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The Midwest Society for Programming Languages and Systems (MSPLS) is a group
of people interested in programming languages, programming systems, and system
software in general, and who reside in the Midwestern USA. The MSPLS holds one-
day workshop meetings at least once each academic year. The aim of the MSPLS
Workshops is to allow an exchange of ideas in all areas of programming languages
and systems among researchers and practitioners from Midwestern universities and
companies.

This report contains the abstracts of the presentations given at the MSPLS Spring
workshop, held at the Computer Science department of the Indiana University. The
report contains 10 abstracts, including the abstract of the invited talk by Arch Robison.
The authors were given the option to submit a full paper in addition to the abstract.
Consequently, two full papers describing the work presented in the workshop are in-
cluded.

The MSPLS maintains a mailing list, which is used to inform about upcoming
events. The mailing list is open to anyone, and instructions for joining can be found at:
http://mail.cis.ohio-state.edu/mailman/listinfo/mspls/ .

1



C# for Complier Gurus

Arch D. Robinson
Intel

arch.robison@intel.com

C# is a new language that is part of Microsoft’s .NET. Like Java, it pretends to be a
C++ derivative, but is really more like typed Smalltalk dressed in C syntax. This talk
compares C# with Java and C++, from the perspective of a compiler writer. Like Java,
C# enforces a particular object-oriented style. Unlike Java, however, C# has a more
regular type system. For example, "int" is not a special type as it is in Java. C# has
far more creature comforts than Java, such as reference parameters, enums, multidi-
mensional arrays, and operator overloading. Like C++, C# has as an "unsafe" subset
that permits pointer arithmetic and abusive casting. Unlike C++, it lacks parametric
polymorphism and multiple inheritance of implementation. I’ll explore these and other
differences, and also report on my experience, good and bad, with using C# to proto-
type compiler infrastructure. Some of the creature comforts that I first dismissed as
trivial syntactic sugar have become quite addictive.

Compiler Guaranteed Sequential Consistency

Xing Fang1;?, Chi-Leung Wong2, Zehra Sura2, Jaejin Lee1, Samuel P. Midkiff3 and
David Padua2

1Michigan State University
2University of Illinois at Urbana Champaign

3IBM T.J. Watson Research Center
?fangxing@cse.msu.edu

While sequential consistency is arguably the most intuitive and natural memory consis-
tency model for programmers, many shared memory multiprocessors follow a relaxed
consistency model. Relaxed consistency models allow reordering of reads and writes,
enabling a variety of hardware level optimizations. This boosts system performance,
but at the price of difficult programming and porting. In this project, we are building a
compiler that achieves the best of both worlds: performance and ease of programming.
The compiler provides a sequentially consistent view of the underlying architecture to
the programmer by automatically mapping the program with sequentially consistent se-
mantics to hardware supporting relaxed consistency. This is done by inserting memory
fence instructions, where necessary, to force the program execution to be sequentially
consistent. A simple thread-escape analysis is first performed on the programs, and the
result is used to direct fence insertion algorithms in the later passes of the compiler. We
present different fence insertion optimization algorithms developed and implemented
in Jikes Research Virtual Machine.
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The Pensieve Project: A Compiler Infrastructure for
Memory Models

Chi-Leung Wong1, Zehra Sura1, Xing Fang2 Samuel P. Midkiff3, Jaejin Lee2, David
Padua1

1University of Illinois at Urbana Champaign
2Michigan State University

3IBM T.J. Watson Research Center
?cwong1@uiuc.edu

The design of memory consistency models is difficult since the ideal model should be
easy to use yet allow an implementation that provides good performance. Memory
model design is even more difficult for programming languages since the audience is
much wider. The Java Memory Model (JMM) demonstrates the difficulty of design-
ing a memory consistency model for a language. For example, a common idiom (the
“double check idiom”) is unsafe with the JMM. In this paper, we describe the design
of an optimizing compiler infrastructure in the Pensieve project that allows users to
select or customize the memory consistency model for the code to be compiled. The
compiler uses the input model to constrain optimizations and code generation. To
avoid overly-conservative code generation, the compiler uses rigorous analyses to en-
able more optimizations to be performed. This includes escape analysis, Shasha and
Snir’s delay set analysis and our Concurrent Static Single Assignment Form program
representation. When completed, the compiler will serve as a testbed to prototype new
memory models, and to measure the effect of different memory models on program
performance. Moreover, programmers will be able to select suitable memory models
for their specific application use.
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The Architecture of a World-Wide Distributed Repository
to Support Fine-Grained Sharing of Source Code

