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Abstract

We addressed the problem of automatically differentiating pho-
tographs of real scenes from photographs of paintings. We found that
photographs differ from paintings in their color, edge, and texture prop-
erties. Based on these features, we trained a classifier to separate a
database of 12,000 images downloaded from the web into photographs
and paintings. Single features result in 70 —83% performance, whereas
with a neural net classifier correct rates were around 92%.

1 Introduction

1.1 Problem statement

The goal of the present work was the determination of the image features dis-
tinguishing photographs of real-world, three-dimensional, scenes from (pho-
tographs of) paintings and the development of a classifier system for their
automatic differentiation.

In the context of this paper, the class “painting” included not only con-
ventional canvas paintings, but also frescoes and murals (see Figure 1).
Line (pencil or ink) drawings (see Figure 1) as well as computer-generated
images were excluded. No restrictions were imposed on the historical period
or on the style of the painting.

The class “photograph” included exclusively color photographs of three-
dimensional real-world scenes.

The problem of distinguishing paintings from photographs is non-trivial
even for a human observer, as can be appreciated from the examples shown



in Figure 2. We note that the painting in the bottom right corner was
classified as photograph by our algorithm.

In fact, photographs can be considered as a special subclass of the paint-
ings class: photographs are photorealistic paintings. Thus, the problem can
be posed more generally as determining the degree of perceptual photore-
alism of an image. Given an input image, the classifier proposed in this
paper outputs a number € [0, 1] which can be interpreted as a measure of
the degree of photorealism of the image.

From a theoretical standpoint, the problem of separating photographs
from paintings is interesting because it constitutes a first attempt at reveal-
ing the features of real-world images that are mis-represented in hand-crafted
images. From a practical standpoint, our results are useful for the automatic
classification of images in large electronic-form art collections, such as those
maintained by many museums. A special application is in distinguishing
pornographic images from nude paintings. Distinguishing paintings from
photographs is important for web browser blocking software, which cur-
rently blocks not only pornography (photographs) but also artistic images
of the human body (paintings).

1.2 Related work

To our knowledge, the present study is the first to address the problem of
photograph-painting discrimination. This problem is related thematically
to other work on broad image classification: city images vs. landscapes [12],
indoor vs. outdoor [11], and photographs vs. graphics [7] differentiation.

Distinguishing photographs from paintings is, however, more difficult
than the above classifications due to the generality of the problem. One
difficulty is that that are no constraints on the image content of either
class, such as those successfully exploited in differentiating city images from
landscapes or indoor from outdoor images.

The problem of distinguishing computer-generated graphics from pho-
tographs is closest to the problem considered here, and their relation will
be discussed in more detail in Section 5. At this point, it suffices to note
that the differences between (especially realistic) paintings and photographs
are subtler than the differences between graphics and photographs; in addi-
tion, the definition of computer-generated graphics used in [7] is restrictive
and allowed the use of powerful constraints that are not applicable to the
paintings class.



2 The image set

The image set used in this study consisted of 6000 photographs and 6000
paintings. The definition of painting and photograph in the context of this
paper was given in Section 1.1.

The paintings were obtained from two main sources. 3000 paintings were
downloaded from the Indiana University Department of the History of Art
DIDO Image Bank!, 2000 were obtained from the Artchive art database?,
and 1000 from a variety of other web sites.

2000 photographs were downloaded from freefoto.com, and the rest were
downloaded from a variety of other web sites.

The paintings in our database were of a wide variety of artistic styles
and historical periods, from Byzantine Art and Renaissance to Modernism
(cubism, surrealism, pop art, etc).

The photographs were also very varied in content—including animals,
humans, city scenes and landscapes, indoor scenes.

Image resolution was typical of web-available images. Mean image size
was for paintings 534 x 497 pixels and standard deviation 171 x 143 pixels.
For photographs mean image size was 568 x 506 pixels and standard deviation
144 x 92 pixels.

Certain rules were followed when selecting the images included in the
database: (1) no monochromatic images were used; all our images had a
color resolution of 8 bits per color channel (2) frames and borders were
removed (3) no photographs altered by filters or special effects were included
(4) no computer generated images were used (5) no images with large areas
overlayed with text were used.

3 Distinguishing features

Based upon the visual inspection of a large number of photographs and
paintings, we defined several image features for which paintings and pho-
tographs differ significantly.

