system of linear equations is commonly expressed in matrix form: given matrix
A and vector b, one must solve Ar = b for vector z. When A is a square, nonsingular

matrix, the solution is unique and determinable.
The direct approach for solving Az = b is to factor A into other matrices that are
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easily manipulated for finding z. For example, LU factorization factors A into two
matrices L and U such that A = LU where L is unit lower triangular and U is upper
triangular [24, Section 3.2]. Solving Az = b for = then reduces to solving LUz = b.
First, one solves Ly = b for y by a process called forward substitution; then Uz =y

is solved for x by a process called backwards substitution [24, Section 3.1].

However, if A has more rows than columns, the system is said to be overdeter-
mined; the problem is then framed in terms of finding an x such that the magnitude

of the vector Az — b is minimized. This is the least squares problem [24, Section 5.3].

A common factorization for solving the least squares problem is QR factoriza-
tion [24, Section 5.2]. QR factorization factors A into ) and R such that A = QR
where (Q is orthogonal and R is upper triangular. The QR factorization can also be
used to solve Az = b for z; one computes y = Qb (since @ is orthogonal) and then

uses backwards substitution to solve Rx = y for z.

Another use for the QR factorization is as a fundamental operation in the QR

Algorithm [24, Chapter 7] to find the eigenvalues of a matrix.

1.4.4 Problems with Matrix Algorithms

Matrix algorithms must be written to handle potentially undefined operations
such as division by zero and the square root of negative real numbers. An algorithm
must either avoid these operations or generate an error when such an operation is

attempted.

Another problem of matrix algorithms is computation error. Usually, finite-

precision arithmetic is used to represent real numbers [24, Section 2.4.1]. Since that
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representation is finite, the representation is generally inaccurate. Each operation
(especially addition and subtraction) on these numbers can increase the error (see
Golub and Van Loan [24, Section 2.4]), and matrix algorithms must be written so

that errors are kept under control.

For example, some matrix factorizations (including LU factorization) require piv-
oting [24, Section 3.4] to keep errors in the factorization to a minimum. Without
pivoting (or other special steps), these factorizations can yield grossly inaccurate re-
sults. Algorithms for QR factorization are much better behaved since the factoring
is done with orthogonal matrices which do not yield large computational errors (see

Section 5.4.3).

1.5 Traditional Matrix Storage

The main memory of a computer is commonly indexed as a one-dimensional array.
Mapping a multi-dimensional structure like a matrix into main memory is a matter

of determining a total, linear order for all of the elements.

Traditionally, matrices have been stored in main memory using row-major order or
column-major order. For a matrix using row-major order (column-major order), every
row (column) of the matrix is kept contiguous in the memory of the computer [29,
p. 298, 299]. Figures 1.4 and 1.5 give the indices for these two orders for a 4 x 4

matrix.

Poor spacial locality results from, for example, traversing a row-major matrix by
columns instead of rows [11, Section 2], yet column traversals are often necessary in

iterative algorithms. (The same applies to row traversals of column-major matrices.)
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Figure 1.4: Row-major indexing Figure 1.5: Column-major indexing

Better reuse of local memory (within a transfer block) is achieved by dealing with the
matrix in terms of blocks as in Equation 1.2 for matrix multiplication. But since row-
and column-major storage does not divide the matrix into contiguous blocks, a good
algorithm must provide the blocking. One way to do this is by tiling the code [36,

Section 20.4.3] (see Section 3.1).

1.6 The Quadtree Matrix

As suggested in Section 1.3.1, a divide-and-conquer data structure could be mapped
into main memory using the divide-and-conquer paradigm. This section examines one

such solution for a divide-and-conqueror data structure for matrices.

1.6.1 Trees

Definition 1.10 A tree is a finite set T of one or more nodes such that

1. there is one specially designated node called the root of the tree; and
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2. the remaining nodes (excluding the root) are partitioned into m > 0 disjoint sets
Ty, Ty, ..., T,, and each of these sets in turn is a tree. The trees Ty, T5, ...,

T, are called the subtrees of the root. [29, p. 308]

Definition 1.11 The number of subtrees of a node is called the degree of that node. 29,

p. 308]

Definition 1.12 A node of degree zero is called a terminal node, or sometimes a

leaf. [29, p. 308]

Definition 1.13 The level of a node with respect to T is defined recursively: The
level of root(T') is zero, and the level of any other node is one higher than that node’s

level with respect to the subtree of root(T') containing it. [29, p. 308]

There are three types of trees of particular interest:

Definition 1.14 A binary tree is a tree where the degree of every non-terminal node
is exactly two. A quaternary tree, or quadtree, is a tree where the degree of every
non-terminal node is exactly four. An octernary tree, or octtree, is a tree where the

degree of every non-terminal node is exactly eight.

Lewis and Denenberg [33, p. 101] define a useful term for binary trees that can be

generalized for quadtrees and octtrees:

Definition 1.15 All of the terminal nodes of a perfect tree are on the same level

and all of the non-terminal nodes have mazximum degree.
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Figure 1.6: Level-order indexing of quaternary tree

1.6.2 Quadtree Indexings

A quadtree can be indexed in a variety of ways. One way to index a quadtree is

to index the nodes of the tree, level by level:

Definition 1.16 The level ordering of a quaternary tree is an indexing of the nodes
of the quaternary tree such that the root has index 0 and for a node in the tree with

index i, its children are indezed 41 + 1, 4i + 2, 4i + 3, and 41 + 4.* [47, p. T76]

Figure 1.6 is the level-order indexing of a quadtree with three levels. The nodes of one

level of the tree are indexed from left to right in increasing order. Level [ is indexed

before level [ + 1.
Closely related to level-order indexing is Morton-order indexing.
Definition 1.17 The Morton-order indexing of a quaternary tree is an indezring of

the nodes of the quaternary tree such that the root has index 0 and for a node in the

tree with indez i, its children are indexed 4i+0, 4i+1, 4i+ 2, and 4i+ 3. [47, p. T76]

4Traditionally, the root of a binary tree has index 1 in level-order indexing [29, p. 401]; however,
in trees with a higher degree (such as a quadtree), there are gaps in the indexing from one level to
the next. A 0-indexed root works well for all trees.
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Figure 1.7: Morton-order indexing of quaternary tree

Figure 1.7 is the Morton-order indexing of a quadtree with three levels. The main
difference between these two indexings is that level order gives an index to every
non-terminal node while Morton order indexes each level starting with index zero.
The result is that the level-order indices on one level of the tree differ from the
corresponding Morton-order indices by only a constant [47]—the number of nodes in
the higher levels of the tree. Specifically, on level I, a Morton-order index and its

corresponding level-order index differ by

Z4i: 41;1. (1.3)

This conversion makes these indexings easily interchangeable.

Perfect quadtrees make complete use of the indexing space of Morton-order and
level-order indexing. Imperfect trees can still be indexed with level order and Morton
order using the 4i+c computations, but the “missing” subtrees leave gaps in sequential

indexing.
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21 6.5 9.2 0.0

21 6.5 9.2 pad(M;) = 2; 81-2 653; 8.8

M= |32 48 6.7 3 08 5.5 0.

83 0.8 5.5 0.0 0.0 0.0 0.0

Figure 1.8: Matrix M, Figure 1.9: Matrix M, padded
Q

21 65 32 48 92 Z 67 Z 83 08 Z Z 55

Figure 1.10: Quadtree matrix representation of pad(M;)

1.6.3 Quadtree Matrix

Definition 1.18 A quadtree matrix is either zero, a non-zero scalar, or a quadruple

of sub-matrices (northwest, northeast, southwest, southeast) of equal size where at

least one sub-matriz is non-zero. [46, p. 33]

The quadrants of a quadtree matrix are indicated with the arrow operator| (e.g.,

M;i{nw, My|ne|nw); see Table 1.1.

The quadrant cleaving in the definition of the quadtree matrix suggests that the
order of the quadtree matrix must be a power of two. The actual matrix may be
padded with zeros to the south and east to bring its order up to a power of two.

For example, the 3 x 3 matrix M; in Figure 1.8 is padded to a 4 X 4 matrix in

Figure 1.9. The corresponding quadtree for A, is in Figure 1.10.
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While the padding could be nearly three-quarters of the padded matrix, the zero
matrix and the tree structure of the quadtree matrix definition allows for a logarithmic
savings of the space and time that is devoted to storing and processing the padding.
For example, Figure 1.12 is the 8 x 8 padding of a 5 x 5 matrix M, given in Fig-
ure 1.11, and the northeast, southwest, and southeast quadrants are mostly padding.
The potential savings is minimally demonstrated in the quadtree representation of

the northeast quadrant of pad(M,), given in Figure 1.13.

In quadrants within a matrix (never at the top level), global padding may extend

into its west colonnade or its north stripe:

Definition 1.19 Majority padding s padding that extends into the west colonnade or
the north stripe. Minority padding s padding that is found only in the east colonnade
or the south stripe. A perfect quadtree matrix is a quadiree matriz that has no

padding.

A perfect quadtree matrix would be stored in a perfect quadtree (see Definition 1.15),

hence the name.

The padded matrices pad(M;) and pad(M;), Figures 1.9 and 1.12, respectively,
have minority padding: padding only in the east colonnades and the south stripes
of the top-level quadtree matrix matrix. The quadrant pad(Ms) | ne has majority
padding since the padding extends into the west colonnade of that quadrant. Simi-
larly, pad(Ms)] sw and pad(M;)]se have majority padding. pad(M,)]nw is a perfect

quadtree matrix with no padding at all.
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Index Computation
Level 4i+1 4i+2 4i+3 41+ 4
Morton 4i+0 4i+1 4i+2 4i+3

Z order nw ne SW se
M order nw SwW ne se
U order nw SW se ne
C order ne nw SW se

Table 1.2: Correlation of quadrants to index computations

1.6.4 Quadtree Matrix Implementation

A quadtree matrix can be viewed as a quaternary tree: the general case (i.e., the

sub-quadrants) are non-terminal nodes; scalars and zero matrices are terminal nodes.

A strict interpretation of the definition of a quadtree matrix (Definition 1.18) is
often implemented as a linked data structure with the zero matrix represented as a
special terminal node, but as noted in Section 1.3.2, linked data structures suffer from

data-locality deficiencies.

For better data locality, the nodes of a quadtree matrix can be put into an array
(or arrays) of contiguous memory using an indexing for the quaternary tree. There are
twenty-four (i.e., 4! = 24) different ways to correlate quadrant names (i.e., northwest,
northeast, southwest, and southeast) and index computations (e.g., 4i+0, 4i+1, etc.).
Table 1.2 lists four different ways to correlate quadrants and index computations.
Often the application determines the best correlation. Z order is favored in the
graphics community because pictures tend to be wide (more columns than rows).
Then, if there were less than half as many rows as columns, it would be unnecessary

to allocate space for the southern rows. Matrices often have more rows than columns,
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0 16 64 80
15 31 79 95

2 /|48 96 112
T a 63 111 127

128 144 192 208
143 159 207 223

160 176 224 240
175 191 239 255

Figure 1.14: Morton ordering of a 16 x 16 matrix with Z order

Figure 1.14 is the Morton order indexing of a 16 X 16 matrix using the Z order.

With matrices padded to the south and east, it is best to index the southeast

to work correctly.

For example, consider the padded matrix pad (M) of Figure 1.12. A perfect 8 x 8

23

so W order is useful for matrices. Either order is equally useful for square matrices.

quadrants last. The padding will always be greatest in this quadrant, and the south-
east most element of the unpadded matrix determines the amount of space that must

actually be allocated since the padding that follows it is not necessary for the indexing

matrix would require memory for 64 scalars; but with Z order, pad(M;) only needs
memory for 48 + 1 = 49 scalars since the Morton-order index of the southeast most

element is 48. Only zeros are found at Morton indices 49 through 63. Unlike the




padding in the northeast and southwest quadrants of pad(Ms), this padding in the
southeast need not be allocated in the computer’s memory. In general, the padding
of the padded matrix might be asymptotically three-quarters of the matrix; but since
the majority of the southeast quadrant would not be allocated, the padding will be
only two-thirds, not three-quarters, of the total memory allocated. Avoiding the rest
of the padding can be handled by decorating the matrices; as long as this memory is

avoided, it only consumes address space, not valuable memory space.

1.6.5 Decorating Quadtree Matrices

An initial concern with this sequential representation is the gaps left by the in-
dexing of imperfect trees (as noted at the end of Section 1.6.2). The gaps in the
address space caused by padding blocks makes the corresponding memory space un-
necessary except as internal padding. If an algorithm avoids these gaps, they only
waste address space and cheap, slow memory. These blocks will never be called into

expensive, high-level cache.

To avoid this padding, quadtree matrix algorithms must recognize zero matrices

high in the quadtree. Decorations can be used to represent zero matrices:

Definition 1.20 An annotation describing the contents of a quadrant of a quadtree

matriz is called a decoration. (See Wise [46, pp. 66, 67].)

For this work, there are four basic decorations: zero, identity, dense, and un-

known.

e The unknown decoration (denoted as ‘Q’ in figures) indicates that the quadrant
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has a mixture of dense, zero, and identity matrices, so the testing of decorations

must continue as the sub-quadrants are traversed.

e The zero decoration (‘Z’) indicates that the quadrant is homogeneously zero.
The algebra of the zero matrix can be used to control algorithms without de-

scending into the quadrants.

e The identity decoration (‘I’) indicates that the quadrant is an identity matrix.
Similar to the zero decoration, the algebra of the identity matrix can be used

to control algorithms without descending into the quadrant.

e The dense decoration (‘D’) says that the quadrant is completely dense. There
are not enough zero or identity blocks to test for them. All testing of decorations

can be suspended for this quadrant.

1.6.6 Storage Arrays

Since the decorations and elements of the matrix are different data types, two

arrays are allocated:

e One array stores the decorations. The decorations are found in the non-terminal
nodes of the quadtree, so the decoration array uses level-order indexing to store
all of these nodes compactly. Given just the decorations in Section 1.6.5, two
bits are sufficient to represent the decorations; eight bits were used since one

byte is the smallest unit of memory easily accessed.

e One array stores the matrix elements. All of these elements are found at the

leaf level of the quadtree, and so Morton-order indexing is used to store just
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Figure 1.15: Level-order storage of pad(M;) decoration (cf. Figure 1.9)

121]65[32[48[92]0.0[67]0.0[83]0.8[0.0[0.0][55 ]
o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1.16: Morton-order storage of pad(M;) scalars

these leaf elements. Each of these nodes requires eight bytes for double precision

floating-point numbers.

The decoration matrix takes up comparatively little space. The element array at eight
bytes for each element takes up twenty-four times as much memory as the decoration

array at eight bits per decoration.

Level-order indices are needed to access the decoration array; Morton-order indices
are needed to access the element array. Rather than traversing the nonterminal nodes
with level-order indices and repeatedly converting them to Morton-order indices to
access the element array, the pointer for the element array is offset using Equation 1.3.
This pointer works as if the element array were allocated as level-order; but, in fact,
the indices for nonterminal nodes should not be and never are used on the element

array. This offset computation is done only once at the beginning of an algorithm.

Figures 1.15 and 1.17 depict the storage of the decoration trees for matrices
pad(M;) and pad(Ms) | ne from Figures 1.9 and 1.12, respectively. Both of these

arrays use level-order indexing (in Z order) for the arrays; for pad(Ms)]ne, only the
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Figure 1.17: Level-order storage of pad(Ms]ne) decoration (cf. Figure 1.12)

5 JO0JtJOoJL]L[L][L1]6[0]2[]0fL]L][L]L]-

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 1.18: Morton-order storage of pad(Mylne) scalars

relevant portions of the array are given for that quadrant. Similarly, Figures 1.16
and 1.18 depict the storage of the scalars of the same matrices. These arrays are
indexed using Morton-order indices (also in Z order), starting the array at index 0 for
the northwest most elements. There is no need to represent the zero scalars in the
scalar array because of the zero decoration, so that memory is not changed or even

accessed.

