
ARCHITECTURAL SUPPORT FOR

DATABASE VISUALIZATION

Dennis P. Groth

Submitted to the faculty of the Graduate School

in partial ful�llment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

May 2002

Accepted by the Graduate Faculty, Indiana University, in partial ful-

�llment of the requirements of the degree of Doctor of Philosophy.

Doctoral
Committee

Edward L. Robertson
(Principal Advisor)

Dirk Van Gucht

Andrew Hanson

Andrew Dillon

ii

Copyright c
 2002

Dennis P. Groth

ALL RIGHTS RESERVED

iii

For Melanie, Elizabeth and Joseph

iv

Acknowledgements

The amount of space given to acknowledge support seems small compared to the

amount of help I have received. Never the less, I will try and convey my deepest

thanks to the people who have made a di�erence in my work and life.

I would like to acknowledge the members of my research committee. First, and

foremost, I am especially thankful for all of the assistance, direction, and focus pro-

vided by Ed Robertson. It would not be an understatement to say that this work

would not be possible without his direction. I would like to thank Dirk Van Gucht for

instilling an interest in database research. In particular, Dirk's introduction to query

languages, including Datalog, was great motivation. I would also like to thank Andy

Dillon for demonstrating that systems are, in fact, meant to be used by people, and

that developing an appreciation for this will ultimately lead to better systems. Last

and not least, thanks to Andy Hanson for all of the friendly advice, which certainly

contributed to the successful completion of this particular piece of work.

v

My deepest thanks to Memo Dalkilic, who showed great friendship, encourage-

ment, and support throughout my time here. It is fair to say that without his friend-

ship I would not have been nearly as motivated, or have had even a fraction of the

fun that I have enjoyed. He was always there for me whenever I needed him.

Thanks to all of my other friends in the lab, including Chris, Cathy and John. To

Jit, who was helpful when I �rst joined the lab. In addition, thanks to the numerous

students who added their e�orts to my work: Deepa, Abishek, Arvind, Deepa, Je�

and Susan. I would like to thank the members of the Computer Science department

for their assistance. In particular, Dennis Gannon, Sherry Kay, Linda McCloskey

and Pam Larsen. The technical support sta� has been incredible, especially Rob

Henderson.

When I �rst came to Bloomington I was lucky to meet and work with some very

talented people in UITS. Thanks to Don Grinstead, Barry Walsh, Steve Gribble and

Je� Morris for the work, as well as several challenging problems. I would also like to

thank the 65 volunteers who participated in the usability experiments.

My numerous friends back in Chicago have also provided support, encouragement,

and laughter through numerous lengthy email exchanges that will certainly continue.

In no particular order, thanks to Paul, Rich, Mark, Ross, Jim, Bart, Pat, Ted, and

Sinon. (CRSRIH)

Outside of my academic studies and research I have developed an intense interest

vi

in the martial arts. I would like to thank my instructors Steve and Linda Scott for

instilling this interest. I would also like to thank my training partner Robene for

teaching me intensity, and especially for not hurting me (too much). Thanks to my

other friends Sarah, Gary, Rob (The Total Package, aka \The Little Angry Man")

Lee, Eric, Jason, Jenny, Aaron, Roy, Randy, Judy, Mike and Trisha.

Of course, my wife bears the most responsibility for the successful completion of

this research. To my wife Melanie, for all of her years of assistance - this is really her

research too. For Elizabeth and Joseph, who have grown up in Bloomington, it was

worth it. To my mom, Kathy, I thank her for everything she has ever done for me.

To my dad, Dan, I thank him for teaching me to work hard. I would especially like

to thank my in-laws, Jim and Jan Fetzer, for their support. Thanks to my brothers

and sisters: Mike, Sue, Teresa, Peggy, Tom, Jim, John and Jennifer. Of course, other

family members: Darlene, Bob, Jackie, Bill, Wally, Roslyn, Eric, Bryan, Megan,

Haley, Brett, Harmony and Laura. I could keep on going, but in the interest of time

(and space), thanks to everyone else.

When you commit to completing a doctorate many people may see the dissertation

as the culmination of their studies. I see it di�erently. While this dissertation is a

signi�cant accomplishment for me personally, I see it as just the beginning:

\It ain't over till it's over." - Yogi Berra

vii

Abstract

The rapid proliferation and growth of database management systems has resulted

in the retention of massive amounts of information for data processing and analysis

needs. Many data processing requirements can be satis�ed through the use of tradi-

tional database languages, such as SQL. These languages retrieve and present query

results in record-oriented tables. The table of records format is best for presenting

every record, but it cannot give a feel for the overall character of the data set.

Database visualization di�ers from other types of information visualization due

to the diverse nature of the data stored in the database. The attributes used to

organize the presentation may not have a regular scale and, in fact, may not even

have a semantically meaningful order. Data can be categorized based on whether it

has inherent order or scale. For example, numeric data has both an order and a scale.

In contrast, geographic data (latitude, longitude) can be easily scaled according to a

well-de�ned metric, yet ordering is not as straightforward. This problem is further

complicated by the frequent use of reference values in database systems, for which

viii

the order and scale are de�ned by an external application and cannot be inferred by

the type of data.

This thesis presents a system architecture to address the problem of database

visualization. The essential and unique component of this architecture is the mapping

functionality, which adds order and/or scale to the data. A map may take into

consideration the domain of the data as well as other information. The features of

a particular map can be programmed to support a wide variety of visualizations.

Naturally, the architecture supports the addition of new maps in a modular fashion.

In addition, the architecture contains the following more conventional components:

query speci�cation, database storage, �ltering, plotting and image display.

In addition to the development of the architecture, we propose to analyze the

usability of the database visualization system by conducting an in-depth usability

evaluation. The evaluation will be structured to measure the e�ectiveness and e�-

ciency of users solving realistic problems using the mapping language.

ix

Contents

Acknowledgements v

Abstract viii

1 Introduction 1

Visualization and KDD . 3

1.1 Visualization and Databases . 6

The Visualization Process . 8

Missing Values . 11

1.2 Thesis . 13

2 Related Work 17

2.1 Visualizing Query Results . 17

x

Star�elds and Dynamic Queries . 18

VisDB . 19

2.2 Visualizing Data Mining Results . 20

2.3 Integrating Database Functionality 21

Tioga . 22

ExBase . 23

DEVise . 24

2.4 Visual Query Languages . 25

Query By Example . 25

DeLauney . 26

Query By Diagram . 27

2.5 Commercial Products . 27

3 De�nitions 30

3.1 The Relational Model . 30

3.2 Query Languages . 31

Relational Algebra . 32

Rule-Based Queries . 33

xi

Datalog . 35

SQL . 36

4 Architecture 38

4.1 The Architecture . 38

Data
ow within the Architecture . 41

4.2 From Data to Visualization . 47

4.3 Data Preparation - Incorporating Aggregates 51

4.4 Data Preparation - Map Join . 54

Maps . 59

4.5 Visual Queries . 62

4.6 From Visualization to Data . 64

4.7 Front End . 67

General Interaction Techniques . 67

Details on Demand . 70

Comparisons Across Visualizations 72

Combining Visualizations . 73

4.8 Summary . 74

xii

5 Mapping 77

5.1 Introduction . 77

5.2 The Mapping Language . 82

Implementation . 89

Implementing the Functional Interpretation 96

5.3 Program Transformations . 99

5.4 Extending MQL . 101

5.5 MQL Grammar . 106

5.6 Mapping Example . 106

5.7 Summary . 110

6 Usability Results 112

6.1 Introduction . 113

Related Work . 115

6.2 The Rule-Based Language . 115

Equivalence to SQL . 118

6.3 Experiment Design . 119

Independent Variables . 119

xiii

Environment and Evaluation . 121

Subject Group Comparison . 123

Dependent Variables . 124

Hypotheses . 126

6.4 Results . 127

E�ciency . 128

Accuracy . 131

Satisfaction . 133

Details of the Professional Programmer Experiment 135

6.5 Summary . 136

7 Visualizing Database Structure 138

7.1 Introduction . 139

7.2 De�nitions . 142

Information Dependencies . 144

7.3 Visualizing Distributions . 145

7.4 Visualizing Relationships . 148

Drilling Down . 151

xiv

7.5 Visual Comparisons Of Datasets . 153

7.6 Conclusion . 155

8 Conclusion and Future Work 157

8.1 Contributions of This Research . 157

Architecture . 157

Mapping Language . 158

Usability Evaluation . 159

Visualizing Database Structure . 160

8.2 Future Work . 161

Language Extensions . 161

Applications . 162

Usability of Visualizations . 162

A Usability Experiment 182

A.1 Training Materials . 182

Training: SQL . 182

Training: Mapping Language . 183

xv

Pre-Exam Survey . 200

A.2 Exam Problems . 201

A.3 Post-Exam Survey . 204

A.4 Preference Survey . 205

xvi

List of Tables

4.1 A database of employee information 48

4.2 Result given by the Visual Query module. 50

4.3 A map for the employee sex attribute. 60

6.1 Breakdown of subjects used in the experiment. 120

6.2 The average GPA and number of database courses for the student

subjects. 124

6.3 Scoring guidelines used in the experiment. 125

6.4 Mean accuracy scores for each group, as a percent of total. (standard

deviation) . 131

6.5 Statistical tests of the accuracy results (Hypothesis 1 - 3). 132

6.6 Mean satisfaction scores (1=Best, ..., 5=Worst) for the SQL group.

(standard deviation) . 133

xvii

6.7 Mean satisfaction scores (1=Best, ..., 5=Worst) for the Mapping Lan-

guage group. (standard deviation) . 133

6.8 Statistical tests of the satisfaction results (Hypothesis 4 and 5). . . . 134

6.9 Statistical tests of the satisfaction results (Hypothesis 4 and 5). . . . 135

xviii

List of Figures

1.1 The KDD Process . 2

1.2 Scatterplot of product sales data. 4

1.3 Scatterplot of product sales data with clusters. 5

1.4 A database used as a repository of information for visualization . . . 6

1.5 A visualization system used to display the results of database queries 7

1.6 Process model for visualization . 9

1.7 Ordering of numeric values . 10

1.8 Ordering for non-numeric values . 11

1.9 Visualization of sonic waves from a jet engine simulation 12

1.10 A weathermap showing expected temperatures by using colors 13

1.11 A generalized view of the mapping process 14

1.12 An abstraction of the mapping process 15

xix

2.1 Home�nder star�elds display . 18

2.2 Query results from VisDB . 20

2.3 Parallel Coordinates . 21

2.4 3 dimensional scatterplot used for cluster detection 22

2.5 The Tioga-2 system, showing average commute time 23

2.6 Visualization of bank transactions in DEVise 24

2.7 Query By Example . 25

2.8 Screen capture from the Delauney system, showing the creation of a

visualization speci�cation using DOODLE. 26

2.9 Screen capture from the QBD system { the query is over an ER rep-

resentation of the data. 28

2.10 Screen capture from the IBM Data Explorer 29

4.1 The architecture supporting visualization of database information. . . 40

4.2 A closer view of the data preparation module. Note that the architec-

ture supports arbitrary, user-de�ned sequences of transformations. . . 41

4.3 Detailed view of the Query Speci�cation module. 42

4.4 Detailed view of the Data Extraction module. 43

xx

4.5 A detailed view of the data preparation module. 44

4.6 The architecture. Numbered points refer to speci�c data
ows. 47

4.7 Linking age,salary from the input relation to X,Y. 50

4.8 Visualizing employee age compared to salary. 51

4.9 The Data Preparation module - Aggregation submodule. 52

4.10 Visualizing employee age compared to salary - frequency of employees

at each point is indexed to a color scale. 55

4.11 Possible orderings for two dimensional scatterplots. 58

4.12 Visualizing the number of females (left) to males (right). 61

4.13 Gallery of supported output styles. 65

4.14 The application manager interface. 67

4.15 Selecting and preparing data, and visualizing the results. 69

4.16 Retrieving details on demand. 71

4.17 Visualizations displayed in overlay format. 74

4.18 Visualizations displayed in o�set format. 75

4.19 Visualizations displayed in tile format. 76

5.1 The mapping process. 79

xxi

5.2 An example Customer relation. 79

5.3 A map that orders states from West to East. 80

5.4 An example visualization using the mapped value. 81

5.5 Algorithm to compute IR(P; s). 95

5.6 Algorithm to compute IF(P; r) or IR(P; r). 98

5.7 Context of the program transformation process. 100

5.8 Algorithm to compute the output of an MQLRelational or MQLFunctional

program, incorporating Ecept and Else rules. 105

5.9 Grammar for the mapping language 107

5.10 The user right-clicks with their mouse to see a menu of available ap-

plication objects. Selecting "Add Query", the user is presented a list

of available queries that can be visualized. 108

5.11 The user user the mouse to connect an input data source to a map.

After the map has been applied to the input data, a new object is

automatically added to the desktop. 109

5.12 The user adds a plotting object to the desktop and connects the mapped

data to the plotting object. The user is then presented with options

based on the input data and the type of plot. 110

xxii

5.13 The left pane shows the mapped unemployment data within a 3D scat-

terplot. The right pane shows the original data in its unmapped form. 111

6.1 The classi�cation process . 116

6.2 An overview of the design of the usability experiment. 123

7.1 On the left, a scatter plot of data where the functional dependency

A! B does not hold. On the right, a scatter plot where the functional

dependency does hold. The dashed lines have been added to show the

alignment of the points along the vertical dimension. 142

7.2 SQL query to calculate the entropy of A 144

7.3 Comparing the size of the active domain for each attribute (Left) to

the entropy of each attribute (Right) in the U.S. Census dataset. . . . 146

7.4 A view of the di�erences between the size of the active domain for

(Left) compared to the entropy values for the same attributes (Right). 147

7.5 Comparing the entropy of each attribute in the census data to the log

of the size of the corresponding active domain. 148

7.6 On the left, characterizing the space HA!B � HA. On the right, a

visualization of this space for the census data. 149

7.7 3D plot comparing HA!B, HA and HB. 150

xxiii

7.8 Comparing p(a) to HB(�A=a(r)) for census data. In this example, A

is AGE and B is DEPART. 153

7.9 HA compared to log jadom(A)j for the Wisconsin benchmark data

(Left). The same comparison from the census data (Right). 154

7.10 HA compared to log jadom(A)j for datasets taken from the machine

learning repository. Clockwise from top left - Hepatitis, Tic Tac Toe,

Agaricus, SetQ. 155

xxiv

1

Introduction

With the advent of knowledge discovery in databases (KDD), databases have

moved beyond operational support of a business. Indeed, as vast repositories of critical

information are being amassed at an ever increasing rate, users are now interested in

applying advanced data mining techniques in order to discover previously unknown

information.

Described in [FPSS96], the KDD process is frequently depicted in terms of a

number of iterative steps, as shown in Figure 1.1.

A critical aspect of the process is the implied interaction with a user. Obviously,

the user is involved with problem selection, as well as the interpretation of the results.

Often, the user may review the results and develop a more re�ned problem statement,

which initiates another iteration of the process.

Frequently, the KDD process is associated with speci�c methods that are employed

1

1. Introduction 2

Data

Selection

Interpretation

Knowledge

Data Mining

Patterns

Target Data

����������������������������
����
����

����
����
����

��
��
��
��

Preprocessed
Data

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

Preprocessing

Transformation

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Transformed
Data

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��

��
��
��

Figure 1.1: The KDD Process

within the data mining task. We delineate the most common methods in order to

provide motivation for the problem we are addressing with this research.

Classi�cation determines a function that maps data items to prede�ned classes.

Classi�cation can be used to predict the value of unknown variables, or future

data items.

Regression determines a function that maps data items to a real-valued variable.

Regression techniques can be used when correlations are signi�cant in the data.

Clustering determines a set of categories or groupings of data items.

1. Introduction 3

Summarization calculates descriptive statistics from data items, such as mean and

standard deviations.

Dependency Modeling determines a model that describes dependencies between

variables. A common use of this method is to generate association rules.

Deviation Detection discovers signi�cant changes, typically over time, among data

values.

There are many surveys in the literature for these methods. Of particular note

are [FPSS96, BA96], which outline the process in greater detail.

Visualization and KDD

As a segue to the problem addressed by this research, let us note that each of the

previously described methods may employ visualization techniques in order to report

results. For example, Figure 1.2 shows a bivariate scatterplot of product sales before

clustering. Figure 1.3 shows the resulting clusters based on the k-means technique.

Visually, the clusters are made evident in Figure 1.3 by the use of color. Of

course, a non graphical output can report the same results. However, a text report

of the same results would span several pages. Imagine a similar result on a much

larger dataset and the advantages of a graphical representation of the results is quite

compelling.

1. Introduction 4

����

��
����

��
��
��
��

����

��

����

��
��
��
��

�
�
�
�

����

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��
����

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

����

�
�
�
�
�
�
�
�

��
�
�
�
�

��
��
��
��

��
��
��
������
��
��
��
��

��
��
��
����

��
��
��
���
�
�
�

��

��
��
��
��

�
�
�
�

��
��
��
��

����

��
��
��
��

��

P
ric

e

Date

Figure 1.2: Scatterplot of product sales data.

Visualization research is sometimes confused with the study of graphics. Graphics

researchers are interested studying and developing techniques associated with render-

ing pixels on computer displays. Visualization research employs graphics techniques.

However, the primary task for visualization researchers is determining what informa-

tion to display, whereas graphics research is primarily interested in e�ciently display-

ing the information.

From a human computer interaction (HCI) viewpoint, visualizations are extremely

interesting. In particular, when considering the usability of computer systems, HCI

experts are interested in measuring the e�ciency, e�ectiveness and satisfaction of

users based on their interaction with the system being studied.[BM94] While the pre-

vious example demonstrated that visualizations can be e�ective and e�cient, further

study would be warranted to better understand user satisfaction. In addition, a bad

1. Introduction 5

��
��
��
��������

��
��
��
��
��
��
��
��
�
�
�
���

��
��
��

����

�
�
�
�
��
��
��
��

�
�
�
�

��

��
��
��
��

�
�
�
�

�
�
�
�

��

��
��
��
����
��
��
��

�
�
�
���
��
��
��

��
��
��
��

����

�
�
�
�

��
��
��
��
��

�
�
�
���

��
��
��

����

����
��

��
��
��
��

��
��
��
��

����

��
��
��
��

�
�
�
�

�
�
�
�

����

�
�
�
���������

��
��
��
��
��

P
ric

e

Date

Figure 1.3: Scatterplot of product sales data with clusters.

visualization can be deceiving.

A relatively new focus of study within KDD is that of Visual Data Mining, which

aims to provide graphical representations of the discovered patterns as a means to

communicate results.[Ank00, Kei97, BKK97] The goal of such research varies from

visualizing the output of data mining (either �nal or intermediate results) to more

generic data visualization of the content of databases.

Many current approaches for visualizing the output of data mining activities are

application speci�c. While this type of approach is useful from the knowledge discov-

ery standpoint, what is necessary is the development and integration of generalized

toolkits to handle a wider variety of problem domains.

1. Introduction 6

1.1 Visualization and Databases

When considering the problem of visualizing data contained in databases there can

be a variety of approaches. As shown in Figure 1.4, a database can be used to store

data, such as
uid
ow measurements. Access to the data is provided via queries,

which extract the data from the database and feeds the data to the visualization

system.

Import Data

D
at

a
S

ou
rc

e

Retrieve

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

Database

Visualization System

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 1.4: A database used as a repository of information for visualization

1. Introduction 7

Another approach, shown in Figure 1.5, uses a visualization system to display

the results of queries. The di�erence between this approach and the previous one is

subtle. The �rst approach uses a database system to enhance a visualization system,

whereas the second approach uses a visualization system to enhance the functionality

of a database system by providing a more integrated approach to the problem.

Insert / Update Data

Query

D
at

ab
as

e
A

pp
lic

at
io

n

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

Database

Visualization System

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 1.5: A visualization system used to display the results of database queries

In the context of database systems, access to the data is provided via queries.

The alternative access method (when using
at �les) is to hard-code the input into a

1. Introduction 8

pre-speci�ed format. Queries allow for
exible reorganization of the data.

Database systems o�er a number of advantages over �le structures. For instance,

the ability to scale for extremely large databases is of great importance for KDD activ-

ities. Query languages are accessible to a wide range of users, with query by example

(QBE) [Zlo77] tools as well as direct structured query language (SQL) interfaces.

Perhaps the most relevant contribution of database theory to the problem of data

visualization is that of independence. By this, we mean the separation between the

physical structure of the data and how the data is accessed. This separation allows

for �ltering and transformation of the data to occur according to a logical description,

as opposed to a physical description of the transformation.

The Visualization Process

When it comes to analyzing large, complex datasets, visualization techniques are

often employed. Indeed, it can be shown that visual representations are helpful for

understanding relationships between data, identifying outliers, etc. Typically, we

tend to view the graphic output of the visualization as the key component. As a

consequent of this results-oriented view, we have lost sight of the context within

which visualization occurs.

The process of visualizing data is at the core of our research. Figure 1.6 describes

1. Introduction 9

a simple process model for visualization. While the goal of a visualization may be to

gain insight into data, it is easy to gloss over the essential elements of this model. For

instance, a results oriented view (shared by many users) will focus on the graphical

output of the process.

Data Source Data Tables
Graphical
Output

Mapped
Data

Figure 1.6: Process model for visualization

Of critical importance with this model is the transformation of data into a format

that can be visualized. This step must be taken by any system involved with the

visualization of data, regardless of the problem domain.

In this research, mapping is the process of transforming data from its original for-

mat to the format required for visualization. This transformation process is essential

due to the varied data types and formats contained in databases.

Displaying information visually requires that each element in the graphical display

be both ordered and scaled appropriately. By order, we mean the relative positioning

of items in the display. It is important to distinguish between datatypes that have

a natural order and those that do not. However, even data stored as a number

in the database may still be categorical, and hence not ordered. In such cases the

ordering may need to be de�ned according to the particular requirements of the

problem domain. For example, most people are accustomed to an ordering scheme

1. Introduction 10

for numeric and temporal values as shown in Figure 1.7. The chart shows the value of

the stocks comprising the Dow Jones Industrial Average for approximately the past

85 years.

Figure 1.7: Ordering of numeric values

Methods for ordering of non-numeric data vary greatly, depending on the appli-

cation. For text values, lexicographic order may be used. However, the individual

constructing the graph may apply some form of expert knowledge in order to group

items intelligently. Figure 1.8 shows a graph of family types from the Indiana census.

For scienti�c applications, the ordering of information on the display often coin-

cides with spatial information. The visualization shown in Figure 1.9 depicts sonic

shock waves from a simulated mach 1.9 jet engine exhaust with areas of high pressure

(red) to low pressure (blue) illustrating the shock waves streaming outward.[web01]

In contrast with the order of values is the concept of scale. The scale of values can

be represented spatially, with the relative distance between two items in the display

1. Introduction 11

Figure 1.8: Ordering for non-numeric values

implying the di�erences in the underlying values. In addition to distance, the scale

can be represented by color, size, or shape of graphic elements. If two items are

far apart, this implies that the underlying values are far apart. For visualization

purposes, color is frequently used to depict the di�erences in scale. Figure 1.10 shows

the use of color to depict di�erences in expected temperatures for the United States.

Note the use of colors closer to red depicting warmer temperatures and the bluer

colors depicting cooler temperatures.

Missing Values

One reason for transforming the data is closely related to the KDD process. In

particular, the data may not be \clean", or may have missing values. For instance,

1. Introduction 12

Figure 1.9: Visualization of sonic waves from a jet engine simulation

the latest ANSI standard de�nes 24 interpretations for null values. For visualization

purposes, we could choose any of the known interpretations. The chosen interpreta-

tion may be dependent on the particular application or user. Obviously, in order to

be applicable across a wide variety of problem domains, a visualization system must

be
exible with respect to the de�nition or selection of data transformations.

1. Introduction 13

Figure 1.10: A weathermap showing expected temperatures by using colors

1.2 Thesis

The main contribution of this research is the formalization of a generalized map-

ping construct, aimed at supporting visualization of database information. By factor-

ing out the mapping capability, we show that a wide variety of visualization techniques

are supported within a generalized framework.

Figure 1.11 shows a generalized view of the visualization process. While this

1. Introduction 14

Visualization

Input Data

Figure 1.11: A generalized view of the mapping process

is a simple representation, the mapping of the input data to the output display is

non-trivial. Note that one of the following situations are required.