Four features, defined in Sections 3.1-3.4 are color-based, and one is
image intensity-based (Section 3.8).

Lwww.dlib.indiana.edu/collections/dido

2The Artchive CD-ROM is available from www.artchive.com



3.1 Color edges vs. intensity edges

We observed that while the removal of color information (conversion to gray-
scale) leaves most edges in photographs intact, it eliminates many of the
perceptual edges in paintings. More generally, it appears that the removal
of color eliminates more visual information from a painting than from a
photograph of a real scene.

In a photograph of a real-world scene, the variation of image intensity
is substantial and systematic, being the the result of the interaction of light
with surfaces of various reflectances and orientations. In the real world,
color is not essential for recognition and navigation and color-blind visual
systems can function quite well.

Painters, however, use primarily color—rather than systematic changes
of image intensity—to represent different objects and object regions.

Edges are essential image features, in that they convey a large amount
of visual information. Edges in photographs are of many different types: oc-
clusion edges, edges induced by surface property (texture or color) changes,
cast shadow edges. In most cases, however, the surfaces meeting at the edge
have different material or geometrical (orientation) properties, resulting in
a difference in the intensity (and possibly color) of the reflected light. One
exception to this rule is represented by edges delimiting regions painted in
different colors on a flat surface—as on billboards or in paintings on building
walls for example; in effect, such cases are paintings within photographs of
real world scenes. On the contrary, in paintings, adjacent regions tend to
differ in their hue, change often not accompanied by an edge-like change in
image intensity.

The above observations led to the following hypotheses:

(1) Perceptual edges in photographs are, largely, intensity edges. These
intensity edges tend to be at the same time color edges and there are few
“pure” color edges — color, not intensity edges.

(2) Many of the perceptual edges in paintings are pure color edges, as
they result from color changes that are not accompanied by concomitant
edge-like intensity changes.

A quantitative criterion was developed. Consider a color input image—
painting or photograph.

The intensity edges were obtained by converting the image to gray-scale
and applying the Canny edge detector [13].

Then, image intensity information was removed by dividing the R, G,
and B image components by the image intensity at each pixel, resulting

in normalized RGB components: R, = %,Gn = %Bn = % where I =



0.3R + 0.6G + 0.1B is image intensity.

The color edges of the resulting “intensity-free” color image were de-
termined applyn the Canny edge detector to the three color channels and
fusing the resulting edges.

Two type of edge pixels were then determined, as follows:

(1) The edge pixels that were intensity but not color edge (pure intensity
edge pixels). Hue does not change substantially across a pure intensity edge.
For a given input image, E, denotes the number of pure intensity-edge pixels
divided by the total number of edge pixels:

7 pixels: intensity, not color edge
=

total number of edge pixels

Our hypothesis is that E, is larger for photographs.

(2) The edge pixels that are color edge but not intensity edge (pure color
edge pixels). Hue, but not image intensity, changes across a pure color edge.
Let F,; denote the proportion of pure color-edge pixels :

B # pixels: color, not intensity edge
=

total number of edge pixels

Our hypothesis is that E, is larger for paintings.

3.1.1 Single-feature discrimination performance: finding the op-
timal threshold

We determined the discrimination power of the two edge-derived features,
considered separately.

The feature under consideration was measured for all photographs and all
paintings in the database, and a threshold value, optimizing the separation
between the two classes, was determined.

The optimal threshold was chosen so that it minimized the mazimum of
the two misclassification rates—for photographs and for paintings. Note that
choosing the threshold so that it maximizes the total number of correctly
classified images, although possibly yielding more correctly classified images,
does not ensure balanced error rates for the two classes.

Also note that using a single threshold for discriminating between two
classes in 1-D feature space is only the simplest method; a more general
method would employ multiple thresholds, resulting in more than one inter-
val per class.

The painting-photograph discrimination results, using edge features, are
listed in Table 1.



As expected, paintings have more pure-color edges, and photographs
have more pure-intensity edges. E, is more discriminative than E..

E. and E; are not independent features: as can be expected from their
definition, they are negatively correlated to a significant extent. The Pear-
son correlation coefficients of E. and E, are as follows: —0.80 over the
photograph set, —0.74 over the painting set, —0.79 over the entire image
database.

Given the strong correlation between E. and F4, the superior discrimi-
nation power of F, (see Table 1), we decided to to discard E, and employ
E, as the sole edge-based feature.