Jeffrey Mark Siskind
School of Electrical and Computer Engineering

Purdue University

qobi@purdue.edu

There has been an explosion in free software over the past few years. Vehicles like FSF,
GNU, CVS, RPM, Linux, and freshmeat.net allow programmers to share hundreds of
millions of lines of source code. These vehicles, however, support only coarse-grained
source-code sharing. The unit of sharing is a complete package. And packages are
monolithic. About the only thing one can easily do with packages obtained from such
vehicles is install them. While a package might contain a collection of procedures and
type declarations that implement some functionality that a programmer might wish to
reuse in a different system, it is difficult to find which package contains that func-
tionality, extract that functionality from its original package, and import it into a new
system. In this talk, I present a new vehicle, called October, that is designed to support
fine-grained source-code sharing: sharing at the level of individual procedure and type
declarations. Unlike CVS, which allows many people to share in the development of
the same system, October allows many people to share in the development of different
systems.

October is organized like the Web. Instead of Web pages there are top-level def-
initions. Top-level definitions are stored in a distributed repository implemented by
October servers that are analogous to Web servers. They are viewed and manipulated
by October browsers that are analogous to Web browsers. October servers and browsers
communicate via the October protocol which plays the role of HTTP and allows dif-
ferent server and browser implementations to interoperate. The October protocol is
designed from the start with support for searching, caching, mirroring, and load bal-
ancing. These play the role of search engines, proxy servers, and Web caches. Search
is currently based on string matching, though future plans call for type-based search
supported by local and global type inference built into the October protocol and im-
plemented by the October servers. Top-level definitions are stored as abstract syntax
trees (ASTs) which play the role of HTML. Instead of URLs there are version locators.
Top-level definitions are hyperlinked via embedded version locators. When building
an executable, the browser crawls the repository to fetch all top-level definitions refer-
enced directly or indirectly by the top-level definition being built.

October is designed to be programming-language and programmer-preference neu-
tral. It is neither a new programming language nor a new compiler. Rather, it supports
existing programming languages and compilers. Just as the Web supports different doc-
ument styles via DTDs, October supports different programming languages and pro-
grammer preferences via programming language definitions (PLDs). A novel aspect
of PLDs is that they separate the definition of the abstract syntax for a given language
from the mapping between abstract and concrete syntax. This allows users to configure
their browsers to dynamically render the code they view in a different concrete syntax
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according to their personal preference. PLDs are currently written to support Scheme,
C, and Java.

The overall goal of October is to boost world-wide programmer productivity by en-
couraging an unprecedented degree of source-code sharing, shifting the prevalent mode
of programming from implementation to augmentation. In this talk, I will describe how
October is designed to support this goal, discuss how this goal motivates and influences
the creation of a new infrastructure, present some of the technical problems and design
tradeoffs addressed so far while creating this infrastructure, and give a live demo of the
prototype implementation of October.

GNUnet - An Anonymous Network

Christian Grothoff
Purdue University

grothoff@cs.purdue.edu

This talk describes the design of a censorship-resistant distributed file sharing proto-
col which has been implemented on top of GNUnet, an anonymous, reputation-based,
network. We describe the semantics of the networking infrastructure and their implica-
tions on GNUnet’s design. Finally we describe a solution to the problem of achieving
accountability in an anonymous network without using any trusted nodes.
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Aspect-Oriented Frameworks For Weaving Design
Concerns

Atef Bader1, Faisal Akkawi2;?ăand Tzilla Elrad2

1Lucent Technologies
I Illinois Institute of Technology

?akkawif@iit.edu

Aspect-oriented technology is a programming paradigm that provides the user with the
ability to modularize the representation of crosscutting concerns in order to maximize
reusability and ensure flexibility of the software system. In this position paper we
present the dynamic Weaver Framework (DWF), which is an aspect-oriented frame-
work that supports the dynamic attachment and detachment of aspects to components
at run-time, as well as the capability to add and remove aspects and pointcuts during
runtime. This capability is the prime factor that enables us to support reconfigurability
of the software system. The need to adapt to environmental changes and cope grace-
fully with the challenges that may have an impact on performance degradation, safety
and liveness properties of the running system requires recongfigurability of both the
functional and aspectual properties of the system software.