1.6.7 A Divide-and-Conquer Data Structure

It is important to note how Morton-order and level-order indexing maps quadrants
into an array: quadrants are in contiguous memory. This mapping into contiguous
memory is done for every quadrant at every level of the quadtree. Furthermore, every
level of the memory hierarchy on every machine will have some level of the quadtree
matrix that fits into a transfer block of that level without using any special knowledge

of the sizes of the transfer blocks.
Thus, in a practical sense, a transfer block is a quadrant.
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Consequently, whatever is good for quadrants is good for transfer blocks. The
particulars of the transfer blocks are irrelevant. As a programmer programs for quad-

rants, the programmer programs for all memory hierarchies.

1.7 Row Major Versus Morton Order

A high-performance algorithm should work for every level of the memory hierarchy.
Row-major solutions® for handling the memory hierarchy, like tiling (see Sections 1.5
and 3.1), must be applied to the code for every level of the hierarchy. Tile the
code once for primary cache and then for secondary cache and once again for virtual
memory. When a new level is added, the code must be tiled again for the new
level. When a level of the existing hierarchy is reconfigured (e.g., by adding more
RAM), the tiling must change for the reconfigured level. When the code is ported
to a new machine, the hierarchy is different, and so the tiling must be redone. All
of these tiling changes mean changes to the code which necessitates recompiling.
Furthermore, for each of these changes, the programmer or optimizing compiler must

know the particulars about the memory hierarchy.

Solutions for quadtree matrices stored in Morton order® are simpler. A quadrant-
friendly algorithm is written once. Since the quadrants are transfer blocks, a quadrant-
friendly algorithm is implicitly friendly to transfer blocks. A recursive algorithm using
quadrants at all levels of the quadtree will fit them—at some level—into the transfer
blocks at each level of the memory hierarchy. When a level of the memory hierarchy

is added or reconfigured, the mapping between quadrants and transfer blocks takes

5Row major is equivalent to column major for these comments.
6Similarly, Morton order and level order are equivalent for these comments.
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care of the added or reconfigured level. When the code is ported to a new machine,
the mapping between quadrants and transfer blocks handles the new hierarchy. The
code is recompiled only for new processors, not for new memory hierarchies. Fur-
thermore, since the mapping does not require any parameters, the programmer and
compiler can be oblivious to the particulars of the memory hierarchy (i.e., being

“cache-oblivious” [22]).

1.8 Related Research

In his dissertation, Beckman [6] presents a (nearly pure) functional implementa-
tion of LU factorization for sparse matrices using a linked quadtree. He describes a
distributed, shared-heap storage manager and a run-time system to execute LU fac-
torization on sparse matrices in parallel on a shared-memory machine. The storage
manager and run-time system are quite successful, but the performance of LU fac-
torization is disappointing. Performance seems to be affected adversely by the poor
compilation of recursion, the low payoff (i.e., one or two floating point operations) at

each base case, and locality problems using a linked structure.

Wise [46] describes a more abstract and elaborate presentation of LU factorization.
He concentrates on exact arithmetic matrix inversion (for use with discrete objects like
integers and polynomials) and stresses the basic algebra of the algorithm that lends
itself to a functional formulation. Wise uses decorations for directing the selection of

a pivot matrix.

G. M. Morton introduced his indexing originally for geodetic databases [35]. The

indexing is old and has been rediscovered several times. Samet [39] and others in the
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graphics community use Morton-order indexing for storing and processing images.

Strassen [43] and Spief§ [41] use a block decomposition of matrices to reduce the
overall number of scalar multiplications for matrix multiplication. While reducing

the flop count from O(n?) to O(n'87), their algorithms requires extra space.

Chatterjee et al. explore some of the programming and compiler optimizations
that can be done to make matrix multiplication run faster when using Morton order
to store the scalar matrix [12, 11]. They chose a hybrid representation, using Morton
order on the upper-level blocks and column-major for the base-case blocks. This
allowed them to use BLAS routines (see below) for the base case. They found the
hybrid awkward: either algorithms had to be rewritten for it or the data must be

converted to and from other representations at a prohibitive cost.

Gustavson considers recursion and blocking for dense linear algebra [25]; Elmroth
and Gustavson consider QR factorization in particular [18]. However, their recursive
algorithm for QR factorization is in terms of columns (a single column is the base

case for their recursion).

Golub, Plemmons, and Sameh [23] use a blocked algorithm for QR factorization
in the context of the least-squares problem. Their matrices are sparse and patterned

(block angular), obtained from geodetic computations.

Frigo, Leiserson, Prokop, and Ramachandran [22] study what they call cache-
oblivious algorithms. Cache-oblivious algorithms are told nothing about the memory
parameters of the machine that they run on, yet they still perform well with respect
to the memory hierarchy. Their solution does not block the data representation, but

it uses recursion on the existing representations (row- or column-major in the case of
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matrices). By their definition, the algorithms developed here are cache-oblivious.

The BLAS (Basic Linear Algebra Subprograms) library [32, 17, 16] was writ-
ten to implement basic matrix and vector operations (like matrix multiplication) as
efficiently as possible for column- and row-major storage in both uniprocessor and
parallel versions. The routines in this library are often tuned by manufacturers for

their particular machines for even better performance.

LAPACK [2] is a high-performance library that implements high-level matrix al-
gorithms like matrix factorizations. Many LAPACK algorithms use BLAS routines;
other algorithms are written from scratch. The general algorithms are tuned for

column- and row-major storage.

More recent work has been done on writing compilers that tune algorithms for
traditional storage automatically. Both PHiPAC [7] and ATLAS [45] gather infor-
mation (explicitly or through experimentation) to generate efficient code tuned for a

specific machine. However, ATLAS only blocks for two levels of cache [45, p. 11]".

1.9 New Contributions

The duals for multiplication (see Section 3.2.1) for good cache behavior were first
presented in Frens and Wise [20]. This dissertation is the first to analytically prove

its good memory behavior (in Section 3.2.2).

Quadtree decorations themselves are not new. This work develops the use of

decorations for matrix multiplication and QR factorization. In particular, the first

"More recent reports about ATLAS available on the Web indicate that this has not changed since
1998 when this paper was written.
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and last functions for matrix multiplication (see Sections 3.4.4 and 3.4.5) are new.

While Elmroth and Gustavson [18] present a similar QR factorization, their basic
algorithmic unit (i.e., their base case) is still a column, not a block. The algorithms
presented in Chapter 5 work on the quadrants of the matrix; this leads to a similar,

but new and distinctive algorithm.

The parallel dispatch for parallel matrix multiplication was first presented in Frens

and Wise [20]. The parallel dispatch for QR factorization is new.

1.10 Road Map

The next chapter lays out the playing field for this work. This includes discussions
about this work as a proof-of-concept and the high-performance environment used to
run these experiments including a description of the machines used to perform tests

and a discussion of the compiler and timing issues involved with those tests.

Chapters 3 and 4 cover matrix multiplication. Chapter 3 covers the uniprocessor
quadtree algorithm, including a proof of memory efficiency; Chapter 4 discusses a
parallel implementation of this algorithm. The performances of both the uniprocessor

and parallel algorithms are compared to the performances of comparable BLAS code.

Chapters 5 and 6 are organized similarly for QR factorization. Chapter 5 explores
a quadtree matrix algorithm for QR factorization; the following chapter presents
a parallel algorithm. The uniprocessor and parallel performances of the quadtree

algorithms are compared to the performances of comparable LAPACK programs.

The final chapter offers conclusions and points to future work.
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2

High-Performance Environment

2.1 Proof of Concept

Any technology goes through several stages before it gains wide acceptance. Using
functional programming and divide-and-conquer to develop high-performance algo-
rithms is in an early stage. The purpose of this work is to give a proof-of-concept
for the thesis that functional programming is an effective tool for solving high-
performance problems. This proof-of-concept consists of two matrix problems: matrix
multiplication and Q)R factorization. Matrix multiplication is simple and fundamen-
tal; QR factorization is more complex and is an important algorithm. Both classic
algorithms for these problems have favorable error analyses [26, Sections 1.14.2, 3.5,
and 18.5] so the quadtree algorithms were developed without consideration for error

handling.

This work establishes an intermediate stage for a compiler. Ideally, a programmer

would not write this code directly but instead would write pure functional code that
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would be translated by a compiler with a knowledge of optimizing memory manage-
ment. This work does not deal with such a translation, but instead concerns itself

with what the target of such a translation should be.

2.2 Programming Liberties

Several liberties are taken with functional programming in order to compare per-
formance with established high-performance computing results. Most functional pro-
gramming languages depend on linked memory and a run-time garbage collector; this
often hurts the performance of functional programs due to the time for collection
and because linked structures have poor locality in general. If side-effects are permit-
ted (strictly forbidden in pure functional programming), then the need for a garbage
collector can be reduced, perhaps eliminated. The programs of this work manage
memory on their own, allocating blocks of memory for the matrices and side-effecting
the data in place. All matrices are uniquely referenced, so the side-effects are always
safe. No new memory is allocated after the initial allocations, so there is no need for

a garbage collector.

The algorithms were written in C to take advantage of the manufactures’ opti-
mizing compilers for their architectures. Supporting and driver code was written in

C++.

The algorithms were also simplified by assuming that all matrices are square. In
particular, this simplified the parallel dispatch considerations in Chapters 4 and 6.
Rectangular matrices could be handled by extending the ideas presented in those

chapters.
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System Property Value
Number of processors | 10
Type of processors R8000 (MIPS)

Clock speed 75 megahertz

Virtual memory 2 gigabytes

RAM 2 gigabytes shared by all processors
Secondary cache 4 megabytes per processor
Instruction cache 16 kilobytes per processor

Data cache 16 kilobytes per processor

Maximum mflop/s 300

The floating point unit of an R8000 is not connected to
the primary cache and does not have one of its own; it is
connected to the secondary cache [40, Section 2.2].

Table 2.1: System parameters of Power Challenge

2.3 Machines

Four machines were used to run timing experiments: an SGI Power Challenge
(Table 2.1), an SGI Octane (Table 2.2), a Sun Enterprise 450 Model 4400 (Table 2.3),
and a Sun Ultra 5/10 (Table 2.4).

All of the tests were run on these machines in shared mode, although care was

taken to run the tests when the load on the machines were minimal.

2.4 Compiler Issues

2.4.1 Compilers and Libraries

The MIPSpro compiler was used on the SGI machines. The manufacturer pro-

vided their own BLAS libraries; LAPACK was compiled locally. The Sun Workshop

35



System Property

Value

Number of processors
Type of processor
Clock speed

Virtual memory
RAM

Secondary cache
Instruction cache
Data cache
Maximum mflop/s

1

R10000 (MIPS)
195 megahertz
39.1 gigabytes
128 megabytes
1 megabyte

32 kilobytes

32 kilobytes
390

Table 2.2: System parameters of Octane

System Property

Value

Number of processors
Type of processors
Clock speed

Virtual memory
RAM

Secondary cache
Instruction cache
Data cache
Maximum mflop/s

4

UltraSparc 1T

400 megahertz

5.4 gigabytes, shared

2 gigabytes, shared

4 megabytes per processor
16 kilobytes per processor
16 kilobytes per processor
400

Table 2.3: System parameters of Enterprise 450
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System Property Value

Number of processors | 1

Type of processor UltraSparc IIi
Clock speed 440 megahertz
Virtual memory 1.1 gigabytes
RAM 256 megabytes
Secondary cache 4 megabytes
Instruction cache 16 kilobytes
Data cache 16 kilobytes
Maximum mflop/s 440

Table 2.4: System parameters of Ultra 5/10

Compiler 5.0 was used with the Sun Performance Library 2.0, which supplies both
the BLAS and LAPACK libraries, on the Sun machines.

2.4.2 Stride

The BLAS and LAPACK functions were tested with column major matrices. To
avoid most problems with stride (see Golub and Van Loan [24, Section 1.4.4]), every

array was allocated with an odd stride, even if the order of the matrix was even.

2.4.3 Recursive Code

Since most optimizing compilers for C do not optimize recursion well, some op-
timizations for the quadtree algorithms were done by hand. Any of these hand-

optimizations could be done by a recursion-aware optimizing compiler.

One hand-optimization was to store array pointers in global variables since they

change infrequently (and only in the QR factorization). This greatly reduced the
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overhead incurred with the recursion.

Another hand-optimization is the unfolding of recursive code. Loops are routinely
unrolled by optimizing compilers to take advantage of superscalar architectures [36,
Section 17.4.5]; analogously, recursive functions should be unfolded [10]. Each un-
folding also eliminates one level of function calls, avoiding all of the function call
overhead. Since optimizing compilers for C do not unfold recursive code automati-

cally, the unfolding was done by hand. (See Section 3.4.2.)

2.4.4 Compiler Flags

All programs were compiled with the highest optimization turned on. See Ta-
bles 2.5 and 2.6 for the specific optimizations. No effort was taken to eliminate
redundant flags (e.g., on the SGIs -64 implied -mips4, but both flags were used

anyway).

2.4.5 Shared Memory and Parallel Dispatch

Shared memory for the matrices was allocated using the function mmap (). Parallel
dispatch was done with the function fork(). This allowed the matrix arrays to be

shared while each forked process had its own runtime stack and global variables.
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Optimization flag

Effect

-Ofast=ip21
-0fast=1ip30

-64
-mips4

-r8000
-r10000

-SWP:=0N
-0PT:alias=RESTRICT

-IPA

used on Power Challenge, maximizes performance
for the ip21 architecture

used on Octane, maximizes performance for the
ip30 architecture

generates 64-bit objects

generates code using the full MIPS IV instruction
set

used on Power Challenge, specifies the processor
for scheduling code

used on Octane, specifies the processor for
scheduling code

turns on software pipelining

specifies that distinct pointers are assumed to
point to distinct, non-overlapping objects

turns on the inter-procedural analyzer

Table 2.5: Compiler optimizations for SGIs

Optimization flag | Effect

-fast maximizes optimizations
-xarch=v8plus maximizes performance for the architecture

Table 2.6: Compiler optimizations for Suns
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2.5 Timing Issues

2.5.1 Measuring Performance

The most important operation in high-performance algorithms are those involving

floating point numbers:
Definition 2.1 A flop is a floating point operation. [24, Section 1.2.4]

Each multiplication and each addition counts as one flop. Performance is measured
in terms of the number of flops done per second. Often, this number is measured
in the millions, so the speed of the algorithm is measured in megaflops per second,

abbreviated mflop/s.

The performance of parallel algorithms are measured in terms of speed-up:

Definition 2.2 A parallel algorithm for a particular problem achieves speed-up S if
S = Tseq/Tpar

where Tq, 15 the time required for execution of the parallel program and Ty, s the
time required by one processor when the best uniprocessor procedure is used. [24, Sec-

tion 6.1.6]

Suppose p is the number of processors used for a parallel algorithm. Ideally, the
parallel algorithm should give a speed-up equal to the number of processors, S = p;
while this is not always possible, parallel algorithms are evaluated in terms of how
close its speed-up is to p. Occasionally parallel algorithms will demonstrate super-

linear speed-up where S > p because of increased caching on the multiple processors.
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2.5.2 Machine Solutions

The algorithms were timed using getrusage() on the Sun machines and a high-
resolution timer available through the function syssgi () on the SGI machines. These
functions measure the processor time consumed, not the wall-clock time. Only the
algorithms themselves were measured; initialization or clean up code was not timed
using these timers. These processor timers were used for all uniprocessor results on

all machines for all algorithms.

These processor timers were also used to compute parallel speed-up. The drivers
were written to measure the time spent by the original process (assumed to have
as much or more work than the other parallel processes). This technique was used
on the Power Challenge for all tests and for the quadtree matrix algorithms on the

Enterprise 450.

