MSPLS 2002

Proceedings of the Workshop of the Midwest Society for
Programming Languages and Systems

Bloomington, Indiana
April 13, 2002

Editors: Jaakko Jarvi Andrew Lumsdaine
David S. Wise
{iajarvi|{lumgdswise}@cs.indiana.edu

The Midwest Society for Programming Languages and Systems (MSPLS) is a group
of people interested in programming languages, programming systems, and system
software in general, and who reside in the Midwestern USA. The MSPLS holds one-
day workshop meetings at least once each academic year. The aim of the MSPLS
Workshops is to allow an exchange of ideas in all areas of programming languages
and systems among researchers and practitioners from Midwestern universities and
companies.

This report contains the abstracts of the presentations given at the MSPLS Spring
workshop, held at the Computer Science department of the Indiana University. The
report contains 10 abstracts, including the abstract of the invited talk by Arch Robison.
The authors were given the option to submit a full paper in addition to the abstract.
Consequently, two full papers describing the work presented in the workshop are in-
cluded.

The MSPLS maintains a mailing list, which is used to inform about upcoming
events. The mailing list is open to anyone, and instructions for joining can be found at:
http://mail.cis.ohio-state.edu/ mailman/listinfo/mspls/.

C# for Complier Gurus

Arch D. Robinson
Intel

arch.robison@intel.com

C# is a new language that is part of Microsoft’s .NET. Like Java, it pretends to be a
C++ derivative, but is really more like typed Smalltalk dressed in C syntax. This talk
compares C# with Java and C++, from the perspective of a compiler writer. Like Java,
C# enforces a particular object-oriented style. Unlike Java, however, C# has a more
regular type system. For example, "int" is not a special type as it is in Java. C# has
far more creature comforts than Java, such as reference parameters, enums, multidi-
mensional arrays, and operator overloading. Like C++, C# has as an "unsafe" subset
that permits pointer arithmetic and abusive casting. Unlike C++, it lacks parametric
polymorphism and multiple inheritance of implementation. I'll explore these and other
differences, and also report on my experience, good and bad, with using C# to proto-
type compiler infrastructure. Some of the creature comforts that | first dismissed as
trivial syntactic sugar have become quite addictive.

Compiler Guaranteed Sequential Consistency

Xing Fang'*, Chi-Leung Wong?, Zehra Sura?, Jagjin Lee', Samuel P. Midkiff* and
David Padua?
I Michigan Sate University
2University of Illinois at Urbana Champaign
31BM T.J. Watson Research Center

*fangxing@cse.msu.edu

While sequential consistency is arguably the most intuitive and natural memory consis-
tency model for programmers, many shared memory multiprocessors follow a relaxed
consistency model. Relaxed consistency models allow reordering of reads and writes,
enabling a variety of hardware level optimizations. This boosts system performance,
but at the price of difficult programming and porting. In this project, we are building a
compiler that achieves the best of both worlds: performance and ease of programming.
The compiler provides a sequentially consistent view of the underlying architecture to
the programmer by automatically mapping the program with sequentially consistent se-
mantics to hardware supporting relaxed consistency. This is done by inserting memory
fence instructions, where necessary, to force the program execution to be sequentially
consistent. A simple thread-escape analysis is first performed on the programs, and the
resultis used to direct fence insertion algorithms in the later passes of the compiler. We
present different fence insertion optimization algorithms developed and implemented
in Jikes Research Virtual Machine.

The Pensieve Project: A Compiler Infrastructure for
Memory Models

Chi-Leung Wong!, Zehra Surat, Xing Fang? Samuel P. Midkiff?, Jagjin Lee?, David
Padua’
LUniversity of Illinois at Urbana Champaign
2Michigan State University
3IBM T.J. Watson Research Center

*cwongl@uiuc.edu

The design of memory consistency models is difficult since the ideal model should be
easy to use yet allow an implementation that provides good performance. Memory
model design is even more difficult for programming languages since the audience is
much wider. The Java Memory Model (JMM) demonstrates the difficulty of design-
ing a memory consistency model for a language. For example, a common idiom (the
“double check idiom”) is unsafe with the JMM. In this paper, we describe the design
of an optimizing compiler infrastructure in the Pensieve project that allows users to
select or customize the memory consistency model for the code to be compiled. The
compiler uses the input model to constrain optimizations and code generation. To
avoid overly-conservative code generation, the compiler uses rigorous analyses to en-
able more optimizations to be performed. This includes escape analysis, Shasha and
Snir's delay set analysis and our Concurrent Static Single Assignment Form program
representation. When completed, the compiler will serve as a testbed to prototype new
memory models, and to measure the effect of different memory models on program
performance. Moreover, programmers will be able to select suitable memory models
for their specific application use.

The Architecture of a World-Wide Distributed Repository
to Support Fine-Grained Sharing of Source Code

Jeffrey Mark Siskind
School of Electrical and Computer Engineering
Purdue University

gobi@purdue.edu

There has been an explosion in free software over the past few years. Vehicles like FSF,
GNU, CVS, RPM, Linux, and freshmeat.net allow programmers to share hundreds of
millions of lines of source code. These vehicles, however, support only coarse-grained
source-code sharing. The unit of sharing is a complete package. And packages are
monolithic. About the only thing one can easily do with packages obtained from such
vehicles is install them. While a package might contain a collection of procedures and
type declarations that implement some functionality that a programmer might wish to
reuse in a different system, it is difficult to find which package contains that func-
tionality, extract that functionality from its original package, and import it into a new
system. In this talk, | present a new vehicle, called October, that is designed to support
fine-grained source-code sharing: sharing at the level of individual procedure and type
declarations. Unlike CVS, which allows many people to share in the development of
the same system, October allows many people to share in the development of different
systems.

October is organized like the Web. Instead of Web pages there are top-level def-
initions. Top-level definitions are stored in a distributed repository implemented by
October servers that are analogous to Web servers. They are viewed and manipulated
by October browsers that are analogous to Web browsers. October servers and browsers
communicate via the October protocol which plays the role of HTTP and allows dif-
ferent server and browser implementations to interoperate. The October protocol is
designed from the start with support for searching, caching, mirroring, and load bal-
ancing. These play the role of search engines, proxy servers, and Web caches. Search
is currently based on string matching, though future plans call for type-based search
supported by local and global type inference built into the October protocol and im-
plemented by the October servers. Top-level definitions are stored as abstract syntax
trees (ASTs) which play the role of HTML. Instead of URLSs there are version locators.
Top-level definitions are hyperlinked via embedded version locators. When building
an executable, the browser crawls the repository to fetch all top-level definitions refer-
enced directly or indirectly by the top-level definition being built.

October is designed to be programming-language and programmer-preference neu-
tral. It is neither a new programming language nor a new compiler. Rather, it supports
existing programming languages and compilers. Just as the Web supports different doc-
ument styles via DTDs, October supports different programming languages and pro-
grammer preferences via programming language definitions (PLDs). A novel aspect
of PLDs is that they separate the definition of the abstract syntax for a given language
from the mapping between abstract and concrete syntax. This allows users to configure
their browsers to dynamically render the code they view in a different concrete syntax

according to their personal preference. PLDs are currently written to support Scheme,
C, and Java.

The overall goal of October is to boost world-wide programmer productivity by en-
couraging an unprecedented degree of source-code sharing, shifting the prevalent mode
of programming from implementation to augmentation. In this talk, | will describe how
October is designed to support this goal, discuss how this goal motivates and influences
the creation of a new infrastructure, present some of the technical problems and design
tradeoffs addressed so far while creating this infrastructure, and give a live demo of the
prototype implementation of October.

GNUnet - An Anonymous Network

Christian Grothoff
Purdue University

grothoff@cs.purdue.edu

This talk describes the design of a censorship-resistant distributed file sharing proto-
col which has been implemented on top of GNUnet, an anonymous, reputation-based,
network. We describe the semantics of the networking infrastructure and their implica-
tions on GNUnet's design. Finally we describe a solution to the problem of achieving
accountability in an anonymous network without using any trusted nodes.

Aspect-Oriented Frameworks For Weaving Design
Concerns

Atef Bader!, Faisal Akkawi?*aand Tzlla Elrad?

1 Lucent Technologies
11linois Institute of Technology

*akkawif@iit.edu

Aspect-oriented technology is a programming paradigm that provides the user with the
ability to modularize the representation of crosscutting concerns in order to maximize
reusability and ensure flexibility of the software system. In this position paper we
present the dynamic Weaver Framework (DWF), which is an aspect-oriented frame-
work that supports the dynamic attachment and detachment of aspects to components
at run-time, as well as the capability to add and remove aspects and pointcuts during
runtime. This capability is the prime factor that enables us to support reconfigurability
of the software system. The need to adapt to environmental changes and cope grace-
fully with the challenges that may have an impact on performance degradation, safety
and liveness properties of the running system requires recongfigurability of both the
functional and aspectual properties of the system software.

A Robust Algorithm for Partial Redundancy Elimination in
Static Single Assignment Form

Thomas VanDrunen
Purdue University

vandrutj@cs.purdue.edu

Partial redundancy elimination (PRE) is a program transformation that optimizes by
identifying expressions that are redundant on at least one (but not necessarily all) ex-
ecution paths. It inserts computations along edges on which such an expression is not
redundant, and then eliminates the expression by reloading its value from a temporary.
Chow et al. [Chow97, Kennedy99] devised an algorithm for performing partial re-
dundancy elimination on intermediate representation in static single assignment (SSA)
form which does not break SSA. Their algorithm, however, makes assumptions about
the name space which may not be valid if other optimizations already have been per-
formed on the program. Moreover, a single execution of their algorithm may expose
(but not eliminate) new redundancies, so that several passes may be needed to eliminate
all of them. We present an algorithm based on Chow’s which makes no assumptions
about the name space and eliminates all redundant computations in a single path.