1. The data is already in the necessary form required by the visualization system.

2. The visualization system contains the necessary logic to transform the input

data.

Our approach, which abstracts the data transformation process is shown in Figure

1.12. Note that both of the previous situations can still occur. However, by creating a

1. Introduction 15

mechanism for externalizing the transformation process, both the visualization system

and the data are shielded from each other.

��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

Map

Input Instance

Visualization

Figure 1.12: An abstraction of the mapping process

A survey of related database visualization research is discussed in Chapter 2. We

focus on the systems and research associated with database systems and visualization,

as opposed to a broad survey of visualization techniques. For a more comprehensive

study of scienti�c visualization research we encourage a review of [NHM97]. The

topic of information visualization is greatly covered in [CMS99].

Chapter 3 provides the basic de�nitions and notations we use in later chapters.

1. Introduction 16

In particular, we focus on relational database terminology. In Chapter 4, we describe

an architecture for visualizing database information. The goal for developing such an

architecture is to provide su�cient details to an overall design for a system supporting

visualization using generalized techniques.

The mapping concept is more fully de�ned in Chapter 5. The chapter describes our

formalism for mapping and provides details surrounding the implementation based

on the formalism.

A signi�cant issue faced by all computer applications is that of understanding the

impact of technology upon the users. This is particularly challenging for the �eld of

visualization, since the user plays the key role of interpreting the results. Accordingly,

Chapter 6 provides empirical results from an in-depth usability evaluation of the

mapping process.

We provide an example application of our approach in Chapter 7, in which we

explore techniques for visualizing the structure of information stored in databases.

Lastly, we conclude with a discussion of open problems and future e�orts in Chapter

8.

2

Related Work

In this chapter we present an overview of other research that is most closely related

to our topic. We have separated the chapter into four main areas. First, we present

a number of projects related to the problem of visualizing query results. Second, we

review activities related to visualizing the results of data mining operations. Third,

we provide details on systems oriented around providing database functionality to

visual displays. Fourth, we provide details on visual query languages.

2.1 Visualizing Query Results

In this section, we provide an overview of research e�orts focused on graphically

displaying the results of a database query. Much of the focus is on maximizing the

amount of information on the display. As a result, users are able to identify points of

17

2. Related Work 18

interest in the data.

Star�elds and Dynamic Queries

One approach to integrating visualization systems with databases is demonstrated

by dynamic queries.[WS92, AS92, AS94b, Shn94, AW95, Ahl96] Figure 2.1 shows a

screen capture from the Home�nder system, in which homes are displayed as points

on the display. The user interface for this system has two principle components: on

the right, the user speci�es input parameters to a �xed form query, while results are

shown on the left.

Figure 2.1: Home�nder star�elds display

The mapping structure for this particular application is geographic. That is, the

2. Related Work 19

points representing homes for sale are overlayed on a geographic map. The user

interacts with the results by manipulating the sliders. This manipulation is the basis

for the dynamic queries capability. Subsequent work, such as [BSP+93] adds to the

interaction by combining movable �lters to the display.

VisDB

A signi�cant amount of research in database related research was contributed by

Daniel Keim.[KAK94, KKS94, KK95a, KK95c, Kei95, KK95b, Kei96a, Kei96b, KK96]

The VisDB system displays each element of the query results as a pixel in the display.

Figure 2.2 shows a sample screen capture from the VisDB system.

The mapping of data elements to screen location and color is based on each data

values distance from the query. Tuples that most closely match the query are closer

to the center of the display, with the least closest matches further from the center.

Using this technique, users are able to evaluate similarity between multiple datasets.

Users interact with the visualization in order to discover relationships and patterns

that would not be visible via other mechanisms. This approach is consistent among

other systems, which we will cover in subsequent sections.

2. Related Work 20

Figure 2.2: Query results from VisDB

2.2 Visualizing Data Mining Results

In this section we describe research activities involved with visualizing the results

of data mining. For a comprehensive overview of the area, we strongly advise [UFW01]

as a starting point.

Discovering association rules from market basket data continues to be an ex-

tremely active research area.[AS94a, Bay98, STA98, BMUT97, SON95, HPY00] From

a visualization standpoint, there have been a number of attempts at graphically de-

picting the discovered rules.[FMMT96, WWT99, HHW00]

2. Related Work 21

Visualization techniques are frequently employed by cluster detection applications.[CC92,

MR97, ALS97, Ank00] Figure 2.3 shows a parallel coordinates display of
ower data.

The clusters are revealed by the use of color in this display, which shows three clusters

(Blue, Pink and Green).

Figure 2.3: Parallel Coordinates

Scatterplot techniques can also be used to identify clusters, as shown in Figure

2.4.[Kea99]

2.3 Integrating Database Functionality

A di�erent, but related problem for visualization research is described in this

section. Namely, how can database functionality be integrated with a visualization

2. Related Work 22

Figure 2.4: 3 dimensional scatterplot used for cluster detection

system.

Tioga

The Tioga system's original focus was to enhance scienti�c visualization applica-

tions with database support.[SCN+93b, SCN+93a, ACSW96, WS97]

The system has evolved from its original objective to be a visual browser of re-

lational data. Figure 2.5 shows a screen capture from the Tioga-2 system, in which

average commute time for U.S. workers is visualized.

2. Related Work 23

Figure 2.5: The Tioga-2 system, showing average commute time

ExBase

The ExBase sytem and its predecessor ExVis [GP88, GPW89, GSB91, LG94,

LGa, LGb, Lee] illustrate another database visualization approach. In this system,

the database concept of a view is extended to encompass a visualization view. The

end result is a layered approach, which brings the user and the data closer together.

The ExBase system proposes an architecture that supports the de�nition of mappings

from the data to the visual display. This support, called representation mappings,

maps �elds from the input query to visualization parameters. Again, the focus is on

output, and not on dealing with issues related to early stage transformations of the

data.

2. Related Work 24

DEVise

The DEVise system [LRM96, LRB+97, WL00, HYL00] allows users to integrate

information from diverse data sources into visualizations. The DEVise system places

emphasis on querying and visualization primitives. In particular, the system provides

a record level mapping from the data to spatial coordinates, which provides the ability

to control the color and shape of the data elements. Figure 2.6 shows a visualization

of bank transactions using the DEVise system. This application is attempting to

identify owners of multiple accounts with suspicious transaction activity.

Figure 2.6: Visualization of bank transactions in DEVise

2. Related Work 25

2.4 Visual Query Languages

A separate, but related, research topic is the development of techniques for graph-

ically specifying queries. In some cases, certain approaches couple the diagram-

matic query speci�cation with visualization of the output. A fairly recent survey

is provided in [CCLB97]. Other examples of visual query languages are provided in

[PdBA+92, PK94].

Query By Example

The earliest example of a visual query language is Query By Example (QBE).[Zlo77]

The main idea behind QBE is to provide an interface to the user based on the tabular

representation of the the database tables.

Employee SSN LastName FirstName Birthdate

p. >’8−1−61’

...

Figure 2.7: Query By Example

The user speci�es the constraints in the tabular display in order to de�ne the

query. Figure 2.7 shows an example QBE query of employees born after 8-1-61. Note

that the user can de�ne the output of the query by using the \p." command in the

desired columns.

2. Related Work 26

DeLauney

The DeLauney system, described in [CAL+97, Cru93a] and the description of

the visual query language DOODLE [Cru93b, Cru92, CL00], is an example of an

approach that combines graphical output of query results with a graphical method

for specifying the queries.

Figure 2.8: Screen capture from the Delauney system, showing the creation of a
visualization speci�cation using DOODLE.

Figure 2.8 shows an example of a visual query in this system. The user speci�es

the output declaratively using a toolkit of available constructs. What is particularly

important with this work is the concept of allowing the user to construct the mapping

2. Related Work 27

(in DOODLE) necessary for their application.

Query By Diagram

The Query By Diagram (QBD) system [ACS90b, ACS90a] utilizes ER models

[Che75] as the representation of the data. Users then specify the query by interacting

with the diagram, as shown in Figure 2.9. The developers of the QBD system per-

formed usability experiments [CS95], in which they learned that users preferred visual

queries over textual queries. A more recent result by the same group is provided in

[Cat00].

2.5 Commercial Products

Visualization systems that incorporate ties to database systems have been im-

plemented in commercial systems. In particular, the Data Explorer by IBM [IBM]

incorporates a visual programming interface with access to database information via

SQL queries. Figure 2.10 shows a screen capture from this system. Many products

support presentation graphics generation, including Microsoft's [mic] Excel Spread-

sheet and Access Database. A system by Quadbase [qua] incorporates SQL queries

as a means of extracting data and formatting as a chart or graph.

2. Related Work 28

Figure 2.9: Screen capture from the QBD system { the query is over an ER repre-
sentation of the data.

2. Related Work 29

Figure 2.10: Screen capture from the IBM Data Explorer

3

De�nitions

This chapter provides the formal, fundamental aspects of the relational model,

which is the foundation of this research. The relational model was introduced by

Codd in [Cod70]. Beyond the relational model, we provide an overview of query

languages. In particular, we focus on the logic based language - Datalog.

3.1 The Relational Model

Let R be a relation schema and r be an instance of R. Associated with R is

a �nite set of attributes fA1; :::; Ang. For each attribute Ai we associate a set of

possible values dom(Ai), called the domain of Ai. When considering an instance r

we de�ne adom(Ai), the active domain of Ai, to be the set of values existing in r.

Note that, while adom(Ai) is �nite, dom(Ai) may be in�nite. A tuple t of r is a

30

3. De�nitions 31

function dom(Ai)! adom(Ai). De�ne dom(R) = dom(A1)[; : : : ; dom(An).

We sometimes refer to values with the notation t:A, meaning the value of the A

attribute in tuple t. For sets of attributes, t:X means the values of each attribute of

X in tuple t. For a relation R, the instance r is a �nite set of tuples.

When describing a set of attributes we will utilize uppercase letters, such as X; Y;

or Z. Distinguished from the attribute names are the attribute values, for which

we will utilize lowercase letters, such as a; b; or c. Functions performed on attribute

values will be speci�ed in terms of the name of the function (i.e. ABS, CEIL, : : :)

and the attribute names. Generic functions will be speci�ed by f(X). Mathemati-

cal functions, such as addition and subtraction, will be speci�ed by standard math

notation.

A query q is a mapping between relation instances. In the next section we will

describe the syntactic construction of queries. In the context of the relational model,

the results of the application of a query mapping to an input instance is a relation.

This concept is referred to as the closure property.

3.2 Query Languages

In this section we provide the basic formalisms for the speci�cation of queries. For

a more in depth coverage of the theoretical aspects of relational query languages see

3. De�nitions 32

[AHV95]. Of particular note with these languages is their equivalence. This equiva-

lence allows us to blur the distinction between procedural and declarative languages.

A procedural language is de�ned in terms of atomic operations on data, whereas a

declarative language is de�ned in terms of a logical expression.

Relational Algebra

The relational algebra is a procedural language, with queries de�ned by composi-

tion of the following, basic operations. Again, R is a relation schema.

Selection: This operator, written ��(R), selects tuples from its input that satis�es the

boolean condition �. The � expression is typically of the form ���, where �; � 2

R [dom(R) and � is a binary relation. For instance r, ��(r) = ftjt 2 r ^ �g.

Projection: This operator, written �X(R), projects attributes of R. For instance r,

�X(r) = ft:Xjt 2 r ^X � Rg.

Cartesian Product: This operator, written R� S, combines relations. For example,

if R = fA;B;Cg and R = fD;Eg, R � S = fA;B;C;D;Eg. For instances r

and s, r� s = ftjht:A; t:B; t:Ci 2 r ^ ht:D; t:Ei 2 sg.

In addition to these operators, and since relations are considered as sets, the

algebra allows for Union, Intersection and Di�erence operators, written as [;\; and

�.

3. De�nitions 33

Using the relational algebra, a query q is simply an expression composed from the

basic operators. The application of each of these operators (to the proper number

of relation instances) produces another relation. Thus composition of operators is

automatic. As a result, the relational algebra is considered a Procedural language, in

that the query may be implemented directly from the operations.

Sometimes included as an operator in the algebra is the Join operator, which allows

for more succinct expressions. The join operator is written as R �� S, where � is a

boolean expression, as used in the selection operator. The join, R�� S = ��(R� S).

A special type of join, called the natural join is written by R ./ S, in which the

resultant tuples agree on the attributes common to R and S.

A property of certain queries is that of monotonicity, de�ned as:

De�nition 1 A query q is monotonic if for any relation R, R � R0 =) q(R) �

q(R0)

Rule-Based Queries

An alternative method for specifying queries is by using a logic-based approach. In

this approach we distinguish between the existing relations and new relations that are

derivable from the existing relations. The existing relations are commonly referred to

as the extensional database (edb), while the new relations are called the intensional

3. De�nitions 34

database (idb).

To make this notion more precise, we will formally de�ne the notion of a rule-based

query. Let R be a database schema and fR1; : : :Rkg be the extensional relations

de�ned in R. A rule-based query is an expression of the form:

Ans(u) R1(u1); : : :Rn(un)

where Ans is an idb relation not in R and u is a set of literals, such that each literal

in u is a constant (i.e. a 2 dom(R)) or an variable name occurring in one of the edb

relations. Each ui contains either variable names, or constants.

An alternative formulation for a rule based query is:

Ans(u) R1(u1); : : :Rn(un) ^

where is a logical expression involving attribute names from the edb relations, or

constants. Under this formulation, is identical to the � expression contained in the

RA selection operator. The left hand side of the expression is called the head of the

rule, while the right hand side is called the body.

A rule-based query has a straightforward semantics, which we describe here infor-

mally. Essentially, if there exists a valuation of the variables in each ui in the body of

the rule, then Ans(u) can be inferred to be true. Note that this formulation utilizes

the closed world assumption. In addition, rule-based queries can be shown to express

only monotonic queries, since negation is not allowed in either the head or the body

3. De�nitions 35

of the rule.

Datalog

The rule-based queries represent a theoretically de�ned language that is equivalent

to the relational algebra restricted to the �; � and � operations. In general, this

results in a language that is too weak to solve many problems. Extensions to the

rule-based language provide more power, and is commonly referred to as the language

Datalog.

A Datalog query is written in similar fashion as a rule-based query. It is common,

however, for a Datalog query to be represented by a collection of rules. The rules

have an interesting evaluation, in that each rule �res simultaneously. A Datalog

program completes its execution when a �xpoint is reached. In other words, a Datalog

query continuously executes until no new information is generated in an idb relation

contained in the head of a rule. In addition, some classes of Datalog allow for idb

relations to occur in the body of a rule, providing some limited form of recursion.

There are a number of Datalog language classes that are interesting to consider:

Datalog Equivalent to the rule-based conjunctive queries.

Datalog: Allows for negation in the body of a rule. Negation in the head of the rule

is allowed and is considered safe.

3. De�nitions 36

While Allows recursive queries.

While+ Incorporates integer arithmetic in support of looping.

Whilenew Provides the ability to create new values.

Each variation of Datalog is strictly more powerful than the previous. In practice,

production database systems restrict query expressibility to be less powerful than

the While language. Even so, the more powerful languages can be programmed in a

higher level language.

In this dissertation we propose a variation of Datalog as a user query language for

performing transformation of data necessary to enable e�ective visualizations. We

chose the Datalog language as the basis for our approach due to its succinct syntax,

which essentially allows for the incorporation of a case statement in a relation query

language.

SQL

In practice, users interact with relational database systems through an imple-

mentation of the Structured Query Language (SQL) [Int89, Int92, Int99]. The basic

syntax of an SQL query is:

Select <select field list>

3. De�nitions 37

From <table list>

Where <conditional expression>

In terms of the types of problems that can be solved, SQL does have its limits. In

particular, recursive queries cannot be directly stated.1 One of the bene�ts of SQL is

its e�ciency, with each query executable in LOGSPACE. Its declarative form relieves

the user from worrying how the query will actually execute. In fact, the role of the

query optimizer is to rewrite queries into a form that is most e�cient.

For more complex operations, SQL can be embedded in a high-level language,

such as C++ or Java, to provide �ner levels of control over the processing of data.

In addition, many of the vendors provide a procedural language to embed more func-

tionality within the con�nes of the database in the form of stored procedures and

functions.

While SQL predominates as the de facto query language, there have been several

human factors experiments designed to identify relative strengths and weaknesses

of SQL.[YS93, WS81, Cat00] In some cases, SQL has been shown to be inferior to

other, proposed approaches, and yet, SQL has not been replaced. In Chapter 6, we

report on a usability comparison of SQL to our proposed rule-based language. In the

usability experiment, we measured the e�ectiveness of the language by having users

write queries that performed classi�cation tasks.

1Oracle has a limited form of recursion with its CONNECT BY clause.

4

Architecture

The primary contribution of this dissertation is presented in this chapter. The key

concept is that of an architecture that integrates visualization systems with database

technologies. The goal is to leverage the strengths of each technology in order to

arrive at more powerful solutions that positively impact user's capabilities.

4.1 The Architecture

Figure 4.1 depicts the overall architecture that we are presenting. While there are

several key elements, in this chapter we will focus primarily on the portions of the

architecture that are involved in presenting and interacting with the data in a visual

form. The following list provides a brief synopsis of the function performed by each

component of the architecture.

38

4. Architecture 39

Front End Provides access to each of the components of the architecture through

an integrated user interface.

Image Display Presents the rendered visualization to the user and provides certain

direct manipulation capabilities.

Plot Creates the rendered visualization from the input data.

Filter Provides the user with tools for selecting data behind the visualization for the

purposes of either exclusion or selection for further processing.

Visual Query Provides the user with options for de�ning how the input data relates

to an aspects of the output form.

Map Speci�cation Provides capabilities for de�ning and constructing maps using

a declarative language, which allow for externalizing the data transformation

process.

Data Preparation Provides a mechanism for transforming data into a form that is

necessary for the visualization.

Query Speci�cation Provides the user with tools for creating queries, which can

be stored and executed on demand.

Data Extraction Executes queries against the underlying relational database and

returns a relation instance to the calling module.

4. Architecture 40

Extraction
Data

Database

Visual Query

Filtered Data

Raw Data

User Options

User

Front End

Query
Specification

FilterMap
Specification

Image
Display

Plot

MapQuery Domain

Data
Preparation

Pre−Image

Rendering
Data

Filtered
Image

Unscaled
Data

Scaled
Data

Figure 4.1: The architecture supporting visualization of database information.

Note that the architecture encompasses the complete spectrum of activities that

are envisioned by the KDD process that was described in Chapter 1. In order to help

present a clear description of the architecture we will utilize screen captures from the

proof of concept system that we have developed as part of this research.

While the architecture pictured in Figure 4.1 describes the individual components,

it is important to note that the data preparation process supports a feedback within

itself. Figure 4.2 shows a detailed view of the Data Preparation module. The data
ow

4. Architecture 41

indicates the nature of the feedback. For example, the output of the map join pro-

cess can itself be joined with a di�erent map. The user can de�ne the sequence of

operations that comprise their application.

User
Options

Aggregation

Map Join

Canned
Algorithms

Future
Extensions

Relation
Instance

Pre−ImageRaw Data

Instance
Relation

Map
Raw Data
Filtered

Figure 4.2: A closer view of the data preparation module. Note that the architecture
supports arbitrary, user-de�ned sequences of transformations.

Data
ow within the Architecture

Each module of the architecture has speci�c requirements for its input and output.

In this subsection we de�ne the details of the data
ow between the architecture's

4. Architecture 42

modules.

The Query Speci�cation module provides for the creation of user-de�ned SQL

queries. For this module the output is an SQL query, in the form of a string. The

implementation provides the user with the ability to save the query speci�cations.

Figure 4.3 shows an expanded view of the module.

Choose
Query

Query Queries

User

Use

Maintain
Create Updates

Query Specification

Query

Figure 4.3: Detailed view of the Query Speci�cation module.

The Database module supports all of the interactions between the other modules

and the underlying database management system. The module takes as input an

SQL query and returns the result of the query. No assumption is made as to the

\correctness" of the input. Figure 4.4 shows a view of this module.

4. Architecture 43

Database
Management
System

Process
Query

SQL

Data

Query Results Instance
Relation

Raw Data

Query

Data Extraction

Figure 4.4: Detailed view of the Data Extraction module.

The Data Preparation module is the focal point of our architecture, within which

a variety of interesting characteristics surface. From a data
ow standpoint, Figure

4.5 shows the details of this module. Note that regardless of the speci�c transforma-

tion being applied to the data the output remains a relation instance. This closed

property provides the capability for the feedback process to occur within the module.

Alternative approaches to data preparation may involve custom programming, which

does not yield e�ciencies when changes are required. The user may apply a Map,

which adds order and scale to the input data. We defer details of Maps until Chapter

5. The output of the data preparation module is called the pre-image data, which

4. Architecture 44

is managed by the architecture as a relation instance. Certain \canned" algorithms

are provided in this module as well. For example, algorithms to extract frequency

information from the input data are contained in the prototype implementation. In

addition, future extensions to the toolkit are provided for, such as data mining algo-

rithms.

User
Options

Aggregation

Map Join

Canned
Algorithms

Future
Extensions

Relation
Instance

Pre−ImageRaw Data

Instance
Relation

Map
Raw Data
Filtered

Figure 4.5: A detailed view of the data preparation module.

Note that the submodules of the data preparation module take as input relation

instance(s) (in the form of query results) and return another relation instance. This

design allows for the construction of arbitrary chains of data transformations, which

4. Architecture 45

is supported by the front-end.

The Map Speci�cation module provides for the de�nition and construction of

maps. A map is a relation that can be joined to another relation, the e�ect of

which is to transform input data according to the speci�c requirements of the users'

application. In particular, a map transforms categorical data to numeric values, as

required for plotting. This speci�cation module supports a declarative language,

which we provide further details of in Chapter 5.

The Visual Query module takes the arbitrary relation produced by Data Prepa-

ration and projects those columns suitable for a particular rendering. That is, any

visual output format chosen by the user requires a certain type of input, typically

two to four attributes, which are arranged by the Plot module into the appropriate

format. Details of this capability are provided in Section 4.2.

The Plot module takes as input the pre-image data and performs visualization

speci�c operations on the data. For example, certain normalizations may be per-

formed on the data in order to create a [0,1] range prior to rendering. The output

of the module is an array of objects to be visualized. The structure of each object

depends on the visual output format that was selected by the user.

The Image Display module renders the graphic image. The prototype implemen-

tation of this module utilizes the Java3D toolkit to render and manipulate the output.

4. Architecture 46

Each output style we support (scatterplot, histogram, surface, etc.) uses the normal-

ized values to determine placement of the graphic elements and the original values

for labeling and user drill-down features.

The Filter module supports the user's interaction with the visualization in three

ways. First, the user can specify a restriction on the input data, which results in a

subset of the data being visualized. Second, the user can drill down on portions of

the image display to see the details of the data at certain points of interest. Third,

the user can select regions of the display that can be given as input to the Data

Preparation module. The Data Preparation module can combine the �ltered data

with other data to show comparisons across datasets.

In the remainder of this chapter we will provide the details of the architecture. The

architecture suggest a natural linear order to the
ow of data. Certain modules may

pass the data through unchanged. In particular, the Data Preparation module will

simply pass the input directly to the output from the module when no transformations

are speci�ed. In addition, the prototype system may collapse certain functionalities

within the user interface so as to streamline the user's interaction.

4. Architecture 47

Extraction
Data

Database

Visual Query

Filtered Data

User Options

Data

User

Front End

Query
Specification

FilterMap
Specification

Image
Display

Plot

Map

Raw Data

Query Domain

Data
Preparation

Pre−Image

Rendering
Data

Filtered
Image

Unscaled
Data

Scaled

B

1

2 3

4

5

A

Figure 4.6: The architecture. Numbered points refer to speci�c data
ows.

4.2 From Data to Visualization

In this section we provide details of the
ow between the modules of the archi-

tecture. We will use the structure of the architecture in conjunction with examples

from the prototype implementation to illustrate the
ows. First, note Figure 4.6, in

which we have identi�ed several points within the architecture. The lettered points

refer to the data being visualized and the output generated by the architecture. The

numbered points refer to speci�c data
ows that we will describe here.