A Robust Algorithm for Partial Redundancy Elimination in
Static Single Assignment Form

Thomas VanDrunen
Purdue University

vandrutj@cs.purdue.edu

Partial redundancy elimination (PRE) is a program transformation that optimizes by
identifying expressions that are redundant on at least one (but not necessarily all) ex-
ecution paths. It inserts computations along edges on which such an expression is not
redundant, and then eliminates the expression by reloading its value from a temporary.
Chow et al. [Chow97, Kennedy99] devised an algorithm for performing partial re-
dundancy elimination on intermediate representation in static single assignment (SSA)
form which does not break SSA. Their algorithm, however, makes assumptions about
the name space which may not be valid if other optimizations already have been per-
formed on the program. Moreover, a single execution of their algorithm may expose
(but not eliminate) new redundancies, so that several passes may be needed to eliminate
all of them. We present an algorithm based on Chow’s which makes no assumptions
about the name space and eliminates all redundant computations in a single path.
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Compiling with Code-Size Constraints

Jens Palsberg? and Mayur Naik
Purdue University

?palsberg@cs.purdue.edu

Most compilers ignore the problems of limited code space in embedded systems. De-
signers of embedded software often have no better alternative than to manually opti-
mize the source code or even the compiled code. Besides being tedious and error-prone,
such manual optimization results in obfuscated code which is difficult to maintain and
reuse. In this talk we present a code-size-directed compiler. We phrase register alloca-
tion and code generation as an integer linear programming problem where the desired
bound on the code size is expressed as an additional constraint. Our experimental re-
sults show that our compiler, when applied to two commercial microcontrollers, can
generate code that is as compact as carefully crafted code.

Compilation of a High-Level Quantum Chemistry
Language into Efficient Parallel Code

Gerald Baumgartner1;?, David E Bernholdt2, Daniel Cociorva1, Robert Harrison3,
Chi-Chung Lam1, Marcel Nooijen4, J. Ramanujam5, P. Sadayappan1

1Ohio State University
2Oak Ridge National Laboratory

3Pacific Northwest National Laboratory
4Princeton University

5Louisiana State University
?gb@cis.ohio-state.edu

Many computational models of the electronic structure of atoms and molecules, such
as the Coupled Cluster approach, involve collections of very computationally intensive
tensor contractions. The development an efficient parallel program for such a computa-
tional model is very complex and can be the main limiting factor in the rate of progress
of the science. We give an overview of an optimizing compiler we are developing, that
will translate high-level tensor contraction expressions into high-performance parallel
code. We describe the structure of several optimization components and demonstrate
their utility using examples.

7



A Query Language for Feasible Computations over List
and Tree Databases

Dirk Van Gucht1;?, Ed Robertson1, Larry Saxton2

1Indiana University
2University of Regina, Canada

?vgucht@cs.indiana.edu

We present a language for querying list and tree-structured objects. These objects
permit arbitrary-depth sublists or trees. The language is shown to express precisely
the feasible, i.e. polynomial-time, generic computations over such structures. The lan-
guage controls complexity by carefully restricting the replication of values and limiting
the nesting of recursion. We also discuss the relationship of our language and XQuery,
a query language for XML databases.
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Dynamic Weaving for Building
Reconfigurable Software Systems

FAISAL AKKAWI
akkawif@iit.edu

Computer Science Dept.
Illinois Institute of Technology

Chicago, IL 60616

ATEF BADER
abader@lucent.com
Lucent Technologies
Naperville, IL 60655

TZILLA ELRAD
elrad@iit.edu

Computer Science Dept.
Illinois Institute of Technology

Chicago, IL 60616

Abstract

Aspect-oriented technology is a programming paradigm that provides the user
with the ability to modularize the representation of crosscutting concerns in order
to maximize the reusability and ensure the flexibility of software system. In this
position paper we present the Dynamic Weaver Framework (DWF), which is an
aspect-oriented framework that supports the dynamic attachment of aspects to
components at run-time and also the dynamic detachment of aspects from
components. As well as the capability to add and remove aspects and pointcuts
during runtime. This capability is the prime factor that enables us to support
reconfigurability of software systems. The need to adapt to environmental
changes and cope gracefully with the challenges that may have an impact on
performance degradation, safety and liveness properties of the running system
requires recongfigurability of both the functional and aspectual properties of the
system software.

.

Keywords: Dynamic Weaver Framework, reconfigurability, dynamic adaptability.

Introduction
Aspect-oriented software design research [3,4,5,6] has stressed the need to address
crosscutting concerns earlier in the design phase in order to avoid the associated code-
tangling phenomenon and its undesirable implications.