Compiling with Code-Size Constraints

Jens Palsberg* and Mayur Naik
Purdue University

*palsberg@cs.purdue.edu

Most compilers ignore the problems of limited code space in embedded systems. De-
signers of embedded software often have no better alternative than to manually opti-
mize the source code or even the compiled code. Besides being tedious and error-prone,
such manual optimization results in obfuscated code which is difficult to maintain and
reuse. In this talk we present a code-size-directed compiler. We phrase register alloca-
tion and code generation as an integer linear programming problem where the desired
bound on the code size is expressed as an additional constraint. Our experimental re-
sults show that our compiler, when applied to two commercial microcontrollers, can
generate code that is as compact as carefully crafted code.

Compilation of a High-Level Quantum Chemistry
Language into Efficient Parallel Code

Gerald Baumgartner®-*, David E Bernholdt?, Daniel Cociorval, Robert Harrison?,
Chi-Chung Lam', Marcel Nooijen*, J. Ramanujan?, P. Sadayappan'

1Ohio State University
20ak Ridge National Laboratory
3Pacific Northwest National Laboratory
4Princeton University
5Louisiana State University

*gb@cis.ohio-state.edu

Many computational models of the electronic structure of atoms and molecules, such
as the Coupled Cluster approach, involve collections of very computationally intensive
tensor contractions. The development an efficient parallel program for such a computa-
tional model is very complex and can be the main limiting factor in the rate of progress
of the science. We give an overview of an optimizing compiler we are developing, that
will translate high-level tensor contraction expressions into high-performance parallel
code. We describe the structure of several optimization components and demonstrate
their utility using examples.

A Query Language for Feasible Computations over List
and Tree Databases

Dirk Van Gucht!-*, Ed Robertson!, Larry Saxton?

lIndiana University
2University of Regina, Canada

*vgucht@cs.indiana.edu

We present a language for querying list and tree-structured objects. These objects
permit arbitrary-depth sublists or trees. The language is shown to express precisely
the feasible, i.e. polynomial-time, generic computations over such structures. The lan-
guage controls complexity by carefully restricting the replication of values and limiting
the nesting of recursion. We also discuss the relationship of our language and XQuery,
a query language for XML databases.

Dynamic Weaving for Building
Reconfigurable Software Systems

FAISAL AKKAWI ATEF BADER TZILLA ELRAD
akkawif@iit.edu abader@lucent.com elrad@iit.edu
Computer Science Dept. Lucent Technologies Computer Science Dept.
lllinois Institute of Technology Naperville, IL 60655 lllinois Institute of Technology
Chicago, IL 60616 Chicago, IL 60616

Abstract

Aspect-oriented technology is a programming paradigm that provides the user
with the ability to modularize the representation of crosscutting concerns in order
to maximize the reusability and ensure the flexibility of software system. In this
position paper we present the Dynamic Weaver Framework (DWF), which is an
aspect-oriented framework that supports the dynamic attachment of aspects to
components at run-time and also the dynamic detachment of aspects from
components. As well as the capability to add and remove aspects and pointcuts
during runtime. This capability is the prime factor that enables us to support
reconfigurability of software systems. The need to adapt to environmental
changes and cope gracefully with the challenges that may have an impact on
performance degradation, safety and liveness properties of the running system
requires recongfigurability of both the functional and aspectual properties of the
system software.

K eywor ds: Dynamic Weaver Framework, reconfigurabiligynamic adaptability.

I ntroduction

Aspect-oriented software design research [3,4,5,6] has stressed the need to address
crosscutting concerns earlier in the design phase in order to avoid the associated code-
tangling phenomenon and its undesirable implications.

Software systems go through cycles by which new requirements are introduced that may
necessitate changes to their behavioral and structural properties. Some of these changes
require invasive modifications. The visitor pattern [7] may reduce the effects of the
invasive changes but can’t eliminate them. Similarly, few of the structural and behavioral
patterns [7], like decorator, adaptor, and proxy patterns, may help reduce the effect of the
non-invasive changes but can’t eliminate them. In [2] the authors presented the Aspect
Moderator Framework which is based on a static proxy that can provide weaving of
predefined aspects at runtime, but once compiled we can’'t change them. DWF enables
applications to adapt to changes at run time, because components and aspects are
independent from each other’'s and they are woven at runtime. The component and the
aspect in DWF must have a predefined interface, but the users are free to change the class

implementation at runtime. Also, components have no knowledge of the number and
type of aspects they are affected by. So we can change the number and the type of aspects
associated with a component at runtime by addPointcut() in the aspect class as shown in
Figure 2. Other kind of features, like debugging, security, and logging, that may require
be activating or deactivating during runtime can benefit from reconfigurability so that
different security measures can be introduced or new pointcut added.

Design for change in order to adapt gracefully to the evolving requirements can be
farther supported when we consider both the behavioral and structural properties as core
elements when addressing dynamic adaptability. While the behavioral property
represents the ability to add or alter the behavior of methods in a program, the structural
property represents the ability to alter class definitions and the implementation used in
the program. There are a number of patterns that are documented in the software pattern
literature that show how these patterns can be used to support static and dynamic
adaptability of software systems, but these patterns once implemented and compiled will
be difficult to alter at runtime

Dynamic Weaver Framework

Recognizing crosscutting concerns when building software systems is crucial to
guarantee design and code reuse. And identifying the micro-architectural elements that
constitute the skeleton of the crosscutting concerns is even more important for the design

and reusability of these concerns. In Figure 1 we illustrate the micro-architectural
elements of the dynamic weaver framework.

A

Synch Aspect Buffer Sched Aspect

Advice
gut(()) 4 (0 puy CP;ut(())
et e : et
v Get() Advice

Security Aspect

<
e 4 “\HW‘“ - ‘“HHH W —

PutGet()_

4

Using behav gigre 1:Architectural Elements in the Dynamic Weaver Framework.
since proxie

cases we end up re-implementing each method in the super class or interface and add the

control access code to it, it turns out that proxies are not reusable. Ideally we wish to
make aspects generic; but using a proxy for the logging aspect for example would require
us to add it the hard way for each method call

Our DWF takes advantage of the dynamic proxy capability in java J2SE[1l]. The
framework structure is depicted in the class diagram figure 2. Each class uses dynamic
proxy class, which represents the aspect weaver class, from the java J2SE. The dynamic
proxy class is responsible for creating that proxy object of the initiator object. And each
proxy has a number of aspects, and each aspect has a number of pointcuts. The join point
in our framework is the method call. Each point cut has an advice class that has two
methods beforeAdvice() and afterAdvice() that will be executed when control reaches the
join point methods. The semantics of aspect, pointcut, and advice are similar to the ones
cited in AspectJ [8].

Class Buffer implements Buffer | F {

Put(){ .}
} Get(){ -}

The Aspect Weaver Framework uses the DynamicProxy class that is part of the J2SE in
order to weave classes and their prospective aspects at runtime. The AspectWeaver
intercepts the message to the component and redirects it to the AspectRepository. The
AspectRepository keeps the information about the aspect(s) (e.g. scheduling,
synchronization, security...) to be applied and the order in which they have to be
executed. The DWF has a loose coupling between component and aspects, because the
component and the aspects no longer have direct reference between them Let us
consider an example in which we want to add the debugging concern into the bounded
buffer example to show how the framework works.

First we implement the BufferlF

Class Buffer implements BufferlF {

Put(){..}
Get(){.}

<<interface> Observable
> Observer opserves
addObserver()
update() deleteObserver()
notifyObservers(
setChanged()
A
Uses p
AspectRepository
Agent addAspect() AspectTable Preference
remove_Aspect() 1| hasAspect()
addPolicy() =1 getAspect() enqueue()
removePoI!cy() addAspect() dequeue()
changePolicy() removeAspect()
beforeAdvice()
afterAdvice() c @
o *
— 18
User T Aspect Pointcut
AspectWeaver addPointcut() .| addAdvice()
removePointcut(F>>—>1 removeAdvice()
beforeAdvice() beforeAdvice()
Use&b afterAdvice() afterAdvice()
<<interface>> U
Component| F Uses seqv
Adv_Sync <<interface>> Adv_Pref
Advicel F
beforeAdvice() enqueue()
afterAdvice() beforeAdvice() dequeue()
afterAdvice() beforeAdvice()
Component afterAdvice()
< Uses

Figure 2. Dynamic Weaver Framework

Then we create the AspectWeaver. The AspectWeaver is the dynamic proxy, which
directly interacts with the clients (e.g., producers and consumers using the bounded
buffer) and does the actual weaving of aspects at running. All the access from the
clients to the bounded buffer will be accomplished through this dynamic proxy.
Figure 3 shows the java code for AspectWeaver. Whenever a client calls a method of
the bounded buffer, the proxy executes the invoke() method in the AspectWeaver.
Inside the invoke(), AspectRepository's beforeAdvice() is called. If the call is
successful, the actual operation on buffer is performed by m.invoke() as shown in the
code. After this call is completed, AspectRepository's afterAdvice() method is called.

public class Aspect Weaver inplenents |nvocationHandl er {
private AspectRepository _ar;
private bject _buf;

public static Object new nstance(Obhj ect buf, AspectRepository ar) {
return Proxy.newProxyl nstance(buf.getd ass().getd assLoader (),
buf.getd ass().getlInterfaces(),
new Aspect Waver (buf, ar));

}

private Aspect\Waver (bj ect buf, AspectRepository ar) {
_ar = ar;
_buf = buf;

}

public Object invoke(Ohject proxy, Method m Object[] args)
throws Throwabl e {

oject result = null;

try {
_ar. beforeAdvi ce(_buf, m args);
result = minvoke(_buf, args);
_ar.afterAdvice(_buf, m args, result);

} catch (InvocationTarget Exception e) {

throw e. get Tar get Excepti on();
}

return result;

}
b
Fi gure3

The aspect repository class is responsible for maintaining a list of aspects that are
published and registered by other classes, as shown in Figure 4.

public class Aspect Repository extends Cbservabl e
i mpl enents Aspect Repositoryl F {
public static final int ABORT = 1, BLOCK = 2, RESUME = 3;
private Aspect Tabl e aspect Thl = new Aspect Tabl e();

public synchroni zed voi d beforeAdvi ce(Obj ect obj, Method m oject[] args) {
Task task = new Task(m get Nane());
int i, rc;
Aspect a;
Preference policyAdvice;
bool ean nust\Wait = fal se;

for(i = 0; i < aspectThl.size(); i++) {
a = aspect Thl . get Aspect (i);
nmust Wait = fal se;
if (occupied)
nust Wait = true;
el se {
rc = a.beforeAdvice(obj, m args);
if (BLOCK == rc)
nust Wait = true;

}
while (nustWait) {

}
}

Figur 4

The AspectRepository contains the AspectTable, which has all the registered aspects
the table is empty, i.e. no aspect is registered. Adding and removing
advices of certain aspect can be done by calling the corresponding methods of the

in it. Initially,

AspectTable

public c
privat

public
public
public
public
public
public

}
public

.