Point A in the diagram refers to the data stored in the database. For the purposes

4. Architecture 48

of exhibiting the features of the architecture we will use employee data, shown in Table

4.1.

Sex Age Salary YearsOfService
M 47 47058 25
M 34 44396 9
M 49 46014 22
F 46 31477 23
F 42 44396 15
� � � � � � � � � � � �

Table 4.1: A database of employee information

Typically, visualization systems focus on the mapping of the input data directly

to an output form, represented by point B in Figure 4.6. Our architecture interposes

several steps between points A and B. While the prototype system supports a va-

riety of output formats, we will illustrate the architecture with a simple bi-variate

scatterplot, comparing employee age to salary.

We begin with point 1 of the �gure - the query. The object being passed from the

Query Speci�cation module and the Data Extraction module is a relational query.

Underlying our prototype system is a relational database system that uses SQL as

the language for query speci�cation. The prototype system places no restriction on

the query. Of course, invalid queries will not execute, and the
ow ends in such cases.

The following query retrieves the employee relation.

select * from employee

4. Architecture 49

The Data Extraction module is straightforward, executing the query as is and

returning the results in the form of a relation instance. Using the query given above,

the returned instance is the entire table, shown in Table 4.1, and passes it to the

Data Preparation Module - point 2 in the �gure. This seemingly simple aspect of this

module provides tremendous
exibility. The query string itself, serves as a boundary

for other manipulations. For example, queries can be used as subqueries or joined to

other queries in a seamless fashion.

The age and salary attributes of the employee relation are already in numeric

form. For the bi-variate scatterplot display it is not necessary to perform any trans-

formations on the input instance. Consequently, the instance
ows through the Data

Preparation module unchanged - point 3 in the �gure.

Taking the pre-image relation instance and generating the visualization requires

a linkage between the input relation instance and the output form. In this case,

the linkage is visually depicted in Figure 4.7. Once the user has decided to produce

a 2D scatterplot, the schema fX; Y g is �xed. The Visual Query module performs

this function, taking as input the relation instance and selections given by the user.

Further details of the Visual Query module are given in Section 4.5.

The Visual Query module projects out the columns from the input instance. The

prototype system performs this operation by augmenting the original query, since

there were no transformations performed by the Data Preparation module. The

4. Architecture 50

Age Salary ...

Employee Table

Sch(Employee) = {Age, Salary, ...} Sch(Scatterplot) = {X, Y}

Salary

Age

Figure 4.7: Linking age,salary from the input relation to X,Y.

query generated by the system is:

select vis.age, vis.salary

from (select * from employee) as vis

The output of the Visual Query module is a relation instance, containing the

values from the original input data is shown in Table 4.2. In Figure 4.7 this is located

at point 4.

Age Salary
47 47058
34 44396
49 46014
46 31477
42 44396
� � � � � �

Table 4.2: Result given by the Visual Query module.

At this stage in the architecture, we scale the input data in the Plot module

4. Architecture 51

Figure 4.8: Visualizing employee age compared to salary.

and pass the scaled data to the Image Display module - point 5 in the �gure. The

scaling converts each data value to the range [0,1]. The scaled data is rendered by the

Image Display module and the bi-variate scatterplot is displayed. Figure 4.8 shows

the resulting visualization.

4.3 Data Preparation - Incorporating Aggregates

In the previous section, we illustrated the
ow of data through the architecture.

However, in that
ow, the data did not require any modi�cations to prepare it for

4. Architecture 52

User
Options

Map Join

Canned
Algorithms

Future
Extensions

Relation
Instance

Pre−ImageRaw Data

Instance
Relation

Map
Raw Data
Filtered

Aggregation2 3

A

Figure 4.9: The Data Preparation module - Aggregation submodule.

visualization. The data
owed through the Data Preparation module unchanged. In

this section we expand upon the Data Preparation module, illustrating the use of

aggregate functions.

Figure 4.9 shows a detailed view of the Data Preparation module. Point 2 refer-

ences the input to the module - a relation instance. Consider Table 4.1 as the source

data for a visualization. Previously, we displayed the age and salary values as points.

However, values duplicated in the data are not adequately represented in the display.

Graphically, we can vary the color intensity to represent higher frequencies of values

at a particular point.

4. Architecture 53

The architecture supports counting, as well as other aggregate functions, in the

Data Preparation module. In particular, the Aggregation sub-module, identi�ed as

point A in Figure 4.9, which takes the employee relation instance as input. Formally,

we de�ne an Aggregation:

De�nition 2 Given an input relation R = fA1; : : : ; Ang, an aggregation M is a

pair (R;L), where R is a relation and L is a set fL1; : : : ; Lpg. The elements of L

are de�ned to be Li = Aj, or Li = Agg(Aj), where Aj 2 R and Agg is one of the

standard SQL aggregate functions (e.g. count; sum; etc.) 2

Note that the �rst element of an Aggregation is an relation. In the context of

this architecture, the Data Extraction module provides the relation R, allowing for

aggregations to be de�ned in a very abstract manner, thereby freeing the user from

the speci�c details of how an aggregation is performed. In particular, the form of the

query easily incorporates the inclusion of database supported aggregate functions,

such as COUNT, SUM, AVG, MIN and MAX.

This formalism is su�cient to support extraction of data for many visualization

techniques. Constructing an SQL query given an aggregation is straightforward.

Without loss of generality, assume L is ordered such that there is a k for which i � k

implies Li is of the �rst form and i > k implies Li is of the second. The SQL query

that is constructed is described by the following pseudo-query:

4. Architecture 54

Select L1; : : : ; Lp

From R

Group By L1; : : : ; Lk

Importantly, an aggregation de�nes a relation with schema fL1; : : : ; Lpg. Like-

wise, an instance of M is a relation instance m. For example, to calculate the fre-

quency of employees for each age, salary pair is given by the following query that is

generated by the Aggregation module:

select vis.age, vis.salary, count(*)

from (select * from employee) as vis

group by vis.age, vis.salary

The output of the query is output from the Data Preparation module, identi�ed

as point 2 in Figure 4.9. The result from the previous query is shown in Figure 4.10,

in which we have linked the frequency value to a simple coloring scheme. In this case,

the color scheme denotes an ordering of the frequency: red > yellow > green > blue.

4.4 Data Preparation - Map Join

In the previous section we described how the Data Preparation module supports

the incorporation of aggregate functions in a seamless fashion. In contrast, this section

4. Architecture 55

Figure 4.10: Visualizing employee age compared to salary - frequency of employees
at each point is indexed to a color scale.

4. Architecture 56

describes the Map Join submodule, in which externally de�ned transformations can

be applied to the input data.

Recognizing that most visualization techniques rely upon numeric input is the

�rst step in developing an e�ective architecture. From the data perspective, we need

to consider the following basic types of data:

nominal Sometimes called categorical, the data is often character-based. This type

of data does not have a natural (meaningful, independent of representation)

order or scale.

quantitative Numeric data. This type of data obeys an ordering relationship and

can be manipulated with arithmetic.

The di�erences between these data types is closely linked to visualization. At the

heart of the matter is the issue of interpreting visual representations of the underlying

data values. Of critical importance is the user's understanding of the correspondence

between the actual data and visual representation, which must be understood by the

user. It is this correspondence that provides the user with the capability to draw

conclusions from the visual representation.

We will illustrate the scope of the problem by using two-dimensional scatterplots

due to their straightforward interpretation. In particular, the concepts of order and

scale have a natural meaning for this type of display.

4. Architecture 57

We �rst consider properties related to the order of the underlying data values.

Each axis of the display represents the domain of possible values. For now, we are

ignoring limitations of the physical display, which may introduce scaling issues. With

regards to the order of values, there are only two possible orderings for the axes: 1)

ascending; or 2) descending. Because there are two axes, each axis could be ordered

independent of the other, which gives rise to four possible displays. We use the same

employee data from the previous section to illustrate these orderings in Figure 4.11.

Ultimately, it is up to the user to decide which of the possible orderings make

sense for their application. However, the most natural ordering is probable shown in

pane A of Figure 4.11. What makes this ordering natural is the interpretation that

higher salaries are above lower salaries and higher ages occur after lower ages.

The order of presentation implies that data values are di�erent from each other.

How di�erent on data value is than another data value is determined by the scale

of the data values. Using the same employee database, we can see that the distance

between points is related to the di�erence in the underlying values.

While quantitative data values, which have a natural order and scale can be

visualized easily, the same thing cannot be said for categorical or nominal values.

Problems may arise in the user's interpretation of the visual display based on the

4. Architecture 58

(A) Age Ascending, Salary Ascending (B) Age Ascending, Salary Descending

(C) Age Descending, Salary Ascending (D) Age Descending, Salary Descending

Figure 4.11: Possible orderings for two dimensional scatterplots.

4. Architecture 59

location of datapoints.

Maps

Rather than simply leave it up to the user to rely upon an ambiguous order or

scale, the architecture incorporates a mechanism for transforming the data prior to the

visualization of the data. This mechanism is embodied in the Map Join submodule of

the data preparation module and is accomplished via a user-controlled artifact called

a Map.

De�nition 3 A map is de�ned to be a relation S, and is applied to a relation R with

a relational join expression �. 2

Note that for any S and R, the expression S�R is also a relation. In the context of

the previous section, an aggregation extends to the pair ((S�R); L). This is a generic

de�nition, in that the contents of S and the description of � remains to be de�ned

by the user. The key element of this design is that the architecture supports this

construct.

Informally, a map can be used to de�ne the order and scale of the underlying data

being visualized. We will demonstrate the concept with the following simple example.

Example 1

4. Architecture 60

We will again use the same employee relation that was used in the previous section.

In this example, we will use the sex and salary attributes. The sex of each employee

is stored as a string in the database with values M or F. The relation in Table 4.3

will serve as the map SexMapRelation.

Sex SexMap
M 3
F 1

Table 4.3: A map for the employee sex attribute.

Note that each entry in the map explicitly de�nes an order for the attribute values.

The map is applied to the employee relation with the expression (SexMapRelation ./

Employee), which can then be used in the following aggregation:

M = ((SexMapRelation ./ Employee); fSexMap; Count(SexMap)g).

The visualization generated from this map join is shown in Figure 4.12.

This is obviously an extremely simple example. The choice of 3, rather than 2,

as the map value initially seems a little strange; but it illustrates the impact of the

scale in that it creates a gap between the two sexes. 2

The contents of the map control the order and the scale. Changes to the map

can then a�ect the output without changing the underlying data. The strength of

this approach is this
exibility. Multiple maps can be de�ned for the same data, each

providing di�erent organizations to the output.

4. Architecture 61

Figure 4.12: Visualizing the number of females (left) to males (right).

4. Architecture 62

Conceptually, any relation in the database can serve as a map. It is likely, however,

that users will probably have speci�c reasons for de�ning the maps. Since they are

physically stored as tables, there can be several techniques used to populate the maps.

Certainly, simple SQL insert statements su�ce for many applications. In Chapter 5,

we describe a query language for specifying the contents of maps.

4.5 Visual Queries

From a database perspective, visualization is closely linked with the concept of a

query. Recall from Chapter 3 the de�nition of a query. Given a relation R, a query

q(R) is a function that maps an input instance to an output instance. Within the

relational model, the closure property ensures that the output of a query is always

a relation. Visualizations, in contrast, are not relations, but are graphic artifacts.

Nevertheless, a similar statement can be made for visualizations by de�ning a Visual

Query. A Visual Query provides a mechanism for the user to select the attributes

from the input data that correspond to elements of the visual representation.

Let r be an instance of relation R (the pre-image data). De�ne Sch(Graphic) to

be the schema for a particular graphic. For example Sch(Scatterplot) = X; Y for two-

dimensional output in which each x; y represents the spatial coordinates for a point

in the display. A visual query vq(r) is a function mapping from R to Sch(Graphic).

4. Architecture 63

Note that this representation can be de�ned irrespective of the semantic content of

the data being displayed.

Each graphical display has its own prede�ned schema. As described by Card and

Mackinlay in [CM97], Chi in [Chi00], and Shneiderman in [Shn96] each element of

the display corresponds to a speci�c component of the data. In their taxonomy, they

identify a relatively small number of parameters necessary to capture a wide variety

of techniques. In general, these parameters can be distilled down to the following

types:

Marker The type of graphic object (e.g. point, line, etc.)

Position The location of the graphic object in 1D, 2D, or 3D space.

Shape The physical characteristics of the graphic object.

Size How large the graphic object is relative to the other objects.

Color The color of the object, including shading or transparency.

The prototype system supports a modest number of visualization techniques to

provide a proof of concept for the architecture. The following list provides a listing

of the techniques that we have implemented along with their associated schemas.

Figure 4.13 shows examples of these techniques generated by our system. Note that

4. Architecture 64

the graphical dimensionality (i.e. 1D, 2D, 3D) refers to presentation and not the

speci�c number of input variables.

Scatterplot 2D and 3D variations. The 2D schema choices are fX; Y g and fX; Y; Colorg.

The Color attribute is used to set the color or shade of the point being displayed.

The 3D schema choices are similarly de�ned: fX; Y; Zg and fX; Y; Z; Colorg.

Barchart 1D and 3D variations. The 1D schema is fX;Heightg or fX;Color;Heightg.

The 3D schema is fX; Y;Heightg or fX; Y; Color;Heightg.

Surface 2D and 3D variations. The 2D schema is fX; Y; Colorg. The 3D schema is

fX; Y; Color;Heightg.

Parallel Coordinates This is a specialized technique with schema fA1; : : : ; Ang.[ID87]

4.6 From Visualization to Data

The architecture is designed to remain integrated with a database system. Because

of the way that the data preparation module is architected, it is possible to access

the underlying data by reversing the previously described process. In this section we

outline the formalism necessary for accessing the original data.

4. Architecture 65

(A) 2D Scatterplot (B) Parallel Coordinates

(C) 1D Histogram (D) 3D Barchart

(E) 2D Surface (F) 3D Surface

Figure 4.13: Gallery of supported output styles.

4. Architecture 66

First, recall the de�nition of an aggregation M = (R;L), where R is the input

relation and L = fL1; : : : ; Li; Li+1; : : : ; Lpg. The set fL1; : : : ; Lig are attributes of

R, while fLi+1; : : : ; Lpg are the aggregate functions applied to attributes of R.

To work from the visualization back to the data, we assume that there is some

artifact of interest (i.e. point, bar, line, etc.) For instance, consider a point (x; y) of

a two dimensional scatterplot display. Let L1 = X and L2 = Y be the �elds chosen

from the output of the aggregation to be mapped to the schema of the scatterplot.

The following query performs the appropriate inverse mapping:

Select *

From R

Where L1 = x AND L2 = y

Note that the resulting inverse operation (drill-down) must only consider the Li

elements of the aggregation that are not aggregate functions. The technique can be

applied without actually generating the visualization. However, it makes most sense

to consider the technique in the context of a user interacting with the visualization

through the front end interface. In the next section we will provide details of the

system we have implemented based on our architecture, in which we will describe

two such applications of this ability to navigate from the visual output back to the

original data.

4. Architecture 67

4.7 Front End

The architecture incorporates a user interface that provides access to the com-

ponents that we have previously described. As a proof of concept, we developed a

system according to the architecture. In this section we provide an overview of this

system.

General Interaction Techniques

The primary component of the user interface is the Application Manager, which is

shown in Figure 4.14. The user creates an application through a visual programming

interface.

Figure 4.14: The application manager interface.

4. Architecture 68

The basic steps that the user takes is as follows:

1. Select a data source from a list of tables, queries, or �les.

2. Select a visualization tool - 1D, 2D, 3D, etc.

3. Connect the data source to the visualization by using the mouse.

4. Create the aggregation by selecting the attributes and aggregate functions -

identify the �elds from the input schema that correspond to the elements of the

visualization schema.

5. Select the visualization and view the output.

The previous list is a general description of how the user performs the activities

necessary to create a visualization. The system is designed to allow for the creation of

queries as a separate function, which can be used to shield the users from specifying

complex queries. In Figure 4.15 we show the steps that are described above.

The system is implemented in Java, using the Java 3D toolkit for rendering each

of the visualization styles. The user can manipulate the visualizations in the following

ways:

4. Architecture 69

(A) Select an input data source. (B) Select a visualization tool.

(C) Connect the data to the visualization tool. (D) De�ne aggregations.

(E) Select the attributes and de�ne aggregations. (F) Visualize the results.

Figure 4.15: Selecting and preparing data, and visualizing the results.

4. Architecture 70

Translation Moves the user's viewpoint vertically or horizontally on the display.

Rotation Moves the user's viewpoint around the display.

Zooming Moves the user's viewpoint closer to or further from the display.

These standard interactions can be useful for uncovering hidden details within

the visualization. Of course, these types of interactions are not speci�c to database

visualization. The next three that we describe in more detail are speci�cally related

to database visualization.

Details on Demand

The interaction techniques we described previously provide some form of dynamic

manipulation of the visualization. Note that in each case it is the user's state that

changes and not the state of the visualization. Shneiderman, in [Shn98], provides his

mantra for information visualization: \Overview �rst, then details on demand."

This concept is central to the di�erentiation between presentation graphics and in-

formation visualization. Presentation graphics are used to communicate information

according to a prede�ned model of the user's understanding of the data. Information

visualization and information visualization systems must provide methods that allow

the user to interrogate the graphic display.

4. Architecture 71

The architecture supports retrieval of details on demand, under the control of the

user. Logically, the visualization represents the underlying data, which implies that

for each graphical artifact there exists at least one tuple in the input that is used

to generate the artifact. The front end enables the user to select an element of the

display and retrieve the tuples from the database that are related to the selected

element. For example, in Figure 4.16 the user selects a point with the mouse and

views the underlying data.

Figure 4.16: Retrieving details on demand.

This technique is accomplished by inversing the aggregation, as described in an

earlier section of this chapter. Our approach is strengthened by maintaining the tight

integration with the database.

4. Architecture 72

Comparisons Across Visualizations

Beyond just retrieving details on demand, users are also interested in viewing a

dataset in many contexts. This is especially important for high-dimensional data,

since the number of possible representations exceeds the capacity of systems to easily

visualize. Techniques have been developed to deal with high-dimension data, includ-

ing [Fei92, BA86].

Our approach for dealing with this problem goes beyond the development of tech-

niques to deal with this type of data and is modeled after the concept of scatterplot

brushing [BC87]. The main idea behind brushing is that a user can view a dataset

under multiple projections. Then, using the mouse, the user can select points in one

display and have them highlighted in each of the projections.

To implement brushing for extremely large datasets may be infeasible. Instead,

we allow the user to select points in the display using the mouse, which mimics the

interaction achieved with brushing. Then, the user can choose to save the selected

points. At this stage, the system selects out the subset of the input data using the

techniques described in the previous subsection. The selected tuples are stored as

a new relation in the database and added to the application manager. After that,

the selected data can be shown in other visualization techniques, or can be used in a

combined visualization technique that we describe in the next subsection.

4. Architecture 73

Combining Visualizations

In addition to the previously described technique, the front end supports compar-

isons across datasets by providing a method for combining the visualizations. This

method extends beyond just a simple embedding of multiple charts. Instead, the sys-

tem allows the user to control the combination by specifying how the visualizations

are to be combined and scaled relative to each other. There are three supported

combination styles:

Overlay This style allows each visualization to occupy the same space. For example,

multiple scatterplots as shown in Figure 4.17.

O�set This style allows each visualization to occupy the same space, but o�set along

one of the axes. For example, multiple barcharts as shown in Figure 4.18.

Tile This style displays each visualization in a separate, but commonly manipulated

space. For example, multiple scatterplots for each possible attribute pairing as

shown in Figure 4.19.

The system allows the user to de�ne these combinations, and does not place any

restriction on the types of visualizations that can be combined.

When the visualizations are combined, however, the data being visualized may be

of di�ering scales. The system supports the user's control of scaling with the following

4. Architecture 74

Figure 4.17: Visualizations displayed in overlay format.

options:

Independent Visualizations are scaled independent of the other visualizations in

the display. Points at the minima and maxima represent a local condition.

Dependent Visualizations are scaled relative to the ranges of the totality of data

being visualized. Points at the minima and maxima represent a global condition.

4.8 Summary

In this chapter we provided details of an architecture supporting visualization

in a database environment. The key element of the architecture is the concept of

abstracting the preparation of data under the control of the user, which extends fully

4. Architecture 75

Figure 4.18: Visualizations displayed in o�set format.

to a database interface for retrieving, transforming and displaying the data in a visual

form.

We have provided examples from a system developed according to this architec-

ture. The system demonstrates a level of integration that is focused on leveraging

the strengths of relational database systems. By maintaining this linkage with the

database system, we have demonstrated the the user can gain access to information

stored in a database by interrogating the graphical display.

The formalism we have presented is consistent with traditional database theory

relative to query formulation. In particular the notion of a map application as an

aggregate query is a long studied technique in database systems. We described the

concept of mapping, which uses a map relation in the database to transform the

4. Architecture 76

Figure 4.19: Visualizations displayed in tile format.

data, adding both order and scale. In the next chapter we will focus exclusively on a

declarative approach we have developed for de�ning the contents of a map.

5

Mapping

In the previous chapter we outlined our architecture designed to support database

visualization. While we described the process of applying a map to input data, we

did not discuss speci�c ways in which the map could be constructed. In this chapter

we describe a query language designed to facilitate the transformations that may be

required in order to visualize certain datasets.

5.1 Introduction

In the context of our architecture, a map is a relation that is used to transform

input data into a form that is more useful for visualization purposes. The input data

to be mapped is represented by relation and is physically stored as a table in the

database. The contents of the map depend on the application, as speci�ed by the

77

5. Mapping 78

user. Note that the map controls how data appears in the visualization, but remains

separate from the data itself.

We break the mapping process into three stages: (1) speci�cation, (2) construc-

tion, (3) application. The �rst two stages occurring in the Map Speci�cation module

of the architecture and the third, which occurs in the Mapping module. For each

stage, the essential artifact being used is the Map, which de�nes the speci�c data

transformations that are required for the desired visualization. Before describing the

�rst two stages of the mapping process, we will motivate this concept by describing

how maps can be applied to facilitate visualization.

A map is used to add order and scale to the data that is desired to be visualized.

The mapping process is conceptualized in Figure 5.1. For example, the input data is

\mapped" to a point in the display based on the contents of the map. In this case, we

use a two-dimensional scatterplot only as a means to illustrate the mapping process.

The approach we present here are independent of any particular choice of graphical

display technique.

Formally, a map is a relation instance s over schema S. s is applied to data through

the use of a relational join operator. Our approach places no restriction on the type

of join being performed, allowing for the speci�c requirements of the visualization

problem to be satis�ed by a user speci�ed join.

To describe the concepts behind the mapping process we will use an example

5. Mapping 79

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

Map

Input Instance

Visualization

Figure 5.1: The mapping process.

based on the instance of the Customer relation shown in Figure 5.2. Note that the

schema of Customer contains a mixture of categorical and numeric attributes.

CustomerId State AnnualSales Employees
1 IN 1000 2500
7 IL 2000 1150
5 CA 500 6000
75 FL 6500 579
...

...
...

...

Figure 5.2: An example Customer relation.

The visualization we are interested in viewing is a two-dimensional scatterplot of

annual sales compared to geographic region. The sales amount is a numeric value

that maps naturally to our display. However, the geographic region must be derived

from the state attribute. To accomplish this, consider the map shown in Figure 5.3,

which we will refer to as StateMap.

5. Mapping 80

State StateOrder
AK 1
HI 1
CA 2
OR 2
WA 2
...

...

Figure 5.3: A map that orders states from West to East.

In this example, the map associates with each state a natural number, which adds

both order and scale to the categorical value of the state. The application process

combines the map with the Customer relation by using a natural join. In SQL this

map is applied to the original data with the following query:

Select Customer.*, StateMap.StateOrder

From Customer, StateMap

Where Customer.State = StateMap.State

In order to generate the desired visualization we execute the following aggregate

query, which extracts the "mapped" state value and the annual sales for each cus-

tomer. The resulting visualization is shown in Figure 5.4. The color for each point is

derived from the Frequency attribute of the aggregate query.

Select vis.StateOrder, vis.AnnualSales, count(*) as Frequency

From (Select Customer.*, StateMap.StateOrder

5. Mapping 81

Figure 5.4: An example visualization using the mapped value.