3.1.2 Intensity edges in paintings and photographs are struc-
turally similar

We examined the spatial variation of image intensity in the vicinity of in-
tensity edges in paintings and photographs. The intensity edges were de-
termined by applying the Canny edge detector to both paintings and pho-
tographs followed their conversion to gray-scale.

In one experiment we examined the one-dimensional change of image
intensity along a direction orthogonal to the intensity edge (i.e. along the
image gradient), on a distance of 20 pixels of either side of the edge. We
did not find significant differences between paintings and photographs in the
shape of these image intensity profiles.

In a second experiment ellipsoidal Gabor kernels were positioned on the
intensity edges, such that the long axis of the Gabor ellipse coincided with
the intensity edge. Ten Gabor kernels of sizes from 5 to 25 pixels were
employed, resulting in a 10-dimensional Gabor response vector. We did not
find significant differences in the Gabor filter output between paintings and
photographs.

This negative finding has to be interpreted with caution — it is possible
that the differences between intensity edges in paintings and photographs
are not observable at the modest resolutions of our image set.

3.2 Spatial variation of color

Our observations indicated that color changes to a larger extent from pixel
to pixel in paintings than in photographs. This difference was quantified as
follows.

The color of a pixel is determined by the ratios of its red, green and blue
values, in other words by the orientation of its RGB vector. The norm of



this vector is not relevant for our purposes. Given an input image, its R, G
and B channels were normalized by division by the norm of the RGB vector
at each pixel.

Each of the thus-normalized R, G, and B-channel images can be viewed
as a function (a surface) defined over the image plane. Consider a location
in the image plane — a pixel. If in the neighborhood of this location the
R, G, and B surfaces are parallel or nearly so, there is no substantial color
change in that neighborhood. If there is a non-zero angle among any two
of these surfaces, color changes qualitatively. At each pixel, for each of the
R, G, and B surfaces, we determined the orientation of the plane that best
fitted (in a least-squares sense) a 5 x 5 neighborhood centered on the pixel
of interest, in the R, G, and B domains respectively. Thus, at each pixel,
one obtains three normals: ng, ng, ng, one for each color channel. The
sum of the areas of the facets of the pyramid determined by these normals
was taken as a measure of the local variation of color around the pixel.

Let R denote the average of this quantity taken over all image pixels. R
should be, on the average, larger for paintings than for photographs.

Discrimination performance We determined the photograph-painting
discrimination performance using R as the sole feature and an optimal
threshold for R, computed as described in Section 3.1.1.

The miss rate rate for paintings was 36.14, the miss rate for photographs
was 36.13, with most paintings above the threshold and most photographs
below the threshold.

3.3 Number of unique colors

Paintings appear to contain more unique colors, i.e., to have a larger color
palette than photographs. We used this characteristic to help differentiate
between the two image classes.

For all images in our database, the color resolution was of 256 levels for
each color channel. Thus, there are 2562 possible colors, a number much
larger than the number of pixels in a typical image.

Given an input image the number of unique colors was determined by
counting the distinct RGB triplets. To reduce the impact of noise, a color
triplet was counted only if it appeared in more than 10 of the image pixels.

The number of unique colors was normalized by the total number of pix-
els, resulting in a measure, denoted U, of the richness of the color palette of
the image. U should be, on the average, for paintings than for photographs.



Discrimination performance We determined the photograph-painting
discrimination performance using R as the sole feature and an optimal
threshold for R, computed as described in Section 3.1.1.

The miss rate rate for paintings was 37.40, the miss rate for photographs
was 37.413, with most paintings being above the threshold and most pho-
tographs being below the threshold.

3.4 Pixel saturation

We observed that paintings tend to contain a larger percentage of pixels
with highly saturated colors than photographs in general, and photographs
of natural objects and scenes in particular. Photographs, on the other hand,
contain more unsaturated pixels than paintings.

This can be seen in Figure 3, which displays the mean saturation his-
tograms derived from all paintings and all photographs in our datasets.

These characteristics were captured quantitatively. The input images
were transformed from RGB to HSV (hue-saturation-value) color space, and
their saturation histogram were determined, using a fixed number of bins,
n. Consider the ratio, S, between the count in the highest bin (bin n) and
the lowest bin (bin 1): S measures the ratio between the number of highly
saturated and highly unsaturated pixels in the image. Our hypothesis was
that S is, on the average, larger for paintings than for photographs.