The BLAS and LAPACK routines on the Enterprise 450 use threads to imple-
ment, parallelism. The processor timers would measure the total time spent by all
threads, making the results useless for speed-up calculations. Instead, a wall-clock
timer gethrtime () was used to measure the wall-clock time. These wall-clock times
were used only to calculate the speed-ups on the Enterprise 450, and so those results
are a bit sporadic. Uniprocessor results on this machine were still obtained using a

processor timer.
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3

Matrix Multiplication

Matrix multiplication is a kernel operation in most matrix algorithms. It also

teaches much about writing and implementing algorithms for quadtree matrices.

As noted in the previous chapter, all matrices are now assumed to be square.

3.1 Row-Major Multiplication

Matrix multiplication (Equation 1.1) can be written as three nested loops as in
Figure 3.1. In this algorithm, matrix A is traversed by rows and B is traversed by

columns. When the matrices are stored in row-major order and n is sufficiently large,

nestedLoops (int n, RMMatrix c, RMMatrix a, RMMatrix b) {
for (1 = 0; 1 < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
clil[j1 += alil k] * blk][j];

Figure 3.1: Nested loops for inner-product multiplication

42



blockedNestedLoops (int n, int N,
RMMatrix c, RMMatrix a, RMMatrix b) {
int ell = n / N;
for (int I = 0; I < N; I++)
for (int J = 0; J < N; J++)
for (int K = 0; K < N; K++)
for (int ii = I*ell; ii < I*(ell+1); ii++)
for (int jj = Jxell; jj < Jx(ell+l); jj++)
for (int kk = K*xell; kk < K*(ell+1); kk++)
c[iil[jj1 += aliil([kk] * b[kk][jjl;

Figure 3.2: Blocked nested loops for multiplication

the column traversal of B in the inner loop will likely generate a costly memory miss

on each iteration of the innermost loop.

This problem is not peculiar to row-major storage. If the matrices were stored in
column-major order, the same algorithm would generate analogous memory misses
on A. The problem is also not peculiar to this ordering of the loops. The nested
loops can be ordered in six different ways [24, Section 1.1.11], and each ordering has

analogous memory access problems on A, B, or C.

This problem is mollified by traversing the matrices by blocks. The loops in
Figure 3.1 are modified through a process known as tiling [36, Section 20.4.3]. Equa-
tion 1.2 gives the basic idea: each matrix is divided into N x N blocks to yield an
¢ x £ block matrix where ¢ = n/N[24, Section 1.4.7]. The resulting algorithm with

one level of tiling is in Figure 3.2.

The size of a matrix block (i.e., £) is determined by the size of a transfer block.
Since the transfer blocks of each level of the memory hierarchy have different sizes,

one level of tiling (i.e., one £) works for only one level of the memory hierarchy. So
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tiling is repeated for each level of the hierarchy.

Often an optimizing compiler will do the tiling for the programmer, incorporating
knowledge of the size of a transfer block of the target machine to pick an appropriate

¢ for each level of the memory hierarchy [7, 45].

3.2 Quadtree Matrices

A quadtree matrix stored in a serial array using Morton-order indexing is blocked
in its storage at each level of the quadtree matrix. By programming for the quadrants
of a quadtree matrix, a programmer deals with transfer blocks on all levels of the

memory hierarchy.

3.2.1 Two Versions of Matrix Multiplication

Matrix multiplication for a quadtree matrix is given in Figure 3.3 [20]; it is equiv-
alent to Equation 1.2 with N = 2. Data locality is achieved by reusing quadrants
in one step to the next: C'|ne is reused on the second step of the function, B | se
on the third, C | se on the fourth, and so on. Since C' is written as well as read,
it may generate more costly memory traffic (depending on the write-back properties
of memory); so every effort is made to reuse quadrants of C. This is also beneficial

when planning the parallel dispatch (see the next chapter).

However, the algorithm in Figure 3.3 does not actually reuse memory blocks.
While it appears that a quadrant of one matrix is reused between any two consecutive

statements, the sharing does not continue through the sub-quadrants. For example,
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quadtreeMultiply (QTMatrix C, QTMatrix A, QTMatrix B) {

if (scalar (C))
C+=A xB

else {
quadtreeMultiply (ne(C), nw(A), ne(B));
quadtreeMultiply (ne(C), ne(A), se(B));
quadtreeMultiply (se(C), se(A), se(B));
quadtreeMultiply (se(C), sw(A), ne(B));
quadtreeMultiply (sw(C), sw(A), nw(B));
quadtreeMultiply (sw(C), se(A), sw(B));
quadtreeMultiply (nw(C), ne(A), sw(B));
quadtreeMultiply (nw(C), nw(A), nw(B));

Figure 3.3: Cache-poor quadtree matrix multiplication

it appears that C'| ne is shared from the first to second statements; however, the first
recursive call accesses C'|nelnw last while the second recursive call accesses C'/nelne
first—there is no real sharing on the next level down. When the quadrants of C'| ne
are sufficiently large, costly memory misses are triggered when the programmer’s

intent was to share quadrants and avoid the memory misses.

This problem is solved by writing dual algorithms that complement one an-
other with respect to their access patterns. These algorithms are presented in Fig-
ure 3.4 [20]. The two algorithms have been named up and down to suggest their dual

nature and to avoid the overloading of terms.!

These two functions working together produce good memory behavior. They have

been crafted as complements to each other. Consider again the first two statements

! The names have as much significance as the up and down spin of electrons—none.
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dnMult (QTMatrix C, upMult (QTMatrix C,

QTMatrix A, QTMatrix B) { QTMatrix A, QTMatrix B) {

if (scalar (C)) if (scalar (C))
C += A * B; C += A * B;

else { else {
dnMult (ne(C), nw(A), ne(B)); upMult (nw(C), nw(A), nw(B));
upMult (ne(C), ne(A), se(B)); dnMult (nw(C), ne(A), sw(B));
dnMult (se(C), se(A), se(B)); upMult (sw(C), se(d), sw(B));
upMult (se(C), sw(A), ne(B)); dnMult (sw(C), sw(A), nw(B));
upMult (sw(C), sw(A), nw(B)); dnMult (se(C), sw(A), ne(B));
dnMult (sw(C), se(A), sw(B)); upMult (se(C), se(d), se(B));
upMult (nw(C), ne(A), sw(B)); dnMult (ne(C), ne(A), se(B));
dnMult (nw(C), nw(A), nw(B)); upMult (ne(C), nw(A), ne(B));

} }

} }

Figure 3.4: Cache-friendly quadtree multiplication

of dnMult():

dnMult (ne(C), nw(A), ne(B)); // #1

upMult (ne(C), ne(A), se(B)); // #2

Statement #1, through the recursive call to dnMult (), will access C | ne | nw last.
Statement #2, through the call to upMult (), accesses this same quadrant first. Sim-
ilar observations can be made for any two consecutive statements in both dnMult ()
and upMult (). The sharing is not limited to these two levels; it extends all the way
down through the quadrants of the matrices, and consequently, all throughout the

memory hierarchy. This is proved in the next section.

3.2.2 Analytical Proof of Good Memory Behavior

The base cases of upMult() and dnMult() vacuously reuse memory since there

is no memory to share. So only the recursive cases must be examined to prove their
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good memory behavior. First, these lemmas describe how the functions treat the

quadrants of the three matrices:

Lemma 3.1 Suppose that A, B, and C' are an 2P x 2P matrices where p > 1. Then

the following claims are true:

1. The function upMult () accesses the northwest-most quadrants of C', the northwest-

most quadrants of A, and the northwest-most quadrants of B first.

2. The function dnMult () accesses the northeast-most quadrants of C, the northwest-

most quadrants of A, and the northeast-most quadrants of B first.

3. The function upMult () accesses the northeast-most quadrants of C, the northwest-

most quadrants of A, and the northeast-most quadrants of B last.

4. The function dnMult () accesses the northwest-most quadrants of C, the northwest-

most quadrants of A, and the northwest-most quadrants of B last.

Proof by induction on the depth of the recursion (which is logarithmic of the order

of the matrix).

Base case. The base case of this induction is a 2 x 2 matrix (p = 1). Consider
Claim #1. The first recursive call in upMult () is C'lnw+ = Alnw- Blnw. Since
each of these quadrants are scalars, they are the northwest-most quadrants for

all three matrices.
The other base-case claims are proved similarly.

Induction case. For the induction case p > 1, the induction hypothesis assumes

that the lemma is true for quadrants of size 2°P~! x 2P~!. Then for Claim #1,
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it is sufficient to observe that upMult () accesses the northwest quadrants of C,
A, and B first. Since these accesses are done recursively with upMult () itself
and the recursive quadrants have size 2P~! x 2P~1 gsatisfying the conditions of
the induction hypothesis, all of the northwest-most quadrants of C, A, and B

are accessed first.

The other induction-case claims are proved similarly. O

The step from one recursive call to the next in the recursive calls of the algorithms

of Figure 3.4 will simply be called a transition.

Theorem 3.1 A quadrant at every level of one of the three quadtree matrices is

shared in all of fourteen transitions of both upMult () and dnMult ().

Proof Consider the first transition of upMult(). C' | nw is shared. Claim #3 of
Lemma 3.1 says that the northeast-most quadrants of C'| nw will be the last
accessed. Claim #2 of the same lemma says that these same quadrants will be
the first accessed by dnMult (). Thus all of these northeast-most quadrants of

C'|nw are shared on the first transition.

The other transitions of upMult() and all of the transitions of dnMult() are

proved similarly. O

The theorem leads to this important corollary:

Corollary 3.1 A transfer block at any level of the memory hierarchy is shared in all

of the fourteen transitions of upMult () and dnMult ().
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Proof As established in Section 1.7, transfer blocks are the same as quadrants. Sub-
stitute “transfer block” for “quadrant” and “memory hierarchy” for “quadtree

matrix” in Theorem 3.1. O

This solution differs from tiling in several very significant ways. These dual func-
tions are written once while tiling must be done for each level of the memory hierarchy.
The dual quadtree-matrix algorithms work for all levels of the hierarchy regardless
of size and regardless of any changes made to the levels of the hierarchy without no
special knowledge about the memory hierarchy. This means that the code does not

have to be rewritten or even recompiled when the hierarchy changes.

3.3 Successful Matrix Multiplication

Matrix multiplication is a well behaved operation with little to cause it to fail.
There are no undefined operations in matrix multiplication, so the only problem is

the error analysis of matrix multiplication.

Higham notes that the versions of matrix multiplication that traverse the matrices
by rows and columns all have the same error analysis, an error proportional to the
product of the norms of A and B [26, Section 3.5]. The issues involved in this
analysis are no worse for tiled versions of these algorithms, for dgemm() of BLAS (see

Section 3.4.1), and for the quadtree matrix algorithm.
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3.4 Compiler and Implementation Issues

See also the compiler issues discussed in Section 2.4.

3.4.1 BLAS

BLAS (Section 1.8) is a library of basic matrix (and vector) algorithms. The BLAS
function for multiplying general matrices of double precision floating point numbers
is called dgemm(). The performance of this function is compared to the performance
of the quadtree matrix multiplication in the following section. The hand-tuned BLAS

from the manufacturers were used on all machines.

3.4.2 Unfolding the Base Case

For recursive code like matrix multiplication in Figure 3.4, each unfolding (see
Section 2.4.3) is exponential in the number of recursive calls. One unfolding [10] of
one multiplication routine leads to a base case of 8' = 8 multiplications; another
unfolding yields 82 = 64 multiplications; yet another yields 8 = 512 multiplications.
The number of multiplication statements can be reduced by rolling the code into a
loop. Figures 3.5 and 3.6 demonstrates a rolling of an unfolded 2 x 2 base case. (This
is for illustration only; a 2 x 2 base case is too small for rolling to be effective in

practice.)

Unfolding is useful not only for superscalar architectures (Section 2.4.3), but it
also eliminates many function calls and the overhead associated with them. This

is apparent in matrix multiplication. If multiplication is viewed as an octtree (each
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// iC, iA, & iB contain Morton index of northwest
// corner of current block for respective matrices

C[iC+0] += A[iA+0] = B[iB+0] + A[iA+1] * B[iB+2];
C[iC+1] += A[iA+0] = B[iB+1] + A[iA+1] * B[iB+3];
C[iC+2] += A[iA+2] = B[iB+0] + A[iA+3] * B[iB+2];
C[iCc+3] += A[iA+2] * B[iB+1] + A[iA+3] * B[iB+3];

Figure 3.5: Original unfolded 2 x 2 base case

// iC, iA, & iB contain Morton index of northwest

// corner of current block for respective matrices

for (row = 0; row < 2; row++) {
C[ic+0] += A[iA+0] = B[iB+0] + A[iA+1] * B[iB+2];
C[iC+1] += A[iA+0] * B[iB+1] + A[iA+1] * B[iB+3];
switch (row) {
case 0: iC += 2; iA += 2; break;
case 1: iC —= 2; iA -= 2; break;

}

Figure 3.6: Rolled 2 x 2 base case
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function call is a node of the tree), the base cases are the deepest level of the tree.
Eliminating the deepest level of the octtree removes nearly seven-eighths of the nodes
from the entire tree; in terms of function calls, raising the base case up one level

removes seven-eights of the function calls.

As levels of recursion are eliminated by raising the base case, some of the zero
padding of the quadtree matrix can end up in the base cases on the east and south
edges of the matrix. Special algorithms for handling those edges could be written
at the cost of extra testing and more code. Alternatively, the zeros in those edge
quadrants could participate in the base case algorithms. It is faster to just do the

work rather than test to avoid the padding at such a deep level in the tree.

It also pays to ignore those zeros for the purpose of decorating the base case blocks
for many of the same reasons. So, a base case block is considered dense if any element
of the block is non-zero as is decorated appropriately; a base case block is decorated

zero if and only if all of its elements are zero.

The new upMult () function is presented in Figure 3.7. The function upBaseCase ()
would be the unfolded and rolled base case as in Figure 3.6. In the actual code, this

was not a function call; the base case was inlined to avoid the function-call overhead.

3.4.3 Decoration Driven Multiplication

To deal with the decorations (see Section 1.6.5), the dual multiplication algorithms
upMult () and dnMult() are needed in two forms: one form that tests the decoration
and another that does not. The testless form is triggered when both A and B have

a dense decoration.
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upMult (QTMatrix C, QTMatrix A, QTMatrix B) {

if (basecase (C))
upBaseCase (C, A, B);

else {
upMult (nw(C), nw(A), nw(B));
dnMult (nw(C), ne(hd), sw(B));
upMult (sw(C), se(A), sw(B));
dnMult (sw(C), sw(A), nw(B));
dnMult (se(C), sw(A), ne(B));
upMult (se(C), se(A), se(B));
dnMult (ne(C), ne(A), se(B));
upMult (ne(C), nw(A), ne(B));

Figure 3.7: Raised base case version of multiplication

Matrix addition is needed when either A or B is an identity matrix and the
multiplication is cumulative (e.g., (C +=IB) = (C += B)). If the multiplication is
destructive (e.g., C' = IB = B), a simple matrix copy is needed. If A or B is zero,
the multiplication can be ignored if the multiplication is cumulative; a function to
zero out C is needed if the multiplication is destructive. Whether it is a copy or an

addition, it reduces the complexity of the operation from O(n?) to O(n?).

The algorithms presented in this chapter test for the base case; they would be used
on dense-decorated matrices. Decoration-testing versions are made by replacing the

base case test with tests for the zero, identity, and dense decorations.

3.4.4 Destructive Multiplication

When multiplication is destructive (i.e., C = AB as opposed to C' += AB), first-

visit versions of upMult () and dnMult () are used to avoid a separate traversal to zero
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upMultFirst (QTMatrix C, QTMatrix A, QTMatrix B) {
if (basecase (C))
upBaseCaseFirst (C, A, B);

else {
upMultFirst (aw(C), nw(A), nw(B));
dnMult (aw(C), ne(p), sw(B));
upMultFirst (sw(C), se(A), sw(B));
dnMult (sw(C), sw(A), nw(B));
dnMultFirst (se(C), sw(A), ne(B));
upMult (se(C), se(p), se(B));
dnMultFirst (ne(C), ne(A), se(B));
upMult (ne(C), nw(A), ne(B));

}

}

Figure 3.8: First-visit version of multiplication

out C'. In the first-visit versions, the first visit of a quadrant of C initializes it while
the second visit can use the original accumulating version. The first-visit upMult ()
is a variation of the code in Figure 3.7 and is presented in Figure 3.8. The base case
of this function calls a special base case, upBaseCaseFirst (), that overwrites C' with
AB. This could be as simple as zeroing out C' and then calling upBaseCase () on the

three matrices.