From Customer, StateMap

Where Customer.State = StateMap.State) vis

Group By vis.StateOrder, vis.AnnualSales

This approach to mapping provides
exibility in a number of ways. First, changes

to the visualization can be e�ected by simply changing the map, and not the base

data. Second, multiple maps can be de�ned for the same data, allowing for reuse of

data in multiple contexts.

There are many ways that a map may be constructed. For example, simple SQL

5. Mapping 82

insert statements are su�cient to populate the map used previously. The following,

partial sequence of SQL insert statements creates StateMap.

Insert Into StateMap Values ('AK', 1)

Insert Into StateMap Values ('HI', 1)

Insert Into StateMap Values ('CA', 2)

. . .

While construction of the map can be accomplished with SQL statements, it is

important to note that a user's pro�ciency with the formulation of queries serves

as an e�ective upper-bound on the complexity of problems that can be addressed

using this technique. To address this issue, we propose a declarative approach for

specifying maps that shields the user from the SQL syntax. The remainder of this

chapter focuses on the mapping language.

5.2 The Mapping Language

In this section we de�ne the formal syntax and semantics of the mapping language

- MQL. MQL is based on Datalog, which is a logic-based language that we described

in Chapter 3.

We begin the formal description of the mapping language with the de�nition of

an expression:

5. Mapping 83

De�nition 4 An expression E is de�ned inductively as follows:

1. A variable V is an expression.

2. A constant c is an expression.

3. If E is an expression, (E) is an expression.

4. If E1; : : : ; En is an expression, then f(E1; : : : ; En) is an expression, where f is

an n-ary, supported function.

5. If E1 and E2 are expressions, then E1�E2 is an expression, where � is a math-

ematical operator (+;�; �; =)

We refer to variables within an expression as V ar(E). We de�ne a valuation of

an expression E as follows:

De�nition 5 Let E be an expression with variables V ar(E) = fV1; : : : ; Vkg and

C = fc1; : : : ; ckg be an assigment of values to the variables in E, where the assignment

is Vi = ci. We de�ne E(C) to be the valuation of E by evaluating the expression with

respect to the assignment given in C.

De�nition 6 A boolean condition B is de�ned inductively (using expressions) as

follows:

5. Mapping 84

1. If E1 and E2 are expressions, then E1�E2 is a condition, where � is a boolean

comparator (=; <;�, etc.)

2. If B1 and B2 are conditions, then B1 AND B2, B1 OR B2 are conditions.

3. If B is a condition, NOT B is a condition.

4. If B is a condition, (B) is a condition.

Let B be a boolean condition and Expr(B) = fE1; : : : ; Ekg be the expressions

contained in B. The variables in B are V ar(B) = [E2Expr(B)V ar(E). We de�ne a

valuation of an boolean condition B as follows:

De�nition 7 Let B be an condition with variables V ar(B) = fV1; : : : ; Vkg and C =

fc1; : : : ; ckg be an assigment of values to the variables in B, where the assignment is

Vi = ci. We de�ne B(C) to be the valuation of B by �rst evaluating each expression

according to De�nition 5 and then directly evaluating B according to standard logical

operations.

In form, the mapping language is constructed from rules. Recall from Chapter 3

the de�nition of a Datalog rule:

Ans(u) R1(u1); : : : ; Rn(un)

The expression on the left hand side is called the head of the rule, while the

expression to the right is called the body. A Datalog rule has the following, informal

5. Mapping 85

interpretation. If there exists a valuation of the body of the rule that is true, then

the head of the rule is inferred to be true. Relations in the head of a rule are

called intensional relations. Relations in the body are called extensional relations. A

Datalog program is a set of rules. In general, there is no restriction to the number of

intensional or extensional relations in a program. Our approach places the following

restrictions on the language:

1. Only one extensional relation is allowed in a program.

2. Only one intensional relation is allowed in a program.

3. Functions are allowed in both the head and body of a rule.

4. A limited form of negation is allowed in the body of a rule.

5. Recursion is not allowed.

Let be a boolean condition with the following restrictions:

Variables V ar() � R.

Constants Values taken from dom.

Let � be an arithmetic expression with the same restrictions as . It is important

to note that all variables are bound to R. We extend the basic construct of a datalog

rule to be of the following form:

5. Mapping 86

Ans(u1; �) R1(u1) ^

Furthermore, the schema of the intensional relation has the following de�nition.

Let P be a program, and R be the extensional relation in P . Let S be the intensional

relation in P , with schema R [�. We call � the target of the map.

Functions in rules are restricted to be only those functions that are computable, in

the same spirit as a function contained in an SQL query. For example, mathematical

functions A+7, F loor(A=3), etc. are supported, where A is an attribute with domain

N . Note that for identity, we simply use the attribute name.

An � in the head of a rule is an expression using the same basic constructs and

functions as allowed in the body. Each � in a program must be the same type.

Before proceeding with a description of interpretations of mapping programs we

can make the following observation. The schema of the intensional relation is the

extensional relation schema, augmented with a new attribute �. Since the variables

in a rule are bound to R we arrive at a more concise syntax for rules:

De�nition 8 A map rule is a rule of the form � , where � is an expression

(De�nition 4) and is a boolean condition (De�nition 6).

This provides a bene�t from the standpoint that map programs can be de�ned

independent of a speci�c extensional relation. This allows programs to be de�ned

once and executed in multiple contexts, as required by the user's speci�c application

5. Mapping 87

requirements. We will now make this statement more precise:

De�nition 9 A map program P is a list of map rules hp1; : : : ; pki, where each pi is

�i i and each �i is of the same datatype.

The set of variables contained in P is called the schema of P , de�ned as:

Sch(P) = [ki=1(V ar(�i) [V ar(i))

The valuation of the body of a rule has the following de�nition:

De�nition 10 Given a tuple t and expression , we de�ne (t) to be the value of

the expression after substituting values taken from the tuple t.

Likewise, the valuation of the head of a rule is de�ned:

De�nition 11 Given a tuple t and expression �, we de�ne �(t) to be the value of

the expression � after substituting values taken from the tuple t.

We support two di�erent interpretations of map programs - relational, or func-

tional. We �rst de�ne the relational interpretation:

De�nition 12 Let s be an instance of relation S and P = hp1; : : : ; pki be a map

program. De�ne IR(P; s) to signify the relational interpretation of P given input

instance s. The semantics of IR(P; s) is:

5. Mapping 88

fht; �i(t)i : t 2 s ^ 1 � i � k ^ i(t)g

In other words, the relational interpretation generates output for every program

rule whose body evaluates to true. The following de�nition of the functional inter-

pretation relies upon the order of the rules:

De�nition 13 Let s be an instance of relation S and P = hp1; : : : ; pki be a map

program. De�ne IF(P; s) to signify the functional interpretation of P given input

instance s. The semantics of IF(P; s) is:

fht; �i(t)i : t 2 s ^ 1 � i � k ^ i(t) ^ (8j)[1 � j < i) : j(t)]g

The following inclusion theorem follows from the provided semantics:

Theorem 1 Given any program P and input instance s, IF(P; s) � IR(P; s). 2

Given these di�erent semantics for a map program P , we can consider programs

as queries. However, we need to be careful that the programs are consistent schema-

wise with the input relation. P is consistent with S if Sch(P) � S, otherwise it is

inconsistent. If P is inconsistent, then both IR(P; s) and IF(P; s) are the empty set

by de�nition.

Consistency in no way guarantees IR(P; s) or IF(P; s) is not the empty set, as

shown by the following trivial example.

Example 2

5. Mapping 89

Let S = fAg be an extensional relation and P be a map program with the following

rule:

A A > A

Clearly, the rule is syntactically correct, and IR(P; s) is consistent. However, there

can be no valuation of the body of the rule that is true, and IR(P; s) = ;.

The following example shows a map program that maps the example Customer

relation based on the geographic position of the state. A similar construction using

SQL insert statements was shown previously.

Example 3

1 State = 'AK' OR State = 'HI'

2 State = 'CA' OR State = 'OR' OR State = 'WA'

:::

Implementation

The mapping language that we described in the previous subsection has a syntax

very much like Datalog. In this subsection we provide the a description of algorithms

that implement the language.

Informally, a relational interpretation can be thought of in the same sense as

normal Datalog. We will describe the functional implementation after we have fully

5. Mapping 90

described the relational implementation.

Given a map program P = hp1; : : : ; pki and an input relation instance s, de�ne

pi(t) to be the result of evaluating rule pi on tuple t 2 r. In particular, let pi(t) =

fht; �i(t)ig where �i(t) is the value derived from the � expression in the head of rule

pi, provided that i(t) is true, pi(t) = ; otherwise. We can think of ht; �ii in the

following terms. If jRj = n, t is a tuple of arity n, and ht; �i(t)i is a tuple of arity

n+ 1.

Under the relational interpretation, a naive implementation can be accomplished

by breaking P into k distinct programs, each program Pi having a single rule corre-

sponding to each pi 2 P . It is easy to see that the following will calculate IR(P; s):

IR(P; s) = [
k
i=1fpi(t)jt 2 sg

Since the language is restricted to support only total functions, with input either

constants or variables bound to input instances, we can preprocess the input and

replace each function with its calculated value. We make this statement more precise

with the following de�nition:

De�nition 14 Let P be a program and S be a relation, such that Sch(P) � S. We

de�ne P FF to be a function-free program, created by using the following transforma-

tion.

5. Mapping 91

We assume that each function contained in P has input that is either a constant,

or an attribute of S. Let F = ff1; : : : ; f`g be the functions occurring in P . Replace

each occurrence of fi in P with a new variable Afi 62 S. 2

Note that the transformation process from P to P FF results in a program that is

inconsistent with S. That is, IR(P
FF ; s) = ;, since Sch(P FF) 6� S. We de�ne the

following transformation of S:

De�nition 15 Let P be a program, S be a relation, and P FF be a function-free pro-

gram transformed according to the previous de�nition. De�ne SP
FF

to be transformed

from S in the following way.

Create SP
FF

by augmenting the schema of S with the new attributes generated by

the function-free transformation procedure. In particular, let fAf1; : : : ; Af`g be these

attributes. A valuation for each fi is determined by substituting values from a tuple

t 2 s. Create sP
FF

by evaluating each fi and creating a new tuple t0, augmented with

the function evaluations. 2

With these two transformations the following lemma is given:

Lemma 1 For every MQL program P and input instance s, when P FF and instance

sP
FF

are created from P and s using the procedures given in De�nitions 14 and 15,

then IR(P; s) = �S;�(IR(P
FF ; sP

FF

)) .

5. Mapping 92

Proof: This follows immediately from the de�nition of the transformations. 2

The lemma allows us to eliminate any concerns related to the introduction of

functions in the language. The following example demonstrates an application of

Lemma 1.

Example 4

Let S = fA1; A2g with instance s as follows:

A1 A2

1 1

2 -2

3 2

Let P be the following program:

ABS(A2) A1 < (A2 � 1)

In this example F = fABS(A2); (A2 � 1)g, where ABS is the absolute value

function. We create a new relation SP
FF

= fA1; A2; A3; A4g. We apply the function

to each tuple in s and populate sP
FF

:

A1 A2 A3 A4

1 1 1 0

2 -2 2 -3

3 2 2 1

5. Mapping 93

According to the transformation procedure, P FF is the following program:

A3 A2 < A4

Using this construction, we claim IR(P; s) = �S;�(IR(P
PFF

; sP
FF

)). Clearly, if

P does not contain any functions, P = P FF and s = sP
FF

. In this case, however,

IR(P; s) is:

A1 A2 �

2 -2 2

and IR(P
FF ; sP

FF

) is:

A1 A2 A3 A4 �

2 -2 2 1 2

We immediately see that IR(P; s) = �A1;A2;�(IR(P
FF ; sP

FF

)) and the construction

holds. 2

Since MQL does not allow recursion, it is useful to describe the expressive power

of the language by considering a language of equivalent power. First, we provide an

equivalence between MQL (under the relational interpretation) and relational algebra

(RA). While RA does not contain functions, it is clear that the functions contained

in rules of an MQL program do not add to the expressive power of the language.

Consequently, any function in MQL could be straightforwardly implemented in the

RA language.

5. Mapping 94

Theorem 2 For every function-free MQL program P , there exists an equivalent RA

expression.

Proof: We need to show that a map program P can be rewritten into an equivalent

RA expression. The rewriting strategy is as follows. We assume an input relation

R = fA1; : : : ; Ang and a map program P = hp1; : : : pki. For each pi 2 P construct

an RA expression Ei: �A1;::: ;An;�i(� i(R)). The complete RA expression E is simply

E1 [: : : [Ek. 2

It is important to note that the equivalence between MQL and RA does not involve

set minus.

A simple analysis of the RA approach yields a time complexity of O(kjrj) where k

is the number of rules in P . Note that this assumes a standard approach for database

optimizers, in which each query is computed independently, and the results merged.

Note that, while each MQL program has an equivalent RA query, the reverse is

not the case. For example, MQL programs cannot represent negative information.

Note that the \tuple at a time" semantics of MQL disallows set di�erence.

Theorem 3 MQL programs are monotonic.

Proof: This result follows immediately from the proof of Theorem 2 and the fact

that the construction of sP
FF

in Lemma 1 is monotonic. 2

5. Mapping 95

Input :
MQL Program P
Input Instance r

Output :
Output Instances

MQLAlgorithm ::
s := ;;
For Each t 2 r do
For Each pi 2 P do
s := s [pi(t);
od
od
return s;

Figure 5.5: Algorithm to compute IR(P; s).

Even though we can construct an RA expression equivalent to any MQL program,

a more e�cient implementation can be accomplished by processing the input in a

\tuple at a time" fashion. The improved algorithm for computing IR(P; s) is shown

in Figure 5.5.

There are a number of comments to make about the algorithm. First, the order

of the rules does not a�ect the outcome. Second, computing pi(t) is accomplished

deterministically by �rst replacing each variable in i with the attribute values in t,

then checking whether the expression evaluates to "true". If i is true, compute the

�i(t) value and create the tuple ht; �i(t)i.

In contrast with the RA approach, this algorithm is more e�cient. In particular,

the complexity of the algorithm is O(jrj), an improvement by a factor of k, because it

5. Mapping 96

reads each tuple from the input only once, while the RA approach incurs the cost of

reading the tuple k times - once for each rule. This is another important reason for

considering MQL as a viable language, since in practice k may be signi�cantly large.

Implementing the Functional Interpretation

The main di�erence introduced by the functional interpretation is in how the rules

are evaluated. A functional interpretation, as the name implies, maps input tuples

to at most one output tuple. In order to accomplish this, we must control the order

of evaluation for the rules. This order is provided by the user.

This concept of a user de�ned ordering of the rules was �rst introduced by Imielin-

ski and Naqvi in [IN88], in which they present a rule algebra. Their algebra is simple

and elegant, allowing the users to explicitly specify how rules are to be processed.

Let P = hp1; : : : ; pki be an MQL program. We will describe the operators of the

rule algebra with this program. The operators in the rule algebra are [; � and �, with

the following de�nitions.

Parallel Execution pi [pj { compute each term separately and union the result.

Consecutive Execution pi � pj { compute pi and then compute pj.

Iterative Execution (pi)
� { compute pi until a �xpoint is reached.

5. Mapping 97

Note that the rule algebra allows the composition of statements like a regular

expression. The rule algebra provides a �ne grained level of control for the user.

For example, the following statement de�nes the normal in
ationary semantics for

datalog programs:

(p1 [: : : [pk)�

An expression in the rule algebra that is equivalent to our previously described

relational interpretation would be:

p1 [: : : [pk

Since we restrict MQL programs to not have recursive structure, the following

consecutive expression also a relational interpretation:

p1 � : : : � pk

For functional interpretations we introduce an exclusive-consecutive operator, �.

The � operator is described as follows. If pi and pj are rules in an MQL program,

then pi � pj means to execute pj only if pi fails.

Specifying P as a list of rules provides the order of execution for an MQL program

to be interpreted functionally. The following describes an implementation for the

functional interpretation:

IF(P; s) = [
k
i=1fpi(t)jt 2 s ^ (8j)[1 � j < i =) pj(t) = ;]g

5. Mapping 98

Input :
MQL Program P
Input Instance r
Interpretation MapType

Output :
Output Instances

MQLAlgorithm ::
s := ;;
For Each t 2 r do
For Each pi 2 P in order do
If MapType == Functional
If pi(t) 6= ;
s := s [pi(t);
Break;
Fi
Fi
If MapType == Relational
s := s [pi(t);
Fi
od
od
return s;

Figure 5.6: Algorithm to compute IF(P; r) or IR(P; r).

Using the order of the rules, the algorithm presented in Figure 5.6 computes the

functional interpretation of an MQL program. We extend the algorithm with a
ag

to support either interpretation. It is evident that, with proper setting of MapType,

this program faithfully implements IR or IF as de�ned previously.

5. Mapping 99

5.3 Program Transformations

In this section we introduce an alternative method for implementing functional

interpretations of MQL programs based on performing a program transformation.

De�nition 16 Given a program P , de�ne P � be the original program transformed

according to the following procedure:

For each pi 2 P append the statement ^:(i) to every succeeding pj in the ordered

list of rules in P . This yields a program P � of the form:

�1 1

�2 2 ^ :(1)

� � �

�k k ^ :(1) ^ : : : ^ :(k�1)

Figure 5.7 shows the context of this transformation. The black dots indicate the

results of applying the transformation to one arbitrary instance. Of particular interest

are the identities and containment between the results.

While the functional interpretation appears di�erent than the relational interpre-

tation, the following theorem shows that every program that is intended to be in-

terpreted functionally can be transformed into an equivalent relationally interpreted

program.

Theorem 4 IF(P; s) = IR(P
� ; s)

5. Mapping 100

RI

P
τ

Pτ

I IRF
I F

Figure 5.7: Context of the program transformation process.

Proof: Let P be an MQL program. Assume t 2 IF(P; s). If t 2 IF(P; s), then there

must be a pi 2 P and a tuple u 2 s, such that pi(u) = t. Let pi and pj be two di�erent

rules in P , such that i < j. Since P is evaluated functionally, pj(u) 62 IF(P; s) by

de�nition.

Create program P � according to the rewriting procedure given in De�nition 16.

Let the transformed rules of P � be denoted by fq1; : : : ; qkg. It is clear that qi(u) 2

IR(P
� ; s), assuming that pi occurs before pj. Obviously, qj(u) 62 IR(P

� ; s), since qj is

of the form �j j ^ :(i). If both qi(u) and qj(u) are in IR(P � ; s) then we have

the contradiction i ^ :(i) and the construction holds. 2

Using the transformation process and the interpretation de�nitions, it is easily

seen that IR(P
� ; s) = IF(P

� ; s)

5. Mapping 101

5.4 Extending MQL

In this subsection we describe two additional features of MQL that we support.

The �rst feature allows for tuples to be excluded from further processing. The second

allows for special handling if every rule fails for a tuple.

Tuples may be excluded from further processing by introducing a rule of the

following form:

Except

The semantics of such a rule, in the context of a relational interpretation is:

IR(P; s) =

fht; �i(t)i : t 2 s ^ 1 � i � k ^ �i 6= Except ^ i(t)

^(8j)[1 � j < i) :(�j = Except ^ j(t))]g

Similarly, the functional interpretation is:

IF(P; s) =

fht; �i(t)i : t 2 s ^ 1 � i � k ^ �i 6= Except ^ i(t)

^(8j)[1 � j < i) : j(t)]g

The following transformation procedure is used to create Except-Free programs.

De�nition 17 Given a program P , de�ne PXF to be the original program trans-

formed according to the following procedure:

First, perform the transformation given in De�nition 16. Note that this initial step

5. Mapping 102

ignores the heads of rules and simply propagates negated bodies to later rules. Second,

simply remove all rules of the form Except from the transformed program. 2

The following example demonstrates the use of this transformation:

Example 5

Let P be the following program:

Except State =0 IL0

6 State = 'IN' OR Employees > 1000

The transformed program, PXF is shown below:

6 (State = 'IN' OR Employees > 1000) AND NOT (State = 'IL') 2

It is important to note that this transformation is de�ned on programs, not in-

terpretations. The following lemma follows immediately from the de�nition of the

transformation:

Lemma 2 Given programs P and PXF , where PXF is created from P according to

De�nition 17, then:

IF(P; s) = IF(P
XF ; s), and

IR(P; s) = IR(P
XF ; s) 2

It is important to note that this transformation process holds true for relational

5. Mapping 103

interpretations only in the case that the Except rules precede all other rules. Never-

theless, it is clear that the Except rules remain as a simple syntactic extension of the

language and do not express queries that cannot be stated by rewriting the rules.

The second extension we describe is the allowance of a single rule of the form

� Else in MQL programs. The meaning of such a rule is straightforward: if every

rule preceding an Else rule fails, evaluate the head of the Else rule and place the

result in the output.

Again, we provide a de�ned program transformation to create Else-Free programs.

De�nition 18 Given a program P , de�ne PEF to be the original program trans-

formed according to the following procedure:

We restrict MQL programs to having a single Else rule - let pElse 2 P be the sole

Else rule. First, for every non-Except, non-Else rule pi that precedes pElse, replace

the body of pElse with the expression :(i) ^ : : : ^ :(Else�1). The Else rule pElse is

now of the form �Else ^:(i) ^ : : : ^ :(n). Lastly, perform the transformation

given in De�nition 17 to make the transformed program Except-Free. 2

The following example demonstrates the transformation procedure:

Example 6

Let P be the following MQL program:

5. Mapping 104

Except State = 'IL'

6 State = 'IN' OR Employees > 1000

7 Else

The program �rst excludes companies from Illiois, then maps companies from

Indiana or companies having more than 1000 employees to the value 6. All other

companies are mapped to the value 7. The transformed program, PEF is shown

below:

6 State = 'IN' OR Employees > 1000 AND NOT (State = 'IN')

7 NOT (State = 'IN' OR Employees > 1000) AND NOT (State = 'IN')

2

Similar to the Except rules, Else rules are syntactic sugar and do not extend the

power of the language. We simply state the following lemma, which follows from the

de�ned transformation.

Lemma 3 Given programs P and PEF , where PEF is created from P according to

De�nition 18, then:

IF(P; s) = IF(P
EF ; s), and

IR(P; s) = IR(P
EF ; s) 2

Lastly, we provide a complete algorithm for computing MQL queries, incorporat-

ing both Except and Else rules, as shown in Figure 5.8.

5. Mapping 105

Input :
MQL Program P
Input Instance r
Interpretation MapType

Output :
Output Instances

MQLAlgorithm ::
s := ;;
For Each t 2 r do
RuleSucceeded := false;
For Each pi 2 P in order do
If MapType == Functional
If pi(t) 6= ;
If pi(t) is not an Except rule
s := s [pi(t);
Fi
RuleSucceeded := true;
Break;
Fi
Fi
If MapType == Relational
If piisanExceptrule
If the body of pievaluatestotrue
RuleSucceeded := true;
break;
Fi
Fi
s := s [pi(t);
RuleSucceeded := true; Fi

od
If RuleSucceeded == false
s := s [pElse(t);
Fi
od
return s;

Figure 5.8: Algorithm to compute the output of an MQLRelational or MQLFunctional

program, incorporating Ecept and Else rules.

5. Mapping 106

5.5 MQL Grammar

Figure 5.9 shows the BNF grammar for the implemented mapping language.

5.6 Mapping Example

In this Section we provide a description of the prototype system's implementation

of the mapping process. Using the application manager interface, a user adds various

objects to the desktop. In order to give a
avor for the process that a user employs,

we provide a series of screen captures for a simple application. In the left pane of

Figure 5.10, the user right-clicks with the mouse on the desktop and a popup menu

is displayed. The menu provides access to the various objects that can be placed on

the desktop. The right pane shows a list of available input data sources, in the form

of user-de�ned queries.

The example data we are using is unemployment data, downloaded from the U.S.