Figure 5

pol i cyAdvi ce = (Preference)

aspect Thbl . get Aspect (" SCHED") . get Poi nt cut (" DEFAULT") . get Advi ce(0) ;

pol i cyAdvi ce. enqueue(t ask) ;

try { this.wait(); }

catch(InterruptedException iex) { /* lIgnore iex */ }
pol i cyAdvi ce. dequeue(t ask) ;

i f (task.equal s(taskToBeAwakened)) {

mustWait = false; // Exit this while |oop and
i =-1, /] Force all the aspects to be checked agai n.

}

. As shown in Figure 5.

| ass Aspect Tabl e {
e Vector _aspects = new Vector();

int size() { .. }

bool ean hasAspect (String aspect_nane) { .. }

Aspect get Aspect (String aspect_nane) { .. }

Aspect getAspect(int index) { .. }

Aspect addAspect(String aspect_name) { .. }

bool ean addAspect (String aspect_nane, String pointcut_nane,
String met hod_nane, Advicel F advice) {

voi d renpveAspect (String aspect_nane, String pointcut_nane,
String met hod_nane) {

AspectTable can contain multiple Aspect objects. Each Aspect can contain
multiple Pointcuts. The method addPointcut() is used for adding new advice. The
removePointcut() method removes an advice from a given Aspect. The
beforeAdvice() and afterAdvice() methods are invoked inside the
AspectRepository’s corresponding methods as shown in figure 6, each Aspect
object has a number of Pointcut objects and a name for itself. The three arguments
passed in the beforeAdvice() method are a reference to the shared object, the
Method object, and the array of arguments to the specific shared object's method
begin called. All these arguments are to be used inside the current beforeAdvice()
method or to be passed on to the Pointcut.beforeAdvice() method. Most of the
time, not all of these arguments are used. Nevertheless, they need to be passed to
the beforeAdvice() method because some of the advices may utilize those
information. For example, a logging advice needs to know all the data passed to
the shared object. The afterAdvice() method has all the same parameters as those
of beforeAdvice() method. Additionally, it has an argument defined as Object
result. This represents the result of a specific shared method's method.

public class Aspect {
private String _aspect_nane;
publ i c Hashtable _pointcuts = new Hashtabl e();

public int beforeAdvice(Object obj, Method m Object[] args){
i f (_pointcuts. containsKey("DEFAULT")) {
Poi ntcut p = (Pointcut) _pointcuts. get("DEFAULT");
return p.beforeAdvice(obj, m args);

}
return Aspect Repository. RESUVE;

}

public Object afterAdvice(Object obj, Method m Object[] args, Object result){
i f (_pointcuts. containsKey("DEFAULT")) {
Pointcut p = (Pointcut) _pointcuts. get("DEFAULT");
return p.afterAdvice(obj, m args, result);

}

return null;
}
}

Figure 6

An Aspect can contain multiple Pointcut objects. And each Pointcut can contain
multiple Advices. The method addAdvice() is used for adding a new advice. The
removeAdvice() method removes an advice from a given Pointcut. The
beforeAdvice() and afterAdvice() methods are invoked by the corresponding Aspect’s
same-named methods. Class Pointcut is shown in Figure 7. Three arguments passed
in the beforeAdvice() method are a reference to the shared object, the Method object,
and the array of arguments to the specific shared object's method being called. All
these arguments are to be passed on to the advice's beforeAdvice() method. Four
arguments passed in the afterAdvice() method will also be passed on to the advice's
afterAdvice().

public class Pointcut {
private String _pointcut_namne;
publ i c Hashtabl e _advices = new Hashtabl e();

public int beforeAdvice(Cbject obj, Method m Object[] args){
Advi cel F adv = (Advicel F) _advices. get(m getNane());
if (adv == null)
return Aspect Repository. RESUVE;
return adv. beforeAdvi ce(obj, m args);

}

public Object afterAdvice(Object obj, Method m bject[] args, Object result){
Advi cel F adv = (Advicel F) _advices. get(m getNane());
if (adv !'= null)
return adv. afterAdvice(obj, m args, result);
return null;
}
}

Fi gure?

Actual behavior of each aspect is provided by an object whose interface is defined by
AdvicelF. They will be woven at runtime by the dynamic proxy, i.e. AspectWeaver.
The interface for Advice is shown in Figure 8.

public interface AdvicelF {

public int beforeAdvice(Object obj, Method m Object[] args);

public Object afterAdvice(Object obj, Method m Object[] args, Object result);
}

Figure 8

Shown below is the implementation of the synchronization advice for the bounded
buffer's get() method. The beforeAdvice() method returns one of the integer constants
defined in the AspectRepository; RESUME, BLOCK, and ABORT

public class Adv_SyncGet inplenents AdvicelF {
public int beforeAdvice(Object obj, Method m Object[] args) {
BoundedBuf fer bb = (BoundedBuffer) obj;
if (bb.getCnt() >0) {
return Aspect Repository. RESUVE;
} else {
return Aspect Repository. BLOCK;
}
}

public Object afterAdvice(Object obj, Method m Object[] args, Object result) {
return null;
}
}

Dynamic Weaving and Reconfigur ability

The Dynamic Weaver Framework has a number of advantages; it provides the capability
to add and remove aspects as well as pointcuts at runtime. This capability is the prime
factor that enables us to support reconfigurability in order to adapt to environment
changes and cope gracefully with any challenges that may have an impact on
performance degradation and safety and liveness properties of the running system.
Changes to the software systems may affect the structural or behavioral properties.
Although the Visitor pattern [7] may reduce the severity of the invasive changes and the
Decorator and Proxy pattern may support the engineering of the non-invasive changes,
these patterns offer very little to support the design and implementation of the
crosscutting concerns, especially in the cases where we desire to alter, add, or remove
these crosscutting concerns at run time from the running system. The DWF represents the
solution for all of these problems that are hard to anticipate fully during the design phase.

For instance, we may need to add a new pointcut or add a join point to a list of methods
that comprise the point cut. An example of this is the addition of a new mejtei¢) to

the pointcut of the synchronization aspect, or altering the advice class for a certain joint
point, like changing the scheduling point cut for the method get, to service requests based
on the priority of the thread.

Conclusion

In this paper we presented an approach by which aspects and components can be weaved,
altered or removed dynamically. This approach is a step toward automating the weaving
process at runtime. Recognizing the micro-architectural elements of crosscutting
concerns during the design phase is essential to ensure the reusability and
reconfigurability of the resulting software system, and the DWF is an attempt to meet
these desirable properties when crafting software systems

References

[1] http://ww.java.sun.com/jdk1.3.

[2] Constantinos Constantinides, Atef Bader, and Tzilla Elrad. A Framework to Address
a Two-Dimensional Composition of Concerns. Position paper to the OOPSLA '99 First
Workshop on Multi-Dimensional Separation of Concerns in Object-Oriented Systems.

[3] Gregor Kiczales, John Lamping,Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-MarcLoingtier, and John Irwin. Aspect-Oriented ProgrammindPréceedings of
ECOOP '97. LNCS 1241.Springer-Verlag, pp. 220-242. 1997.

[4] Bedir Tekinerdogan and Mehmet AksitDeriving Design Aspects from
CanonicalModels. Position paper in ECOOP '97 workshop on As-pect- Oriented
Programming.

[5] Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns in
Hyperspace.Position paper at the ECOOP '99 workshop on Aspect-Oriented
Programming.

[6] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is

Quantification and Obliviousness. In Workshop on Advance Separation of Concerns,
OOPALA, Minneapoils, USA, 2000.

[7] E. Gamma, R. Helm, R. Johnson & J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

[8] The aspectj web sitédttp://www/aspectj.org/

A Robust Algorithm for Partial Redundancy Elimination in Static
Single Assignment Form

Thomas VanDrunen

April 4, 2002

Abstract

Partial redundancy elimination (PRE) is a program transformation that optimizes by identifying expressions that
are redundant on at least one (but not necessarily all) execution paths of a control flow graph of the program. It
inserts computations along control flow edges on which such an expression is not redundant, and then eliminates the
expression by reloading its value from a temporary. Chow et al. [5, 11] devised an algorithm for performing partial
redundancy elimination on intermediate representation in static single assignment (SSA) form which preserves that
form across the transformation. Their algorithm, however, makes assumptions about the name space which may not be
valid if other optimizations already have been performed on the program. Furthermore, there are some cases where
the algorithm exposes redundancies but does not eliminate them, which requires the optimization to be performed
more than once to eliminate all redundant computations. We present an algorithm based on Chow’s which makes no
assumptions about the namespace and eliminates all redundancies in a single pass.

1 Introduction

While machine-level program optimization advances alongside of research in computer architecture, the optimizing
of intermediate representation (IR) also enjoys research attention. Besides being of theoretical interest because of
their generality and their amenability to proofs of correctness, these optimizations are useful in compiler construction
because they apply to compilation from almost any source language to almost any target architecture. Even though
system-dependent liabilities exist, causing effectiveness to vary (for example, keeping a value in a register instead
of recomputing it or writing to memory may increase register pressure and hurt performance by causing spills — it
depends on the number of registers and the cost of memory access), reducing the number of computations on a control
flow path will almost certainly improve performance at least modestly.