Discrimination performance We determined the photograph-painting
discrimination performance using S as the sole feature and an optimal
threshold for S, computed as described in Section 3.1.1.

The miss rate rate for paintings was 37.93, the miss rate for photographs
was 37.923, with most paintings being above the threshold and most pho-
tographs being below the threshold.

Hue and RGB histograms We found experimentally that the hue (or
full RGB) histograms are quite useful in distinguishing between photographs
and paintings; for example, the hue corresponding to the color of the sky
was quite characteristic of outdoor photographs. However, since hue is
image content-dependent to a large degree, we decided against using hue
histograms (or RGB histograms) in our classifiers, as our intention was to
distinguish paintings from photographs in a image content-independent man-
ner.



3.5 Relations among the scalar-valued features: E,, U, R, S

In the preceding section we introduced four simple, scalar-valued image fea-
tures. The immediate question arises whether these features capture gen-
uinely different image properties or there is substantial redundancy in their
encoding of the images.

Two measures of redundancy were measured: pairwise feature correla-
tion and the singular values of the feature covariance matrix.

3.5.1 Feature correlation

We calculated the Pearson correlation coefficients p for all pairs of scalar-
valued color-based features, considering the paintings and photographs im-
age sets separately. The correlation coefficients, shown in Table 2 separately
for paintings and photographs, indicate that the different color-based fea-
tures were not correlated significantly.

3.5.2 Eigenvalues of feature covariance matrix

Consider a d-dimensional feature space, and a “cloud” of n points in this
space. If all d singular values of the d X d covariance matrix of the point
cloud are significant (compared to the sum of all singular values), it follows
that the data points are not confined to some linear subspace® of the d-
dimensional feature space; in other words, there are no linear dependencies
among the d features.

In our case, we have a 4-dimensional feature space corresponding to the
color-based features described above. We computed three 4 x 4 covariance
matrices, one for the paintings data set, one for the photograph data set,
and one for the joint photograph-paintings data set. All covariance matrices
were calculated on centered data, i.e. each feature was centered on its mean
value. The eigenvalues of the paintings covariance matrix are: 0.16, 0.06,
0.01, 0.004, 0.002. The eigenvalues of the photograph covariance matrix are:
0.13, 0.03, 0.02, 0.002, 0.001.

Two observations can be made. First, the smallest eigenvalue is in both
cases significant, indicating that the point clouds are truly four-dimensional.
Second, the eigenvalues of the paintings-derived covariance matrix are sig-
nificantly larger than for the photograph data set, indicating that there is
more variability in the paintings data set.

3However, the points may be confined to a non-linear subspace—for example the surface
of a sphere (a 2-D subspace) in 3-D space.
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3.5.3 Principal components

For visualization purposes, we determined the principal components of the
common painting and photograph data set encoded in the space of the four
simple color-based features described above. Figure 4 displays separately the
painting and the photograph subsets in the same space-the space spanned
by the first two principal components.

The examination of Figure 4 leads to the interesting observation that the
photographs overlap a subclass of the paintings: the photograph data set (at
least in the space spanned by the first two principal components) coincides
with the right “lobe” of the paintings point cloud. This observation is in
accord with the larger variability of the paintings class indicated by the
eigenvalues listed in the preceding section, and with the observation that
photographs can be construed as extremely realistic paintings.

3.6 Classification in the space of the scalar-valued features

We used a neural network classifier to perform painting-photograph dis-
crimination in the space of the scalar-based features. A perceptron with six
sigmoidal units in its unique hidden layer was employed.

The performance of this classifier was evaluated as follows. We par-
titioned the paintings and photographs sets into 6 parts (non-overlapping
subsets) of 1000 elements each. By pairing all photograph parts with all
painting parts, 36 training sets were generated. Thus, a training set con-
sisted of 1000 paintings and 1000 photographs, and the corresponding test
set consisted of 5000 paintings and 5000 photographs. 36 networks were
trained and tested, one for each training set. Due to the small size of the
network, the convergence of the backpropagation calculation was quite rapid
in almost all cases, and usually, four to seven re-initializations of the opti-
mization were sufficient for deriving an effective network.

On the average, the networks correctly classified 71.1% of the pho-
tographs and 72.2% of the paintings in the test set, with a standard deviation
of 4%, respectively, 5%.