Department of Commerce. The data is comprised of (Y ear;Month; Rate) triples

for years 1948-2001. The data is already numeric, but we will still apply a map to

the month �eld in order to demonstrate the process. In particular, we will map the

months of the year to quarters, using the following rules:

1 <- month <= 3

5. Mapping 107

<MAP PROGRAM> ::= <RULE> [<Line Feed> <RULE>]*
<RULE> ::= <HEAD> \<-" <BODY>
<HEAD> ::= <EXPRESSION>

j \Exclude"
<BODY> ::= <BOOLEAN EXPR>

j \Else"
j Null

<BOOLEAN EXPR> ::= <CONDITIONAL EXPR>
[<BOOLEAN OPERATOR>
<CONDITIONAL EXPR>]*

j [\NOT"] \(" <BOOLEAN EXPR>
[<BOOLEAN OPERATOR>
<BOOLEAN EXPR>]* \)"

<BOOLEAN OPERATOR> ::= \AND" j \OR"
<CONDITIONAL EXPR> ::= <STATEMENT> [<RELATION>

<STATEMENT>]
<STATEMENT> ::= [\NOT"] <EXPRESSION>
<RELATION> ::= \<" j \<=" j \>" j \>=" j \=" j \!="
<EXPRESSION> ::= <EXPRESSION> [<OPERATOR>

<EXPRESSION>]*
j \(" <EXPRESSION> \)"
j <FUNCTION>
j <ELEMENT>

<OPERATOR> ::= \+" j \-" j *" j \/" j \̂'' j \&" j \#" j \j"
<FUNCTION> ::= \ABS(" <EXPRESSION> \)"

j \FLOOR(" <EXPRESSION> \)"
j \CEIL(" <EXPRESSION> \)"
j \SQRT(" <EXPRESSION> \)"
j \GRAYCODE(" <EXPRESSION> [\,"

<EXPRESSION>]* \)"
j \LENGTH(" <EXPRESSION> \)"
j \SUBSTRING(" <EXPRESSION> \,"

<EXPRESSION> \," <EXPRESSION> \)"
<ELEMENT> ::= <VARIABLE>

j <CONSTANT>
j \(" <EXPRESSION> \)"

<VARIABLE> ::= Ai 2 R
<CONSTANT> ::= number

j \string"

Figure 5.9: Grammar for the mapping language

5. Mapping 108

Figure 5.10: The user right-clicks with their mouse to see a menu of available applica-
tion objects. Selecting "Add Query", the user is presented a list of available queries
that can be visualized.

2 <- month <= 6

3 <- month <= 9

4 <- Else

Using the same process as before, the user adds the map to the desktop. Then,

as shown in Figure 5.11, the user right clicks on the query object and selects the

"Connect" option. Then, the user moves the mouse over the map object and clicks

the mouse button. Feedback is provided to the user during this process by coloring the

connecting line from the query to the map. If two application objects are connectable,

the color of the line is green, otherwise it is red and the user cannot connect the

objects. When the objects are connected the server component applies the map the

input data. The right pane of the �gure shows the result of the operation, in which

5. Mapping 109

Figure 5.11: The user user the mouse to connect an input data source to a map. After
the map has been applied to the input data, a new object is automatically added to
the desktop.

a new object is added to the desktop that represents the input data transformed

according to the map.

With the map applied to the data we can plot the data using similar steps. In

Figure 5.12 the user adds a plotting object to the application, in this case a 3D plot.

After connecting an input data source to the 3D plot object, the user is presented

with display options based on the input data and the plot object. The user can select

any of the input attributes as the data being visualized. In addition, the user can

select how the data is to be displayed. For example, the user can choose to display

the data as spheres in the 3D space. The user has control over the color of objects,

which can be based on an attribute of the input data, or a derived value such as

frequency.

5. Mapping 110

Figure 5.12: The user adds a plotting object to the desktop and connects the mapped
data to the plotting object. The user is then presented with options based on the
input data and the type of plot.

With the data connected to the plot object and the appropriate options selected,

the user can view the resulting visualization by right-clicking on the plot object and

selecting "View". Figure 5.13 shows the unemployment data in using a 3D scatterplot

display. The original, unmapped data is shown in the right pane of the �gure.

5.7 Summary

This chapter introduced the mapping language MQL, which we employ in the

architecture. The language allows users to add both order and scale to data. Func-

tionally, the language is equivalent to the monotonic relational algebra, although the

implementation of the language is more e�cient, with all programs executable in

5. Mapping 111

Figure 5.13: The left pane shows the mapped unemployment data within a 3D scat-
terplot. The right pane shows the original data in its unmapped form.

linear time with respect to the size of the input.

While the language is limited by design, it can be used to express quite complicated

expressions. We provide two interpretation techniques - functional and relational.

We proved that the functional interpretation was less powerful than the relational

interpretation. Lastly we showed how the user interacts with the map programs with

the system prototype.

6

Usability Results

This chapter provides results from a usability experiment comparing the mapping

language introduced in Chapter 5 to SQL. The research experiment focuses on a spe-

ci�c type of query task, namely classi�cation queries. Classi�cation is the process of

assigning input data to discrete classes according to application speci�c criteria. This

mapping language is well suited for this type of task. In particular, for visualization

purposes, we seek to discover whether the mapping language o�ers any advantages

over SQL for transforming the data. The usability experiment measures the e�ec-

tiveness, e�ciency and satisfaction of novice and expert users performing a variety of

classi�cation tasks.

112

6. Usability Results 113

6.1 Introduction

Classi�cation is the process of assigning input data to discrete classes according

to application speci�c criteria. Simple examples abound for this type of task. For

example, employees in an employee database may be classi�ed according to their

salary into \High", \Medium" and \Low" classes.

In this research we consider classi�cations that are expressed by the user in two

ways. First, a classi�cation is �xed if the class values are explicitly assigned accord-

ing to a pre-de�ned scheme. For �xed classi�cations, the class values are known in

advance of the actual classi�cation task. The de�nition can be stated in the form of

a series of If .. Then statements. For example, consider the following sentences that

de�ne the employee salary classi�cation:

1. If an employee's salary is less than $30,000 then assign the employee to the

\low" salary class.

2. If an employee's salary is between $30,000 and $60,000 then assign the employee

to the \medium" salary class.

3. If an employee's salary is more than $60,000 then assign the employee to the

\high" salary class.

6. Usability Results 114

A classi�cation is derivable if the class values are assigned according to a cal-

culation. In other words, the class values are not known prior to classifying the

input data. For example, we can assign employees to classes using the statement

SalaryClass = floor(Salary=1000), which e�ectively "bins" employees into salary

ranges.

This research considers schemes that may be either de�nable or derivable to the

extent that a user can describe the classi�cation in some declarable form. We do

not consider algorithmic techniques encountered in data mining, such as automatic

cluster detection or discretization, which are described in [HK01, HMS01].

In this research we have presented a declarative language (MQL) that supports

both de�nable and derivable classi�cations. The language has a syntax that succinctly

describes the classi�cations according to a set of rules. We compare our approach with

an Structured Query Language (SQL) approach in a controlled usability experiment.

The usability experiment seeks to determine whether one approach is superior to

another in a controlled fashion. Previous experiments have compared systems equiv-

alent to each other. That is, each system was fully equivalent in expressible power.

di�ering in syntactic form, or in interaction style. This research di�ers from previous

approaches in that MQL is strictly weaker than SQL. Nevertheless, by focusing on a

speci�c work task (classi�cation) the systems are comparable.

This chapter is structured as follows. Section 6.1 provides pointers to the relevant

6. Usability Results 115

literature most closely related to this work. Section 6.2 provides a brief description

of the rule-based language. In Section 6.3 we describe the setup for our experiment.

Section 6.4 provides the results from the usability experiments. Lastly, in Section 6.5

we provide directions for future research activities and summarize our �ndings.

Related Work

There have been numerous examples in the literature related to usability of query

languages. The approaches tend to follow a fairly standard experimental design, in

which two query languages are compared. Early work by Reisner [RBC75] forms the

basis for many other experiments. Surveys that provide a compilation of multiple

experiments were provided by Reisner [Rei81] and Welty [WS81]. A study by Yen

and Scamell [YS93] compared SQL to Query By Example (QBE) serves as the basis

of our experiment design. More recently, comparisons of diagrammatic languages to

SQL have been presented, including work by Catarci, et. al. [Cat00].

6.2 The Rule-Based Language

In this section we provide a brief reprise of the mapping language, focusing its

application on classi�cation as the the user's goal. Conceptually, we view the process

of classifying data as shown in Figure 6.1. The class values that are assigned can be

6. Usability Results 116

Input Data

Classifier

Classes

Figure 6.1: The classi�cation process

expressed with database queries. We will continue with the employee salary example

for the purposes of describing our approach.

The mapping language speci�es queries in the form of a �nite list of rules. Each

rule is of the form Head Body, with the following semantics. The body of a rule

is a boolean expression involving attribute names and constants, as well as a small

number of supported functions. For example, basic mathematical functions such as

addition and subtraction are supported. The head of a rule is an expression like the

body, except that it is not restricted to a f0; 1g result. Each rule head in a query

must of the same data type. We refer to the set of attributes used in the rules as the

schema of the query.

Let P = hp1; : : : ; pki be a rule query and r be a table. For each t 2 r, let Head(t)

be the value of the expression Head when given t as input. Body(t) is de�ned in the

6. Usability Results 117

same manner. The output schema of P is R [Class, where R is the schema of the

input table and Class is the class value assigned to each tuple.1 The following rule

query de�nes the employee salary classi�cation.

0Low0 Salary < 30000

0Medium0 Salary >= 30000 and Salary <= 60000

0High0 Salary > 60000

Rules are evaluated in the order that they are de�ned. In addition, the language

provides two di�erent interpretation strategies. Queries may be interpreted func-

tionally or relationally. Under a functional interpretation, rules are evaluated until

a success is encountered. In contrast, a relational interpretation will evaluate every

rule, which provides for a single input tuple to be mapped to multiple classes.

MQL provides two special types of rules to provide greater control over the process.

A rule of the form Except Body excludes input tuples from further processing. A

rule of the form Head Else allows for a tuple to be mapped if all of the preceding

rules failed.

By design, the rule-based query language is restricted in terms of the types of

queries that can be expressed. While it is similar to Datalog in terms of its syntax,

1The implementation provides the user with a mechanism for de�ning a unique name for Class.

6. Usability Results 118

we do not support recursive queries or negation in the head of the rule. With these

restrictions, the queries can be executed in linear time by processing one tuple at a

time.

Equivalence to SQL

Each rule query is equivalent to an SQL query involving set operations. The proof

of this equivalence is based on a transformation from the rule-based language to SQL.

Rather than providing the proof we provide a sketch of the transformation process

here. First, note that the body of a rule is essentially the same as the SQL where

clause. The head of a rule is the same as the SQL select clause. The following SQL

query is equivalent to the rule query that classi�es employee salaries.

Select "Low", * from employee where salary < 30000

Union

Select "Medium", * from employee where salary >= 30000 and salary <=60000

Union

Select "High", * from employee where salary > 60000

Special care must be taken to support the Except and Else rules by creating

more complicated where clauses in the SQL queries. From a processing perspective,

it is likely that SQL queries used for classi�cation tasks will be less e�cient than the

6. Usability Results 119

rule-based process. Note that the SQL queries may require multiple passes through

the input data. In addition, using SQL in support of classi�cation tasks may require

complex queries to be written, which may be beyond of the end user's ability.

6.3 Experiment Design

In order to understand the usefulness of our approach we have performed a con-

trolled usability experiment. This experiment seeks to quantify a user's ability to

solve classi�cation tasks with either SQL or the rule-based language. The focus is

targeted only at classi�cation tasks, and is not a broad comparison of fully equiva-

lent systems. SQL was chosen as the most appropriate comparative tool due to its

predominant use by both expert and novice users.

Independent Variables

The independent variables used to control the experiment were:

1. User skill level (Low, Medium, High)

2. Query language (SQL, Mapping Language)

3. Query complexity (Less complex, More complex)

6. Usability Results 120

Subjects for the experiment were recruited from a one-semester course in database

systems as well as professional programmers. The Table 6.1 describes how user skill

levels were assigned as well as the number of subjects in each skill level.

Subject Description Skill Level Number
Undergraduate Student Low 27
Graduate Student Medium 28
Professional experience High 10

Table 6.1: Breakdown of subjects used in the experiment.

Half of the subjects performed classi�cation tasks using either SQL or the mapping

language. The use of SQL and the mapping language was balanced within the groups.

The same problems were attempted by each user.

For the professional programmers, an additional within-groups experiment was

performed. After completing either the mapping language or SQL problems the

professionals performed the same tasks in the alternate language, which introduced

an order of exposure variable. After completing both sets of problems the professional

programmers completed an qualitative evaluation of both approaches.

Query complexity was based on the type of classi�cation being performed. The

complexity of the task was calculated based on a model answer for the problem

as formulated in the rule-based language. A complexity score for a rule is de�ned

according to the combined complexity of the head and the body, each of which is

given a score of 1 (simple) or 2 (complex). An expression is simple if it involves

6. Usability Results 121

only constants or simple boolean comparisons, otherwise it is complex. The total

complexity score for a task is given by summing the score for each rule. The score

for our running example would be 6 - each rule involves only simple expressions and

there are 3 rules.

Tasks below the mean score for all tasks are considered less complex, while tasks

that score above the mean are considered more complex. It is important to note that

the queries required to solve most of the tasks in this experiment would be classi�ed

as complex in the previously reported experiments due to their use of set operations.

Environment and Evaluation

While we have a fully functioning implementation of the rule-based language,

we decided to administer the experiment by using a paper and pencil exam. This

technique has been frequently employed in previous experiments, and bene�ts from

being e�ciently administered to multiple subjects simultaneously. Furthermore, a

paper exam insulates the subjects from details of the system implementation, which

provides for closer scrutiny of the language. Prior to participating in the exam, each

subject �lled out a short demographic questionnaire, which identi�ed their skill level.

The exam was comprised of twelve classi�cation problems against three di�erent

datasets. The datasets were described in terms of the input schema of the table.

The problems were worded in the form of English sentences describing the desired

6. Usability Results 122

classi�cation. A set of training materials and the exam are provided as an appendix

to this dissertation.

Each subject was provided a training manual for the tool they were to use to solve

the classi�cation tasks. Each user had some experience with writing SQL queries, so

the SQL training material focused on the writing of queries involving set operations.

The rule-based language training materials were slightly longer due to syntax dif-

ferences. Both training manuals contained an identical set of example classi�cation

tasks as well as solutions.

After reviewing the training materials the users were asked to complete a survey

about the training materials and their impression of the proposed approach (SQL or

the mapping language). They then proceeded to attempt solving the twelve classi�-

cation problems. After solving the problems a post-exam survey was completed by

each subject. The
ow of the experiment is shown in Figure 6.2. The professional

programmers evaluated both languages. They are represented in the �gure by the

lines connecting the Post-Exam Survey to the training module for the other language.

The examinations were administered in one sitting, limited to 45 minutes. Con-

sequently, we expect that many of the problems will be unanswered. The mapping

language was an entirely new technique for the subjects, which may yield even lower

scores due to its novelty.

6. Usability Results 123

SQL
Training

Training
Survey

SQL
Exam

Post−Exam
Survey

Training
Training
Survey Exam

Post−Exam
Survey

Rule Rule

All Users

Expert Users

Figure 6.2: An overview of the design of the usability experiment.

Subject Group Comparison

Because of the design of the experiment, there are several groups whose charac-

teristics need to be considered. Table 6.2 provides a summary of the information

provided by the subjects that reported GPA's. A test for homogeneity of variances

showed that the subject groups were comparable (p < :10).

The professional programmers were not asked to provide GPA's. Instead, they

were asked to report their work experience (in years) with databases. As a group,

6. Usability Results 124

Subject Description Average GPA (SD) Average Experience (SD)
Undergraduate Student 3.35 (0.47) 1.18 (0.62)
Graduate Student 3.64 (0.31) 1.00 (0.85)

Table 6.2: The average GPA and number of database courses for the student subjects.

the professional programmers averaged 4.2 years of experience.

Dependent Variables

The dependent variables we measured with this experiment were:

1. Pre-Exam User Satisfaction

2. User Accuracy

3. Post-Exam User Satisfaction

For the professional programmers, we measured their satisfaction and accuracy

for both languages. In addition, an overall satisfaction rating, comparing both ap-

proaches was measured for the professionals.

Accuracy is a quantitative measurement of the user's ability to solve classi�ca-

tion problems with a speci�c tool. Satisfaction is a qualitative measurement of the

user's feelings towards using a speci�c tool to solve classi�cation problems. We did

6. Usability Results 125

not measure the time required to solve each problem for two reasons. First, mea-

suring time would have required the use of either an SQL interface as well as the

implemented rule-based system. The queries are more e�ciently processed using the

rule-based system, which we believe would unduly in
uence the satisfaction measure-

ment. Second, interacting with either system introduces possible side-e�ects to the

accuracy measurements. For example, subjects may fail to get the syntax of the query

exactly correct and become frustrated with either system leading to fewer problems

attempted.

We determined the accuracy of a user's solution using a technique similar to

[YS93]. Each solution was assigned the lowest of the following possible scores as

shown in Table 6.3.

Score Description
3 Correct solution
2 Essentially correct solution (typographical errors)
1 Partially correct solution (missing conditions)
0 Incorrect solution, or unsolved

Table 6.3: Scoring guidelines used in the experiment.

The scoring method is intentionally coarse. Each subject's total score was com-

puted by totaling their score for each problem and dividing by the maximum number

of possible points.

6. Usability Results 126

User satisfaction was determined by using a qualitative assessment survey. Two

surveys were completed by each student subject. The �rst survey was completed

after reviewing the training material, which assesses the subject's feelings about the

technique described in the training, prior to actually attempting to use the technique.

The second survey was completed after completing the exam problems. The profes-

sional programmers completed two surveys for each language, as well as an subjective

survey comparing both languages.

The relationship between the satisfaction scores for each subject is interesting,

in that it allows us to determine whether the technique met their expectation. For

example, a lower post-exam satisfaction score may indicate that the technique is more

di�cult than originally perceived. On the other hand, a higher post-exam satisfaction

score would indicate that the technique was even better than the subject initially felt.

Hypotheses

The following list provides the hypotheses we seek to test with this experiment.

By convention, each hypothesis is stated in its negative form.

H1: There will be no di�erence in accuracy based on tool selection.

H2: There will be no di�erence in accuracy based on user skill level.

H3: There will be no di�erence in accuracy based on tool and task complexity level.

6. Usability Results 127

H4: There will be no di�erence in satisfaction based on tool selection.

H5: There will be no di�erence in satisfaction based on user skill level.

H6: For professional programmers, there will be no interaction between the order of

exposure and accuracy.

H7: For professional programmers, there will be no interaction between the order of

exposure and satisfaction.

H8: For professional programmers, there will be no di�erence in tool preference.

Prior to executing the experiment we expect that most of the hypotheses will not

be rejected. Nevertheless, we do expect to gain insight from the experiments, which

will lead to further experimentation, and re�nements to the design of the mapping

language.

6.4 Results

In this section we report the results of the experiment. In the following subsections

we report:

1. E�ciency

2. Accuracy

6. Usability Results 128

3. Satisfaction

4. Professional programmers

The statistical test employed for this analysis was the standard T-Test. The

signi�cance level employed for all tests was 0.10. Note that the risk associated with

making a type I error with either approach is small.

E�ciency

Often, usability experiments of this type will measure the e�ciency with which

users can solve problems. E�ciency may be measured in terms of time; however,

for this experiment time was a constraint placed upon the user. Consequently, the

time involved in solving problems would have a more signi�cant e�ect on e�ectiveness

measures, since the lack of time to solve all of the problems would preclude users from

fully completing the problems. This was certainly the case with the student subjects,

with only two subjects providing solutions for every problem.

A di�erent measure of e�ectiveness which can be reported for this experiment is

the number of steps involved in solving problems with each system. For example,

a smaller number of steps with one system may indicate an improvement e�ciency.

The problems given to the users in this experiment involved similar steps with either

system:

6. Usability Results 129

1. Identify the classes to be generated.

2. De�ne a condition for each class.

3. De�ne the output value to be generated for each condition.

4. Construct a simple query in SQL or the Rule language.

5. Put the queries or rules in the correct order.

Syntactically, the solutions had the same number of rules or queries. For this

experiment, then, the systems are not separable. In the future, more elaborate ex-

periments could be constructed to more closely measure the cognitive impact of these

languages.

It is clear that the rule language is less verbose than SQL, which allows for a

comparison on this basis. For example, the following rule program classi�es patients

according to their age:

0Newborns0 Age < 3

0Children0 Age � 3 AND Age � 12

0Adolescents0 Age � 13 AND Age � 18

0Adults0 Age � 19 AND Age � 65

6. Usability Results 130

0Elderly0 Age > 65

The equivalent SQL query is much more verbose:

Select "Newborns", * from Patient where Age < 3

Union

Select "Children", * from Patient where Age >= 3 and Age <= 12

Union

Select "Adolescents", * from Patient where Age >= 13 and Age <= 18

Union

Select "Adults", * from Patient where Age >= 19 and Age <= 65

Union

Select "Elderly", * from Patient where Age > 65

A word count (each term) of the rule language yields 37 words, while the SQL

query has 61 words. Using this measure, the SQL queries were all longer than the

rule programs. The average word count for the rule programs was 29.2 words, while

the average for the SQL queries was 44.8 words.

Even though the rule language has the propensity to be more e�cient using this

measure, it is di�cult to draw any direct conclusions. It is more likely that the

experiment has revealed this in an indirect way. For instance, it is plausible that the

lower satisfaction scores for SQL are related to the length of the solutions.

6. Usability Results 131

Accuracy

Table 6.4 shows the accuracy scores for each subject group.

Subject SQL Mapping Language
Undergraduate Student 27 (17) 37 (10)
Graduate Student 26 (19) 24 (21)
Professional 97 (0.1) 96 (0.2)

Table 6.4: Mean accuracy scores for each group, as a percent of total. (standard
deviation)

The low scores for the students is related to the limited time that was provided for

the exam. The di�erence in performance between the undergraduate and graduate

student subjects is interesting. Note that the performance of graduate and under-

graduate students is indistinguishable when using SQL. However, when using the

mapping language, the undergraduate students performed better.

The lack of a similar relationship between accuracy scores for graduate students

is a result of 4 students that did not get any problem correct. When omitting these

students the average accuracy score for graduate students increases to 34% (SD 17),

which tracks more accurately with the undergraduate result. The best explanation

we have is based on the mix of students in the graduate class, which has a higher

number of international students. It is possible that a language barrier was the

primary in
uencer of the lower scores for these students. Since we did not control for

this variable, we retained these students scores, rather than removing them from our

6. Usability Results 132

result.

Table 6.5 reports the statistical tests for Hypothesis 1 - 3. Each result was tested

at a 0.10 signi�cance level. When the hypothesis is rejected, we report the lowest

signi�cance level, even though our a priori test was at 0.10. For the professional

programmers we report both parts of the experiment: Prof-1 refers to the �rst exam,

Prof-2 refers to the second exam. For Hypothesis 3, we tested both SQL and MQL.

Hypothesis t (critical value) Result (p)
H1 -0.56 (�1:665) Not Rejected (p > :10)
H2: Undergrad -1.86 (�1:708) Rejected (p < :10)
H2: Grad 0.29 (�1:706) Not Rejected (p > :10)
H2: Prof - 1 0.44 (�1:86) Not Rejected (p > :10)
H2: Prof - 2 0.26 (�1:86) Not Rejected (p > :10)
H3: SQL 2.4 (�1:665) Rejected (p < :10)
H3: MQL 1.82 (�1:665) Rejected (p < :10)

Table 6.5: Statistical tests of the accuracy results (Hypothesis 1 - 3).

The undergraduate students accuracy scores were higher for the mapping lan-

guage. However, the trend on accuracy as experience increases indicates that either

tool can be used to solve such classi�cation problems. This is a positive result for the

mapping language, since the subjects had no prior knowledge of the language. Future

work certainly needs to consider the e�ect of experience with the mapping language.

The results for Hypothesis 3 show that complexity of the solution does impact the

accuracy. However, the actual result is counterintuitive - subjects were more accurate

6. Usability Results 133

with complex solutions. This was especially true with SQL. In retrospect, controlling

for complexity in the way we did is probably faulty. Note that the more complex

solutions were shorter, which most likely skewed the results.

Satisfaction

Table 6.6 shows the results of the satisfaction surveys for the SQL group. Table

6.7 shows the results of the satisfaction surveys for the Mapping Language group.