This first-visit function could be used to conform more to the behavior of dgemm()
which actually computes C = aAB + SC where o and (8 are constants. The base
case upBaseCaseFirst() would have to multiply C' by 8 before adding aAB. The

regular base case would not have to worry about SC' at all.
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upMultLast (QTMatrix C, QTMatrix A, QTMatrix B) {
if (basecase (C)) {
upBaseCase (C, A, B);
decorateBaseCase (C);

}

else {
upMult (nw (C), nw (A), nw (B));
dnMultLast (nw (C), ne (A), sw (B));
upMult (sw (C), se (A), sw (B));
dnMultLast (sw (C), sw (A), nw (B));
dnMult (se (C), sw (A), ne (B));
upMultLast (se (C), se (A), se (B));
dnMult (ne (C), ne (A), se (B));

upMultLast (ne (C), nw (A), ne (B));
decorateCurrentlLevel (C);

Figure 3.9: Last-visit version of multiplication

3.4.5 Decorating C

Last-visit versions of the algorithms are used to decorate C, called the last time
each quadrant of C' is visited. The last-visit upMult () is presented in Figure 3.9. The
base case of this function can use the regular base case and decorate C' afterward. In
the recursive case, upMultLast () calls the last-visit functions the second (and last)
time each quadrant of C is visited. After all quadrants are visited, the current level
of the matrix is decorated using only the decorations of its quadrants; no recursion is

required.
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topUpMult (QTMatrix C, QTMatrix A, QTMatrix B) {

if (basecase (C)) {
upBaseCase (C, A, B);
decorateBaseCase (C);

}

else {
upMultFirst (nw(C), nw(A), nw(B));
dnMultLast (aw(C), ne(A), sw(B));
upMultFirst (sw(C), se(A), sw(B));
dnMultLast (sw(C), sw(A), nw(B));
dnMultFirst (se(C), sw(A), ne(B));
upMultLast (se(C), se(A), se(B));
dnMultFirst (ne(C), ne(A), se(B));
upMultLast (ne(C), nw(A), ne(B));
decorateCurrentLevel (C);

Figure 3.10: Top-level multiplication function

3.4.6 Top Level Function

The first and last versions of the algorithms must be called from a top-level func-
tion like the one in Figure 3.10. This function incorporates the operations of both

the first- and last-visit functions.

3.5 Experimental Results

The machines used to run these tests are described in Section 2.3. As mentioned
in Section 2.4.1, each machine had its own manufacturer-provided optimized version
of BLAS, so the dgemm() tested on each machine was tuned for that machine. The

quadtree code was identical on all machines.
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Figure 3.11: Running time of different base case sizes

3.5.1 Base Case Size

Figure 3.11 shows the running times on the Power Challenge for quadtree multi-
plication with different sizes for the base case. The improvements from unfolding the
base cases are extremely significant; an 8 x 8 base case is on average more than 92%
better than a 1 x 1 base case. The code reported on in earlier reports [20] was only
unfolded to a two by two base case, a fact ignored by others [12]. The discovery of
dilated integers [47] make unfolding easier and more effective since the code could be

written in the language of loops that the C optimizer could handle.
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3.5.2 Flop Counts

The flop count for both matrix-multiplication algorithms was approximated at
2n where n is the order of the matrix. This approximation was used in computing

the millions of flops per second (mflop/s).

3.5.3 Quadtree Algorithm Versus BLAS Algorithm

The running times and mflop/s for dgemm() and quadtree multiplication are
graphed in Figures 3.12 through 3.19. On the Power Challenge and the two Suns, the
quadtree algorithm performs steadily although dgemm() consistently beats it except

on the Octane.

The performance on the Power Challenge (Figures 3.12 and 3.13) for both algo-
rithms is very consistent. The dgemm() function is very consistent at nearly two-thirds
of the maximum flops, while the quadtree algorithm is just under half of the maxi-
mum flops. The penalty incurred by the padding in the quadtree algorithm can be
seen at orders just past a power of two. For example, the mflop/s at order 2048 is
132.7 mflop/s, and 127.0 mflop/s at order 2094. The performance hit is two-fold: ex-
tra flops are incurred processing padding elements in the base cases, plus extra time
is needed to process the decorations. Yet, the penalty is not that great: the mflop/s

at order 2094 is still 95% of the mflop/s of order 2048.

The results on the Octane (Figures 3.14 and 3.15) are the most interesting. Strid-
ing (Section 2.4.2) appears to be an issue at order 2048 (see the results for QR

factorization in Section 5.7.2). The more interesting results on the Octane are for
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orders greater than 2500 where the performance of dgemm() falls apart. The manu-
facturer’s dgemm() fails convincingly because it cannot handle the memory transfers
in demand paging. That is, that code apparently was not designed for problems this
big on RAM so small, and so its time explodes at orders greater than 2500. Fig-
ure 3.14 includes a plot of the number of major page faults triggered by dgemm() on
the Octane. From that graph the virtual-memory problem is obvious; in contrast, the

plot of the quadtree algorithm is smooth throughout the entire range.

This is not to suggest that on this machine BLAS should be used on small matrices
and the quadtree algorithm on large matrices—this is not the quadtree matrix niche.
BLAS can be fixed: change dgemm() by adding another level of tiling using specific
knowledge about the virtual memory system. The important lesson here is that the
quadtree algorithm takes this extra level of the memory hierarchy without extra or
special effort. The quadtree algorithm is implicitly tuned for all levels of the hierarchy

without any knowledge about the hierarchy.

The performance of the quadtree algorithm on both of the Suns (Figures 3.16
through 3.19) is dead smooth. Each new layer of the memory hierarchy is handled
without changing the code. The performance of dgemm() is a bit more erratic, par-
ticularly at orders that are large powers of two, like 2048, 4096, and 8192. Just as
on the Octane, striding is most likely the culprit for the bad performance at these

orders.

Overall, these graphs suggest that striding is not an issue for quadtree matrices.
They also suggest that the quadtree algorithm is already tuned for the all levels of
the hierarchy without being re-tuned for each machine with knowledge of machine

particulars. The performance of dgemm(), which is re-tuned for each machine with
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knowledge of machine particulars, is usually better unless it was not tuned for a
particular level of the hierarchy like on the Octane. The problem with the quadtree
algorithm does not appear to be due to memory use; other results [48] suggest that

the problem is the poor compilation of recursion.
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Figure 3.12: Running time of uniprocessor multiplication on Power Challenge
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Figure 3.13: Mflop/s of uniprocessor multiplication on Power Challenge
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Figure 3.14: Running time of uniprocessor multiplication on Octane
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Figure 3.15: Mflop/s of uniprocessor multiplication on Octane
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Figure 3.16: Running time of uniprocessor multiplication on Enterprise 450

SR s D B G -
Quadtree —+—
350 | dgemm() = -
Maximum -
300 R
e XX >FX‘\><~>1</»><\X,>@><
Vo AR S
K% 250 \\ | X ! (; * XE—XX\X\XX\X"X\XX\ . b
s L AN |
o 200 | i L _—
= % y |
150 x 1
50 | R

O Il Il Il Il Il Il Il
1000 2000 3000 4000 5000 6000 7000 8000 9000
Order of Matrix

Figure 3.17: Mflop/s of uniprocessor multiplication on Enterprise 450
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Figure 3.18: Running time of uniprocessor multiplication on Ultra 5/10
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Figure 3.19: Mflop/s of uniprocessor multiplication on Ultra 5/10
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4

Parallel Matrix Multiplication

The divide-and-conquer paradigm promises good parallelism, and the quadtree

matrix algorithm delivers on this promise.

4.1 Dispatching Parallel Processes

The quadtree matrix multiplications of Figure 3.4 are divide-and-conquer algo-
rithms; they divide matrix multiplication into eight recursive calls on the quadrants
of the three matrices. As noted in Section 1.2.2, divide-and-conquer algorithms offer
a simple way to parallelize the code: solve independent subproblems (i.e., execute
independent function calls) in parallel. If there are more processors than independent
problems, each parallel process can be given a proportion of the processors for further

dispatches.

A programmer must first identify the independent function calls. For matrix
multiplication, A and B can be read by two (or more) different processes at the same

time without causing conflicts. However, only one process should write to any block of

65



C at a time. Consequently, multiplications involving the same quadrant of C' should

be done serially deferring parallelism one level down in the recursion.

It is also important to reduce the number of parallel dispatches to minimize the
overhead of time and resources for process dispatch and synchronization [14, 28, 1]. If
the execution of these functions are viewed as an octtree of function calls, dispatches
should occur at higher levels of the function-call tree. Yet, due to the zero padding, not
all multiplications require the same amount of work. For balanced parallel processes
and easy dispatch, it is best to dispatch two processes with the same amount of work
involved. This observation suggests forcing parallel dispatch down to the deeper levels
of the function-call tree where the subtrees (correspondingly, the parallel processes)

are better balanced.

4.2 Eight Multiplication Patterns

There are eight different patterns that arise in the multiplication of square ma-
trices based on the padding. These patterns are visually described and named in

Figure 4.1 [20].

In all cases except for the perfect-square case, majority and minority padding
(Definition 1.19) determine what recursive multiplications must be done and how the
subprocesses can be balanced with each other. The pictures in Figure 4.1 display a

mutually inconsistent variety of majority- and minority-padding possibilities.

In the following case analysis, the parallel dispatch for each case is described with
a chart as in Figure 4.2. The charts are two dimensional diagrams: the vertical di-

mension is time; the horizontal dimension suggests parallel dispatch across available
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Figure 4.1: Parallel multiplication patterns
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Figure 4.2: Parallel dispatch chart
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processors. A horizontal bar represents synchronization. The steps between horizon-
tal bars can be interleaved in any order. The steps are ordered by decreasing amount
of work, but steps listed in parallel are balanced with respect to the work they do

and their memory footprints.

For each case, parallel dispatch is done by splitting the work into two parallel
processes to simplify process management. If there are more than two processors
available, each parallel process is given half of the available processors for further
dispatches. The parallel algorithm continues to dispatch deeper in the function-call
tree. For a uniform distribution of processors, the number of processors is assumed

to be a power of two.

0. Perfect Square. When A and B are perfect quadtree matrices (see Defini-
tion 1.19), the eight multiplications are all balanced, and so this case parallelizes
very nicely. The eight recursive calls are split in half by splitting C' west-east
as in Figure 4.3. Alternatively, C' could be split north-south or even diago-
nally (i.e., northwest and southeast versus northeast and southwest) for equally

balanced processes.

If there are enough processors, the processor pool could be split four ways and
the work dispatched as indicated in Figure 4.4. This four-way dispatch may
be favored if many processors are available that should be taken advantage of
early in the dispatch process. However, the two-way dispatch is still needed
when there are fewer than four processors available. For simplicity, only the

two-way dispatch is used.
The choice between two-way and four-way dispatch is possible because all of
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the recursions are balanced in terms of processor and memory use. Other cases
are constrained by the shapes and sizes of their padding and so do not have this

same flexibility.

Each quadrant of C'is affected by two of the recursions; and since the quadrants
of C are written to, these two recursions must be synchronized; so they are
assigned to the same parallel process, or they have an explicit synchronization
step between them. Consequently, an eight-way dispatch is not possible for this

(or any) case.

. SquareeSquare. This is the general case, and this case serves as the root of

the function-call tree.

MAJORITY-PADDING DISPATCH: Since all data is in the northwest quadrants
of all three matrices, this case reduces to one recursive call to itself; parallelism

is deferred to a lower level of the function-call tree.

MINORITY-PADDING DISPATCH: All eight cases arise from the eight multiplica-
tions. Since all of the stripes and colonnades of A and B have the same dimen-
sions, the multiplications involving the northeast of C' can be balanced against
the multiplications involving the southwest of C'; the other multiplications do
not balance with each other and are done serially, deferring the parallelism.

This pattern of dispatch is given in Figure 4.5.

The last two steps in this case are well balanced in terms of computational
complexity, but not in terms of their memory footprints. The colonnadeestripe
case generates a perfect quadtree matrix C' while the stripeecolonnade case

results in a C with padding. This not only affects the memory accesses of the
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Figure 4.3: Parallel multiplication: perfect square dispatch
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Figure 4.4: Parallel multiplication: perfect square dispatch (4 processes)
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Figure 4.5: Parallel multiplication: squareesquare dispatch
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two cases but also the possibilities for future parallel dispatches in the function-

call tree.

2. The next two cases are grouped together since they are symmetric in their
matrix patterns and are thus computationally equivalent both in terms of flops
and their memory footprints. C' is split in half to divide up the multiplications

into two parallel processes.

a. SquareeColonnade. (' is split north-south to yield balanced processes.

C could be split diagonally, but not east-west.

MAJORITY-PADDING DISPATCH: This case consists of four multiplications
of this same case that are nicely balanced. This pattern of dispatch is

given in Figure 4.6.

MINORITY-PADDING DISPATCH: This case consists of four multiplications
of this same type and four perfect-square cases; the work is well balanced

for good parallelism. This pattern of dispatch is given in Figure 4.7.
b. StripeeSquare. C is split east-west to yield balanced processes. C could
be split along its diagonals, but not north-south.

MAJORITY-PADDING DISPATCH: There are four recursive cases as indi-

cated in Figure 4.8 that parallelize nicely.

MINORITY-PADDING DISPATCH: This case consists of four recursive cases
as well as four perfect-square cases, and all parallelize nicely. This pattern

of dispatch is given in Figure 4.9.

3. The next two cases are also symmetric and computationally equivalent.

71



Clow += AlnwBlnw
squareecolonnade
Clnw+= AlneB|sw

squareecolonnade

Clsw+= AlswB]nw
squareecolonnade
Clsw+= AlseBlsw

squareecolonnade

Figure 4.6: Parallel multiplication: squareecolonnade majority-padding dispatch
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Figure 4.7: Parallel multiplication: squareecolonnade minority-padding dispatch
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Figure 4.8: Parallel multiplication: stripeesquare majority-padding dispatch

Clow += AlnwBlnw
C ,l,nwp-el-rf;Cth,u;reeB Isw
Cl swp—elff;CtZ(iu:eeB dsw
Cl sws—t::'fsﬁltl;jB Jnw

stripeesquare

Clne += AlnwB]ne
perfect square
Clne += AlneB/|se
perfect square
Clse+= AlseB|se
stripeesquare
Clse+= AlsuB/|ne

stripeesquare

72

Figure 4.9: Parallel multiplication: stripeesquare minority-padding dispatch




a. ColonnadeeSquare. (' is partitioned north-south to yield balanced pro-
cesses. C' could be split diagonally, but not east-west.
MAJORITY-PADDING DISPATCH: This case reduces to two recursive cases
that parallelize nicely. The pattern of dispatch is given in Figure 4.10.
MINORITY-PADDING DISPATCH: This case reduces to four recursive cases
and a variety of other cases that balance and parallelize nicely. This pattern

of dispatch is given in Figure 4.11.

b. SquareeStripe. C is partitioned east-west to yield balanced processes.
C could be split diagonally, but not north-south.
MAJORITY-PADDING DISPATCH: This case consists of two recursive calls
that parallelize nicely. This pattern of dispatch is given in Figure 4.12.
MINORITY-PADDING DISPATCH: This consists of a variety of cases that

parallelize nicely. This pattern of dispatch is given in Figure 4.13.

4. ColonnadeeStripe. This case can be viewed as an outer product of two
vectors. C' is split north-south to yield balanced processes; it can also be split

east-west or diagonally for balanced processes.