1.1 Partial redundancy elimination

Partial redundancy elimination (PRE) is one such program transformation. Pioneered by Morel and Renvoise [14], it
identifies computations that may have been performed at an earlier point in the program and replaces such computa-
tions with reloads from temporaries. We sayay have been performed” because PRE considers computations that
were performed on some, but not necessarily all, control flows paths to that point — in other words, computations that
arepartially redundant. In such cases, a computation must be inserted along paths to that program point that do not
already compute that value, and care must be taken so that the length of no path is ever increased and no execution
of the optimized program performs a computation which an execution of the unoptimized program would not have
done. The net effect is to hoist code to earlier program points. This transformation subsumes common subexpression
elimination and loop-invariant code motion.

Throughout this paper, we will discuss transformations as they would be performed on an IR thatarges a
flow graph (CFG) overbasic blocks. A basic block is a code segment that has no jump or branch statements except
for possibly the last statement, and none of its statements, except possibly the first, is a target of any jump or branch
statement. A CFG is a graphical representation of a procedure that has basic blocks for nodes and whose edges

AN

(a) Critical edge highlighted (b) With the critical edge having been removed

Figure 1: Critical edge example

a a a a
ceatb ta+b ta+b
c+t
d<a+b d+«t
(a) Before PRE (b) After PRE

Figure 2: PRE example

represent the possible execution paths determined by jump and branch statements. We assume that all critical edges
have been removed from the CFG, that is, edges from blocks with more than one successor to blocks with more than
one predecessor. Such an edge can be eliminated by inserting an empty block between the two blocks connected by
the critical edge, as illustrated in Figure 1. We further assume that the instructions of the intermediate representation
that interest us are in three-address form, saving their result to a variable or temporary.

Another useful abstraction for control flow is theminator tree. The nodes in the dominator tree are the same as
the nodes of the control flow graph, but the children of a given node are the nodes that are immediately dominated by
that node, that is, nodes that are dominated by it and are not dominated by any other node also dominated by it (note
that this excludes the node itself). Theminance frontier of a basic block is the set of blocks that are not dominated
by that block but have a predecessor that is.

Having described the basics of program representation, we now consider an example of PRE performed on a code
fragment in that representation. In the unoptimized version of this fragment in Figure 2(a), the expiesdida
redundant when the left control flow path is taken, computed twice without any change to the operands. However, it is
not redundant along the right edge; even if it were computed sometime earlier in the program, the predecessor block
along that edge modifies one of the operands. Thus the exprespanti&ly redundant in the bottom basic block.

To remove the partially redundant computation, we insert a copy of it in the right predecessor, since the value of the
computation is unavailable along the incoming edge from it. This insertion makes the expression in the bottom basic
block fully redundant. If we allocate a fresh temporagnd save each early computation to it, the later computation

ay < as <
c<—a+b

az < ¢(ai,a1)
d<az+b

Figure 3: SSA form

can be replaced by that temporary. In this way we produce the optimized code found in Figure 2(b).

Notice that PRE does not reduce code size. Both the optimized and unoptimized versions in this example contain
two occurrences of the computation. Moving the code, however, decreases the length of the left execution path. The
length of the right execution path is unchanged.

1.2 Static singleassignment form

Static single assignment (SSA) form is an intermediate representation property where each variable — whether rep-
resenting source-level variables chosen by the programmer or temporaries generated by the compiler — has exactly
one definition point. Even though definitions in reentrant code may be visited many times in the course of execution,
statically each SSA variable is assigned exactly once. If several assignments to a variable occur in the source program,
the building of SSA form splits that variable into several versions, one for each definition. Basic blocks where exe-
cution paths merge (such as the bottom block in our example) represent the consequent merging of varigbies by a
function. Phi functions occur only in instructions at the beginning of a basic block (before all non-phiinstructions) and
have the same number of operands as the block has predecessors in the CFG, each operand corresponding to one of
the predecessors. The result of a phi function is the value of the operand associated with the predecessor from which
control has come. A phi function is an abstraction for moves among temporaries which would occur at the end of
each predecessor — SSA form does not allow such moves since each would have the same variable as its target. For
simplicity we will refer to phi functions and the instructions that contain them simpljsagigure 3 shows the SSA

form of the program considered above.

SSA is desirable for many transformations and analyses because it implicitly provides def-use information: For
any given use of a variable, the definition relevant to that use is known immediately because a variable (by which we
mean, an SSA version of a variable) has only one definition; a given definition’s set of uses is simply all places where
the target of the definition is used. SSA also relieves the optimizer from depending on the programmer’s choice of
variable names and the way variables are reused in the program, since a transformation may regard each version of a
variable as a completely different variable.

1.3 Reated work

As already mentioned, PRE has its origin in the work of Morel and Renvoise [14]. They presented PRE as a general-
ization of two operations previously regarded as distinct: the elimination of redundant computations and the hoisting
of invariant computations out of loops. Drechsler and Stadel extended this work so that subexpressions can be cleanly
removed if they are redundant but contained in larger expressions that are not [8]. Thus the transformation generalizes
common subexpression elimination as well as invariant code motion.

Knoop et al synthesized several previously known algorithms into a code motion technique that was computation-
ally optimal for eliminating redundant computations [12]. Under the hard constraint of control flow path optimality,
their algorithm placed computations as late as possible to reduce register pressure. This algorithm was made more
practical by Drechsler and Stadel in [9] and by the original authors in [13].

PRE was also given attention for its usefulness in concert with other program transformations. Briggs and Cooper
proposed reassociation and global value numbering as enabling optimizations to make PRE effective [4]. At the same
time, Click presented an alternative to PRE: a heuristic code motion technique that did not remove redundant code,
followed by a global value numbering phase [6]. This combination, he argued, was more effective than traditional
PRE. Value numbering was also used for redundancy elimination in Taylor Simpson’s Ph.D. thesis [16]. However,
although they have similar effects, value numbering is not completely comparable with PRE, as noted in section 12.4
of [15]. The recasting of the algorithm presented in this paper as a value numbering problem or the use of value
numbering in conjunction with it is an area of future investigation (see section 5).

One challenge to combining any set of optimizations is finding a suitable, common program representation. If all
optimizations use and preserve the same IR properties, then the task of compiler construction is simplified, optimiza-
tion phases easily can be reordered or reentered, and expensive IR-rebuilding is avoided. Despite SSA's usefulness as
an IR, prior work on PRE not only had not used SSA, but, in the case of [4], explicitly broke SSA before performing
PRE. Chow et al presented a PRE algorithm which assumed and preserved SSA form, SSAPRE [5, 11]. Itis on that
algorithm that the present work is principally based.

Another advancement was made by Boef al by considering path-based value nhumbering as a form of PRE and
noticing that more redundancies could be eliminated if changes were made to the CFG [2, 3]. These will be described
later in the paper.

The contribution of the present work is a simplification of Chow’s algorithm which relaxes restrictions made on
the input code and incorporates some of the techniques found ik Bod”

Rest of thepaper. Our algorithm is presented as an advancement over the algorithmin [5, 11]. Section 2 summarizes
Chow’s SSAPRE algorithm and walks through examples on which it fails. Section 3 explains our robust algorithm.
Section 4 reports and comments on measurements of the performance of the optimization. Section 5 concludes by
considering future work, particularly plans to coordinate this algorithm with other optimizations.

2 Chow’salgorithm

21 Summary

Chow’s algorithm for SSAPRE associates expressions that are lexically equivalent when SSA versions are ignored.
For exampleq; + b3 is lexically equivalent ta, + b7. We consider + b as the canonical expression and expressions
like a; + by as versions of that canonical expression; lexically equivalent expressions are assigned version humbers
analogous to the version numbers of SSA variableshistatement® (or simply x) merges versions of expressions at
CFG merge points just ass merge variables. The chis can be thought of as potential phis for a hypothetical temporary
that may be used to save the result of the computation if an opportunity for performing PRE is found.

As a ¢ stores its result in a new version of the variable,ysoare considered to represent a new version of the
expression. The operands of gwhich correspond to the incoming edges juspagperands do) are given the version
of the expression that is available most recently on the path they represent. If the expression has never been computed
along that path, then there is no version available, andcthperand is denoted hy. xs andy operands are also
considered occurrences of the expression; expressions that appear in the code are differentiated from them by the term
real occurrences.

For a code-moving transformation to be correct, it must never insert a computation that will be performed on a path
in the optimized version along which it was never performed in the unoptimized version. (Since this optimization does
not alter the structure of the CFG, control flow paths in the optimized program correspond to paths in the unoptimized
program). In other words, it is incorrect to insert a computation if there exists a path from it to exit along which it is

1In[5, 11], xs are called Phis (distinguished from phis by the capitalization) and denoted in code by the capital Gregk letter

Properties fors

downsafe | The value of they is used on all paths to program exit.
canBeAvail | None of theys operands aré: or they is downsafe (i.e., the value has been computed on all
paths leading to this point or insertions for it can be made safely).
|ater Insertions for they can be postponed because they will not be used until a later program point.
willBeAvail | The value of the will be available at this point after the transformation has been made; it can

be available and cannot be postponed.
Property fory operands
| insert | An insertion needs to be made so that thisperand’s value will be available. |

Table 1: Chi and chi operand properties

Occurrence being inspected

Definition real occurrence X x operand
Assign the old version if all cor- Assign a new version and push theAssign the old version if the defin-
real responding variable have the saméem on the stack. ing occurrence’s variables have
SSA version; otherwise assign a SSA versions current at the point
occurrence :) . .
new version and push the item on of they operand; otherwise assign
the stack. 1.
Assign the old version if all the Assign a new version and push theAssign the old version if the def-
chi definitions of the variables domi- item on the stack initions of the current versions of
nate the defining; otherwise as- all relevant variables dominate the
sign a new version and push the definingy; otherwise assign .
item on the stack.