Subject Pre-Exam Post-Exam
Undergraduate Student 1.82 (0.65) 2.45 (0.67)
Graduate Student 1.92 (0.80) 2.48 (0.81)
Professional 1.90 (0.78) 2.62 (0.56)

Table 6.6: Mean satisfaction scores (1=Best, ..., 5=Worst) for the SQL group. (stan-
dard deviation)

Subject Pre-Exam Post-Exam
Undergraduate Student 2.09 (0.78) 2.01 (0.92)
Graduate Student 1.83 (0.57) 2.42 (0.58)
Professional 2.10 (0.60) 2.03 (0.68)

Table 6.7: Mean satisfaction scores (1=Best, ..., 5=Worst) for the Mapping Language
group. (standard deviation)

What is interesting about the satisfaction scores is the relationship between the

pre-exam and post-exam scores. For the SQL group, the post-exam score is higher.

Again, the undergraduate students are interesting, in that their post-exam score is

6. Usability Results 134

actually lower than the pre-exam score. Omitting the same 4 students as we previ-

ously omitted still resulted in a higher post-exam satisfaction score for the graduate

students, although not as high as the SQL, graduate student group.

We compared the satisfaction scores to a target satisfaction score of 2.0, which

would indicate that the user subjectively believes that the tool is a \good" tool to

use. The statistical test employed was a standard T-Test with degrees of freedom set

to the size of the sample minus 1. As a group, the SQL group's post-exam satisfaction

scores indicated that SQL was not as good as they initially believed. For the Mapping

Language group, only the Graduate students exhibited the same behavior.

Table 6.8 reports the statistical results for Hypothesis 4 and 5. Again, we distin-

guish between the professional programmer's �rst and second exams.

Hypothesis t (critical value) Result (p)
H4 1.69 (�1:665) Rejected (p < :10)
H5: Undergrad -1.45 (�1:708) Not Rejected (p > :10)
H5: Grad 0.22 (�1:706) Not Rejected (p > :10)
H5: Prof - 1 1.53 (�1:86) Not Rejected (p > :10)
H5: Prof - 2 -0.86 (�1:86) Not Rejected (p > :10)

Table 6.8: Statistical tests of the satisfaction results (Hypothesis 4 and 5).

Hypothesis 4 was rejected. Note that this result compares the mean satisfaction

score to 2.0 for the post-exam satisfaction survey. This result is in
uenced by the

decreased satisfaction in SQL. For Hypothesis 5 the results do not consider the tool.

6. Usability Results 135

Rather, they simply indicate that either tool is subjectively considered to be a good

tool to solve classi�cation problems.

Details of the Professional Programmer Experiment

In this subsection we report the results of statistical testing of Hypothesis 6 - 8.

These hypotheses consider whether there is any di�erence in accuracy and satisfaction

for the professional programmers when given both tools to solve problems. Table 6.9

reports the statistical results for these hypotheses.

Hypothesis t (critical value) Result (p)
H6 -0.01 (�1:86) Not Rejected (p > :10)
H7 -1.68 (�1:86) Not Rejected (p > :10)
H8 6.11 (�1:833) Rejected (p < :10)

Table 6.9: Statistical tests of the satisfaction results (Hypothesis 4 and 5).

Professional programmers had no problem with solving the problems with either

tool, so there is no surprise about the accuracy hypothesis (H6). The satisfaction

hypothesis (H7) is close to rejection. Again, the trend indicates that the subjects

were less satis�ed with SQL.

The signi�cant result from Hypothesis 8 is based on a preference survey adminis-

tered after using both tools. The raw data was scored on a 1 to 5 scale:

1: Strong preference for SQL.

6. Usability Results 136

2: Preference for SQL.

3: No preference.

4: Preference for MQL.

5: Strong preference for MQL.

The professional programmers preferred the mapping language, with a mean pref-

erence score of 3.7 (sd 0.35). The mean score indicates a somewhat weak preference

for the mapping language. However, for the type of problem (classi�cations) no sub-

ject had a preference for SQL. This is especially positive for MQL, since the subjects

had no prior knowledge of the language.

6.5 Summary

The usability experiment showed that the mapping language could be used by

both experienced and lesser experienced users with about as much accuracy as SQL.

This in itself is encouraging, since the mapping language was a new concept for the

subjects.

The subjects were satis�ed with both SQL and the mapping language. In general,

the subjects were more satis�ed with the mapping language.

6. Usability Results 137

We took advantage of the time the professional programmers made available for

the study. Ideally, we would have liked many more professionals to participate in

the study. The professionals had a strong preference for the mapping language for

all types of classi�cation tasks. At the same time, they tended to like SQL, since

they had much more experience with it. The professionals were able to envision the

bene�ts of the mapping language, which translated into the higher preference scores.

7

Visualizing Database Structure

This chapter explores the use of entropy for visualizing database structure. In

particular, we show how visualizing the entropy of a relation provides a global per-

spective on the distribution of values and helps to identify areas within the relation

where interesting relationships may be discovered. The type of structure we are in-

terested in discovering is related to functional dependencies. Our approach is not

dependent on the underlying domain of the data, providing a view of the dependency

landscape within a relation. Using these techniques we described comparative results

for a wide variety of synthetic and real data.

138

7. Visualizing Database Structure 139

7.1 Introduction

Developing visualizations of database content is of extreme interest to the research

community. There are numerous examples of applications developed around a graph-

ical display of database content, including relationship discovery, outlier detection,

and trend analysis.

Our approach to visualizing the structural, information content (which is distinct

from the data content) of databases is motivated by the discipline of information

theory. In particular, we utilize entropy as the basis for our visualizations. Within

the �eld of information theory, entropy is the central concept, related to the encoding

of messages. As such, entropy is a statistic that provides a global description of the

information content of data. This research utilizes entropy to visualize the structure

of a database relation, independent of the underlying domain datatype. We defer to

Section 7.2 for the de�nition of entropy, as well as other formal notions.

When developing e�ective visualizations of database content there are three sig-

ni�cant challenges that must be addressed. First, we are often faced with high-

dimensional data. Second, databases are awash with categorical data, which often

lack any meaningful order or scale. Thirdly, the sheer mass of data in even a mod-

erately sized database may overwhelm the user when trying to simply display a two-

dimensional scatter plot.

7. Visualizing Database Structure 140

There has, of course, been a great deal of research e�ort aimed at addressing these

challenges. For example, a number of techniques have been applied to high dimen-

sional data, such as parallel coordinate displays, worlds within worlds, dimensional

stacking, and grand tour methods.[ID87, ID90, LWW90, Fei92] Likewise, the �eld of

information visualization has many techniques for dealing with abstract, categorical

data.[CMS99] For techniques dealing with visualizing the contents of large databases

see [KKS94, Kei96a, Kei96b].

Whereas the goal of almost all other visualization techniques is to facilitate un-

derstanding of particular values, our approach speci�cally remains aloof from those

values in two distinct ways. First, we are interested in large-scale properties of in-

stances { properties that are related to attributes rather than values. For example, a

relation with 10 attributes requires 45 di�erent 2D scatter plots to provide the same

amount of information our technique provides in a single 2D scatter plot. Indeed, the

axes for many of the visualizations we present are the collection of attributes in the

relation, or characteristics of those attributes, rather than the values in a particular

attribute. Second, even within a particular attribute, it is the distribution of values

rather than the actual presented values that matter. Indeed, we typically code values

as integers to simplify processing.

This second distinction is a consequence of the notion that the structure of data

is independent of data values. Formally, structure is generic, in that it is invariant

7. Visualizing Database Structure 141

under 1-1 substitution of data values (hence the encoding with integers). For ex-

ample, functional dependencies describe a particular type of structure - independent

of the actual values. The de�nition of the functional dependency X ! Y , namely

\8t1 2 r; 8t2 2 r(t1[X] = t2[X]) t1[Y] = t2[Y])", exhibits this formal generic-

ity. Information theory, which uses only probabilities associated with values and

not the values themselves, therefore provides techniques that allow us to view value-

independent structure. Because entropy-based visualizations show global properties,

they are more in tune with natural uses of visualization, where global structure and

detail through drill-down are most e�ective.

Naive attempts at global visualization often fail when our perceptual mechanisms

confront the above challenges. For example, Figure 7.1 illustrates how our natural

perception is sometimes misleading - a glance suggests that the left pane is more

\function-like", while in fact the right pane exhibits the functional dependency A! B

while the left does not. While the presence or absence of these functional dependencies

is easy to evaluate in Figure 7.1, with only eight data points, this task becomes

increasingly di�cult as the number of data points increases. In addition, determining

when the data contains an approximate dependency [KM92], in which a functional

dependency holds except for a small number of violations, is equally di�cult.

This paper is structured as follows. Section 7.2 provides the formal notation and

de�nitions used throughout the paper. Section 7.3 explores the use of entropy to

7. Visualizing Database Structure 142

A

B

A

B

Figure 7.1: On the left, a scatter plot of data where the functional dependency
A! B does not hold. On the right, a scatter plot where the functional dependency
does hold. The dashed lines have been added to show the alignment of the points
along the vertical dimension.

visualize frequency distributions of attribute values in database relations. Section 7.4

demonstrates the use of entropy for visualizing dependencies, or relationships between

attributes. Section 7.5 provides examples of these these techniques for making broad

comparisons of di�erent datasets. Lastly, Section 7.6 provides future directions and

concluding remarks.

7.2 De�nitions

This section provides the formal notation and de�nitions used in this chapter.

Our focus is on visualizing database information, so we begin with the basics of the

relational model. Let R = fA;B;C; : : : g be a relation schema for instance r. For

7. Visualizing Database Structure 143

attribute A 2 R, A denotes fAg. Sets of attributes are denoted by X; Y; Z � R. For

X and Y � R, XY denotes X [Y . The notation we use for tuples is t 2 r, with t:A

representing the value for attribute A in tuple t.

With its genesis in message theory, entropy is de�ned over a set of messages

M = fm1; : : : ; mng, with associated probabilities PM = fp1; : : : ; png. The entropy

of M is HM =
Pn

i=1 pilog
1
pi
. Entropy provides us with an average cost (in bits) for

each message. The upper bound on the entropy of M is log n, which occurs when

each message has equal probability. Additional details on entropy, as well as other

information theory topics, are covered in [CT91].

For databases, the message set we are interested in is taken from the relation

instance r. When projecting attributes from R, we do not eliminate duplicate values,

which allows us to compute the probabilities using the counts of each value in the

active domain. For example, the probability P (A = a) = count(�A=a(r))
count(r)

.

For any set of attributes X � R, we can compute HX using an SQL aggregate

query. The query is shown in Figure 7.2 for the case of A 2 R. For the purposes of

the visualizations generated for this research, we pre-compute HA for each A 2 R, as

well as HAB for each A;B 2 R. Note that HA � log jAdom(A)j, where Adom(A) is

the active domain of A. When HA = log jrj, A is a key.

7. Visualizing Database Structure 144

Select SUM((R1.frequency/R2.rowcount) *

LOG(2,1/(R1.frequency/R2.rowcount)))

From (Select A, COUNT(*) as frequency

From R

Group By A) as R1,

(Select COUNT(*) as rowcount

From R) as R2

Figure 7.2: SQL query to calculate the entropy of A

Information Dependencies

Within the database research �eld, the concept of functional dependencies is well

understood. The functional dependency A ! B holds in instance r, when for any

two tuples t1; t2 2 r; t1:A = t2:A =) t1:B = t2:B. While functional dependencies

always hold for an instance, a particular functional dependency may be speci�ed as a

constraint over instances of a relation and commercial database management systems

have mechanisms for entering such constraints.

As is often the case, however, large, complex data rarely exhibits many functional

dependencies beyond those speci�ed as constraints. As shown in [DR00], an Infor-

mation Dependency Measure is de�ned using entropy. The information dependency

measure HX!Y provides a measure indicating the average number of bits we need to

use to determine Y if we know a value for X. Another way to look at this measure is

in terms of surprise. In other words, how surprising is a particular value for Y when

we know X.

The information dependency HX!Y de�ned as HXY � HX . For more details on

7. Visualizing Database Structure 145

information dependencies, as well as an equivalent de�nition, see [Dal00]. When

HX!Y = 0, the functional dependency X ! Y holds. The upper bound on HX!Y is

HX +HY , which is the case of independence of X and Y .

Another weakness of using a traditional approach for identifying dependencies is

shown in the right pane of Figure 7.1. We can verify by checking across the display

that there are no violations of the dependency A ! B. However, as the number of

datapoints increase the task becomes increasingly di�cult. In addition, determining

when the data contains an approximate dependency [KM92], in which a functional

dependency holds except for a small number of violations, is equally di�cult. Figure

7.1 may be used to illustrate the applicability if the information dependency measure:

HA!B is 0.25 in the left pane and 0 in the right. Whereas a visual estimation of

approximate functional dependencies does not scale, estimation via HA!B does.

7.3 Visualizing Distributions

Using the measures de�ned in Section 7.2, we turn to the visualization problem

addressed in this research. The data we use in our visualization is drawn from a variety

of sources, including the U.S. Census [cen], the U.C.I. Machine Learning Repository

[BM98], and the Wisconsin Benchmark [DeW93]. The speci�c dataset we used for

the Census was the 1990 Indiana Public Use Microdata Sample (PUMS), which has

7. Visualizing Database Structure 146

125 attributes.

Our �rst application is the visualization of frequency distributions. An obvious

technique for visualizing frequency distributions is to use histograms, with the height

of each bar representing the frequency. Figure 7.3 shows the log of the size of the

active domain for each attribute in the U.S. Census (Left) compared to the calculated

entropy value for each attribute value (Right). The leftmost bar in each display

corresponds to a key in the relation; otherwise, the attributes are arbitrarily ordered.

Figure 7.3: Comparing the size of the active domain for each attribute (Left) to the
entropy of each attribute (Right) in the U.S. Census dataset.

Note that the height of the bars varies according to the probabilities associated

with each value in the active domain, resulting in di�erences in the heights for the

same attribute in each display. To highlight these di�erences, consider Figure 7.4,

which shows the same information for a subset of the attribute space. The attributes

displayed include: Hours Worked Per Week, Immigration Year, Income, Non-farm

7. Visualizing Database Structure 147

Income, Farm Income, Interest and Dividend Income, Social Security Income, Public

Assistance Income, and Retirement Income. In this case, we can see that certain

attributes that have dominant values have their corresponding entropy values re
ect

this dominance.

Figure 7.4: A view of the di�erences between the size of the active domain for (Left)
compared to the entropy values for the same attributes (Right).

In order to gain an overall view of the attribute space, we can compare HA to

log jadom(A)j using a two-dimensional scatterplot. This visualization is shown in

Figure 7.5, in which the attribute that is a key has been omitted. In the visualization,

points that lie on the diagonal have an (approximately) uniform distribution. The

further a point is from the diagonal, the less uniform is the associated distribution.

7. Visualizing Database Structure 148

Figure 7.5: Comparing the entropy of each attribute in the census data to the log of
the size of the corresponding active domain.

7.4 Visualizing Relationships

While the previous section demonstrated the use of entropy to gain insight into

frequency distributions within database relations, this section extends the technique

in order to explore relationships between attributes. In particular we utilize the

information dependency measure described earlier to visualize these relationships.

While we have formally described the concept of an information dependency, we

have not yet discussed visualizing them. The left pane of Figure 7.6 characterizes

the space of HA!B �HB, which is encountered when visualizing the values in a 2D

scatter plot. This type of visualization allows us to get an overall view of all possible

attribute pairs in a compact space. A critical advantage of this approach is that the

visualizations do not depend on the actual values or types of data.

The dark area in the �gure represents functional dependencies in the relation.

7. Visualizing Database Structure 149

H(A−>B)

H(B)

Figure 7.6: On the left, characterizing the space HA!B � HA. On the right, a
visualization of this space for the census data.

Above the diagonal the space is empty, since the upper bound of HA!B is HB. As

you move away and below the diagonal, the structure becomes more like a functional

dependency. There is an area of potential interest close to the horizontal axis, in

which the space represents approximate functional dependencies that are almost a

pure functional dependency. The space closest to the diagonal contains attribute

pairs where B does not signi�cantly depend on A (we cannot say that A and B are

independent since B ! A is not ruled out).

The right pane of Figure 7.6 shows a scatter plot comparing HA!B to HB for the

census data. We can easily see individual attributes, which correspond to the vertical

bands (since of course HB is determined only by B. Unfortunately, a black-and-white

rendition of this image does not indicate points that lie exactly on the horizontal axis

- points that correspond to true functional dependencies. Certain points close to that

7. Visualizing Database Structure 150

axis are of obvious interest. In addition, one isolated point about 1/3 up and 2/3

right begs investigation in detail. However, we cannot tell whether points on the

upper right merely correspond to A's with small entropy.

This suggests a more detailed examination using three dimensions, comparing

HA!B, HA and HB. Figure 7.7 shows two perspectives on this visualization - the

left image looks out along the HA axis with HB vertical and HA!B going o� to the

right and the right image rotates the left around the vertical axis. Both images are

zoomed somewhat, as is evident by the axis labels. The origin is zero for each axis.

The fact that HA!B � HB is clearly shown by the empty space in the lower right of

the image.

Figure 7.7: 3D plot comparing HA!B, HA and HB.

We can observe several properties of the space. The vertical line of data points

at the far end of the HA axis (Z dimension) arises when A corresponds to the key of

the relation, which of course functionally determines every attribute. The rotation

7. Visualizing Database Structure 151

from the left to right image also shows that most points lie near the HA!B = HB

plane, althought this is less evident with still images than when image manipulation

is possible.

Two bands along the edge of the HB = HA!B plane, corresponding roughly to

HA � 0:5 or HB � 0:5, line very close to the plane. This indicates the surprising fact

that each low entropy attribute is independent of other attributes except each other

In addition to identifying potentially interesting relationships between attributes,

the visualizations also highlight additional information. For example, when HA is

low and HAB �HA = 0, it is possible to decompose the original relation into smaller

sub-relations, taking advantage of space savings. When the di�erence is very near to

zero, you may decide to ignore the noise entirely and clean the data by removing the

noisy data.

Drilling Down

The discussion thus far has involved global characterizations of attributes, but

information-based visualization can also drill-down to reveal local structures. This

makes use of the fact that the functional dependency A ! B holds i� HA!B = 0

and thus the quantity HA!B is a measure of how close A ! B is to holding in

an instance. The characterization of HA!B as
P

a2A p(a) � HB(�A=a(r)) suggests

that the \landscape" of p(a) and HB(�A=a(r)) might reveal something about local

7. Visualizing Database Structure 152

structure related to A! B. Indeed this is the case, as we see in examples from the

census data.

The �rst example examines AGE! DEPART (with AGE as A and DEPART as B). The

plot of p(a) versus HB(�A=a(r)), shown in the �rst panel of Figure 7.8, has several

interesting features:

1. AGE values with low probability have low diversity of associated DEPART, and

this holds uniformly

2. the relationship of HB(�A=a(r)) versus p(a) is essentially a smooth function for

low p(a) values

3. when p(a) exceeds a certain value, the corresponding HB(�A=a(r)) is typically

close to the maximum; this cuto� is surprisingly sharp

4. there are a few higher probability AGEs which di�er from the typical by having

HB(�A=a(r)) values that are lower or 0; these AGEs are interesting in themselves.

Indeed, further investigation of these values seems to indicate anomalies in the

way the census data was collected.

7. Visualizing Database Structure 153

Figure 7.8: Comparing p(a) to HB(�A=a(r)) for census data. In this example, A is
AGE and B is DEPART.

7.5 Visual Comparisons Of Datasets

In previous sections we have demonstrated the use of entropy to visualize the

information content of database relations. In this section we show how multiple,

diverse datasets can be compared within the same display in order to understand the

degree to which the datasets might be similar in terms of their structure.

We have used this particular technique to compare various benchmark datasets

in order to evaluate their structure. Although benchmark datasets are used for a

variety of applications, a primary use is the performance evaluation of new algorithms.

For example, the Wisconsin benchmark [DeW93] has been used to test various join

algorithms. Within the machine learning community a large number of benchmark

datasets are available.[BM98] Many of these datasets have been used for evaluating

various data mining techniques.

7. Visualizing Database Structure 154

Figure 7.9: HA compared to log jadom(A)j for the Wisconsin benchmark data (Left).
The same comparison from the census data (Right).

Figure 7.9 (Left) shows HA compared to log jadom(A)j for the Wisconsin bench-

mark data. The Wisconsin data can be seen to have a nearly perfect uniform dis-

tribution within each attribute. When compared on the census data, seen in Figure

7.9 (Right), it is clear that this synthetically generated data demonstrates signi�cant

di�erences from real data, which has much more complexity to its structure.

As another example, Figure 7.10 shows a number of datasets from the machine

learning repository displayed for comparison. We can see in this visualization that

these datasets have di�erent structure as well, although the sparseness of the data

does have an e�ect. In addition, these datasets tend to have a large number of boolean

valued attributes.

7. Visualizing Database Structure 155

Figure 7.10: HA compared to log jadom(A)j for datasets taken from the machine
learning repository. Clockwise from top left - Hepatitis, Tic Tac Toe, Agaricus, SetQ.

7.6 Conclusion

In this chapter we have shown how entropy, a central concept in information the-

ory, can be used for visualizing the structure of information within database relations.

The technique simpli�es the display of complex relationships, allowing for dependen-

cies to be spotted. Our use of entropy is independent of the underlying datatypes,

handling all in a consistent fashion. Furthermore, we have demonstrated the tech-

nique on a wide variety of data, some of which are quite large. The census dataset,

7. Visualizing Database Structure 156

for instance, contains 125 attributes and approximately 300,000 rows of data.

While this particular research is reported in terms of database visualization prob-

lems, the techniques we have employed are applicable to several areas. Within data

mining we envision that these techniques can be used to assist an expert in exploring

their particular problem space. In addition, database designers can use the visualiza-

tion to assist in the construction of decompositions, either for OLTP systems, or for

OLAP data warehouses.

8

Conclusion and Future Work

In this chapter we summarize the main �ndings presented in this research. In ad-

dition, we outline extensions to the architecture, mapping language and applications

related to database visualization.

8.1 Contributions of This Research

Architecture

The architecture is the primary contribution of this research. By abstracting the

concept of a map, we highlight the bene�ts of supporting visualization with database

systems. In particular, maps can be constructed to support multiple visualizations

of the same data without changing the original data. This abstraction is consistent

with the traditional, layered approach embodied in the design of database systems.

157

8. Conclusion and Future Work 158

The concept of a map application, which formally de�nes the input data in

database terms, is one of the principle elements of the architecture. This simpli-

�ed approach allowed for mapping from the data to the graphical output form in the

same way that database queries are supported.

An implementation of the architecture serves as a proof-of-concept for our ap-

proach. In this system we provided a number of basic visualization formats, demon-

strating the ability for the mapping formalism to be applied to both generate the

graphics, as well as probing the visualization to retrieve the underlying data in a

seamless fashion.

Mapping Language

The architecture provides the capability for users to generate a wide varety of

visualizatins. However, when the data lacks an appropriate order and/or scale, it

must be transformed prior to visualizing the data. Though there may be many ways

in which these transformations can be implemented, this research presents a mapping

language to accomplish this process.

The mapping language supports database visualization by providing an auto-

mated, controlled mechanism for de�ning the transformations. It can be used to

convert categorical values into numeric, or for simplifying a more complex numeric

scale. For example, continuous values can be binned using a simple calculation.

8. Conclusion and Future Work 159

The language is equivalent to the relational algebra, restricted to select, project

and union operations. At this time, the language does not support negation, except

as a term within a conjunctive clause.

We also described di�erent ways in which map programs could be interpreted:

relational and functional. Under the control of the user, a tuple in the input can be

mapped to either a single output tuple (functional) or multiple tuples (relational).

Formally, we showed that functionally interpreted programs can be simulated with an

equivalent relationally interpreted program. This equivalence yields a single, straight-

forward algorithm for processing either interpretation. Furthermore, map programs

can be executed more e�ciently than equivalent relational algebra programs, when

RA programs are directly implemented in SQL.

Usability Evaluation

We focused the use of the mapping language on a speci�c user task in order

to better understand the strengths and weaknesses of our approach. For comparison

purposes, users solved problems using either the mapping language or SQL. The tasks

were designed to solve classi�cation problems.