MAJORITY-PADDING DISPATCH: This case consists of four recursive cases that

parallelize nicely. This pattern of dispatch is given in Figure 4.14.

MINORITY-PADDING DISPATCH: This case consists of a variety of other cases

that parallelize nicely. This pattern of dispatch is given in Figure 4.15.

5. StripeeColonnade. This case can be viewed as an inner product of vectors.
Since the area of C' that is updated is smaller than the area of A and B, much

of this case must be done serially.
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Figure 4.10: Parallel multiplication: colonnadeesquare majority-padding dispatch

Clow += A]lnwB]nw
perfect square
Clnw+= AlneB|sw
colonnadeestripe
Clne += AlneB|se
colonnadeesquare
Clne += AlnwB/|ne

squareecolonnade

Clsw+= AlswB]nw
perfect square
Clsw+= AlseBlsw
colonnadeestripe
Clse+= AlseB|lse
colonnadeesquare
Clse+= AlsuB/|ne

squareecolonnade

Figure 4.11: Parallel multiplication: colonnadeesquare minority-padding dispatch
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Figure 4.12: Parallel multiplication: squareestripe majority-padding dispatch
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Figure 4.13: Parallel multiplication: squareestripe minority-padding dispatch
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Figure 4.14: Parallel multiplication: colonnadeestripe majority-padding dispatch
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Figure 4.16: Parallel multiplication: stripeecolonnade majority-padding dispatch
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Figure 4.17: Parallel multiplication: stripeecolonnade minority-padding dispatch

MAJORITY-PADDING DISPATCH: There are two recursive calls to this same case
that must be done serially since both update C'|nw. This pattern of dispatch

is given in Figure 4.16.

MINORITY-PADDING DISPATCH: Similar to the squareesquare case, the multi-
plications for the northeast of C are well balanced against the multiplications
for the southwest of C' for some parallelism; the other multiplications must be

done serially. This pattern of dispatch is given in Figure 4.17.

4.3 Implementation and Compiler Issues

Section 2.4 discusses the basic compiler issues. There are also some particular

considerations for parallel matrix multiplication.
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4.3.1 Padding Size

Scheduling around the zero padding has an overhead; at some point it is best
to consider the matrix to be perfect square and dispatch accordingly. For example,
it seems fairly silly to treat a 511 x 511 matrix as anything but dense 512 x 512.
The extra row and column of padding would hardly make a difference in the parallel
dispatch, especially with an unfolded base case (see Section 3.4.2). Experiments on
the Power Challenge indicate that a padding of up to order 32 is worth ignoring. This

same size was used on the Enterprise 450.

4.3.2 Uniprocessor-Commit Size

Due to the overhead of a dispatch [14, 28, 1] it may be faster to process a small

matrix with one processor even if there are multiple processors available.

Definition 4.1 The uniprocessor-commit size s the largest size of a quadtree matriz
where the overhead of parallel dispatch and the time to execute the parallel processes

s greater than executing the uniprocessor algorithm.

The base case must be done uniprocessor, so the uniprocessor-commit size for multi-

plication must be at least as large as the base case size (see Section 3.4.2).

Experiments on the Power Challenge indicate that the padding size is perhaps
more important than the uniprocessor-commit size: all uniprocessor-commit sizes
smaller than the padding size work equally well; larger sizes degrade performance
since some parallelism is lost. So the uniprocessor-commit size was set to the base

case size on both parallel machines.
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4.4 Experimental Results

The machines used to run these tests are described in Section 2.3. Only the
Power Challenge and the Sun Enterprise machines are parallel machines, so only they
were used to run the parallel experiments. Speed-ups were calculated as described in

Section 2.5.1.

The parallel speed-ups for the quadtree multiplication and dgemm() on the Power
Challenge are graphed in Figures 4.18 and 4.19. Both algorithms do the same amount
of work, and the speed-ups are fairly comparable. The speed-ups of the quadtree algo-
rithm on the Power Challenge (Figure 4.18) are near the linear ideals for two and four
processors. The super-linear speed-ups at order 6643 are inaccurate since the unipro-
cessor time at that order is a little higher than it should be (see Figure 3.12). Not
surprisingly, the parallelism seems to be best at power-of-two orders (like orders 2048
and 4096) and improves as the matrix gets larger. Power-of-two orders have the best
parallelism since every parallel dispatch is a well balanced, perfect-square dispatch.
Larger matrices perform better because there is more work done for each dispatch,

amortizing the cost of the overhead of the parallel dispatch.

Eight processors on the Power Challenge starts off rather low where the payoff
for parallel dispatch is not very good—too many dispatches are done deep in the
function-call tree. Again, power-of-two orders have quite good speed-ups since all of
the dispatches are perfect-square dispatches. But, as the order of the matrix increases,
the overall performance at eight processors steadily increases to the ideal since there

is a better payoff for the parallel dispatches.
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The speed-up for dgemm() on the Power Challenge (Figure 4.19) also suffers prob-
lems at smaller orders, but it does better as the order increases. The performance

rapidly approaches the ideal as asymptote.

The speed-ups for the Enterprise 450 are graphed in Figures 4.20 and 4.21. The
performance of the quadtree algorithm (Figure 4.20) is very impressive. At two
processors, the speed-up is consistently just under the ideal; at four processors, the
speed-up is a little inconsistent for small orders, but increases nicely and never dips
below 3.5. The performance of dgemm() (Figure 4.21) appears to be a little more
ragged, especially for four processors. The speed-ups also appear to be super linear
most of the time for two processors. Both the raggedness and the super-linear speed-
ups are due to using wall-clock time for computing the speed-up (see Section 2.5.2).

Most likely, the speed-up is right around the ideals.

Overall, the parallel speed-up of the quadtree algorithm is quite good. The algo-
rithm pays some penalties when it must deal with non-power-of-two orders, but this
is only a real problem on the Power Challenge with eight processors (Figure 4.18).
But it is very competitive with parallel dgemm(). This all strongly suggests that the

divide-and-conquer paradigm use for parallelism can be successful.
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3

()R Factorization

As discussed in Section 1.4.3, a QR factorization factors a matrix A into an
orthogonal matrix ) and an upper-triangular matrix R. This factorization is useful
for solving the least squares problem and for finding eigenvalues. This chapter explores

a quadtree algorithm for QR factorization.

5.1 The Basic Algorithms

The QR factorization of an n x n matrix A produces an n x n orthogonal matrix
@ and an n x n upper-triangular matrix R such that A = QR [24, Section 5.2]. A
QR factorization applies a series of orthogonal transformations @1, Q1, Qo, - - ., Qm to
A = Ay, Ay, Ay, ..., updating each successive 4; = QT A;_; until A,, = R is produced.
(The value m depends on the particular transformation used.) The matrix @ is
formed by multiplying the individual orthogonal transformations together. Different
QR factoziations arise because of the different orthogonal transformations that can

be used for Q;.
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5.1.1 Householder QR Factorization

A Householder reflection is an orthogonal transformation that is applied to one
column of a matrix to zero-out selected components in a column [24, Section 5.1.2].
In Householder QR factorization, each (); is a Householder reflection to zero out the

portion of column ¢ below the matrix diagonal of A; [24, Section 5.2.1].

5.1.2 Givens QR Factorization

A Givens rotation eliminates just one selected element from the matrix using
another element [24, Section 5.1.8]. To eliminate b # 0 using a, the Givens rotation

is formed from the cosine c and sine s of an a-b right triangle:

T
c s a T
= (5.1)
-5 ¢ b 0
where
—b
c= __¢ and s =

If b = 0, then the identity matrix is used (i.e., ¢ = 1 and s = 0) since b is already
eliminated. Golub and Van Loan [24, Section 5.2.3] present a QR factorization algo-
rithm using Givens rotations; a version of this algorithm is presented in Figure 5.1 in

a loose C syntax.
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for (int j = 0; j < mn; j++) {
for (int i = n; i >= j+1; i--) {
Scalar ¢, s;
givens (c, s, R[i-1,j], R[i,j1);

for (int k = j; k < n; k) {
Scalar top = ¢ * R[i-1,k] - * R[i,k];
Scalar bot = s * R[i-1,k] + ¢ * R[i,k];
R[i-1,k] = top;
R[i,k] = bot;

}

for (int k = 0; k < n; k++) {
Scalar top = ¢ * Q[i-1,k] - s * Q[i,k];
Scalar bot = s * Q[i-1,k] + * QLi,k];
QLi-1,k] = top;
QLi,k] = bot;

}

}
}

Figure 5.1: Iterative, column-based Q)R factorization using Givens rotations
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5.2 The Quadtree QR Factorization Algorithms

The algorithm for QR factorization for quadtree matrices is done with two mutu-

ally recursive functions, f and e, that solve two different, but interrelated, problems.

5.2.1 Quadtree QR Factorize

The factorization function is f: A — (@, R) where A, @, and R are n X n matrices;
@ is orthogonal; R is upper-triangular; and A = QR. The function is presented in

Figure 5.2.

If A is scalar (i.e., n = 1), then @ = I = [1] and R = A. The recursive case
breaks down into several steps: first, the northwest and southwest quadrants of A are
factored recursively using f (Steps 1 and 2). Second, the modified southwest quadrant
is eliminated with the elimination function e (see Section 5.2.2) using the modified
northwest quadrant (Step 3). The @s resulting from the first steps are multiplied
together (Step 4), and the product is used to update the eastern colonnade of A
(Step 5). The updated southeast of A is factored recursively (Step 6). Finally, the @

from the last factorization is multiplied with the previous @s (Step 7).

5.2.2 Quadtree QR Eliminate

The elimination function e: (N, S) — (Q, N) eliminates an upper-triangular ma-
trix S using another upper-triangular matrix N; N is updated to N which is also
upper-triangular. (N and S get their names from “north” and “south”, respectively,

indicating the relative positions of the two blocks in the matrix being factored.) The
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Function f: A+ (Q, R) where
A, @, and R are n X n matrices,
@ is orthogonal, R is upper-triangular, and A = QR.

Base case when n =1,

Name: Q=1
R = A.

Recursion when n > 1,
Step 1: <Q1, R1> = f(AJ,nw)

Step 2: <Q2, R2> = f(A\LSW)
Name: QI&Z = [ %1 é :|
Step 3: (Qs, R3) = e(R1, Ry).

Step 4: Qs = Qrg2Qs-
Step 5: [ Un } =QF Alne :|

Step 6: (Qe, Rs) = f(Us).
Step T7: Q:Q4[é 5]

Name: R = [R?’ Un ]

Figure 5.2: QR factorization function, f

85



matrices N, S, and N are all n X n matrices while Q has order 2n x 2n. Q is ortho-
gonal, and Nis upper-triangular. The computational postcondition for this function

is that

=Q . (5.2)

The algorithm is presented in Figure 5.3.

If N and S are scalars, () is the Givens rotation to eliminate S using N using
Equation 5.1. N is the result of multiplying Q7 by N and S. In the recursive case,
the function e is called on the northwest quadrants of N and S (Step 1). Then e is
called on the southeast quadrants (Step 2). The @ from the first elimination is used
to update the northeast quadrants of N and S (Step 3). This leaves only a square
block in the northeast of S. It is first factored using f (Step 4), then it is eliminated

using e and the southeast of N (Step 6). The last Qs are multiplied together (Step 7).

The elimination function presents some specialized multiplications that require
fewer than 2n® flops. Since N and S are both triangular, Q comes out of e with
triangular patterns in it. (The @ from f is dense as one would expect.) The deco-
rations direct the multiplication algorithms to take advantage of these patterns. A
programmer might also tailor special multiplication routines to these patterns, and

thereby avoid the need for testing the decorations.

5.3 Tuning for the Memory Hierarchy

QR factorization with Householder reflections can be put into a block form [24,

Section 5.2.2] for row- and column-major storage. Columns of A are factored as before,
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Function e: (N, S) — (Q, N) where
N, S, and N are n x n matrices, N and S are upper-triangular,
N is upper-triangular, @ is an 2n x 2n orthogonal matrix, and
Equation 5.2 holds.

Base cases when S =7, | whenn =1,
Step a: Q=1 Q = givens(N, S).
. F= N1_or[ N
sews wew | [5]=ar[¥]

Recursion when n > 1,
Step 1: <Q1,N1> = e¢(N{nw, S|nw).
Step 2: <Q2,N2> = e(N|se, Slse).

Q1lnw Z (1lne Z
Z  Qnw  Z  Q2lne
Q1lsw Z Q1lse Z
Z  Qsw  Z  Q2lse

Step 3: [ ZZ ] =QT [ ];j;: ]

Step 4: <Q4,R4) = f(US)

Name: Q182 =

Step 5: Qs = Q12

NN N~
NN~ N
O N
~ NN N

Step 6: <Qﬁm>=dN¢Rg

Z Z

Qelnw  Qglne
QRedsw Qelse
Z Z

. NT NI Un
Name: N_[ 7 ~ ]

Step 7:

o

I

e
NN N~
~ NN N

Figure 5.3: QR elimination function, e
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but updates are only applied to the current colonnade block. When a new colonnade
is started, all pending updates are applied before factoring the new colonnade. Not
only does this avoid accessing these columns repeatedly for updates, but the block

update is also a more efficient matrix-matrix operation.

Similar blocking is naturally part of the quadtree matrix algorithm; just like the
quadtree matrix algorithm for matrix multiplication, blocking is automatic. For the
QR factorization algorithms, updates to eastern colonnades are saved until the west-
ern colonnades are fully processed. Unlike quadtree-matrix multiplication, the QR
factorization algorithm for the quadtree matrix does not reuse blocks, so there is no

need to create dual versions of the algorithm for block reuse.

5.4 Successful ()R Factorization

In addition to algebraic correctness, it is also necessary for the algorithms to avoid

problematic operations and to avoid generating large errors.

5.4.1 Computational Correctness

The functions f and e work correctly:
Theorem 5.1 This theorem consists of two clauses:

Clause F If f: Af — (Qy, Ry) is defined as in Figure 5.2 and Ay is an n X n matriz,

then Qg is an n x n orthogonal matriz, Ry is an n X n upper-triangular matriz,

and Af = QfRf.

38



Clause E Ife: (N, Se) — (Qe,Ne) is defined as in Figure 5.8 and both N, and S,

are n X n upper-triangular matrices, then Q. is a 2n X 2n orthogonal matriz,

N, 1s an n X n upper-triangular matriz, and

Section A.3 proves this theorem.

It is also important that if A is non-singular, then @@ and R are also non-singular:

Theorem 5.2 Let A be an n xn matriz. Let (Q, RY = f(A) as defined in Figure 5.2.

Then R is singular if and only if A is singular; Q is always non-singular.

Section A.4 proves this theorem.

5.4.2 Avoiding Problematic Operations

QR factorization never divides by zero. The only division in the algorithms is in
computing ¢ and s of a Givens rotation, and the denominator of the divisions are zero
only when a = b = 0. However, when b = 0 (regardless of a), the identity matrix is

used as the rotation. So division by zero is avoided.

In computing a Givens rotation, the square root is always safe because a and b

are real (not complex), non-zero numbers, and so a? + b? is always positive.

89



5.4.3 Error Analysis

Naive LU factorization can result in large errors [26, Chapter 9]. To avoid these
errors, it is usually implemented with partial pivoting [24, Section 3.4.3]. The algo-
rithm searches for large values in one step of the algorithm, and rows are exchanged
so that the factorization is kept as accurate as possible [26, Chapter 9]. This pivoting

also avoids division by zero.

In QR factorization, the orthogonality of ) gives it great stability. The error anal-
ysis of QR factorization using Givens rotations without pivoting is very favorable [26,
Section 1.14.2; Section 18.5]. Pivoting is used with QR factorizations on singular
matrices for reasons beyond the scope of this work. [24, Section 5.4.1] Pivoting is

unnecessary on nonsingular matrices.