3.7 Pixel distribution in RGBXY space

An image pixel is a point in 3-D RGB space, and the image is a point
cloud in this space. The shape of this point cloud depends on the color
richness of the image. The RGB clouds of color-poor images (photographs,
mostly) are restricted to subspaces of the 3-D space, having the appear-
ance of cylinders—indicating that color variability in the image is essentially

11



one-dimensional or planes—indicating that color variability in the image is
essentially bi-dimensional. The RGB clouds of color-rich images (paintings,
mostly) are fully 3-D and cannot be approximated well by a 1-D or 2-D
subspace.

The linear dimensionality of the RGB cloud is summarized by the sin-
gular values of the 3 x 3 covariance matrix of the RGB point cloud. If the
RGB cloud is essentially one-dimensional (cylindrical), the second and the
third singular values are negligible compared to the first. If the RGB cloud
is essentially two-dimensional (a flat point cloud), the third singular value
is negligible.

One can enhance this representation by adding the two spatial coordi-
nates, z and y to the RGB vector of each image pixel, resulting in a 5-
dimensional, joint color-location space we call RGBXY. An image is a cloud
of points in this space. The singular values s1 2345 of the 5 x 5 covariance
matrix of the RGBXY point cloud describe the variability of the image pix-
els in both color space as well as across the plane of the image. Typically,
paintings use both a larger color palette and have larger spatial variation of
color, resulting in larger singular values for the covariance matrix.

The above considerations led to representing each image by a 5-dimensional
vector s of the singular values of its RGBXY pixel covariance matrix.

3.7.1 Paintings and photographs in RGBXY space

For visualization purposes, we determined the principal components of the
common painting and photograph data set encoded in the space of the five
singular values of the RGBXY covariance matrix. Figure 5 displays sepa-
rately the painting and the photograph subsets in the same space—the space
spanned by the first two principal components.

The examination of Figure 5 reconfirms the previously-made observation
that photographs appear to be a special case of paintings: the photograph
point cloud has less variance and partially overlaps (at least in the space
spanned by the first two principal components) with a portion of the paint-
ings point cloud. This observation is also supported by the larger singular
values of the painting point cloud (5.03, 0.21, 0.1, 0.08, 0.002) compared to
those of the photograph point cloud (4.15, 0.12, 0.08, 0.03, 0.003).
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3.7.2 Classification using the singular values of the RGBXY co-
variance matrix

As explained in the preceding section, the singular values of the covariance
matrix of the image pixels represented in RGBXY space summarize the
spatial variation of image color.

We used a neural network classifier to perform painting-photograph dis-
crimination in the 5-dimensional space of the singular values. A perceptron
with six sigmoidal units in its unique hidden layer was employed.

The performance of this classifier was evaluated as follows. We parti-
tioned the paintings and photographs into 6 parts (non-overlapping subsets)
of 1000 elements each. By pairing all photograph parts with all painting
parts, 36 training sets were generated. Thus, a training set consisted of
1000 paintings and 1000 photographs, and the corresponding test set con-
sisted of 5000 paintings and 5000 photographs. 36 networks were trained
and tested, one for each of training set.

On the average, the networks correctly classified 81.12% of the pho-
tographs and 81.26% of the paintings in the test set, with a standard devi-
ation of 3%, respectively, 3% percent.

The convergence of the backpropagation calculation was quite rapid in
almost all cases, and usually, four to seven re-initializations of the optimiza-
tion were sufficient for deriving a well-performing network.

3.8 Texture

All of the features described in the preceding section use color to distinguish
between paintings and photographs. To increase discrimination accuracy, it
is desirable to derive a feature that is color-independent—that is, a feature
that can be computed from image intensity alone. Image texture is an
obvious choice.

Following the idea described in [4] we used the statistics of Gabor filter
outputs to encode the texture properties of the filtered image. Gabor fil-
ters can be considered orientation and scale-adjustable edge detectors. The
mean and the standard deviation of the outputs of Gabor filters of various
scales and orientations can be used to summarize the underlying texture
information [4].

Our Gabor kernels were circularly symmetric, and were constrained to
have the same number of oscillations within the Gaussian window at all
frequencies—consequently, higher frequency filters had smaller spatial ex-
tent. We used four scales and four orientations (0, 90, 45, 135 degrees),
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resulting in 16 Gabor kernels. The images were converted to gray-scale and
convolved with the Gabor kernels. For each image we calculated the mean
and the standard deviation of the Gabor responses across image locations
for each of the 16 scale-orientation value pairs, obtaining a feature vector of
dimension 32.