Table 2: How to determine what version to assign to an occurrence of an expression

not used. Not only would this lengthen an execution path (defying optimality), but it could also cause the optimized
code to throw an exception that the unoptimized code would not. This property is dalagafety. A chiis downsafe
if its value is used on all paths to procedure exit. This and other properties a@fidy operands are summarized in
Table 1. Details about their use and how to compute them are discussed later.

SSAPRE has six phases.

x Insertion For any real occurrence of a canonical expression on which we desire to perform SSAPRESradert
blocks on the dominance frontier of the block containing the real occurrence and at blocks dominated by that
block that have & for a variable in the canonical expression. (These insertions are magédaf ghat canonical
expression is not there already.) Theserepresent places that a version of an expression reaches but where it
may not be valid on all incoming edges and hence should be merged with the values from the other edges.

Rename Assign version numbers to all real expressiops, andy operands. This algorithm is similar to that for
renaming SSA variables given in [7]. While traversing the dominator tree of the CFG in preorder, maintain a
renaming stack for each canonical expression. The item at the top of the stack is the defining occurrence of
the current version of the expression. For each block in the traversal, inspgst its real instructions, and
its corresponding operands in thes of its successors, assigning a version number to each. If an occurrence
is given a new version number, push it on the stack as the defining occurrence of the new version. When the
processing of a block is finished, pop the defining occurrences that were added while processing that block.
Table 2 explains how to assign version numbers for various types of occurrences depending on the defining
occurrence of the current version (this table is expanded from Table 1 of [11]). Note dp&trands cannot be
defining occurrences.

Downsafety Compute downsafety with another dominator tree preorder traversal, maintaining a\lstiodt have
not been used on the current path. When program exit is reached, may& thigich are still unused (or used

1

a] — a] a]
b+~ b+ b+~
C < ay C < aq C < aj

NN

1

N

2

1

N

d+—b+ar as +— d+—b+a;y as — d+— b+a as —
e+ b+c [1]|e + b+ ¢ ty «— b+c e+ b+c
f—b+an f— b+ag f+—b+an

e

S T

>,

a3 « ¢(a1,a2) ag « ¢(a1,a2) a3 « ¢(a1,a2)
g—b+ec [2]| x(L,1) ty < ¢(t1,¢€)
[2]|g < b+ec g« t2
(@) (b) (c)

Figure 4: PRE example

only by operands to otheys that are notlownsafe) as notdownsafe.

WillBeAvail ComputecanBeAvail for eachy by considering whether it idownsafe and, if it is not, whether its
operands have versions that will be available at that point. Conh@tateby setting it to false for als with an
operand that has a real use for its version or is definedpyhat is notlater. ComputewillBeAvail by setting
it true for all ys for whichcanBeAvail is true andater is false. Computénsert for eachy operand by setting
it to true for any operand in g for which willBeAvail is true and either isL or is defined by g¢ for which
willBeAvalil is false.

Finalize Using a table to record what use, if any, is available for versions of canonical expressions, insert computations
for xy operands for whicimsert is true (allocating new temporary variables to store their value), igsart place
of xs for whichwillBeAvail is true, and mark real expressions for reloading that have their value available at
that point in a temporary.

Code Motion Replace all real expressions marked for reloading with a move from the temporary available for its
version.

2.2 Example

Consider the unoptimized program in Figure 4 (a). The expressioain block 4 is partially redundant because it is
available along the right incoming edge. If we perform SSAPRE on this canonical expression, (b) shows the program
after y Insertion and Rename. The occurrence in block 3 is given the version 1. Since block 4 is on its dominance
frontier, ayy for this expression is placed there to merge the versions reaching that point, and theojgrand is
given version 1. Since the expression is unavailable from the left path, the correspgrgiatand isL. They itself
is assigned version 2. Since thawill be on top of the renaming stack whén- ¢ in block for is inspected and since
the definitions of its variables dominate tReit is also assigned version 2.

They is clearlydownsafe, so it can be available. Since its right operand has a version defined by a real occurrence,
it cannot be postponed. TherefovgllBeAvail is true for it. The Finalize and Code Motion steps insert a computation
for its L xy operand and a phi in the place of teto preserve the value in a new temporary. A move from that
temporary can then replace the real occurrence in block 4, as (c) displays.

ay ay aj
b — b «— b «—

d+—b+ag ag [1]|d < b+ a7 ag d+—b+ag ag
e+ b+aj [1l|e « b+ ay e+ b+aj
f— b+an [2]|f < b+ay febtay
ag «— ¢(ay, az) ag « ¢(a1, az) ag « ¢(ay, az)
g+ b+a 3] x(1,2) t «— ¢(d, f)
[3]|g « b+ ay gt
(a) (b) (©)

Figure 5: PRE after Constant Copy Propagation

2.3 Counterexamples

The preceding example illustrates how SSAPRE’s dependence on lexical equivalence weakens its ability to find all
redundancy. Since the definition efs a move fromu;, b + ¢ has the same value &st a; in block 2. This means
insertingb + c in that block is not optimal — it may not be redundant lexically, but it clearly computes the same value.
Situations like this motivate research for making (general) PRE more effective, such as in [4]. In this case, all we
need is a simple constant copy propagation to replace all occurrences of ¢ wéth shown in Figure 5(a). Now the
expression in block 4 is fully redundant even in the lexical sense.

Chow’s SSAPRE is fragile when used with a transformation like this. It assumes a stronger condition on the
code than SSA form, namely that no more than one version of a variable may be live simultaneously. Constant copy
propagation breaks this condition here, as hatlnda, are live at the exit of block 3, and, assumingis used later
in the program, botlr; andas are live in block 4. In this casé,+ a; is given the same version in blocks 2 and 3;

b + a- in block 3, since it does not match the current versianas,, is given its own version. See Figure 5(b).

What version should be given to the right operand ofgha block 4? Version 2+ a-) is the current defining
occurrence, and Table 2 suggests that its version should be used if its operands are the current versions of the variables.
Sinceas is the corresponding operand to theat that block, it can be considered current, and we giveytbperand
version 2. However, this produces incorrect code — in the optimized program in Figurg Bé&s)yvalue + a» on the
right path, nob+ a; as it should. [5, 11] give an alternative Rename algorithm called Delayed Renaming which might
avoid producing wrong code. In that algorithm, the “current” variable versions fooperand are deduced from a
later real occurrence that has the same version ag thevhich the operand belongs, adjusted with respect t@she
at that block. In this case, thehas the same version as— b + a;. Since neitheb nora, are assigned bys, they
are the current versions for theoperand, and are found to mismaitch a-; thus they operand should beé.. This
would still, however, miss the redundancy betweenr b + a; andg < b + a;.

The entry in Table 2 for processing real occurrences whgrisaon the stack is also fragile. Figure 6 displays
another program before, during, and after SSAPRE. Since two canonical expressionsapndb + ¢) are being
processed, we distinguish thgis and version labels with and3, respectively. The same program, before SSAPRE
but after constant copy propagation, is shown in Figure 7 (a). There is now only one canonical expxelssiortion
and Rename produce the versionin (b). The righperand isL because, in b+ a, is not “current” on that edge, not
being the corresponding operand to thesuch ay represents the correct value fbrk— b+ a3. Howeverg < b+ a;
is also assigned the same version: this the definition of the current version, and the definitions of all the operands
of ¢ « b+ a; dominate it, which are the conditions prescribed by Table 2. Consequently, the optimized version
assigns an incorrect value gan (c).

In both cases, the problem comes from the algorithm assuming that only one version of a variable can be current
at a given time. Simple fixes are conceivable, but not without liabilities. Renaming variables to make this assumption
valid will merely undo the optimizations intended to make PRE more effective. The rules in Table 2 could be made

1

ay —
b+
C < ay

1

a]
b+
c < ajp

1

a]
b+
c < ay

T

Za

2
2 / X 1 |d < b+ay db+ap
d+ b+ay ag +— [1]5 e+ b+c ty «— b+c e+ b+c
e+ b+ec to +— b+ as
4 az « ¢(a1,a2) a3 + ¢(a1,az2)
ag < ¢(a1,a2) [2]% | x* (1, L) tz < ¢(t1,e)
febtas (27 [x”(L,1) ta + 6(d, t2)
g+ b+ec 21| f < btas fets
[2]ﬁ g+ b+ec g« ta
() (b) (c)
Figure 6: PRE example
1 1 1
a] al < a]
b b« b«
2 / X 2 / X 2 / X
d+ b+ay ag +— [1]|d « b+ a;y ag d+ b+ay ag +—

e+—b+ay

[1]|e <+ b+ a1

e+—b+ay
t1 « b+ ag

o~

a3 < ¢(a1,a2)
f<b+tas
g btar

@)

o~ 7

[2]
[2]
[2]

a3 < ¢(a1,a2)
x(1, L)
f+b+tas
g+ btay

(b)

Figure 7: PRE after Constant Copy Propagation

7

a3 < ¢(a1,a2)
to + ¢(d, t1)
fta

gtz

(©)

1 ay — ay —
al +— b+~ b+
b+
/ \ 2 / X\ 2 / X\
2 3 c1 — cg — c1 — co —
cy co — [1]19dy < a+b ty < a+b dy < a+b
di < a+b [1]ﬁe<—c2+d1 to + co +t1 e+ cg +dy
e+ co +dy

c3 < ¢(c1,c2) c3 < ¢(c1,c2)
c3 + ¢(c1,c2) [21Fx* (L, 1) tz < &(t1,d)
(219 x%(L,1) ta — ¢(ta,e)
dg < a+b [2]%de < a+b do « t3
fc3tde B f < c3 +d2 f ta
(a) (b) (c)

Figure 8: Nested redundancy

more strict; for example, we could associate versions of variables withyeanti make sure all versions match before
assigning a real occurrence the same version ys ahis would prevent the incorrect result in Figure 7, but since
b + ay in the original is indeed partially redundant, ignoring it would not be optimal.