This only makes explicit pivoting unnecessary. If N = Z is e, then the natural

Givens rotation generated by e will, in fact, implicitly pivot the matrices so that

N==S.

5.5 Implementation and Compiler Issues

See also the compiler issues of Section 2.4 and 3.4.

5.5.1 In-place Algorithms

The functions f and e as presented in Figures 5.2 and 5.3 (respectively) are purely

functional and do not run in-place. Implementing them to run in-place can be done
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by gradually replacing A by R while assembling () in another matrix. Matrix mul-
tiplications of the forms X = XY and Y = XY are very useful for accumulating ()
and updating A, but they require extra memory to accumulate partial sums. Thus,

a temporary matrix is passed to each algorithm for storing intermediate results.

5.5.2 The Transpose of @)

The algorithms for the functions f and e actually return @7, rather than Q,
because it is easier to update A using Q7. It is easy to transpose a matrix after the

factorization is complete.

5.5.3 Base Case Unfolding

Like matrix multiplication, the base case of QR factorization is unfolded in prac-
tice, here to an 8 x 8 block (see Section 3.4.2). The 8 x 8 block is factored using the
loops in Figure 5.1. The loops of that code were translated for use with level-order

indices as suggested by Wise [47].

5.5.4 Decoration Driven QR Factorization

No special cases for handling identity matrices are necessary in e or f because
they rarely arise in A, originally or during the factorization. If there is an identity
matrix in A, it will be factored correctly (i.e., @ = R = I); it will just be treated as
a dense matrix. The identity matrices in () are never factored, just multiplied, and

the multiplication algorithm does treat them as special cases (see Section 3.4.3).
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Zero matrices lead to some simplified work in e and f resulting mostly in identity
transformations: f: Z — (I,Z) and e: (N,Z) — (I,N). In both functions, the
matrix to be be factored or eliminated is already eliminated, so no changes must be

made to A or N, and () is trivially the the identity matrix.

Due to the way C' is visited by matrix multiplication, special first- and last-
visit functions are needed to initialize and decorate C' properly and efficiently (see
Sections 3.4.4 and 3.4.5). There is no special matrix to initialize in f or e, so special
first-visit functions are unnecessary. Last-visit functions are also unnecessary since

Q, R, and N must always be decorated at the end of both functions.

5.5.5 Accumulating @

Many algorithms for QR factorization do not accumulate @) explicitly. Usually,
each @); is stored in the memory for the eliminated portion of A. However, to take
advantage of the blocked efficiency of matrix multiplication, () must be accumulated

explicitly for the quadtree matrix algorithm. So () is accumulated explicitly.

5.6 LAPACK

LAPACK (see Section 1.8) provides the function dgeqrf () for QR factorization
(without pivoting). This function does not create a matrix (), but stores the House-
holder reflections in the zeroed portions of A as it becomes R.! So, this function
performs fewer flops than the quadtree matrix algorithm which accumulates ) ex-

plicitly.

1QT can be formed from this representation if necessary.
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Figure 5.4: Flop count of QR factorization algorithms

The LAPACK library was compiled from scratch on the SGI machines, but linked
to the hand-tuned BLAS library. The Sun Performance Library provides a hand-

tuned LAPACK, and this was used on the Sun machines.

5.7 Experimental Results

5.7.1 Flop Count

The flop counts for dgeqrf() and the quadtree algorithm are graphed in Fig-
ure 5.4. The flop count for the quadtree matrix is higher because it accumulates
@ explicitly, while dgeqrf() stores just the Household vectors (see Sections 5.5.5
and 5.6).
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The flop counts for dgeqrf () were approximated at 4n3/3 flops [24, Section 5.2.1];
the actual number of flops may be slightly higher since the block Householder algo-
rithm incurs some extra flops when computing intermediate results [24, Section 5.2.2].
Consequently, the flops for dgeqrf () are conservative, but by a factor much less

than 1.

The flop counts for the quadtree algorithm were tallied by extra code in the
algorithm. Consequently, its flop counts are precise. Finding an equation to count
the number of flops for the quadtree algorithm is difficult in part because it is based
on some elaborate recurrence relations. Complicating the flop equation further is the
(@ returned by the function e; this ) has a particular triangular pattern to it that

allows the zero decoration to avoid many multiplications.

5.7.2 Quadtree Algorithm Versus LAPACK Algorithm

The machines used to run these tests are described in Section 2.3.

The running times and mflop/s of dgeqrf () and the quadtree algorithm on the

four machines are given in Figures 5.5 through 5.12.

Since it does not accumulate () explicitly, dgeqrf () measures faster than the
quadtree algorithm as expected. But when the plots for mflop/s are compared, the
quadtree algorithm ends up outperforming dgeqrf (). In fact, dgeqrf () appears to
perform quite poorly relative to the work it does on all four machines, even on the

Sun machines where manufacturer’s libraries were used.

On the Power Challenge (Figures 5.5 and 5.6), the quadtree QR factorization per-

forms at a flop rate nearly as good as matrix multiplication (Figures 3.12 and 3.13)

94



which is easily explained by the accumulation of (). @) is accumulated through mul-
tiplication, and comparing the flop counts in Figure 5.4, these multiplications are
most of the work that the quadtree algorithm does. So it is expected that this QR
factorization algorithm would perform at a flop rate nearly as good as matrix multi-

plication.

But on the Power Challenge, dgeqrf() does not even reach a quarter of the
mflop/s performance of dgemm(). It may be slightly unfair comparing the flop rates
of the quadtree algorithm and of dgeqrf () since the quadtree benefits from the flop-
rate boosting matrix-multiplication algorithm. But the difference in performance of

dgemm () and of dgeqrf () should not be a factor of four.

As noted in Section 5.6, dgeqrf() was compiled from source code and linked
to the manufacturer’s BLAS on the Power Challenge; the performance of dgeqrf ()
might be improved on the Power Challenge with more tiling or more information
about the Power Challenge. In contrast, without any tuning the quadtree algorithm
performs well, demonstrating its strength. Its performance decrease (compared to
matrix multiplication) can be explained by the nature of the QR algorithm which is
less memory friendly than matrix multiplication; this same explanation does not work

for the magnitude of the decrease in performance of dgeqrf () compared to dgemm().

Again the Octane (Figures 5.7 and 5.8) has interesting results. Just like the
Power Challenge, dgeqrf () was compiled from source code and so suffers from the
same decrease in performance. Also, comparing Figures 3.15 and 5.8, it is clear that

striding is a an issue at order 2048 despite our compensating for it (Section 2.4.2).

Also evident in the performance of dgeqrf () on the Octane is its problem with the

virtual memory system. Again, the page faults for dgeqrf () are plotted (Figure 5.7),
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and they increase sharply after order 3500. The virtual-memory problem manifests
itself at a larger order for dgeqrf () than dgemm() (which started having problems
at order 2500) because there is only one matrix for dgeqrf () plus, perhaps, some

scratch space; dgemm() needs space for at least three full matrices.

The plot of the performance of the quadtree algorithm on the Octane appears
to be a step function, with each peak at an order that is a power of two. Handling
the padding appears to have a greater cost on the Octane with the QR factorization
algorithm. But the overall performance on the Octane is respectable. Most notably,
the performance of the quadtree algorithm continues to improve in spite of the fact
that another level of the hierarchy (paging) is being used. So, just as with matrix
multiplication, the results on the Octane demonstrate the lesson of the quadtree
matrix: the quadtree matriz handles each level of the memory hierarchy without extra

coding effort and without any knowledge of machine specifics.

Performance on the Suns (Figures 5.9 and 5.10 for the Enterprise 450 and Fig-
ures 5.11 and 5.12) is also telling, in different ways. It is clear that there are striding
problems for dgemm() and dgeqrf() at orders that are a power of two (see Fig-
ures 3.17 and 5.10 in particular). The performance decrease at these orders is not as
bad for dgeqrf () because its overall performance on the Suns (just as it was on the
SGIs) is much lower than it was for dgemm (). However, unlike the SGIs, LAPACK on
the Suns is part of the Sun Performance Library. One would expect manufacturer-
supplied code to be as efficient as possible, but these results do not demonstrate this.
Yet the quadtree algorithm does not seem to take any performance hit at all on the

Suns, even though the QR factorization is not as efficient as matrix multiplication.

Overall, the quadtree algorithm demonstrably handles all levels of the memory
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hierarchy without extra or special knowledge, and the performance of the QR factor-

ization remains close to the performance of the matrix-multiplication algorithm.
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Figure 5.5: Running time of uniprocessor QR factorization on Power Challenge
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Figure 5.6: Mflop/s of uniprocessor QR factorization on Power Challenge
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Figure 5.10: Mflop/s of uniprocessor QR factorization on Enterprise 450
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6
Parallel ()R Factorization

Parallelizing the quadtree algorithm for QR factorization follows the same logic

as for matrix multiplication.

6.1 QR Parallel Cases

The QR factorization algorithm is divided into cases like the matrix multiplication
algorithm (Chapter 4). For QR factorization there are fewer cases to consider (even
with both f and e to consider). Unfortunately, the opportunities for parallelism are
fewer than with matrix multiplication. Since matrix multiplication is a fundamental
part of QR factorization, however, much parallel performance of ()R factorization is

still available from parallel multiplication.

The parallel dispatch for each case is diagrammed in a chart similar to those
in Chapter 4 (see especially Figure 4.2). These charts use the steps established in
Figures 5.2 and 5.3 although the naming steps of those functions are omitted in the

parallel dispatch charts.
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< ) > =f Perfect square 0

< ) > = f Square 1

< ) > :f Stripe 2

Figure 6.1: Parallel patterns of f

Often the multiplications needed to update A or () are unbalanced. For example,
Step 4 of f in the square case with minority padding consists of four multiplica-
tions, each one a different case: a perfect-square case, a stripeesquare case, a colon-
nadeesquare case, and a square case. These multiplications are not well balanced with
each other and so should not be dispatched in parallel. Each one is called sequentially
and given all available processors; the parallel matrix multiplication routines can still
find parallelism deeper in the function-call tree. So multiplication steps in the paral-
lel dispatch charts are annotated as “deferred” or “immediate”. “Deferred” indicates
that parallel dispatch is deferred to the multiplication routines; “immediate” indi-
cates that the multiplications of that step are dispatched in parallel immediately at

the current level.

6.1.1 Parallel Patterns of f

The function f breaks down into three cases as sketched in Figure 6.1.
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0. Perfect Square. When A is perfect, the northwest and southwest quadrants
can be factored in parallel (Steps 1 and 2). The multiplications of Steps 4, 5
and 7 are well balanced within each step, so the multiplications of those steps

are immediately dispatched in parallel. This dispatch is given in Figure 6.2.

1. Square. This is the general case, and it is where top-level dispatching starts.
There are no immediate opportunities for parallel dispatch in this case; all

parallelism is deferred to the next level in the function-call tree.

MAJORITY-PADDING DISPATCH: This case reduces to one instance of itself on

the northwest quadrant of A.
MINORITY-PADDING DISPATCH: All steps are done sequentially. This dispatch
is given in Figure 6.3.

2. Stripe. As with the square case, there are no immediate opportunities for
parallel dispatch.

MAJORITY-PADDING DISPATCH: This case reduces to one instance of itself on

the northwest quadrant of A plus an update to Alne (Step 5).

MINORITY-PADDING DISPATCH: the dispatch for this case is identical to the

minority-padding dispatch for the square case, given in Figure 6.3.

6.1.2 Parallel Patterns of e

The function e breaks down into only two cases as depicted in Figure 6.4. The
case and size of the padding is determined by the padding in S since N is always

upper-triangular dense.
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Step 1: (@1, R1) = f(Alnw) | Step 2: (@2, Ro) = f(Alsw)

perfect square perfect square

Step 3: (@3, R3) = e(R1, Ra)

perfect square

Step 4: Q4 = Q182Q3

immediate

step 5: [ g ] = QT [ 4tae ]

immediate

Step 6: (Qs, Rs) = f(Us)

perfect square

Step: Q=Qi[ 7§, ]

immediate

Figure 6.2: Parallel QR factorization: perfect square dispatch

Step 1: (Q1, 1) = f(Alnw)

perfect square

Step 2: (Qa, Ry) = f(Alsw)

stripe

Step 3: (@3, R3) = e(R1, Ra)

stripe

Step 4: Q4 = Q1&2@3

deferred

swp 5 [ 77 ] = of [ 4152 ]

deferred

Step 6: (Qs, Rg) = f(Us)

square

Step7:Q:Q4[é 56]

deferred

Figure 6.3: Parallel QR factorization: square and stripe dispatch
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< > =e€ Perfect square 0

< > =e Stripe 1

Figure 6.4: Parallel patterns of e

0. Perfect Square. The eliminations of Steps 1 and 2 can be done in parallel
with each other. Parallel dispatch is possible for the multiplications of Steps 3,

5, and 7. This pattern of dispatch is given in Figure 6.5.

1. Stripe. This case is strange because the majority case is non-trivial (unlike
most other majority-padding cases) and because there is some parallelism in

the minority case (unlike the non-balanced cases of f).

MAJORITY-PADDING DISPATCH: as noted, this case does not merely reduce to
an instance of itself. The steps must be done sequentially (although some are

trivial). This pattern of dispatch is given in Figure 6.6.

MINORITY-PADDING DISPATCH: all steps must be done sequentially although
the multiplications steps can be dispatched immediately in parallel. This pat-

tern of dispatch is given in Figure 6.7.
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Step 1: <Q1,N1> = e¢(N{nw, S|nw) | Step 2: <Q2,N2> =e(Nlse,S|se)

perfect square perfect square

s 3: [ 77 ] = of [ sjae |

immediate

Step 4: (Q4, R4) = f(Us)

perfect square

Z
z

Q
z

Step 5: @5 = Q1&2

NN~N
N

~NNN

|

NNN~

immediate

Step 6: <Q6,N6> = e(Ny, Ry)

perfect square

I VA Z

st 0| £ ity g
Z VA Z

immediate

~NNN
1

Figure 6.5: Parallel QR elimination: perfect square dispatch
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Step 1: <Q1,N1> = ¢(N{nw, S|nw)

stripe

Step 2: <Q2,N2> =(I,2)
trivial
Step 3: [ g: ] ZQ%F[ ];j:: ]

deferred

Step 4: (Q4, R4) = f(Us)

stripe

A
Step 5: Q5 = Q1&2 5

Z

NNSN

N
~NNN
|

I
Z
Z
Z
d

deferre

Step 6: <Q6,N6> = e(Ny, Ry)

stripe

I Z Z

er =0 [ 7 Gifsw Gufee
Z Z Z

deferred

~NNN
1

Figure 6.6: Parallel QR elimination: stripe majority-padding dispatch

108



Step 1: <Q1,N1> = ¢(N{nw, S|nw)

perfect square

Step 2: <Q2,N2> = e(Nlse, S|se)

stripe
swp 3: [ 47 | =of [ e |
immediate

Step 4: (Q4, R4) = f(Us)

perfect square

A
Step 5: Q5 = Q1&2 5

Z

NNN~
NN~N

N
~NNN
|

immediate

Step 6: <Q6,N6> = e(Ny, Ry)

perfect square

I Z Z

er =0 [ 7 Gifsw Gufee
Z Z Z

immediate

~NNN
1

Figure 6.7: Parallel QR elimination: stripe minority-padding dispatch
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6.2 Parallel LAPACK

The Sun Performance Library comes with a parallel version of QR factorization.

The Power Challenge did not have any such parallel library with Q) R factorization.
Compiling LAPACK and linking it with the manufacturer’s parallel BLAS yielded
execution times that were worse than uniprocessor. The precompiled ScaLAPACK
binary for the Power Challenge also yielded unsatisfactory results. Consequently, no

parallel runs of dgeqrf () are compared on the Power Challenge.

6.3 Experimental Results

The machines used to run these tests are described in Section 2.3. Only the Power
Challenge and the Sun Enterprise machines are parallel machines, so only they are

reported on. Speed-ups were calculated as described in Section 2.5.1.