To estimate their painting-photograph discriminability potential, we cal-
culated the means and the standard deviations of the features over all paint-
ings and all photographs. Figure 7 displays the results. Interestingly, pho-
tographs tend to have more energy at horizontal and vertical orientations at
all scales, while paintings have more energy at diagonal (45 and 135 degrees)
orientations.

3.8.1 Classification using the Gabor feature vectors

As explained in the preceding section, the directional and scale properties of
the texture of images were encoded by 32-dimensional feature vectors. We
used a neural network to perform painting-photograph discrimination in this
space. A perceptron with five sigmoidal units in its unique hidden layer was
employed. Classifier performance was evaluated as follows. We partitioned
the paintings and photographs into 6 parts (non-overlapping subsets) of
1000 elements each. By pairing all photograph parts with all painting parts,
36 training sets were generated. Thus, a training set consisted of 1000
paintings and 1000 photographs, and the corresponding test set consisted
of 5000 paintings and 5000 photographs. 100 networks were trained and
tested, one for each of training set.

On the average, the networks correctly classified 78% of the photographs
and 79% of the paintings in the test set, with a standard deviaton of 4%,
respectively, 5% percent.

The convergence of the backpropagation calculation was quite rapid in
almost all cases, and usually, two to five re-initializations were sufficient for
obtaining a good network.

4 Discrimination using multiple classifiers

In the preceding sections we described the classification performance of three
classifiers: one for the space of the scalar-valued features (Section 3.6), one
for the space of the singular values of the RGBXY covariance matrix (Sec-
tion 3.7.2) and one for the space of the Gabor descriptors (Section 3.8.1).
We found that the most effective method of combining these classifiers
is to simply average their outputs—the “committees” of neural networks idea
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(see for example [14]). An individual classifier outputs a number between
0 (perfect painting) and 1 (perfect photograph). Thus, if for a given input
image, the average of the outputs of the three classifiers was < 0.5, it was
classified as a painting; otherwise it was considered a photograph.

4.1 Painting-photograph discrimination performance

To evaluate the performance of this combination of the individual classifiers,
we partitioned the painting and photograph sets into 6 equal parts each. By
pairing all photograph parts with all painting parts, 36 training sets were
generated. A training set consisted of 1000 paintings and 1000 photographs,
and the corresponding test set consisted of the remaining 5000 paintings
and 5000 photographs. Each of the three classifiers were trained on the
same training set, and their individual and their average performance was
measured on the same test set. This procedure was repeated for all available
training and testing sets.

Classifier performance is described in Table 3. The averaged (combined)
classifier significantly outperforms the individual classifiers for both paint-
ings and photographs. This improvement is to expected, since each classifier
works in a different feature space.

4.2 Tllustrating classifier performance

In the following two sections, we illustrate with examples the performance
of our classifier. We selected the best-performing classifier from the set of
classifiers from which the statistics Table 3 were derived, and we studied its
performance on its test set. The following two sections illustrate classifier
behavior.

4.2.1 Typical photographs and paintings

For an input image, the output of the combined classifier is a number € [0, 1],
0 corresponding to a perfect painting and 1 to a perfect photograph; in other
words, classifier output can be interpreted as the degree of photorealism of
the input image.

In this section, we illustrate the behavior of the combined classifier by
displaying images for which classifiers output was very close to 0 (< 0.1)
or to 1 (> 0.9). Thus, these are images that our classifier considers to be
typical paintings and photographs. We note that the error rate is very low
(under 4%) for these output values.
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Figures 5, 5 display several typical paintings. Note the variety of styles of
these paintings: one is tempted to conclude that the features the classifiers
use capture the essence of “paintingness” of an image.

Figures 5 display examples of typical photographs. We note that these
tend to be typical, not artistic or otherwise unusual photographs.

4.2.2 Misclassified images

The mistakes made by our classifier were interesting, in that they seemed
to reflect the degree of perceptual photorealism of the input image.

Figures 5, 5, 5 display paintings that were incorrectly classified as pho-
tographs. Note that most of these incorrectly classified paintings look quite
photorealistic at a local level, even if their content is not realistic.

Figures 5, 5, 5 display photographs that were incorrectly classified as
paintings. These photographs correspond, by and large, to vividly col-
ored objects—which sometimes are painted 3-D objects— or to blurry or
?artistic” photographs, or to photographs take under unusual illumination
conditions.