Another case when SSAPRE misses redundancy is when a redundant computation has subexpressions. Consider
the program in Figure 8(a). The expresson- b in block 4 is clearly partially redundant; + d» is partially
redundant also, sina§ andd, have the same value on that path. Essentially, it is the complex expressiant b
that is redundant.

Figure 8(b) shows the program aftgrinsertion and Rename. As earlier, version numbersatbr the two
expressions are distinguished with Greek letteks« « + b is given the same version as the correspondiremd
will be removed by later SSAPRE phases. Howeyes; c3 + d» containsds, whose definition does not dominate the
x®. According to Table 2, we must assign the real occurrence a new version, even thoygkpnesents the correct
value on the right path. The optimality claim of [5, 11] assumes that a redundancy exists only if there is¢0 non-
assignment to a variable in the expression between the two occurrences; this example frustrates that assumption, and
comparing this with the running example in [4] demonstrates that this situation is not unrealistic when PRE is used
with other optimizations. The optimized form we desire is in Figure 8(c), which would result if Chow’s SSAPRE were
run twice. (This situation is not just a product of our three-address representation, since it is conceivabashat
independent uses in other expressions.)

3 Algorithm

The problems with Chow’s algorithm stem from assumptions about lexical equivalence. From this point on, we will
abandon all notions of lexical equivalence between distinct SSA variables. We will ignore the fact that some SSA
variables represent the same source-level variables and consider any variable to be an independent temporary whose
scope is all instructions dominated by the its definition.

Our algorithm searches backward from an occurrence of an expression for an earlier computation of that expres-
sion’s value or for a merge point, at which it will place aA key difference between this and Chow’s algorithm is that
it searches backwards from expressions to be eliminated rather than forwards from expressions that provide values. If
the algorithm discovers the definition of a variable in the expression for which it is searching, it will alter the form of
that expression accordingly; for example, if it is searching for t; and discovers the instructiagh < ¢;, then from
that point on it will look forts + ¢;. When ay is created, it is allocated a fresh temporary, which will be the target

1

t]
to

t3

SN

ty — t; + t3
ts < t2 +t3
tg «— t; — ts

o

t7 < ¢(t1,t2)

NN

tg « t1 + 13 tip < t7 +t3
tg t12 < t3
tip « t7 +t2 tizg < t7 +t2

>~

t1a < ¢(tg, t12)
t15 < ¢(t10,t1)
tig < ¢(tg,t11)
ti7 < t7 +t1a

t1g + t15 +ti6

Figure 9: Unoptimized

of the ¢ that will be placed there if thg is used in a transformation. The result of this phase is that instructions are
assigned temporaries that potentially store earlier computations of the instructions’ values. The instructions may be
replaced by moves from those temporaries.

Since all variables are distinct, so are all expressions. This relieves the need of the notion of canonical expressions
and the need for version numbers. Thus our algorithm has no renaming phase. Not only do the problems in Chow’s
algorithm come from ambiguities in the specification of Rename, but also our experience with implementation has
found Rename to be particularly prone to bugs.

The algorithm then analyzes tlyeoperands that aré to determine which ones represebotnsafe insertions and
analyzes thgs to determine which ones can be made available, which ones can be postponed, and, from these, which
ones should be made ing®. This happens in the two phases Downsafety and WillBeAvail.

Finally, where appropriate, insertions are made fooperandsgs are put in the place ofs, and redundant
computations are replaced with moves from temporaries. This phase, Code Motion, subsumes the Finalize phase in
Chow’s algorithm.

The next subsections describe the four phases of Robust SSAPRE (RSSAPRE) in detail. We clarify each step by
observing what it does on a running example. The unoptimized version is in Figure 9. Assignments with no right hand
side are assumed to come from sources we cannot use in RSSAPRE. For exanipl@ndts in block 1 may be
parameters to the procedure, &pdn block 5 could be the result of a function call.

10

3.1 xInsertion

x Insertion is the most complicated of the phases, and it differs greatly from the equivalent phase in Chow’s SSAPRE.
A x is a potentialy or merge point for a hypothetical temporary, and it has an expression associated with it, for which
the hypothetical temporary holds a pre-computed value. The hypothetical temporary is allocated at thetiise the
created, so it is in fact a real temporary from the temporary pool of the IR; it is hypothetical only in the sense that we
do not know at the time it is allocated whether or not it will be used in the output program. The hypothetical temporary
also provides a convenient way of referring tqs since they is the hypothetical definition point of that temporary.

In the examples, & will be displayed by the Greek letter followed by its operands in parentheses and its hypothetical
temporary in parentheses. The expression it represents is written in the margin to the left of its basic block.

A x operand is an object that is associated with a CFG edge and either points to a temporary dhiy are
represented in the examples accordingly, listed from left to right in the same order as their respective CFG edges
appear. However, an important feature of our algorithm is isaat the same block can shayeperands. Assume
that if two y operands are in the same block, are associated with the same CFG edge, and point to the same temporary,
then they are the same objegtoperands that aré are numbered to show which ones represent distinct objects. The
temporary to which & operand points is called thiefinition of thaty operand, and if thg operand isL, we say that
its definition isnull. y operands also have expressions associated with them, as explained below, but to reduce clutter,
they are not show in the examples.

Real occurrences of an expression (ones that appear in the code and are saved to a temporary) also have definitions
associated with them, just gsoperands do. This is the nearest temporary (possibly hypothetical) found that contains
the value computed by the instruction. If no such temporary exists, then the definitionlisthe examples, this
temporary is denoted in brackets in the margin to the left of its instruction. This notion of definition creates a relation
among real instructiong;s, andy operands and is equivalent to tfaetored redundancy graph of [5, 11].

x insertion performs a depth-first, preorder traversal over the basic blocks of the program. In each basic block, it
iterates forward over the instructions. For each instruction on which we desire to perform PRE (in our case, binary
arithmetic operations), the algorithm begins a search for a definition. During the search, it maintains a search expres-
sione, initially the expression computed by the instruction where it starts. It also maintains a reference to the original
instruction. Until it reaches the preamble of the basic block (which we assume includes #melys), the algorithm
inspects an instruction at each step.

The current instruction being inspected is either a computatientbie definition point of one of the operands of
e, Or an instruction orthogonal ta This last case will probably cover most of the instructions inspected, and such
instructions are simply ignored. If the instruction is a computation ¢that is, the expression computed exactly
matcheg), then the search is successful, and the temporary in which the current expression stores its result is given as
the definition ofi. When the current expression defines one®bperands, then what happens depends on the type of
instruction. If it is not itself a candidate for PRE or a simple move (for example, a function call), then nothing can be
done; the search fails, ang definition is null. If the current instruction is a move, then we emeadcordingly: the
occurrences ir of the the target of the move are replaced by the move’s source. The search then continues with the
new form ofe. If a constant copy propagation has been performed immediately before RSSAPRE, then this should
not be necessary, since simple moves will be eliminated. However, we make no assumptions about the order in which
optimizations are applied, and in our experience, such moves proliferate under many IR transformations.

If the current instruction stores the result of a PRE-candidate computation to an opetaridesf we can con-
jecturally emenc. Since blocks are processed in depth-first preorder and instructions processed by forward iteration,
we know that the instruction being inspected has already been given a definition. If that definition is not null, then we
can conjecture that the instruction will be replaced by a move from the temporary of its definition to the temporary
being written to, and we emerndhs if that move were already present. From a software engineering standpoint, such
conjectural emendations may be skipped during early development stages, and Section 4 shows results both with and
without them. However, they are necessary for optimality, since they take care of the situation in Figure 8. Without
them, RSSAPRE would require multiple runs to achieve optimality, especially in concert with the enabling optimiza-
tions described in [4]. If the instruction’s definition is null (or if conjectural emendations are turned off), such an
instruction should be treated the same way as non-PRE-candidates, and the search fails.

When the search reaches the preamble of a block, there are three cases, depending on how many predecessors the

11

block has: zero (in the case of the entry block), one (for a non-merge point), or many (for a merge point). At the entry
block, the search fails. At a non-merge point, the search can continue starting at the last instruction of the predecessor
block with no change téor e. At a merge point, the algorithm inspects the expressions representedpy dheady

place in that block. If one is found to mateh then thaty — or more properly, that’s hypothetical temporary —

is given asi's definition. If no suitabley is found, the algorithm creates one; a new temporary is allocated (which
becomeg'’s definition), and the, is appended to the preamble and to a lisy®iwhose operands need to be processed,

as will be described below. In either case, the search is successful.

When all basic blocks in the program have been visited, the algorithm creafeerands for thgs that have been
made. Sinceg operands have definitions just like real instructions do, this involves a search routine identical to the one
above. The only complications axeoperand sharing among at the same block and emendations with respegts to
and otherys. For eachy cin the list generated by the search routine and for each in-comingigdgenat block, the
algorithm determines an expression for gheperand for that edge. To do this, we begin with ffeeown expression,

e, and inspect thes at the block and thgs that have already been processed. If any write to an operan(thudt

is, if one ofe’s operands is the target of¢aor the hypothetical temporary ofyg, then that operand must be replaced
by the operand of thé that corresponds tg or the definition of they operand that correspondsso (If such ay
operand isL, then we can stop there and know that theperand we wish to create will he, and it is impossible to
make an expression for it.) For exampleg i ¢4 + t¢ and that block containig < ¢(t1,t2), the lefty operand will
have the expressian + ¢; and the righe will have, + t». We call the revised expressieh Once an expression has
been determined, the algorithm inspectsteperands corresponding#f all the s at that block that have already
been processed; if any sugloperand has an expression matchihghen thaty operand becomes an operand also of
c¢. This sharing ofy operands is necessary to discover as many redundancies as [2], as the examples will show. If no
suchy operand is found, the algorithm creates a new one #lifs its expression, and it searches for a definition for
it in the same manner as it did for real instructions, in this ¢asderring to they operand. Note that this may also
generate news, and the list of s needing to be processed may lengthen.