The results of the experiments were instructive in a number of ways. First, users

were more successful solving problem with the mapping language. While the di�er-

ence in performance between the subjects was not signi�cant when considering the

8. Conclusion and Future Work 160

complete set of subjects, undergraduate students performed better with the mapping

language than with SQL (p < 0:10).

Overall, the experiment showed that users were satis�ed with the mapping lan-

guage. The subjects' limited time to perform the experiment leads us to believe that

with prolonged exposure to the language, the two approaches would be more clearly

separated.

The professional programmers provided preference data, comparing the relative

strengths of each approach. For this class of user, the mapping language was pre-

ferred for all tasks (p < 0:001). These results are quite encouraging for our proposed

approach.

Visualizing Database Structure

We demonstrated an application of the architecture applied to a problem closely

related to database systems. Expanding on previous work in [Dal00], we investigated

methods for visualizing the structure of data in databases. In particular, we portrayed

the strength of dependency between attribute pairs using scatterplots. This technique

allowed for all of the dependencies to be viewed in one display.

We used the same technique as a way to compare multiple datasets. Using this

8. Conclusion and Future Work 161

visualization technique we were able to easily discern the di�erences between synthet-

ically generated datasets when compared to real data.

8.2 Future Work

To a great extent, the goal of this research has always been focused on enabling

future capabilities. Indeed, the sole reason for proposing an architecture to address

the problem of visualization is predicated on a requirement to
exibly support new

applications. In this section we outline a few areas that are interesting extensions of

this work.

Language Extensions

In its current design, the mapping language has a number of restrictions. The logic

based language design has succinct methods for expressing recursive queries, as well

as incorporating negation. Both of these areas would be interesting extensions to our

approach. Supporting recursive queries would support the generation of visualizations

of graph-based data, which has application in a number of areas. Negation, allows

interesting views of what is missing from data that would currently be seen as gaps

in a plot, for example.

8. Conclusion and Future Work 162

Applications

We envision expanding the architecture by exploring targeted applications related

to data mining and knowledge discovery. One area of particular interest is related to

association rule management, in which the number of rules generated from a dataset

exceeds the capabilities for users to understand and �nd the most interesting and

important rules.

Usability of Visualizations

Very little work has been done in evaluating the e�ectiveness of visualization sys-

tems. Principally, most information visualization systems are constructed to support

a speci�c problem. The speci�c designs yield systems that are not comparable from

a traditional HCI perspective. At the heart of this problem is the need to develop a

more comprehensive understanding of how users perceive graphic representations of

data.

Bibliography

[ACS90a] M. Angelaccio, T. Catarci, and G. Santucci. QBD*: A fully visual query

system. Journal on Visual Languages and Computing, 1(2):255{273,

1990.

[ACS90b] M. Angelaccio, T. Catarci, and G. Santucci. QBD*: A graphical query

language with recursion. IEEE Transactions on Software Engineering,

16(10):1150{1163, 1990.

[ACSW96] Alexander Aiken, Jolly Chen, Michael Stonebraker, and Allison

Woodru�. Tioga-2 : A direct manipulation database visualization en-

vironment. In Proceedings of the 12th International Conference on Data

Engineering, New Orleans, LA, February 1996, pages 208{217, 1996.

[Ahl96] Christopher Ahlberg. Spot�re: An information exploration environment.

SIGMOD Record, 25(4):25{29, 1996.

163

BIBLIOGRAPHY 164

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[ALS97] J. Allan, A. Leouski, and R. Swan. Interactive cluster visualization for

information retrieval. Technical Report Technical Report IR-116, Cen-

ter for Intelligent Information Retrieval, University of Massachusetts,

Amherst, 1997.

[Ank00] Mihael Ankerst. Visual Data Mining. PhD thesis, University of Munich,

2000.

[AS92] C. Ahlberg and B. Shneiderman. Dynamic queries for information explo-

ration: an implementation and evaluation. In Proceedings of the ACM

CHI'92 Conference, pages 619{626, 1992.

[AS94a] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining

association rules in large databases. In Jorge B. Bocca, Matthias Jarke,

and Carlo Zaniolo, editors, VLDB'94, Proceedings of 20th International

Conference on Very Large Data Bases, September 12-15, 1994, Santiago

de Chile, Chile, pages 487{499. Morgan Kaufmann, 1994.

[AS94b] C. Ahlberg and B. Shneiderman. Visual information seeking: Tight cou-

pling of dynamic query �lters with star�elds displays. In Proceedings of

the ACM CHI'94 Conference, pages 313{317, 1994.

BIBLIOGRAPHY 165

[AW95] Christopher Ahlberg and Erik Wistrand. IVEE: An environment for

automatic creation of dynamic queries applications. In Human Factors

in Computing Systems. Conference Proceedings CHI'95, 1995.

[BA86] Andreas Buja and Daniel Asimov. Grand tour methods: An outline. In

Proceedings of the 18th Symposium on the Interface, pages 63{67, 1986.

[BA96] Ronald Brachman and Tej Anand. The process of knowledge discovery in

databases. In Advances in Knowledge Discovery and Data Mining, pages

37{57. 1996.

[Bay98] Roberto J. Bayardo Jr. E�ciently mining long patterns from databases.

In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Proceed-

ings ACM SIGMOD International Conference on Management of Data,

June 2-4, 1998, Seattle, Washington, USA, pages 85{93. ACM Press,

1998.

[BC87] R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technometrics,

pages 127{142, 1987.

[BKK97] C. Brunk, J. Kelly, and R. Kohavi. Mineset: An integrated system for

data access, visual data mining, and analytical data mining. In Proceed-

ings of KDD `97, 1997.

BIBLIOGRAPHY 166

[BM94] Nigel Bevan and Miles Macleod. Usability measurement in context. Be-

haviour & Information Technology, 13(1):132{145, 1994.

[BM98] C.L. Blake and C.J. Merz. UCI repository of machine learning databases.

http://www.ics.uci.edu/�mlearn/MLRepository.html, 1998.

[BMUT97] Sergey Brin, Rajeev Motwani, Je�rey D. Ullman, and Shalom Tsur. Dy-

namic itemset counting and implication rules for market basket data. In

Joan Peckham, editor, SIGMOD 1997, Proceedings ACM SIGMOD In-

ternational Conference on Management of Data, May 13-15, 1997, Tuc-

son, Arizona, USA, pages 255{264. ACM Press, 1997.

[BSP+93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D.

DeRose. Toolglass and magic lenses: The see-through interface. In

Proceedings of Siggraph, Computer Graphics Annual Conference Series,

pages 73{80. ACM, 1993.

[CAL+97] Isabel F. Cruz, Michael Averbuch, Wendy T. Lucas, Melissa Radzymin-

ski, and Kirby Zhang. Delaunay: A database visualization system. In

Joan Peckham, editor, SIGMOD 1997, Proceedings ACM SIGMOD In-

ternational Conference on Management of Data, May 13-15, 1997, Tuc-

son, Arizona, USA, pages 510{513. ACM Press, 1997.

BIBLIOGRAPHY 167

[Cat00] Tiziana Catarci. What happened when database researchers met usabil-

ity. Information Systems, 25(3):177{212, 2000.

[CC92] Matthew Chalmers and Paul Chitson. Bead: Explorations in information

visualization. In Research and Development in Information Retrieval,

pages 330{337, 1992.

[CCLB97] Tiziana Catarci, Maria Francesca Costabile, Stefano Levialdi, and Carlo

Batini. Visual query systems for databases: A survey. Journal of Visual

Languages and Computing, 8(2):215{260, 1997.

[cen] www.census.gov. On The Web.

[Che75] Peter P. S. Chen. The entity-relationship model | toward a uni�ed view

of data. Proceedings of the 1th Conference on Very Large Databases,

Morgan Kaufman pubs. (Los Altos CA), Kerr(ed), pp.173, 1975.

[Chi00] Ed Chi. A taxonomy of visualization techniques using the data state

reference model. In Proceedings of InfoVis 2000 (Salt Lake City UT,

October 2000), pages 69{75, 2000.

[CL00] Isabel F. Cruz and Peter S. Leveille. Implementation of a constraint-

based visualization system. In Proceedings of the 2000 IEEE Interna-

tional Symposium on Visual Languages, 2000.

BIBLIOGRAPHY 168

[CM97] S. Card and J. MacKinlay. The structure of the information visualization

design space. In Proceedings of the IEEE Symposium on Information

Visualization (InfoVis '97), pages 92{99, 1997.

[CMS99] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors. Read-

ings in Information Visualization:Using Vision to Think. Morgan Kauf-

mann Publishers, Inc., 1999.

[Cod70] E. F. Codd. A Relational Model for Large Shared Data Banks. Commu-

nications of the ACM, 13(6):377{387, 1970.

[Cru92] Isabel F. Cruz. DOODLE: a visual language for object-oriented

databases. In SIGMOD 1992, Proceedings ACM SIGMOD International

Conference on Management of Data, pages 71{80, 1992.

[Cru93a] Isabel F. Cruz. Expressing constraints for data display speci�cation: A

visual approach. Technical Report CS-93-57, Brown University, Com-

puter Science, 1993.

[Cru93b] Isabel F. Cruz. User-de�ned visual languages for querying data. Technical

Report CS-93-58, Brown University, Computer Science, 1993.

[CS95] T. Catarci and G. Santucci. Textual query languages: A comparative

experiment. In IFIP 2.6: Third Working Conference on Visual Database

Systems (VDB-3), pages 57{74, 1995.

BIBLIOGRAPHY 169

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.

John Wiley & Sons, New York, NY, USA, 1991.

[Dal00] Mehmet M. Dalkilic. Foundations of Data Mining. PhD thesis, Indiana

University, Computer Science, 2000.

[DeW93] David J. DeWitt. The wisconsin benchmark: Past, present, and future.

In Jim Gray, editor, The Benchmark Handbook for Database and Trans-

action Systems (2nd Edition). Morgan Kaufmann, 1993.

[DR00] Mehmet M. Dalkilic and Edward L. Robertson. Information dependen-

cies. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, May 15-17, 2000, Dallas,

Texas, USA, pages 245{253. ACM, 2000.

[Fei92] Steven Feiner. Virtual worlds for visualizing information. In Advanced

Visual Interfaces, pages 3{11, 1992.

[FMMT96] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi

Tokuyama. Data mining using two-dimensional optimized accociation

rules: Scheme, algorithms, and visualization. In H. V. Jagadish and In-

derpal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, Montreal, Quebec,

Canada, June 4-6, 1996, pages 13{23. ACM Press, 1996.

BIBLIOGRAPHY 170

[FPSS96] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.

From data mining to knowledge discovery: An overview. In Advances

in Knowledge Discovery and Data Mining, pages 1{34. 1996.

[GP88] Georges R. Grinstein and Ronald M. Pickett. Iconographic displays for

visualizing multidemensional data. In Proceedings IEEE Conference on

Systems, Man, and Cybernetics, pages 514{519, May 1988.

[GPW89] Georges R. Grinstein, Ronald M. Pickett, and Marian G. William.

EXVIS: An exploratory visualization environment. In Proceedings of

Graphics Interface '89, pages 254{261, 1989.

[GR98] Dennis P. Groth and Edward L. Robertson. Architectural support

for database visualization. In Proceedings of the Workshop on New

Paradigms in Information Visualization and Manipulation, 1998.

[GR02a] Dennis P. Groth and Edward L. Robertson. An entropy-based approach

for visualizing database structure. In Proceedings of the Sixth IFIP Con-

ference on Visual Database Systems (VDB6), 2002.

[GR02b] Dennis P. Groth and Edward L. Robertson. An integrated approach to

database visualization. In Proceedings of the Conference on Advanced

Visual Interfaces (AVI 2002), 2002.

BIBLIOGRAPHY 171

[GR02c] Dennis P. Groth and Edward L. Robertson. An integrated system

database visualization. In Proceedings of the Sixth International Con-

ference on Information Visualization (IV02), 2002.

[GSB91] Georges R. Grinstein, Stuart Smith, and R. Daniel Bergeron. Interactive

data exploration with a supercomputer. In Proceedings of IEEE Visu-

alization '91, Los Alamitos, CA, October 1991. IEEE Computer Society

Press.

[HHW00] Arno P.J.M. Siebes Heike Hofmann and Adalbert F.X. Wilhelm. Visual-

izing association rules with interactive mosaic plots. In SIGKDD 2000,

Proceedings ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, August 20-23, 2000, Boston, MA,USA, pages

227{235. ACM Press, 2000.

[HK01] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-

niques. Morgan Kaufmann, 2001.

[HMS01] David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data

Mining. The MIT Press, 2001.

[HPY00] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns with-

out candidate generation. In Weidong Chen, Je�rey F. Naughton, and

BIBLIOGRAPHY 172

Philip A. Bernstein, editors, Proceedings of the 2000 ACM SIGMOD In-

ternational Conference on Management of Data, May 16-18, 2000, Dal-

las, Texas, USA, volume 29, pages 1{12. ACM, 2000.

[HYL00] Kent Wenger Hongyu Yao and Miron Livny. DEVise and the JavaScreen:

Visualization on the web. In Proceedings of the SPIE Conference on

Visual Data Exploration and Analysis, pages 375{384, January 2000.

[IBM] www.research.ibm.com/dx/. On the Web.

[ID87] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates for visual-

izing multi-dimensional geometry. In Proceedings of Computer Graphics

International '87, Tokyo, 1987. Springer-Verlag.

[ID90] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates: A tool

for visualizing multi-dimensional geometry. In Proceedings of IEEE Vi-

sualization '90, pages 361{375, Los Alamitos, CA, October 1990. IEEE

Computer Society Press.

[IN88] Tomasz Imielinski and Shamim A. Naqvi. Explicit control of logic

programs through rule algebra. In Proceedings of the Seventh ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, March 21-23, 1988, Austin, Texas, pages 103{116. ACM Press,

1988.

BIBLIOGRAPHY 173

[Int89] International Organization for Standardization (ISO). Database Lan-

guage SQL, 1989.

[Int92] International Organization for Standardization (ISO). Database Lan-

guage SQL (SQL2), 1992.

[Int99] International Organization for Standardization (ISO). Database Lan-

guage SQL (SQL3), 1999.

[KAK94] Daniel A. Keim, Mihael Ankerst, and Hans-Peter Kriegel. Visdb:

Database exploration using multidimensional visualization. IEEE Com-

puter Graphics and Applications, 14(5):40{49, September 1994.

[Kea99] T. Alan Keahey. Visualization of high-dimensional clusters

using nonlinear magni�cation. In Available on the Web at

http://www.acl.lanl.gov/Viz/abstracts/spie99 abstract.html, 1999.

[Kei95] Daniel A. Keim. Visual Support for Query Speci�cation and Data Min-

ing. PhD thesis, Institute for Computer Science, Ludwig-Maximilians-

University Munich, 1995.

[Kei96a] Daniel A. Keim. Databases and visualization. In H. V. Jagadish and

Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data, Montreal, Quebec,

Canada, June 4-6, 1996, page 543. ACM Press, 1996.

BIBLIOGRAPHY 174

[Kei96b] Daniel A. Keim. Pixel-oriented database visualizations. SIGMOD Record,

25(4):35{39, 1996.

[Kei97] D. Keim. Visual data mining. In Proceedings of VLDB 1997, 1997.

[KK95a] Daniel A. Keim and Hans-Peter Kriegel. Possibilities and limits in visual-

izing large databases. In Visual Database Systems 3, Visual Information

Management, Proceedings of the third IFIP 2.6 working conference on

visual database systems, pages 203{214, 1995.

[KK95b] Daniel A. Keim and Hans-Peter Kriegel. Recursive pattern: A technique

for visualizing very large amounts of data. In Proceedings of IEEE Vi-

sualization '95, pages 279{286, Los Alamitos, CA, October 1995. IEEE

Computer Society Press.

[KK95c] Daniel A. Keim and Hans-Peter Kriegel. Visdb: A system for visualizing

large databases. In Michael J. Carey and Donovan A. Schneider, edi-

tors, Proceedings of the 1995 ACM SIGMOD International Conference

on Management of Data, San Jose, California, May 22-25, 1995, page

482. ACM Press, 1995.

[KK96] Daniel A. Keim and Hans-Peter Kriegel. Visualization techniques for

mining large databases: A comparison. TKDE, 8(6):923{938, 1996.

BIBLIOGRAPHY 175

[KKS94] Daniel A. Keim, Hans-Peter Kriegel, and Thomas Seidl. Supporting data

mining of large databases by visual feedback queries. In Proceedings of

the Tenth International Conference on Data Engineering, February 14-

18, 1994, Houston, Texas, USA, pages 302{313. IEEE Computer Society,

1994.

[KM92] Jyrki Kivinen and Heikki Mannila. Approximate dependency inference

from relations. In Joachim Biskup and Richard Hull, editors, Database

Theory - ICDT'92, 4th International Conference, Berlin, Germany, Oc-

tober 14-16, 1992, Proceedings, volume 646 of Lecture Notes in Computer

Science, pages 86{98. Springer, 1992.

[Lee] J. Lee. Views, visualization and databases. In Proceedings of the 2nd

Workshop on Database Issues for Data Visualization, A.Wierse and G.G.

Grinstein, eds., Springer Verlag Lecture Notes in Computer Science.

[LGa] J. Lee and G. Grinstein. An architecture for retaining and analyzing

visual explorations of databases. In Proceedings of IEEE Visualization

'95, Atlanta GA.

[LGb] J. Lee and G. Grinstein. Describing visual interactions to the database:

Closing the loop between user and data. In Proceedings of SPIE, Visual

Data Exploration and Analysis III, San Jose CA, volume 2565.

BIBLIOGRAPHY 176

[LG94] J. Lee and G. Grinstein. Data exploration interactions and the Exbase

system. In J.P. Lee and G.G. Grinstein, editors, Database Issues for Data

Visualization, volume 871 of Lecture Notes in Computer Science, pages

118{137. Springer Verlag, 1994.

[LRB+97] Miron Livny, Raghu Ramakrishnan, Kevin Beyer, Guangshun Chen,

Donko Donjerkovic, Shilpa Lawande, Jussi Myllymaki, and Kent Wenger.

Devise: Integrated querying and visual exploration of large datasets. In

Proceedings of ACM SIGMOD, May 1997.

[LRM96] M. Livny, R. Ramakrishnan, and J. Myllymaki. Visual exploration of

large data sets. In Proc. of SPIE { Int. Soc. Opt. Eng., volume 2657,

1996.

[LWW90] Je�rey LeBlanc, Matthew O. Ward, and Norman Wittels. Exploring n-

dimensional databases. In Proceedings of IEEE Visualization '90, pages

230{237, Los Alamitos, CA, October 1990. IEEE Computer Society

Press.

[mic] www.microsoft.com. On the Web.

[MR97] Dieter Merkl and Andreas Rauber. Alternative ways for cluster visualiza-

tion in self-organizing maps. In Proceedings of WSOM'97, Workshop on

Self-Organizing Maps, Espoo, Finland, June 4-6, pages 106{111. Helsinki

BIBLIOGRAPHY 177

University of Technology, Neural Networks Research Centre, Espoo, Fin-

land, 1997.

[NHM97] Gregory M. Nielson, Hans Hagen, and Heinrich Muller. Scienti�c Vi-

sualization: Overviews, Methodologies and Techniques. IEEE Computer

Society, 1997.

[PdBA+92] Jan Paredaens, Jan Van den Bussche, Marc Andries, Marc Gemis, Marc

Gyssens, Inge Thyssens, Dirk Van Gucht, Vijay Sarathy, and Lawrence V.

Saxton. An overview of GOOD. SIGMOD Record, 21(1):25{31, 1992.

[PK94] A. Papantonakis and P.J.H. King. GQL, a declarative graphical query

language based on the functional data model. In Proceedings of the Work-

shop on Advanced Visual Interfaces, June 1994.

[qua] www.quadbase.com. On the Web.

[RBC75] P. Reisner, R. Boyce, and D. Chamberlin. Human factors evaluation of

two database query languages - square and sequel. In Proceedings of the

National Computer Conference, pages 447{452, 1975.

[Rei81] Phyllis Reisner. Human factors studies of database query languages: A

survey and assessment. ACM Computing Surveys, 13(1):13{31, 1981.

BIBLIOGRAPHY 178

[SCN+93a] Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, Alan

Su, and Jiang Wu. Tioga : A database oriented visualization tool. In

Proceedings of the IEEE '93 Visualization Conference, San Jose, CA,

USA, October 1993, pages 86{93, 1993.

[SCN+93b] Michael Stonebraker, Jolly Chen, Nobuko Nathan, Caroline Paxson, and

Jiang Wu. Tioga: Providing data management support for scienti�c

visualization applications. In Rakesh Agrawal, Se�an Baker, and David A.

Bell, editors, 19th International Conference on Very Large Data Bases,

August 24-27, 1993, Dublin, Ireland, Proceedings, pages 25{38. Morgan

Kaufmann, 1993.

[Shn94] Ben Shneiderman. Dynamic queries for visual information seeking. IEEE

Software, 11:70{77, November 1994.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for

information visualizations. In Proc. IEEE Symp. Visual Languages, VL,

pages 336{343, 3{6 1996.

[Shn98] Ben Shneiderman. Designing the User Interface: Strategies for E�ec-

tive Human-Computer Interaction. Addison Wesley Longman, Inc., 3rd

edition, 1998.

BIBLIOGRAPHY 179

[SON95] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. An e�-

cient algorithm for mining association rules in large databases. In Umesh-

war Dayal, Peter M. D. Gray, and Shojiro Nishio, editors, VLDB'95,

Proceedings of 21th International Conference on Very Large Data Bases,

September 11-15, 1995, Zurich, Switzerland, pages 432{444. Morgan

Kaufmann, 1995.

[STA98] Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. Integrating min-

ing with relational database systems: Alternatives and implications. In

Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Proceed-

ings ACM SIGMOD International Conference on Management of Data,

June 2-4, 1998, Seattle, Washington, USA, pages 343{354. ACM Press,

1998.

[UFW01] Georges G. Grinstein Usama Fayyad and Andreas Wierse. Information

Visualization in Data Mining and Knowledge Discovery. Morgan Kauf-

mann Publishers, 2001.

[web01] Scienti�c visualization examples. On the Web at:

http://www.wes.hpc.mil/scivis/examples.htm, May 2001.

[WL00] Christopher E. Weaver and Miron Livny. Improving visualization ac-

tivity in java. In Proceedings of the SPIE Conference on Visual Data

BIBLIOGRAPHY 180

Exploration and Analysis, pages 62{72, January 2000.

[WS81] C. Welty and D. Stemple. Human factors comparison of a procedural

and a nonprocedural query language. ACM Transactions on Database

Systems, 6(4):626{649, 1981.

[WS92] Christopher Williamson and Ben Shneiderman. The dynamic home�nder:

Evaluating dynamic queries in a real-estate information exploration sys-

tem. In Nicholas J. Belkin, Peter Ingwersen, and Annelise Mark Pe-

jtersen, editors, Proceedings of the 15th Annual International ACM SI-

GIR Conference on Research and Development in Information Retrieval.

Copenhagen, Denmark, June 21-24, 1992, pages 338{346. ACM, 1992.

[WS97] Allison Woodru� and Michael Stonebraker. Supporting �ne-grained data

lineage in a database visualization environment. In Alex Gray and Per-

�Ake Larson, editors, Proceedings of the Thirteenth International Con-

ference on Data Engineering, April 7-11, 1997 Birmingham U.K, pages

91{102. IEEE Computer Society, 1997.

[WWT99] P. Wong, P. Whitney, and J. Thomas. Visualizing association rules for

text mining, 1999.

BIBLIOGRAPHY 181

[YS93] M. Yen and R. Scamell. A human factors experimental comparison of

SQL and QBE. IEEE Transactions on Software Engineering, 19(4):390{

402, 1993.

[Zlo77] M Zloof. Query-by-example: A data base language. IBM Systems Jour-

nal, 16:324{343, Fall 1977.

A

Usability Experiment

This appendix describes the contents of the exam taken by subjects of the usability

experiment. Each student subject received one of the exams, while the professionals

completed both parts as well as a �nal preference survey.

A.1 Training Materials

In this section we provide the training materials that were used in the experiment.