5 Discussion

We presented an image classification system that discriminates paintings
from photographs. This image classification problem is challenging and in-
teresting, as it is very general and must be performed in image-content-
indpendent fashion. Using low-level image features, and a relatively small
training set, we achieved discrimination performance levels of over 90%.

Most of our features use color in one way or another. The Gabor feature
are the only ones that use exclusively image intensities, and taken in isola-
tion are not sufficient for accurate discrimination. Thus, color is critical for
the good performance of our classifier. This appears to be different from hu-
man classification, since human can effortlessly discriminate paintings from
photgraphs in gray-scale images. However, it is possible that human classi-
fication relies heavily on image content, and thus is not affected by loss of
color information. To elucidate this point, we are planning to conduct psy-
chophysical experiments on scrambled gray-level images. If the removal of
color information affects the photorealism ratings significantly, it will mean
that color is critical for human observers also.

It is easy to convince oneself that reducing image size (by smoothing
and subsampling) makes the perceptual painting/photograph discrimination
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more difficult if the paintings have “realistic” content. Thus, it is reason-
able to expect that the discrimination performance of our classifier will also
improve with increasing image resolution—hypothesis that we are planning
to verify in future work.

In our study we employed images of modest resolution, typical for web-
available images. Certain differences between paintings and photographs
might be observable only at high resolutions. Specifically, although we
did not observe any differences in the edge structure of paintings and pho-
tographs in our images, we suspect that the intensity edges in paintings are
subtly different from intensity edges in photographs. In future work, we
plan to study this issue on high-resolution images.
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Tables

‘ Feature H P miss rate ‘ Ph miss rate ‘ order ‘

E

37.37

37.36

P > Ph

Ly

33.34

33.34

P < Ph

Table 1: Painting-photograph discrimination performance based on each of
the two edge features. P denotes paintings, Ph denotes photographs. For
each feature, paintings were separated from photographs using an optimal
threshold. The miss rate is defined as the proportion of images incorrectly
classified. The last column indicates the order of the classes with respect to

the threshold.
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‘ Feature H E, ‘ R ‘ U ‘ S ‘
E. 1.00; 1.00 | 0.01; 0.13 | 0.105 -0.13 | 0.45; 0.52
R 0.01; 0.13 | 1.00; 1.00 | 0.43; 0.25 | 0.33; 0.44
U 0.10; -0.13 | 0.43; 0.25 | 1.00; 1.00 | 0.28; 0.17
S 0.45; 0.52 | 0.33; 0.44 | 0.28; 0.17 | 1.00; 1.00

Table 2: Correlation coefficients for all feature pairs, calculated over all
photographs and all paintings. Each entry in the table lists first the cor-
relation coeflicient calculated over photographs, followed by the correlation
coefficient for paintings.
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‘ Classifier H P hit rate (u £ o) ‘ Ph: hit rate (u £ o) ‘

Cq 72.24+5% 71.1+4%
Co 81.3+3% 81.1+3%
Cs 79+5% 78+4%

c 94.5+3% 92.5+2%

Table 3: Classification performance: the mean and the standard deviation
of the hit rates over the 100 testing sets. C is the classifier operating in the
space of the scalar-valued features. Cs is the classifier for RGBXY space,
and C} is the classifier for Gabor space. C'is the average classifier. P denotes
paintings, Ph denotes photographs.
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Figure 1: Murals (left) were included in the class “paintings”. Line drawings

(right) were excluded.

Figures
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Figure 2: Visually differentiating paintings from photographs can be a non-
trivial task. Left: Photographs. Right: Paintings.
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Average saturation histograms. Black: photographs. Light color: paintings
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Figure 3: The mean saturation histogram for photographs (black) and paint-