The search for a definition for g operand has one qualification. Extra caution needs to be made when doing a
conjectural emendation. If the current instruction being inspected writes to an opekdrmlibls defined by g that
depends ori (assuming is ax operand), then the emendation should not be made.cAlepends on g operand
if ¢ is an operand of or if i is an operand to & that in turn has a operand upon which depends. This situation
happens in loops, especially instructions that increment a loop counter. Making an emendation in such a case would
causeys to be generated infinitely.

Consider the program in Figure 9. From the instructient, « t; + t3 in block 3, we search for an occurrence
of e = t; + t3 and immediately hit the preamble of the block. Since it is not a merge point, the search continues in
block 1. The write taf; is relevant toe, but since that instruction is not a move or a PRE candidate, the search fails
andi is assignedL. Similarly, the searches from < t5 + t3 andtg < t; — t; fail.

Fori = ts < t1 + t3,e = t1 + t3, the search takes us to the preamble of block 4. Since it is a merge point, we
place ay there with expression + t; and allocate as its hypothetical temporary, which also become the definition
of tg « t; +t3. Similarly fori = t,9 < t7 +t3, we place &, allocating the temporamg,; and fori = t1; « t; + 3,

a x with temporaryty;. Fori = t13 < t7 + t2,e = t7 + t2, when the preamble of block 4 is reached, we discover
that ay whose expression matchess already present, and so its temporapy, becomes’s definition. Finally,
searches from the two real instructions in block 7 producegtheith temporaries$,, andt,s, which serves as the
real instructions’ definitions. Figure 10(a) displays the program at this point.

So far, this phase has generated fige The search for definitions for their operands is more interestingt;fhe
x has expressioa = ¢, + t3. Since none oé’s operands are defined I, e also serves as the expression for the
X's operands. Search from the left operand fails when it hits the writgitoblock 1. Search from the right operand,
however, discovers, < t; + t3, which matches; sot, becomes its definition. Thigy x has expressioa = t; + t».

Sincetr < ¢(t1,t2) Writes to one ok’s operands, the twg operands will have the expressianst ¢, andis + .
Since neither have occurred in the program, tivg operands are created. The y has expressioa= t; + t3. The

¢ changes this to, + t3 for the left edge and to, + 5 for the right edge. The former is identical to the expression for
the left operand of theyy x, So that operand is reused. Searching from the righperand discoveng < t2 + t3.

Turning to block 6, thess x has expressioty + t14, which thegs change te; + t, for the left edge and; + ¢
for the right. On the left side, a search for a definition for theperand halts at the non-PRE-candidate writg o

12

1

t]
to
t3

SN

1

t]
to —
tg «—

NN

[L]|ta < t1 +t3
[L]|ts < t2 +t3
[L][te < t1 — t5

[L]|ta « t1 +t3
[L]|ts « t2 + t3
[L]|te « t1 — t5

>~

t1 + t3]
t7 + to
t7 + t3

t7 « ¢(t1,t2)

xC »)(ti)
xC 5)(t20)
xC 5)(t21)

N

.

t1 +t3
t7 +ta
t7 +t3
t2p — t1g
t1 — t21

t7 «— ¢(t1,t2)
x(L1,ta)(t10)
x (L2, L3)(t20)
x(L1,t5)(t21)
x (L5, L9)(t24)
X(L7, t6) (t25)

N

[t19]|ts « t1 + t3
tg «
[t20]|t10 < t7 + t2

t1o < t3

[t21]]t11 < t7 +t3

[t20]|t13 < t7 +t2

[t10]

[t20]

tg « t1 +t3
tg
tig < t7 +t2

t1o « t3

[t21]]t11 < t7 +t3

[t20]| t13 < t7 +t2

P

t7 +tia

tis + tie
[t22]
[t2s]

t1a « ¢(lg, t12)
t15 < ¢(t10,t1)
t1s < ¢(tg,t11)
xC 5)(te2)
x(5)(t2s)
ti7 < t7 + t1a

t18 < ti5 + tie

@)

P

t7 +tia

ti15 + tie
[t22]
[t23]

t1g < ¢(lg, t12)
t15 < ¢(t10,t1)
ti6 < ¢(tg, t11)
xX(L%, t11) (t22)
X (t24, t2s)(t23)
ti7 < t7 +t1a

t1g < ti5 +tie

(b)

Figure 10: During chi insertion

13

block 5. The right hand search discovers < t; + t3. The left and righty operands for théxs x (e = t15 — ti6)

have expressiongg — tg andt; — t11, respectively. On the leftyo < t7 + t2 andis < t; + t3 in block 5 affect

the search expression, which we conjecturally emenghte- ;9. When the preamble of block 4 is reached, a new
must be placed, allocating the temporagy. On the right¢,; < t; + t3 causes the search expression to be emended
tot; — t21, which also requires a neyvat block 4. Finally, we search for definitions for theoperands of the twg
recently placed in block 4. The program at the end ofythesertion phase is shown in Figure 10(b).

3.2 Downsafety

Recall that an inserted computatiordmvnsafe only if the same computation is performed on all paths to exit. Avoid-
ing inserting computations that are rimwnsafe prevents lengthening computation paths and causing exceptions that
would not be thrown in the unoptimized program. Sinceperands represent potential insertions, we consider down-
safety to be a property of operands rather than gf as in [5, 11] and Table 1. The second phase of RSSAPRE is
a static analysis that determines whigloperands ardownsafe. We are interested only ix operands that are or
defined by ay; if a x operand’s definition is the result of a real instruction, no insertion would ever need to be made
for it.

The question of whether g operand’s value is used on all paths to program exit is akin to liveness analysis for
variables and can be determined by a fixed-point iteration. At the entry to a block that is a merge-pgioph¢nands
of its xys become “live.” A use of their value — which happens if a real instruction has the hypothetical temporary of the
x as a definition — “kills” them. Ally operands that are not killed in that block are “live out”, and must be considered
“live in” for the block’s successors.

The fact thatys sharey operands complicates downsafety, sinceif @perand is an operand to seveyal a use
of any of their hypothetical temporaries will kill it. Moreover, the use of e hypothetical temporary will kill all of
thaty’s x operands. To handle this, in addition to a set of jiveperands, we must maintain on entry and exit of every
block a mapping from temporaries to setsyabperands which a use of them will kill.

What if a x operand’s value is used as the definition to anogheperand? We could consider thatoperand
to be a use occurring at the end of the corresponding predecessor block (not in the block that congainBhist
would complicate things because if theperand was the only Killer for the firgtoperand on a path to exit, then the
downsafety of the first would depend on the downsafety of the second. Chow’s algorithm handled this by propagating
a false value for downsafety frois already found to be false §gs that depended on them. We can handle this with
our map structure: If a use of will kill y operandv;, x operandw, hast; as its definition, and a use of will
kill ws, then we say that, will also kill w;. The effect this has is that the use of a temporary as the definition of a
x operand cannot itself kill anothgroperand, but that the fate of bothoperands are linked on subsequent paths to
exit.

Supposéive_in(b), live_out(b), map_in(b), andmap_out(b) are the live in and out sets and mappings in and out,
respectively, for a block, and thatA(7) finds the definition of instruction. Then to compute downsafety, we must
solve the following data flow equations:

live_in(b) = Uy eprea(s) live-out (V')
= Uset ofy operands a
map-in(b) = Uy eprea(sy map-out(b’)
{Ut ~ o | x atbwith temporaryt and set ofy operands
live_out(b) = live_in(b)

—{w | A(i) = t andmap_in(t) = wfor some instruction € b
or for some corresponding:i operand in a successgr
map_out(b) = map_in(b)

Table 3 lists whajy operands ardownsafein our example and why. As in the Figurespperands are identified
by their definition. Of particular interest is! because it islownsafe only because it is shared: it is killed on the left
path because it belongs to thg x and on the right because it belongs to they. If these were considered separate
x operands, then a redundancy would be missed.

14

1! downsafe: killed by tg « t; + t5 on the left path and,, <+ t; + t3 on the right.
ty Irrelevant; defined by real instruction.

12 downsafe: killed by ¢,y < t; + t on the left path and, s < ¢» + ¢, on the right.
13 downsafe: killed by ¢,y < t; + t, on the left path and, s < ¢» + ¢, on the right.
ts Irrelevant:; defined by real instruction.

1% Notdownsafe.

1% Not downsafe.

17 Not downsafe.

te Irrelevant: defined by real instruction.

1* downsafe: killed by t7 « t7 + t14.

t11 Irrelevant: defined by real instruction.

toq downsafe: killed by t1g < t15 — t16-

tos downsafe: killed by 15 < t15 — t16.

Table 3: Downsafety for the running example.

3.3 WillBeAvail

The WillBeAvail stage computes the remaining propertiesyferandy operands, namelyganBeAvail, later, and
willBeAvail for xs andinsert for y operands. The most important of theseviiBeAvail because it characterizgs
that will be turned intaps for the optimized version.

We first determine whether it is feasible and safe farta be made into &. If all of a x’s operands either have
a real use or ardownsafe, then thaty is canBeAvail. A x is alsocanBeAvail if all of its x operands that are not
downsafe are defined bys which alsoccanBeAvail, since, even though an insertion for thabperand would not be
safe, no insertion is needed if the value will be available from the defiping

To this end, after initializinganBeAvail to true for allys in the program, we iterate through g8. If ax ¢ has ay
operand that is natownsafe and is_L (and if canBeAvail has not already been proven false éprwe setcanBeAvail
to false for it. Then we make an inner iteration overal for anyy that has an operand defined byif has a
non-downsafe y operand but is still markechnBeAvail, then itscanBeAvail should be cleared in the same manner. In
our example, alks arecanBeAvail except for the ones with temporarigs andt,;. Since they each have at least one
1 x operand that is natownsafe.