The Power Challenge does not come with a parallel dgeqrf (). Two solutions
were attempted: linking LAPACK to a parallel BLAS and using a Power Challenge
version of ScaLAPACK [9]. Both were unsuccessful. Linking to a parallel BLAS did
not give enough parallelism; ScaLAPACK is intended for distributed systems which

did not work well with the shared-memory on the Power Challenge.

The parallel quadtree algorithm compiled just fine on the Power Challange. Its
speed-ups (Figure 6.8) are all steadily, asymptotically approaching the ideals. The
speed-up is quite good for two processors and is mostly respectable for four proces-
sors. The speed-up for eight processors is disappointing, getting just over half the

speed-up it should, although the increase in the speed-up is very clear. Overall, the
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poorer speed-up with more processors is not unexpected, especially with the quadtree
dispatch. Opportunities for parallel dispatch in the quadtree QR factorization are
much rarer than they are for matrix multiplication. By the time all eight proces-
sors are used, the blocks operands are much smaller than they would be in matrix

multiplication, and so the parallel payoff is much less.

On the Enterprise 450, the speed-up of dgeqrf () was computed using wall-clock
time (see Section 2.5.2). The uniprocessor results on this machine (see Figures 5.9
and 5.10) call the the parallel speed up into question in at least two ways. First,
as wall-clock times, the uniprocessor times were often quite large and so yield large
parallel speed ups (as with matrix multiplication). Second and much more damaging,
the uniprocessor code for dgeqrf () on the Enterprise 450 performs terribly as seen
in its mflop/s (see Figure 5.10). It is easy to make parallel code with excellent speed

ups when the uniprocessor time is terrible. So these results are highly suspect.

It is important to note that the parallel speed ups of dgeqrf () remains mostly
constant on the Enterprise 450 (as far as they can be trusted). In contrast, the speed-
up of the quadtree algorithm increases as the order increases. The performance on
two processors starts out close to the ideal, and steadily improves with relatively
minor steps at power-of-two orders. The performance of four processors is fairly good
and also gets better as the order increases, ending up better than the performance of

dgeqrf ().

Overall, the parallel performance of the quadtree QR factorization algorithm is
quite respectable. It is not as good as the performance of the parallel matrix multipli-
cation algorithm, but then the opportunities for parallelism are considerably reduced

with QR factorization. This performance, combined with the performance of parallel
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multiplication, demonstrates that the divide-and-conquer paradigm can be successful

in writing parallel algorithms.
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Figure 6.8: Speed-up for quadtree QR factorization on Power Challenge
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7

Conclusion

7.1 Results

The quadtree matrix algorithms presented in this work are not clear-cut winners
over their BLAS or LAPACK equivalents. Decades of work contributing to the BLAS
libraries have paid off in efficient implementations. The lessons learned from the BLAS
libraries should pay off in efficient LAPACK libraries. Modern computer architectures
and modern compilers have been designed with the iterative loops of those libraries
in mind. More recent work suggests that the quadtree matrix multiplication can
beat BLAS when more time is spent doing the compiler’s job of fine tuning the

algorithm [48].

It is interesting to note where BLAS and LAPACK lose. On the Octane, dgemm()
and dgeqrf() lose to the quadtree matrix algorithms on large matrices (see Fig-
ures 3.14 and 5.7, respectively). Again, this does not imply that the quadtree matrix
algorithms have their niche on this machine for those sizes. It means that BLAS and

LAPACK were not fully tuned on that machine. Certainly they could be fixed by
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tiling their algorithms for virtual memory; ATLAS [45] could be used to figure out the
machine parameters. The real implication of these results is that the quadtree matrix
algorithms are, in fact, tuned for the memory hierarchy. When virtual memory be-
comes an issue on the Octane, the quadtree matrix algorithms work for it just as well
as it did for all of the other levels of the hierarchy without changing the algorithm and
without knowing any particulars about the Octane’s memory—cache-oblivious [22].
The quadtree algorithms are tuned for the memory hierarchy; and, especially in the
light of more recent results [48], the performance difference is a matter of compiling

recursion.

The parallel results suggest that the divide-and-conquer paradigm and quadtree
matrices works rather well. While some results are disappointing (like eight processors
on the Power Challenge, Figure 6.8), all of the speed-ups increased as the order of

the matrix increased.

7.2 Comments

While working on this research, I became more and more bothered by what I saw
as the typical solution for the memory hierarchy and row-major matrices. Typically
a solution (like tiling) is presented for the cache. The solution involves changing the
algorithm in significant ways, always with knowledge about the size of the cache.
Papers with these solutions then give a hand-wave suggestion that the rest of the
memory hierarchy can be dealt with similarly. But that hand-wave hides too much
work. The algorithm must be changed for every level of the hierarchy with knowledge

about each level. Now, granted some of this process can be automated by a compiler,
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but then at the very least this requires a compilation (perhaps lengthy depending
on what parameters need to be tuned) every time the machine’s memory changes in

some way.

Solutions for the quadtree matrix algorithms are never conjured in terms of the
cache; they are solutions for the entire hierarchy all at once because the matrices are
thought of in terms of quadrants. Since the transfer blocks in each level of the memory
hierarchy is a quadrant, thinking in terms of quadrants is all that is needed to work on
every different memory hierarchy (cf. Section 1.7). This is demonstrated most clearly
on the Octane (Figures 3.14, 3.15, 5.7, and 5.8) where two levels of the hierarchy
come into play. The quadrant algorithm handles them with ease without consciously

being designed for that particular machine with its particular configuration.

I was even more disappointed (but not surprised) by the lack of optimization for
recursive functions in the C compiler. Solutions are known [42, 10]. I had to write

some rather ugly code to help the optimizer.

7.3 Future Work

One of the most exciting things about this research is the wealth of possible

follow-up projects.

7.3.1 Rectangular Matrices

The algorithms presented in this work should be expanded to handle rectangu-

lar matrices. This should not affect the uniprocessor code or its performance; but
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the parallel dispatch would be greatly affected since much of the balancing is done
assuming that the colonnade in one quadrant is equivalent to the stripe in another.
One thing to consider in this dispatch is how close the dimensions are (similar to the
padding size of Section 4.3.1); for example, a 7 x 16 stripe is roughly equivalent to a

16 x 8 colonnade (especially with an 8 x 8 base case).

7.3.2 Processor Dispatch

Another consideration is distributing processors proportionally, not just simply in
half. For example, each parallel multiplication could be split in four, one for each
quadrant of C. Workloads for each process could be computed based on the shapes
and sizes of the quadrants. Then the processors are handed out to the processes
based on these workloads. It is hard to honor the workload ratios, though, when
the number of processors is small. For example, consider the quicksort algorithm
from Chapter 1 (Figure 1.3). If there were three processors available but upper and
lower had about the same length, there is no clean way to split the three processors
over the two recursive calls to gsort as written in Figure 1.3. One possibility would
be to have two pivots that partition the original list into three sublists; this solution
requires rewriting the algorithm, and only handles a limited number of cases. It can be
generalized, but not trivially and, I would argue, not simply. Other solutions may also
exist. Perhaps a simple solution is not possible. Regardless, the open question is how

these other solutions would translate into solutions for quadtree matrix algorithms.

Computing the workload metric is also hard since it must consider (at least) the
amount of computation involved as well as the amount and shape of the quadrants

(in terms of memory). The quicksort algorithm is misleading here since the workload
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just comes down to the length of the lists. But with quadtree matrices, the area of the
matrices being worked on must also be considered. For example, the colonnadeestripe
and stripeecolonnade cases in matrix multiplication (see Figure 4.1) are computation-
ally equivalent, but the amount of memory they access (due to C') is quite different
even if A and B have equivalent dimensions. Consequently, the memory accesses will
be different, leading to different execution times. All of this must be considered in a

workload metric.

7.3.3 Concise Representation of @)

A more concise representation of () in QR factorization may also be useful. The
LAPACK routines store () in the lower triangular portion of R. The quadtree matrix
algorithm could do the same, however I have concerns about how the updates to A

would be handled, perhaps losing its blocked nature.

7.3.4 Sparse Matrices

The linked quadtree matrix has been touted as a good sparse matrix representa-
tion; however, the linked quadtree matrix saves space best when large quadrants are
zero. This is one reason why the zero padding is put as large colonnade and stripe
blocks on the east and south, respectively; the space savings for that padding is loga-
rithmic in the size of the padding. But a single element in a quadrant requires some
tree structure to store it. The savings is not great in sparse matrices where elements

are scattered about the matrix.
While playing around with the mathematics of Morton-order indices (see Wise [47]),
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I wondered about using them as indices in a sparse matrix representation similar
to the standard Compressed Row Storage (CRS) and Compressed Column Stor-
age (CCS) [5, 15]. Both CRS and CCS use explicit Cartesian coordinates to store
non-zero elements of a sparse matrix. CRS stores elements row by row, CCS column
by column. I believe Morton-order indices could be used similarly, storing elements
by quadrant. While this CMS (Compressed Morton Storage) would be as memory

efficient as CRS or CCS, it may not be as computationally efficient or as easy to use.

7.3.5 Other Algorithms

One of the most important future projects is working out other quadtree matrix
algorithms. This would include Strassen’s formulation of matrix multiplication that
reduces the number of multiplications at the cost of more additions and increased
error. Other algorithms include many direct factorizations like LU factorization and
Cholesky factorization as well as indirect algorithms like the Jacobi and Gauss-Seidel
iterations. There are also algorithms (both direct and indirect) for finding eigenvalues,
for solving the least squares problem, and for a variety of other problems. A good first
step would be to work on a BLAS library for quadtree matrices and binary vectors,

then move on to an LAPACK library. Then work through Golub and Van Loan [24].

Iterative methods [24, Chapter 10], which iteratively apply matrix-vector multi-
plication to A to solve Ax = b for z, could be easily implemented with quadtree
matrices and some simple kernel operations (like matrix-vector multiplication). Usu-

ally iterative methods are used on sparse matrices.
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7.3.6 Patterns in Algorithms

Exploring rectangular matrices and other algorithms is quite important for recog-

nizing patterns in the algorithms:

e The up/down pattern of matrix multiplication may generalize well for algo-

rithms with a lot of quadrant sharing.

e QR factorization uses two functions. How many other problems need mutually

recursive functions in this way?

e Multiplication parallelizes quite well and has many cases; the two functions of
QR factorization have few cases and little parallelism. Correlation or coinci-

dence?

Rectangular matrices would undoubtedly complicate the parallel dispatch perhaps

revealing other patterns.

7.4 Curious Observations

One observation from the QR factorization functions has really intrigued me:
Step 2 of function f (see Figure 5.2) is actually unnecessary if function e were rewritten
to take an upper triangular N while S is still an unfactored stripe (or perfect square).
However, this would eliminate nearly all of the independent divide-and-conquer in
these functions. Steps 1 and 2 are the only steps of f that can be done in parallel
against each other; drop Step 2, and f defers all of its parallelism. If e were changed

to take a stripe S, it would be called recursively four times (once for each quadrant
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em(N{nw, S|sw)
em(N{nw, S|nw) ‘ em(Nlse, S|se)
em(Nlse, Slne)

Figure 7.1: Modified parallel QR elimination (perfect square) dispatch

of S) where only two of those calls could be done in parallel; the dispatch for this

modified e (i.e., e,,) is presented in Figure 7.1.

It also strikes me that the parallelism is quite obvious in the versions of Section 5.2.

The parallelism in Figure 7.1 is not immediately obvious.

The most intriguing question that this observation raises is the principle at work
here: what coding aphorism should we give to our programmers? “Do whatever
work you can, even if it gets you only partway to a solution”? “Write symmetric

algorithms”?

The QR factorization has a few interesting cases to explore:

e The square and stripe cases of f with minority padding result in the same

parallel dispatches.

e Why does e not have a parallel square case although f and multiplication do?

(Incidentally, e would have a square case if A were rectangular and tall.)

7.5 Conclusion

As laid out in Section 1.1, before the divide-and-conquer paradigm can be taken

seriously as a solution for high-performance computing, two problems must be solved:
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parallelism and efficient memory reuse.

For this dissertation, I have implemented algorithms for matrix multiplication and
QR factorization for quadtree matrices. The experimental results (Sections 3.5.3, 4.4,
5.7.2, and 6.3) are very promising, even inspiring. The quadtree-matrix algorithm for
matrix multiplication is competive with its BLAS equivalent, especially the parallel
speed-ups. The quadtree-matrix algorithm for QR factorization even outperforms its

LAPACK equivalent on one processor and on multiple processors.

Efficient memory use of the quadtree matrix is clearly demonstrated by the results
on the SGI Octane (see Figures 3.14 and 3.15 for matrix multiplication, Figures 5.7
and 5.8 for QR factorization). The BLAS and LAPACK functions fail miserably once
virtual memory starts being used; those libraries were not tuned on that machine.
The quadtree algorithms, though, handle the virtual memory without any problems
without changing the code or knowing any machine-specific parameters—justification
for the claims made in Section 1.7. Adapting BLAS and LAPACK for the Octane’s
virtual memory would require changing the code and adding machine-specific infor-

mation.

Effective parallelism of the divide-and-conquer programming paradigm is demon-
strated on both of the parallel machines in Sections 4.4 and 6.3. The quadtree-matrix
algorithms were usually as good, if not better, than the BLAS and LAPACK equiv-
alents in terms of their parallel speedups. The quadtree algorithm showed either
obvious asymptotic growth to the ideal speed-ups, or its performance was right at the

ideal.

The BLAS and LAPACK libraries have had the benefit of decades of research;

these decades have paid off in optimizing compilers tuned for the needs of these
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libraries and in computer architectures built with their needs in mind. Quadtree
matrices for high-performance computing are comparatively much younger, and so do
not enjoy the same benefits. If quadtree matrices had the same amount of research,
optimizing compilers would do a better job with recursion and computer architectures

could do arithmetic with Morton-order indices [47] as basic integer operations.

This work demonstrates that even as young as they are, quadtree matrices show a
qualified success for both parallelism and memory use. Even without quadtree-aware
optimizing compilers, the quadtree-matrix algorithms are competitive and even beat
the older libraries. More importantly, the quadtree-matrix algorithm does it without
any knowledge of the target machine. In the larger context, these results also indicate

usefulness of the divide-and-conquer paradigm for high-performance computing.
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A

Proofs

Section 5.4 makes several claims about the correctness of the QR functions in

Section 5.2. This appendix proves those claims.

There are three postconditions for both f and e that need to be proved: (@ is
orthogonal, R is upper-triangular, and they compute what they claim to compute.
Furthermore, it is also necessary to show that the transformations are safe and that

a nonsingular matrix A will be successfully factored.

The first two sections of this appendix first prove some useful lemmas about

transposes and orthogonal matrices.

A.1 Transpose Properties
This first lemma establishes some simple transpose properties:
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Lemma A.1 Let A and B be n X n matrices. Then the following properties hold:

(AB)T = BTAT

(A—I)T — (AT)—I

Proof The first equation is proved by Friedberg et al. [21, p. 74]. The second equation
is somewhat trivial and is given without proof. The third equation is stated by

Golub and Van Loan [24, Section 2.1.3]. O

A.2 Lemmas for Orthogonal Matrices

It helps to have a few lemmas to prove that the (s resulting from the QR factor-

ization functions f and e from Chapter 5 are orthogonal.

Lemma A.2 Let Q, Q2, ..., Qn be orthogonal n X n matrices. Then the product

Q =11, Qi is orthogonal.

Proof by induction.

Base base. Let m = 0. The product is then the identity matrix, the multiplica-

tive identity, which is clearly orthogonal.

Induction case. Let @i, Qg, ..., Qny1 be orthogonal n X n matrices. Let

Q= H:’El Q;. Assume that the lemma holds for the product of m orthogonal
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matrices. Consequently, the product Q= [T, Qi is orthogonal. Then @ can

be written as the product of two orthogonal matrices:

m—+1

Q=]J]@-= (H Qi) Qmi1 = QQmy1.
=1 =1

Since @ is orthogonal by the induction hypothesis and Q11 is given as ortho-

gonal, () is orthogonal:
Q"Q = (QQm11) " QQumi1 = QL . Q"QQmi1 = QL IQm=1. O

A block-diagonal matrix with orthogonal blocks along the main diagonal is ortho-

gonal.