ings (light gray). 20 bins were used. Photographs have more unsaturated
pixels, paintings have more highly saturated pixels.
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Figure 4: Painting and photograph data points represented separately in
the same two-dimensional space of the first two principal components of
the common painting-photograph image set. LEFT: paintings RIGHT: pho-
tographs.
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Figure 5: RGBXY space: painting and photograph data points represented
separately in the same two-dimensional space of the first two principal com-
ponents of the common painting-photograph image set. LEFT: photographs
RIGHT: paintings.
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Figure 6: Laplacean mask
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Figure 7: Errorbar plots illustrating the dependence of the image-mean and image-
standard deviation of Gabor ouputs on filter scale and orientation for the paint-
ing (red lines) and photograph (interrupted blue lines) image sets. TOP LEFT:
Horizontal orientation. FErrorbar plot representation of the image-set-mean and
image-set-standard deviation of the image-mean of Gabor filter output magnitude
as a function of filter scale. Errobars represent the standard deviations determined
across images, expressing inter-image variability. The plots for the paintings set are
in red, for the photographs set, in blue. TOP MIDDLE: Corresponding plots for the
vertical orientation. TOP RIGHT: Corresponding plots for the diagonal orientations:
the data for 45° and 135° are presented together. BOTTOM LEFT: Horizontal orien-
tation. Errorbar plot representation of the image-set-mean and image-set-standard
deviation of the image-standard-deviation of Gabor filter output magnitude as a
function of filter scale. Errobars represent the standard deviations determined
across images, expressing inter-image variability. BOTTOM MIDDLE: Corresponding
plots for the vertical orientation. BOTTOM RIGHT: Corresponding plots for the
diagonal orientations: the data for 45° adfll 135° are presented together.



PAINTIING 0.028645

PAINTIING

0.029061
7

>

PAINTIING 0.018153

Figure 8: Images rated as typical paintings. Classifier output is displayed
above each image. An output of 1 is a perfect photograph
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PAINTIING 0.023557 PAINTIING 0.026572 PAINTIING 0.028397

A

PAINTIING 0.027172 PAINTIING 0.017993

Figure 9: Images rated as typical paintings. Classifier output is displayed
above each image. An output of 1 is a perfect photograph
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PHOTOGRAPH 0.90998 PHOTOGRAPH 0.90382 PHOTOGRAPH 0.92845

PHOTOGRAPH 0.9254 PHOTOGRAPH 0.91042

o > AR ?
PHOTOGRAPH 0.90048 PHOTOGRAPH 0.91188

1

Figure 10: Images rated as typical photographs. Classifier output is dis-
played above each image. An output of 1 is a perfect photograph
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PHOTOGRAPH 0.92511 PHOTOGRAPH 092735 PHOTOGRAPH 0.93509

Figure 11: Images rated as typical photographs. Classifier output is dis-
played above each image. An output of 1 is a perfect photograph
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PHOTOGRAPH 0.65745 PHOTOGRAPH 050911 PHOTOGRAPH 0.92535

PHOTOGRAPH 0.63159

PHOTOGRAPH 0.75062

Figure 12: Paintings classified as photographs. Classifier output is displayed
above each image. An output of 1 is a perfect photograph
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PHOTOGRAPH 0.79067 PHOTOGRAPH 055113 PHOTOGRAPH 0.65303

PHOTOGRAPH 0.53064 PHOTOGRAPH 0.59253 PHOTOGRAPH 0.50294

Figure 13: Paintings classified as photographs. Classifier output is displayed
above each image. An output of 1 is a perfect photograph
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PHOTOGRAPH 0.7775 PHOTOGRAPH 0.67624 PHOTOGRAPH 0.6325

PHOTOGRAPH 0.74068 PHOTOGRAPH 0.75132

Figure 14: Paintings classified as photographs. Classifier output is displayed
above each image. An output of 1 is a perfect photograph
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PAINTIING 0.17287 PAINTIING 037311 PAINTIING 0.23322

_ﬁ

PAINTIING 0.31456 PAINTIING 0.26809 PAINTIING 0.49037

PAINTIING 0.14935 PAINTIING 0.38022 PAINTIING 037232
-

Figure 15: Photographs classified as paintings. Classifier output is displayed
above each image. An output of 0 is a perfect painting
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PAINTIING 0.26037 PAINTIING 0.36976 PAINTIING 0.40285

edd
b L 7
a #7

PAINTIING 0.3746 PAINTIING 0.34342

PAINTING 0.13133

Figure 16: Photographs classified as paintings. Classifier output is displayed
above each image. An output of 0 is a perfect painting
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PAINTIING 0.3831 PAINTIING 0.34862 PAINTIING 0.45955

PAINTIING 0.092071 PAINTIING 0.12466 PAINTIING 0.072161

PAINTIING 0.2402 PAINTIING 0.49891 PAINTIING 0.24804

Figure 17: Photographs classified as paintings. Classifier output is displayed
above each image. An output of 0 is a perfect painting
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Figure 18: LEFT: scrambled painting. RIGHT: scrambled photograph.
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