We present them here in a more compact form to conserve on space. In particular,

when presenting the example queries we provide both solutions.

Training: SQL

SQL classi�cation queries may be constructed in a variety of ways. For the pur-

poses of this training, we assume that you are knowledgeable in the basic syntax of an

SQL query. The examples we use to demonstrate classi�cation tasks in SQL utilize

the UNION set operation to combine the results of multiple queries. Queries may be

182

A. Usability Experiment 183

combined using the union operator as long as the output of each query has the same

number of attributes, and that each attribute in the queries has the same datatype.

For example, the following SQL query is invalid, since the name of the employee

is a string and the salary of employees is a numeric value.

Select Name From Employee

Union

Select Salary From Employee

The following query is syntactically valid:

Select Salary From Employee

Union

Select Age From Employee

The union operator removes duplicate rows. If you do not want to remove any

duplicate rows use the UNION ALL operator.

Training: Mapping Language

Rule-based classi�cation queries are speci�ed as a list of rules. Each rule has the

form:

A. Usability Experiment 184

Answer <- Condition

A natural way to understand the meaning of a rule is as follows. Given an input

table, test each record in the input with the condition. If the condition evaluates to

"True", then evaluate the answer expression and place the result in the output. The

output contains all the attributes in the input table plus the answer. The system we

have developed allows the user to name the answer attribute. For the purposes of

this instructional paper we will use Qvalue as the name of the answer attribute. Each

rule is equivalent to an SQL query of the form:

Select Answer as Qvalue, *

From InputTable

Where Condition

Rule-based queries are parameterized by an input table, which is signi�cantly

di�erent than SQL queries. The restriction on the tables that can be queried for

rule-based queries is simply based on the attributes of the input table. So long as

each attribute referred to by a rule in the query is an attribute of the input table the

query can be executed.

The purpose of each rule-based query is to classify records in the input table, which

places a restriction on the data type of the answer attribute. We use the queries in a

visualization system, so we require that the answers by numeric data.

A. Usability Experiment 185

Here is a simple example, using the following Employee table as input:

EmpId LastName Sex Salary Age

1 Smith F 23,500 27

2 Jones M 27,000 31

3 Thompson F 48,950 25

4 Jackson F 18,750 22

5 Johnson M 38,000 40

Consider the following rule-based query, which selects employees from the table

and assigns each Employee to a numeric class (1 or 2), based on their sex.

1 <- Sex = 'F'

2 <- Sex = 'M'

This query is evaluated against each record in the input and creates the following

output:

Qvalue EmpId LastName Sex Salary Age

1 1 Smith F 23,500 27

2 2 Jones M 27,000 31

1 3 Thompson F 48,950 25

1 4 Jackson F 18,750 22

2 5 Johnson M 38,000 40

A. Usability Experiment 186

An equivalent SQL query can be issued to get the same results:

Select 1 as Qvalue, * From Employee Where Sex = 'F'

Union

Select 2 as Qvalue, * From Employee Where Sex = 'M'

The rule-based query language is evaluated in linear fashion. The user may specify

at the time the query is executed whether they would like the rules to be interpreted

functionally or relationally. A functional interpretation ensures that each row in the

input maps to at most one row in the output, only checking as rules until a successful

condition is found. In contrast, a relational interpretation allows each row in the input

to be mapped to several rows in the output. The following example demonstrates

this concept. We will use the same input table as the previous example:

EmpId LastName Sex Salary Age

1 Smith F 23,500 27

2 Jones M 27,000 31

3 Thompson F 48,950 25

4 Jackson F 18,750 22

5 Johnson M 38,000 40

Consider the following rule-based query:

A. Usability Experiment 187

1 <- Age <= 25

2 <- Sex = 'F'

3 <- Sex = 'M'

Under a functional interpretation the output for this query would be:

Qvalue EmpId LastName Sex Salary Age

2 1 Smith F 23,500 27

3 2 Jones M 27,000 31

1 3 Thompson F 48,950 25

1 4 Jackson F 18,750 22

3 5 Johnson M 38,000 40

3 6 Smythe M 66,000 41

2 7 Edwards F 52,000 33

2 8 Adams F 85,000 47

1 9 Benson M 18,000 19

1 10 Davis M 23,800 25

2 11 Flynn F 41,250 37

The same query using a relational interpretation yields the following output:

A. Usability Experiment 188

Qvalue EmpId LastName Sex Salary Age

2 1 Smith F 23,500 27

3 2 Jones M 27,000 31

1 3 Thompson F 48,950 25

2** 3 Thompson F 48,950 25

1 4 Jackson F 18,750 22

2** 4 Jackson F 18,750 22

3 5 Johnson M 38,000 40

3 6 Smythe M 66,000 41

2 7 Edwards F 52,000 33

2 8 Adams F 85,000 47

1 9 Benson M 18,000 19

3** 9 Benson M 18,000 19

1 10 Davis M 23,800 25

3** 10 Davis M 23,800 25

2 11 Flynn F 41,250 37

The marked rows indicate rows in this output that do not exist in the functional

interpretation.

There are two special types of rules that can be speci�ed within a rule-based query.

The following query excludes records from further processing:

A. Usability Experiment 189

Except <- Sex = 'M'

There is no restriction to the number or location of Except rules within the list.

However, the location is an important design consideration. For example, the follow-

ing query does not exclude males from further processing since the Except rule occurs

after males are already classi�ed.

2 <- Sex = 'M'

Except <- Sex = 'M'

This does not imply that the Except rules must occur before all other types of

rules. For example, when rule-based queries are evaluated relationally, Except rules

can be used in interesting ways. The following query classi�es males, and then further

classi�es females based on their age.

2 <- Sex = 'M'

Except <- Sex = 'M'

3 <- Age < 30

4 <- Age >= 30

There is an equivalent SQL query that generates the same output.

Select 2 as Qvalue, * From Employee Where Sex = 'M'

A. Usability Experiment 190

Union

Select 3 as Qvalue, * From Employee Where Age < 30 and Sex != 'M'

Union

Select 4 as Qvalue, * From Employee Where Age >= 30 and Sex != 'M'

The second special type of rule is called an Else rule. Queries may contain a single

Else rule that is evaluated only if all of the other rules are unsuccessful. For example,

the following query is equivalent to our �rst example.

1 <- Sex = 'F'

2 <- Else

Again, there is an equivalent SQL query that generates the same output. In fact,

there is an equivalent SQL query for every rule-based query.

Select 1 as Qvalue, * From Employee Where Sex = 'F'

Union

Select 2 as Qvalue, * From Employee Where Sex != 'F'

Sample Queries. Query 1: Assign every employee to class "1".

Input: The following table is used for each of the example queries.

A. Usability Experiment 191

EmpId LastName Sex Salary Age

1 Smith F 23,500 27

2 Jones M 27,000 31

3 Thompson F 48,950 25

4 Jackson F 18,750 22

5 Johnson M 38,000 40

6 Smythe M 66,000 41

7 Edwards F 52,000 33

8 Adams F 85,000 47

9 Benson M 18,000 19

10 Davis M 23,800 25

11 Flynn F 41,250 37

Select 1 as Qvalue, *

From Employee

1 <-

Output:

A. Usability Experiment 192

Qvalue EmpId LastName Sex Salary Age

1 1 Smith F 23,500 27

1 2 Jones M 27,000 31

1 3 Thompson F 48,950 25

1 4 Jackson F 18,750 22

1 5 Johnson M 38,000 40

1 6 Smythe M 66,000 41

1 7 Edwards F 52,000 33

1 8 Adams F 85,000 47

1 9 Benson M 18,000 19

1 10 Davis M 23,800 25

1 11 Flynn F 41,250 37

Query 2: Assign every female employee to class "1".

Select 1 as Qvalue, *

From Employee

Where Sex = 'F'

1 <- Sex = 'F'

A. Usability Experiment 193

Qvalue EmpId LastName Sex Salary Age

1 1 Smith F 23,500 27

1 3 Thompson F 48,950 25

1 4 Jackson F 18,750 22

1 7 Edwards F 52,000 33

1 8 Adams F 85,000 47

1 11 Flynn F 41,250 37

Query 3: Assign every female employee to class "1" and every male employee to

class "2".

Select 1 as Qvalue, *

From Employee

Where Sex = 'F'

Union

Select 2 as Qvalue, *

From Employee

Where Sex = 'M'

1 <- Sex = 'F'

2 <- Sex = 'M'

A. Usability Experiment 194

Qvalue EmpId LastName Sex Salary Age

1 1 Smith F 23,500 27

2 2 Jones M 27,000 31

1 3 Thompson F 48,950 25

1 4 Jackson F 18,750 22

2 5 Johnson M 38,000 40

2 6 Smythe M 66,000 41

1 7 Edwards F 52,000 33

1 8 Adams F 85,000 47

2 9 Benson M 18,000 19

2 10 Davis M 23,800 25

1 11 Flynn F 41,250 37

Query 4: Assign every employee to a class based on their salary. The class is

calculated by dividing the salary by 1000 and then taking the
oor of the resulting

value. If your are not familiar with the
oor function the
oor function rounds down

to the next smallest whole number. For example,
oor(23.5) = 23,
oor(1) = 1.

Select Floor(Salary/1000) as Qvalue, *

From Employee

Floor(Salary/1000) <-

A. Usability Experiment 195

Qvalue EmpId LastName Sex Salary Age

23 1 Smith F 23,500 27

27 2 Jones M 27,000 31

48 3 Thompson F 48,950 25

18 4 Jackson F 18,750 22

38 5 Johnson M 38,000 40

66 6 Smythe M 66,000 41

52 7 Edwards F 52,000 33

85 8 Adams F 85,000 47

18 9 Benson M 18,000 19

23 10 Davis M 23,800 25

41 11 Flynn F 41,250 37

Query 5: Assign every female employee to a class based on their age.

Select Age as Qvalue, *

From Employee

Where Sex = 'F'

Age <- Sex = 'F'

A. Usability Experiment 196

Qvalue EmpId LastName Sex Salary Age

27 1 Smith F 23,500 27

25 3 Thompson F 48,950 25

22 4 Jackson F 18,750 22

33 7 Edwards F 52,000 33

47 8 Adams F 85,000 47

37 11 Flynn F 41,250 37

Query 6: Assign every employee to class "1" if they earn less than 30000. Assign

them to class "2" if they earn at least 30000 but less than 38000. If they earn at least

38000 and are male assign them to class "3". Otherwise assign them to class "4".

Select 1 as Qvalue, * From Employee Where Salary < 30000

Union

Select 2 as Qvalue, * From Employee Where Salary < 38000 and Salary >=

30000

Union

Select 3 as Qvalue, * From Employee Where Salary >= 38000 and Sex = 'M'

Union

Select 4 as Qvalue, * From Employee Where Salary >= 38000 and Sex = 'F'

1 <- Salary < 30000

A. Usability Experiment 197

2 <- Salary < 38000

3 <- Sex = 'M'

4 <- Else

Qvalue EmpId LastName Sex Salary Age

1 1 Smith F 23,500 27

1 2 Jones M 27,000 31

4 3 Thompson F 48,950 25

1 4 Jackson F 18,750 22

3 5 Johnson M 38,000 40

3 6 Smythe M 66,000 41

4 7 Edwards F 52,000 33

4 8 Adams F 85,000 47

1 9 Benson M 18,000 19

1 10 Davis M 23,800 25

4 11 Flynn F 41,250 37

Query 7: Assign every female employee that makes more then 30000 and is not

33 or 25 years old to a class based on their salary. Assign all other employees that

earn 30000 or less and are not 33 or 25 years old to a class based on their age.

Select Salary as Qvalue, *

A. Usability Experiment 198

From Employee

Where Sex = 'F' and Salary > 30000 and Not (Age=33 or Age=25)

Union

Select Age as Qvalue, *

From Employee

Where Salary <= 30000 and Not (Age=33 or Age=25)

Except <- Age=33 or Age=25

Salary <- Sex = 'F' and Salary > 30000

Age <- Salary <=30000

Qvalue EmpId LastName Sex Salary Age

27 1 Smith F 23,500 27

31 2 Jones M 27,000 31

22 4 Jackson F 18,750 22

40 5 Johnson M 38,000 40

41 6 Smythe M 66,000 41

85,000 8 Adams F 85,000 47

19 9 Benson M 18,000 19

41,250 11 Flynn F 41,250 37

Query 8: Assign every employee to class "1" if they earn less than 30000. Assign

them to class "3" if they earn more than 50000. Otherwise assign them to class "2".

A. Usability Experiment 199

Select 1 as Qvalue, * From Employee Where Salary < 30000

Union

Select 2 as Qvalue, * From Employee Where Salary >= 30000 and Salary <=

50000

Union

Select 3 as Qvalue, * From Employee Where Salary > 50000

1 <- Salary < 30000

2 <- Salary < 50000

3 <- Else

A. Usability Experiment 200

Qvalue EmpId LastName Sex Salary Age

1 1 Smith F 23,500 27

1 2 Jones M 27,000 31

2 3 Thompson F 48,950 25

1 4 Jackson F 18,750 22

2 5 Johnson M 38,000 40

3 6 Smythe M 66,000 41

3 7 Edwards F 52,000 33

3 8 Adams F 85,000 47

1 9 Benson M 18,000 19

1 10 Davis M 23,800 25

2 11 Flynn F 41,250 37

Pre-Exam Survey

The following information will be used for statistical analysis purposes. Please do

not write your name on this or any other part of this set of pages.

Please circle the number that best represents your answer for the following ques-

tions.

1) The training materials were:

A. Usability Experiment 201

Clear 1 2 3 4 5 Unclear

2) Using SQL (Rule-Based) queries to perform classi�cation tasks seems:

Simple 1 2 3 4 5 Complex

Powerful 1 2 3 4 5 Weak

Fast to write 1 2 3 4 5 Slow to write

Easy to learn 1 2 3 4 5 Di�cult to learn

Easy to use 1 2 3 4 5 Di�cult to use

A.2 Exam Problems

There are three input tables used for the exam. The �rst, a patient table with

schema fPatientId; LastName; Sex; Age; PulseRate; SystolicBP;DiastolicBPg.

The following problems involve the patient table:

Problem 1)We want to develop an understanding of the patients in the database.

We propose to use the following age ranges to create an appropriate classi�cation of

the patients:

Less than 3 years old (Newborns)

Between 3 and 12 years old (Children)

Between 13 and 18 years old (Adolescents)

Between 19 and 65 years old (Adults)

A. Usability Experiment 202

More than 65 years old (Elderly)

Problem 2) We have received new national guidelines for analyzing pulse rates.

These guidelines are identi�ed in the following table:

Class Average Rate

Adult Males 70 - 74

Adult Females 76 - 80

Adolescents 70 - 80

Newborns 100 - 140

Children 86 - 92

Elderly 50 - 65

Write a query that places each adult male patient into a "Low", "Average", or

"High" class.

Problem 3) We have received new national guidelines for analyzing children's

blood pressure rates. These guidelines are identi�ed as follows (SystolicBP / Dias-

tolicBP):

Ages three to �ve: 116/76

Ages six to nine: 122/78

Ages 10 to 12: 126/82

Ages 13 to 15: 136/86

A. Usability Experiment 203

Write a query that separates children into two risk categories - "At Risk" and

"Not At Risk", using these guidelines.

Problem 4) For all patients older than 40 or younger than 20, create 4 classes -

"Older Men", "Older Women", "Younger Men" and "Younger Women"

The student table had the schema fStudentId; LastName; GPA; HoursCompleted;

Major; LiveOnCampus; Internationalg. The following four problems used this stu-

dent table:

Problem 5) Separate international students into classes based on whether they

live on campus or o� campus.

Problem 6) A student requires 128 hours to graduate. After a student is halfway

through with their hour requirements we assess each student's GPA, depending on

their major. If the major is "Computer Science", "Mathematics", or "Physics", we

increase their GPA by 5%. Separate students based on their adjusted GPA.

Problem 7) Separate students into classes based on their GPA: "Above 3.5",

"Below 2.5", and "Everyone Else".

Problem 8) Separate students into classes based on the hours completed. If a

student has more than 100 hours they are "Almost Graduated". All other students

are "Not Close".

The �nal table used in the exam was the stockmarket table with schema fStockSymbol;

A. Usability Experiment 204

CompanyName; Y earlyHigh; Y earlyLow; CurrentPrice; LastMonth; LastWeek;

OwnStockg. The problems associated with this table were:

Problem 9)We want to know whether stock's price is "trending down", "trending

up", or "stable". A stock is trending up if its current price is more than last week's

price and last week's price is more than last month's price. A stock is trending down

if its current price is less than last week's price and last week's price is less than last

month's price. Otherwise the price is stable.

Problem 10) We want to know whether we should "buy", "sell" a stock. We

buy stocks when we don't own them, their price is trending up and they are nearer

their yearly low than their yearly high. If we own a stock that that is trending down

and is nearer its yearly high we consider selling it.

Problem 11) Classify stocks as being "Closer to Yearly Low" or "Closer to Yearly

High" based on a comparison of the current price to the yearly high and low prices.

Problem 12) Classify stocks by the di�erence between the current price and last

week's price.

A.3 Post-Exam Survey

1) Using SQL (Rule-Based) queries to perform classi�cation tasks was:

A. Usability Experiment 205

Simple 1 2 3 4 5 Complex

Powerful 1 2 3 4 5 Weak

Fast to write 1 2 3 4 5 Slow to write

Easy to learn 1 2 3 4 5 Di�cult to learn

Easy to use 1 2 3 4 5 Di�cult to use

1) The solutions I gave for the exercises were::

Correct 1 2 3 4 5 Incorrect

E�cient 1 2 3 4 5 Ine�cient

Neat 1 2 3 4 5 Sloppy

A.4 Preference Survey

This survey was completed by the professional programmers.

1) As far as classi�cation tasks are concerned:

SQL Queries Rule-Based Queries

Faster to write 1 2 3 4 5 Faster to write

Powerful 1 2 3 4 5 Powerful

Awkward 1 2 3 4 5 Awkward

Understandable 1 2 3 4 5 Understandable

Easy to learn 1 2 3 4 5 Easy to learn

Easy to use 1 2 3 4 5 Easy to use

A. Usability Experiment 206

1) As far as classi�cation tasks that you think are simple are concerned:

SQL Queries Rule-Based Queries

Faster to write 1 2 3 4 5 Faster to write

Powerful 1 2 3 4 5 Powerful

Awkward 1 2 3 4 5 Awkward

Understandable 1 2 3 4 5 Understandable

Easy to learn 1 2 3 4 5 Easy to learn

Easy to use 1 2 3 4 5 Easy to use

3) As far as classi�cation tasks that you think are complex are concerned:

SQL Queries Rule-Based Queries

Faster to write 1 2 3 4 5 Faster to write

Powerful 1 2 3 4 5 Powerful

Awkward 1 2 3 4 5 Awkward

Understandable 1 2 3 4 5 Understandable

Easy to learn 1 2 3 4 5 Easy to learn

Easy to use 1 2 3 4 5 Easy to use

Curriculum Vitae

Dennis Groth

701 E. Maxwell Ln.

Bloomington, IN 47401

Home phone: 812-331-2296

Email: dgroth@cs.indiana.edu

Education

� Ph.D., Computer Science, Indiana University, May, 2002

� B.S., Computer Science, Loyola University of Chicago, 1983

Research Interests

� Information visualization for databases

� Database query formulation and processing

� Human computer interaction

� Software engineering education

� Data mining

� Data modeling

Publications

Conference/Workshop Papers

� Dennis P. Groth and Edward L. Robertson: An Integrated System for Database

Visualization, The Sixth International Conference on Information Visualization

(IV02), July 2002.

� Chris M. Giannella and Mehmet M. Dalkilic and Dennis P. Groth and Ed-

ward L. Robertson: Improving Query Evaluation with Approximate Functional

Dependency Based Decompositions, Proceedings of the 19th British National

Conference on Databases (BNCOD2002), July, 2002.

� Dennis P. Groth and Edward L. Robertson: An Entropy-Based Approach to

Visualizing Database Structure, The Sixth IFIP Working Conference on Visual

Database Systems (VDB6), May 2002.

� Dennis P. Groth and Edward L. Robertson: Discovering Frequent Itemsets in

the Presence of Highly Frequent Items, Rule Based Data Mining 2001.

� Dennis P. Groth and Edward L. Robertson: It's All About Process: Project-

Oriented Teaching of Software Engineering, 14th Conference on Software Engi-

neering Education and Training (CSEE&T), February, 2001.

� Dennis P. Groth and Edward L. Robertson: Architectural Support for Database

Visualization, New Paradigms for Information Visualization and Manipulation

1998.

Posters

� Dennis P. Groth and Edward L. Robertson: An Integrated Approach to Database

Visualization, Advanced Visual Interfaces 2002, May, 2002

Technical Reports

� Chris M. Giannella, Mehmet M. Dalkilic, Dennis P. Groth, Edward L. Robert-

son: Using Horizontal-Vertical Decompositions to Improve Query Evaluation,

Indiana University Computer Science, Technical Report 558, 2002.

� Dennis P. Groth and Edward L. Robertson: It's All About Process: Project-

Oriented Teaching of Software Engineering, Indiana University Computer Sci-

ence, Technical Report 532, 1999.

Textbooks

� Dennis P. Groth and Arijit Sengupta: Introduction to Database Applications:

A Problem-Solving Approach, McGraw-Hill, 1998.

Teaching Experience

Lecturer { I450/I451 Designing and Developing an Information System. Devel-

oped a new course for Informatics majors, in which student teams propose, and

implement an information system.

Instructor { P465/P565 Software Engineering for Information Systems I. Prepared

and provided lectures, assignments and exams. The course focuses on the design of

software systems for a real customer in a team environment.

Instructor { P466/P566 Software Engineering for Information Systems II. Pre-

pared and provided lectures, assignments and exams. The course focuses on the

implementation of software systems based on the design developed in the previous

course.

Instructor { B665/B666 Software Engineering Management. Led, in a seminar

format, the discussion of topics related to software engineering management and

directed the supervisors of the project teams.

Instructor { A114 Introduction to Database Applications. Prepared and delivered

lectures, assignments and exams.

Associate Instructor { I400/I590 Technology and Business. The course focused

on entrepeneurship and business plan development for student proposed high-tech

start-ups.

Associate Instructor { P465/P565 Software Engineering for Information Systems

I. Led discussion sections, graded exams and assignments, reviewed and assisted the

project teams design documents.

Associate Instructor { P466/P566 Software Engineering for Information Systems

II. Led discussion sections, graded exams and assignments, assisted the project teams

with implementation details and systems support.

Teaching Awards

Teaching Excellence Recognition Award, 1999.

Work Experience

Prior to entering graduate school, I had substantial industry experience. High-

lights from this experience are below:

1995 - 1996 Independent Software Development Consultant

Design and develop custom client/server applications, primarily within the phar-

maceutical industry.

1994 - 1995 Director, Crawford Consulting, Inc.

Responsible for Chicago regional business activities, including: Customer and

Proposal management; Hiring and sta� development.

Researched and performed due diligence review for acquisition of a software com-

pany.

1990 - 1994 Manager, Systems Development, Moore Advanced Services, a Unit of

Moore Business Forms

Designed and developed electronic form based systems as the major component

of a strategy to assist customers of Moore Business Forms decrease their reliance

on pre-printed business forms. Managed �ve separate development groups in dif-

ferent geographical locations simultaneously. Provided presentations to customers

and prospective business partners in support of sales activity. Presented technical

and strategic topics at several professional seminars, including, XPLOR and Uniface

user group. Developed annual strategic plan for system development, including �-

nancial, resource and product planning. Designed and developed an EDI ANSI X.12

based supply chain management system. With two coworkers, received U.S. Patent

5694551 for the system process.

1984 - 1990 Project Manager, Spectrum Healthcare Solutions, a Partnership of

Baxter Healthcare and IBM Corporations

Managed a team of programmers and analysts developing remote electronic link-

ages between physician o�ces and hospital systems. Implemented solutions at more

than 75 major health care facilities. Managed a team of programmers developing

electronic insurance claim processing software. Developed the IBM Doctor's O�ce

Manager System physician practice management system. Systems were sold to more

than 10,000 o�ces.

1983 - 1984 Consultant, Andrea Data Systems

Developed custom applications for the wholesale distribution industry.