Lemma A.3 Let QQ,, and @), be m x m and n X n orthogonal matrices, respectively.

Then the matriz
Qm 272

Z Q@

15 orthogonal.

Proof Let @, and @, be m x m and n X n orthogonal matrices, respectively. Then

Qm Z Qm Z QnQm  Z I z

Z QT Z  Qn Z  Qrq, Z 1

Lemma A.3 is general enough to cover any case, including many that do not make
sense as quadtree matrices. The lemma can be applied multiple times for block-

diagonal matrices with more than two blocks on the diagonal.
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A third lemma handles permutation matrices. Paraphrased just slightly from

Golub and Van Loan [24, Section 3.4.1]:

Definition A.1 A permutation matrix is just the identity matriz with its stripes

permuted.

Lemma A.4 A permutation matriz is orthogonal.

Proof See Section 3.4.1 of Golub and Van Loan [24]. O

The definition of an inverse in Definition 1.6 actually just defines what is known
as a right inverse. Since matrices do not commute in general, the following lemma is

non-trivial:

Lemma A.5 If Q is orthogonal, then QQT = 1.

Proof By the definition of an orthogonal matrix (Definition 1.7), if @ is orthogonal,
then QTQ = I. So, by the definition of a (right) inverse (Definition 1.6),
the inverse of Q7 is Q; symbolically, (Q7)~! = Q. Taking the transpose of
both sides, the equation becomes QT = ((QT)™!)T. Using the properties in

Lemma A.1, this equation can be transformed as follows:

QT =N =@ "= "

So QT is the inverse of @, thus QQT = I by the definition of a matrix inverse.

O
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A.3 Correctness of QR Factorization

With the lemmas from the previous section, the functions f and e for QR factor-

ization (Chapter 5) can be proven in one theorem, copied from Section 5.4.1:

Theorem 5.1 This theorem consists of two clauses:

Clause F If f: Ay — (Qy, Ry) is defined as in Figure 5.2 and Ay is an n X n matriz,
then Qg is an n X n orthogonal matriz, Ry is an n X n upper-triangular matriz,

and Af = QfRf.

Clause E Ife: (N, Se) — (Qe,Ne) is defined as in Figure 5.3 and both N, and S,

are n X n upper-triangular matrices, then Q. is a 2n X 2n orthogonal matriz,

N, is an n X n upper-triangular matriz, and

Proof by mutual induction.

Base case of Clause F. Suppose Ay = [a11] is a 1 x 1 matrix. Then Qf = I = [1],
and Ry = Ay = [a11]. Q@ is orthogonal; Ry is upper-triangular; both (); and

Ry are 1 x 1 matrices; and Q;Ry = IAy = Ay.
Base case of Clause E. There are two cases:

First, if S, is an n X n zero matrix, then @), is the 2n x 2n identity matrix and
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N,=N,. Q. is clearly orthogonal; N, is upper-triangular and n X n; and

EAREPANA

NEER EA )

The second base case for Clause E is when S, is not a zero matrix and n = 1.
For the ease of notation, let N, = [a| and S, = [b]. Equation 5.1 defines Q. as

follows:

Q.= , where ¢= —— and s=

N, c —s8 a ca — sb

VA Se s ¢ b sa + cb

In short, N, = [ca — sb], which is upper-triangular and 1 x 1.

Q. is orthogonal:

. c —s c s c+s* ecs—cs c? + 52 0
QeQe: - =

s ¢ -5 ¢ cs—cs 2+ s? 0 c? + 52
Substituting values for ¢ and s,

a? b? _a2+b2_1

2 2 _
e Sy SR R Ry
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So QTQ. = I, and thus Q. is orthogonal. Q. is also 2 x 2.

As for the computation of the base case of e,

N, c s ca — sb ca — csb

Qe = =

VA -5 c 0 s%b — csa

2 a b

. _
) —b(vw) (Vo)

—b

(),

b(m) _a(\/a2a+b2) (~/‘12+”2)
(
(

a’+b?
a?+b2 ) a Ne

b Se

Hence, the base case for e is computationally correct.

Induction case of Clause F. Consider f: Af — (Qy, Ry) for n x n matrix Ay.
Assume that the theorem holds for f and e for all m x m matrices A, N, and S
where m < n. All of the numbered matrices in this part of the proof are taken
from the definition of f in Figure 5.2. This part of the proof then follows the

steps of Figure 5.2:

Step 1. Ay | nw is an n/2 x n/2 matrix, and (Q1, R1) = f(A; | nw). The
induction hypothesis says that @y is an n/2 x n/2 orthogonal matrix, R;

is an n/2 x n/2 upper-triangular matrix, and Aylnw = Q1 R;.

Step 2. Similar to the previous step, Ay | sw is an n/2 x n/2 matrix, and
(@2, Ry) = f(Aylsw). The induction hypothesis says that @2 is an n/2 x

n/2 orthogonal matrix, Ry is an n/2 x n/2 upper-triangular matrix, and

Af\l,SW = QQRQ.
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Naming of (Q1go. The matrix (Q1g2 is a block-diagonal matrix:

e 7]
s

Steps 1 and 2 show that @); and @, are n/2 x n/2 orthogonal matrices, so,

by Lemma A.3, this matrix is orthogonal. It is also n X n.

Step 3. Since R; and R, are n/2 x n/2 upper-triangular matrices from Steps 1
and 2, respectively, and since (Q3, R3) = e(R;, Ry), the induction hy-
pothesis says that ()3 is an n x n orthogonal matrix, R3 is an n/2 x n/2

upper-triangular matrix, and

R, R3
=3
Ry 7Z

Step 4. (g9 is orthogonal as shown above; Q3 is orthogonal from the previous
step. So Q4 = Q1g2Q3 is orthogonal by Lemma A.2. Since Qg9 is n X n

from its naming step and (3 is n X n from Step 3, ()4 is also n X n.

Step 5. This step updates the eastern colonnade of A, and so computes n/2 x

n/2 matrices U,, and Us:

Afine
Us Aflse
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Multiplying both sides by Q4,

0] o] [ ]
U, J Arlse Arlse

The last equality is valid by Lemma A.5.

Step 6. Since U, is an n/2 X n/2 matrix and since (Qg, Rg) = f(Us), the
induction hypothesis says that Qg is an n/2 x n/2 orthogonal matrix, Rg

is an n/2 x n/2 upper-triangular matrix, and U; = Qg Rs.

Step 7. This step defines Q);:

1 7
QRr = Q4
Z Qs
From Step 6, (¢ is orthogonal; so by Lemma A.3, the padded matrix
involving (s is also orthogonal. ()4 is orthogonal from Step 4. So )y, as
the product of orthogonal matrices, is itself orthogonal by Lemma A.2. Q4

is n x n from Step 4; Qg is n/2 X n/2 from Step 6, but its factor is padded

to n x n; thus Q5 is n x n.

Naming of R;. Ry is defined to be

Z Ry

From Step 3, R3 is upper-triangular; from Step 6, Rg is upper-triangular.

Since Ry | sw = Z, the matrix R; is upper-triangular. Rj is n/2 x n/2
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from Step 3; Us is n/2 x n/2 from Step 5; Rg is n/2 x n/2 from Step 6;

thus Ry is n X n.

Step 7 establishes that ()¢ is an n x n orthogonal matrix. The naming of R;
establishes that Ry is an n X n upper-triangular matrix. It only remains to show

that Af = QfRf.

I Z Rs U,
QR = Qu
Z QF Z R
R3 Un R3 Un
= @ =Qu by Step 6.
7 QeRe 7 U,

It is now easiest to split the rightmost matrix in two by colonnades. The west

colonnade takes just a bit of work:

R3 Ql Z RS
Q4 = Q3 by Step 4
Z Z Qo Z
7Z R
= @ ' by Step 3
Z Qs R,
R Arlnw
= Ouf = r by Steps 1 and 2.
Q2R2 Af\J,SW
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The east colonnade is easy:

o | ] e ]

Qa4 = by Step 5.
{ Us Arlse J

Combining these two colonnade derivations, the result is Ry = Ay, establish-

ing the computational correctness of the induction case of f.

So, the induction case of f is proven for all of its postconditions.

Induction case of Clause E. Consider e: (N, S) — (Qe, N.) for n x n matrices
N, and S.. Assume that the theorem holds for f and e for all m X m matrices
A, N, and S where m < n. All of the numbered matrices in this part of the
proof are taken from the definition of e in Figure 5.3, and this part of the proof

follows the steps in that definition:

Step 1. By the definition of an upper-triangular matrix, N, | nw and S, | nw
are n/2 x n/2 upper-triangular matrices. This step computes (Qy, N;) =
e(Ne ) nw, Sc |l nw). So the induction hypothesis says that @y is an n X n

orthogonal matrix, N is an n/2 X n/2 upper-triangular matrix, and

N.|nw N,
Selnw A

Step 2. Similar to the previous step, by the definition of an upper-triangular
matrix, N.)se and S.|se are n/2 x n/2 upper-triangular matrices. This

step computes (Qz, No) = e(N,|se, S.]se). So the induction hypothesis
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says that Q is an n X n orthogonal matrix, N is an n/2 X n/2 upper-

triangular matrix, and

Nl se Ny
Selse Z

Naming Q1g2. From Steps 1 and 2, (J; and ()5 are both orthogonal. Define a

block-diagonal matrix M:

- Qidnw Q1lne Z VA
Qilsw CQilse Z Z
Z Z  @Qelnw Q2lne
Z Z Q2lsvw Qqlse

M is orthogonal by Lemma A.3. Select a permutation matrix:

N o~ NN

N N ~ N
~ NNN

N N N~

Verbally, the permutation matrix P, when multiplied on the left, exchanges
the second and third stripes; when multiplied on the right, it exchanges

the second and third colonnades. By Lemma A.4, P is orthogonal. Thus,
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(Q1&2 can be expressed as the product of orthogonal matrices:

- Q1dnw
Z

Q1 sw
Z

Q142 = PMP =

A

(2 nw
Z

Q2 sw

Q1lne
A

Q1lse
Z

A

(2l ne
VA

Q2lse |

Lemma A.2 indicates that ()1g9 is orthogonal. Since @); and ), are n X n,

Q12 i 2n X 2n.

Step 3. This step updates the northeastern quadrants of N, and S, and so

computes n/2 x n/2 matrices U, and Uy:

U, Nglne
=Q7

U, Selne

Multiplying both sides by Q1,

U, N.|ne
= QQT -
Us S.lne

N.|ne

Q1 by Lemma A.5.

Sedne

Step 4. Since U, is an n/2 x n/2 matrix and since (@4, Ry) = f(Us), the
induction hypothesis says that 4 is an n x n orthogonal matrix, R, is an

n/2 X n/2 upper-triangular matrix, and U; = Q4R,.
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Step 5. The matrix ()5 is defined as follows:

Qs = Qg2
Q4

A

N N N~
N N ~ N
~ O NNN

Since ()4 is orthogonal from Step 4, the second factor of this product is
orthogonal from Lemma A.3. The naming of Q)12 establishes that (g0
is orthogonal. So, as the product of orthogonal matrices, ()5 is orthogonal
by Lemma A.2. Since Q4 is n/2 x n/2 from Step 4 and from its naming

RQQ1g2 is 2n X 2n, the matrix Q)5 is 2n X 2n.

Step 6. From Step 2, the matrix N, is an n/2 x n/2 upper-triangular matrix,
and from Step 4, R, is an n/2 x n/2 upper-triangular matrix. This step
computes (Qg, Ng) = (N3, Ry). So, by the induction hypothesis, Qg is an

n X n orthogonal matrix, Ng is an n/2 x n/2 upper-triangular matrix, and

N, Ne
= Qs
Ry Z
Step 7. This step defines Q).:
I Z Z Z
Z Qelnvw Qglne Z
Qe = Qs

Z Qelsw Qslse 7
VA VA Z I
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From Step 6, (¢ is orthogonal; so by Lemma A.3, the padded matrix
involving Qg is also orthogonal. ()5 is orthogonal from Step 5. So Q., as
the product of orthogonal matrices, is itself orthogonal by Lemma A.2.
The matrix Q5 is 2n x 2n from Step 5; Qg is n x n from Step 6, so its

padded version is 2n X 2n; thus Q. is 2n X 2n.

Naming of Ne. This step names Ne to be

Z Ng
The matrices N; and Ng are n/2 x n/2 upper-triangular matrices from

Steps 1 and 6, respectively. Since N,|sw = Z, the matrix N, is an n X n

upper-triangular matrix.

Step 7 establishes that @, is a 2n x 2n orthogonal matrix. The naming of N,

establishes that N, is an n X n upper-triangular matrix.
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It just remains to show the computational correctness of e:

Qs

Qs

Ql&Z

Ql&Z

1 Z A A N, U,
7 Qe¢lnw Qglne Z Z N,
° ‘ ° by Step 7
Z Qelsvw Qelse Z
A A A 1 A
Nl Un
Z N,
by Step 6

Z Ry
/A

I 7 7 Z N, U,

Z 1 7Z 7 Z Ny

by Step 5

Z 7 Q4 Z Z Ry

Z Z Z 1 YA

Nl Un Nl Un

Z N, N,

= Qg2 by Step 4.
Z Q4R4 Us
A Z A
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Continuing the derivation:

Q1&2

- Q1dnw Z  @Qilne 7Z 11
Z  Qylnw Q2lne
Q1 sw A Q1lse A
Z Q2] sw Q2] se 11
i QiinwN, QilnwlU, + Q,lnel, _
Z Q0w NN,
QilswNy QilswU, + Q:lsel,
Z Q) swlN, |
| Q:lnwN,  N,lne ]
7 B Onfmwly by Step 3
QilswN, S.lne
Z Q) swiN, |
| N.lnw N,|ne _
7 Neyse by Steps 1 and 2
S.inw S,|ne
I Z Selse |
- N
Se

The function e does, in fact, satisfy its computational postcondition.

So, the induction case of e is proven for all of its postconditions.
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A.4 QR Factorization Success

While the previous section proves the algebraic correctness of the algorithm, it
is also necessary to prove that the algorithm preserves certain matrix properties,

non-singular being the most important.

One important attribute of a matrix is its determinant whose definition (see Golub

and Van Loan [24, Section 2.1.4]) is not nearly as important as its properties:

Lemma A.6 Let A, B, and @ be nxn matrices; suppose that Q) is orthogonal. Then,

det(AB) = det(A)det(B);
det(Q) = =1,

det(A) #0 iff A is nonsingular.

Proof See Golub and Van Loan [24, Section 2.1.4] and Friedberg et al. [21, pp. 209
211, 340). O

These properties result in this theorem:

Theorem A.1 Let A be an nxn matriz. Let (Q, R) = f(A) as defined in Figure 5.2.
Then det(A) = £ det(R).

Proof Since () is orthogonal and by Lemma A.6,

det(A) = det(QR) = det(Q) det(R) = £ det(R). O
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This theorem makes Theorem 5.2 from Section 5.4.1 easy to prove:

Theorem 5.2 Let A be an n X n matriz. Let (Q, R) = f(A) as defined in Figure 5.2.

Then R is singular if and only if A is singular; Q) is always non-singular.

This theorem (technically, a corollary of Theorem A.1) follows easily from Theo-
rem A.l and from Lemma A.6 and because all orthogonal matrices have an inverse

(by definition and Lemma A.5).

Other factorizations (like LU factorization) can run into problems when sub-
matrices of A are singular. This is not the case with QR factorization since the
orthogonal Givens rotations preserve the non-singularity of the whole matrix. The
Givens rotations do all of the pivoting implicitly that must be done explicitly in a

factorization like LU factorization.
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