Next, we computéater, which determines if a can be postponed. This will prevent us from making insertions
that do no benefit and would only increase register preskatee.is assumed true for ajfs thatcanBeAvail. Then we
iterate through alks, and if ay ¢ is found for whichlater has not been proved false and which has an operand defined
by a real occurrence, we redater for it. To do this, we not only sdater to false, but, similarly to howanBeAvail
was propagated, we also iterate throughallif any is found that has an operand withs a definition, that’s later
is reset recursively. The idea is that if the definitions of any gfsavariables are available (either because they are
real occurrences or because they gsehat cannot be postponed), thétself cannot be postponed. In our example
thetyo x is later because both of its operands are Thet,s x is alsolater because both of its operands come from
xs for whichcanBeAvail is false. These computations can be postponed.

At this point, computingvillBeAvail is straightforward. Ay will be available if it can be made available and there
is not reason for it not to be — that is, if it nBeAvail and notlater. In our example, alls arewillBeAvail except
for the ones associated withy, #24, andt,;. From this we also can computasert, which characterizeg operands
that require a computation to be inserted. i @perand isnsert if it belongs to awillBeAvail x and is eitherL or
defined by gy for whichwillBeAvail is false. Being in avillBeAvail y implies that such & operand islownsafe. In
our exampley operandsL' and_L* areinsert. willBeAvail andinsert can be computed on demand when they are
needed in the next phase.

15

3.4 CodeMotion

The earlier phases having gathered information, the final stage, CodeMotion, transforms the code by dissentihg
anticipated computations and eliminating redundant computations. The net effect is to hoist code to earlier program
points.

If willBeAvail is true for ay, then the value it represents should be available in a temporary in the optimized
program; ap needs to be put in its place to merge the values on the incoming paths. The operands to this new
will be the temporaries that hold the values from the various predecessorsertfis true for any of its operands
(indicating that the value it represents is not available, that is, has not been computed and stored in a temporary), then
a computation for that value must be inserted at the end of the predecessor block it represents. Any real occurrence
whose definition is another real occurrence aiildBeAvail x is redundant, and can be replaced with a move from the
temporary holding its value — if it is defined byya the temporary is that which is the target of theut in place of
they; if it is defined by a real occurrence, the temporary is the one that stores the result of that occurrence.

Four steps complete the changes to the code: Inserting appropriate computations, creapisigameveliminating
fully redundant computations.

To do the insertions, we iterate over glloperands. If any is markddsert, then we allocate a new temporary,
manufacture an instruction which computes theperand’s expression and stores the result in the fresh temporary,
append that instruction at the end of the corresponding basic block, and set the fresh temporary fodpethad’s
definition. In our examplel! requires us to insetbs < t; + t3 in block 2, wherety is fresh. Similarly, we insert
tag < t1 + t5 at block 5 forL4.

We then iterate over ajls. For ay c thatwillBeAvail, we insert ap at the end of the list afs already present at the
block. Thaty merges the temporaries that defireey operands inta’s hypothetical temporary. Because insertions
have been made, all valigd operands will have temporaries for definitions by this point. In our example, we create
t1g9 ¢(t26,t4) andts; ¢(t26,t5) in block 4 andtgs < ¢(t28,t11).

Finally, we iterate over all instructions. If any is defined by the target of another real instruction wil tBeAvail
x (which by this time has been made int@p it is replaced with a move instruction from its definition to its target.

In our examplet;; < t7 + t3 in block 6 is replaced with;; < t; andt;; < t7 + t14 in block 7 is replaced with
t17 < tao.

Figure 11 displays the final program. The improvement can be seen by comparing the number of computations on
each possible execution path: left-left, left-right, right-left, and right-right. In the unoptimized program, the number
of computations are four, four, seven, seven, respectively; in the optimized program, they are four, three, six, five. The
benefit varies among the possible paths, but never is a path made worse.

4 Performance

We have implemented this algorithm for the optimizing compiler of JikesRVM [1], a virtual machine that executes Java
classfiles. Our implementation has the option to perform or not to perform conjectural emendations. Table 4 displays
the results for running seven benchmarks from the SPECjvm2000 suite. The columns give the results for executing the
benchmark without RSSAPRE, RSSAPRE without conjectural emendations, and full RSSAPRE. The numbers are in
milliseconds as reported by Jav&®gst em current TimeM | | i s() call. In each case, the benchmark was run

once so that it would be compiled in full by the dynamic compiler, and then (without restarting the virtual machine,
avoiding recompiling the benchmarks) run ten times with execution time measured for each run. The large cells give
the average time over ten runs, with the range in parentheses. The smaller columns for the two PRE versions measure
the number of times the optimization was applied by counting the number of static computations eliminated.

The RSSAPRE runs are consistently better in all cases except for db, where it makes no impact. RSSAPRE
with conjectural emendations found only a modest number of optimization opportunities that were not found when
conjectural emendations were turned off. Only two cases show it to have a definite impact on performance; while the
performance of mpegaudio is better with conjectural emendations, it appears to cause the improvement in compress
over the unoptimized version to retreat. This may be because the more aggressive version puts particular pressure
on the registers. We speculate that if RSSAPRE were used with the enabling optimizations suggested by [4] that the

16

1

t]
to
tz <

SN

tag t1 +t3

ty — t; + t3
ts < t2 + i3
tg «— t; — ts

o~

tr

t1g < ¢(t26,t4)
ta1 < ¢(t26,ts5)

& (t1,t2)

N

tg « t1 +t3
tg

tio < t7 +t2
tog < t7 + 19

t11 « t21
t1o + t3
t13 < t7 + ta

t1a < ¢(tg, t12)
t15 < ¢(t10,t1)
tig < ¢(tg,t11)

tan < ¢(t2s,t11)

ti7 < t7 +t1a
t1g + t15 +ti6

Figure 11: Unoptimized

| nop | pre | pre+

201 compress | 14553 13945 11| 13971 12
(14449-14798) (13829-14195 (13853-14208

202 jess 8054 8021 15| 8003 15
(7653-8610) | (7598-8629) (7596-8613)

205 raytrace | 5977 5830 15| 5783 18
(5953-6030) | (5805-5879) (5757-5874)

209 db 29484 29165 7 | 30059 7
(25949-33525) (25896-33610 (25679-33884

222 mpegaudiq 12679 11771 71| 11724 79
(12550-13424) (11757-11815 (11709-11777

227 mtrt 6413 6305 15| 6243 18
(6267-6658) | (6135-6583) (6140-6537)

228 jack 10557 9259 16 | 9243 17

(10409-10778

(9094-9493)

(9081-9474)

Table 4: Performance results

17

number of transformations, especially with conjectural emendations, would rise greatly, and the true impact would be
shown. This is an area of future work, to which we turn now.

5 Futurework

As already mentioned, we are eager to implement the reassociation and value-numbering optimizations described in
[4] to see how effect they make our algorithm. To our knowledge, these optimizations have not been used with so rich
a version of PRE, nor while maintaining SSA form.

In addition to this, the algorithm should be extended to handle array and object references. Throughout this work,
we have assumed that the only expressions we are concerned with are arithmetic. Object references can also benefit
from PRE, although alias analysis will make it more complicated. Array SSA form [10], used in JikesRVM, will be of
benefit here.

The contribution of this work is a simpler, more robust version of Chow's SSAPRE. The error-prone Rename phase
has been eliminated, Downsafety has been recast as a version of a standard data flow problem, the algorithm no longer
makes assumptions about the namespace, and a wider range of redundancies are eliminated. It is now fit to be used in
conjuction with other optimizations.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The jalapeo virtual mi&Mine.
System Journal, 39(1), February 2000.

[2] Rastislav Bodk and Sadun Anik. Path-sensitive value-flow analysis. San Diego, CA, january 1998.

[3] Rastislav Bodk, Rajiv Gupta, and Mary Lou Soffa. Complete removal of redundant expressioRsodeedings
of the conference on programming language design and implemenation, pages 1-14, Montreal, Quebec, June
1998.

[4] Preston Briggs and Keith D. Cooper. Effective partial redundancy eliminaB@BPLAN, 29(6):159-170, June
1994.

[5] Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and Peng Tu. A new algorithm for partial
redundancy elimination based on SSA formPhoceedings of the conference on programming language design
and implemenation, volume 32, pages 273-286, June 1997.

[6] CIiff Click. Global code motion, global value numbering. Rroceedings of the ACM SIGPLAN' 95 Confer-
ence on Programming Language Design and Implementation (PLDI), pages 246—257, La Jolla, CA, June 1995.
SIGPLAN Notices 30(6), June 1995.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence gh&h Transactions on Programming Languages
and Systems, 13(4):451-490, October 1991.

[8] Karl-Heinz Drechsler and Manfred P. Stadel. A solution to a problem with Morel and Renvoise’s "global opti-
mization by suppression of partial redundancie®CM Transactions on Programming Languages and Systems,
10(4):635-640, October 1988.

[9] Karl-Heinz Drechsler and Manfred P. Stadel. A variation of KnooptHig, and Steffen’s "lazy code motion”.
ACM SIGPLAN Notices, 28(5):29-38, May 1993.

18

[10] Stephen Fink, Kathleen Knobe, and Vivek Sarkar. Unified analysis of array and object references in strongly
typed languages. July 2000.

[11] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred Chow. Partial redundancy elimi-
nation. ACM Transactions on Programming Languages and Systems, 21(3):627—676, May 1999.

[12] Jens Knoop, Oliver Bthing, and Bernhard Steffen. Lazy code motionPtoceedings of the ACM S GPLAN' 92
Conference on Programming Language Design and Implementation (PLDI), pages 224—-234, San Francisco, CA,
July 1992.9GPLAN Notices27(7), July 1992.

[13] Jens Knoop, Oliver BRthing, and Bernhard Steffen. Optimal code motion: Theory and pracickl Transac-
tions on Programming Languages and Systems, 16(4):1117-1155, July 1994.

[14] Etienne Morel and Claude Renvoise. Global optimization by supression of partial redund@aciesini cations
of the ACM, 22(2):96-103, 1979.

[15] Steven MuchnickAdvanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[16] Loren Taylor SimpsonValue-driven redundancy elimination. PhD thesis, Rice University, 1996.

19