Software systems go through cycles by which new requirements are introduced that may
necessitate changes to their behavioral and structural properties. Some of these changes
require invasive modifications. The visitor pattern [7] may reduce the effects of the
invasive changes but can’t eliminate them. Similarly, few of the structural and behavioral
patterns [7], like decorator, adaptor, and proxy patterns, may help reduce the effect of the
non-invasive changes but can’t eliminate them. In [2] the authors presented the Aspect
Moderator Framework which is based on a static proxy that can provide weaving of
predefined aspects at runtime, but once compiled we can’t change them. DWF enables
applications to adapt to changes at run time, because components and aspects are
independent from each other’s and they are woven at runtime. The component and the
aspect in DWF must have a predefined interface, but the users are free to change the class



implementation at runtime. Also, components have no knowledge of the number and
type of aspects they are affected by. So we can change the number and the type of aspects
associated with a component at runtime by addPointcut() in the aspect class as shown in
Figure 2. Other kind of features, like debugging, security, and logging, that may require
be activating or deactivating during runtime can benefit from reconfigurability so that
different security measures can be introduced or new pointcut added.

Design for change in order to adapt gracefully to the evolving requirements can be
farther supported when we consider both the behavioral and structural properties as core
elements when addressing dynamic adaptability. While the behavioral property
represents the ability to add or alter the behavior of methods in a program, the structural
property represents the ability to alter class definitions and the implementation used in
the program. There are a number of patterns that are documented in the software pattern
literature that show how these patterns can be used to support static and dynamic
adaptability of software systems, but these patterns once implemented and compiled will
be difficult to alter at runtime

Dynamic Weaver Framework

Recognizing crosscutting concerns when building software systems is crucial to
guarantee design and code reuse. And identifying the micro-architectural elements that
constitute the skeleton of the crosscutting concerns is even more important for the design
and reusability of these concerns. In Figure 1 we illustrate the micro-architectural
elements of the dynamic weaver framework.

Using behavioral pattern, proxy, to control access to the surrogated object is problematic
since proxies are static, once compiled they can’t change at runtime. Since in most of the
cases we end up re-implementing each method in the super class or interface and add the
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Figure 1:Architectural Elements in the Dynamic Weaver Framework.



control access code to it, it turns out that proxies are not reusable. Ideally we wish to
make aspects generic; but using a proxy for the logging aspect for example would require
us to add it the hard way for each method call

Our DWF takes advantage of the dynamic proxy capability in java J2SE[1]. The
framework structure is depicted in the class diagram figure 2. Each class uses dynamic
proxy class, which represents the aspect weaver class, from the java J2SE. The dynamic
proxy class is responsible for creating that proxy object of the initiator object. And each
proxy has a number of aspects, and each aspect has a number of pointcuts. The join point
in our framework is the method call. Each point cut has an advice class that has two
methods beforeAdvice() and afterAdvice() that will be executed when control reaches the
join point methods. The semantics of aspect, pointcut, and advice are similar to the ones
cited in AspectJ [8].

Class Buffer implements BufferIF {

Put() { ..}
Get() { ..}

}

The Aspect Weaver Framework uses the DynamicProxy class that is part of the J2SE in
order to weave classes and their prospective aspects at runtime. The AspectWeaver
intercepts the message to the component and redirects it to the AspectRepository. The
AspectRepository keeps the information about the aspect(s) (e.g. scheduling,
synchronization, security…) to be applied and the order in which they have to be
executed. The DWF has a loose coupling between component and aspects, because the
component and the aspects no longer have direct reference between them Let us
consider an example in which we want to add the debugging concern into the bounded
buffer example to show how the framework works.

First we implement the BufferIF

Class Buffer implements BufferIF {

Put() { ..}
Get() { ..}

}
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Then we create the AspectWeaver. The AspectWeaver is the dynamic proxy, which
directly interacts with the clients (e.g., producers and consumers using the bounded
buffer) and does the actual weaving of aspects at running. All the access from the
clients to the bounded buffer will be accomplished through this dynamic proxy.
Figure 3 shows the java code for AspectWeaver. Whenever a client calls a method of
the bounded buffer, the proxy executes the invoke() method in the AspectWeaver.
Inside the invoke(), AspectRepository's beforeAdvice() is called. If the call is
successful, the actual operation on buffer is performed by m.invoke() as shown in the
code. After this call is completed, AspectRepository's afterAdvice() method is called.

Figure 2. Dynamic Weaver Framework



public class AspectWeaver implements InvocationHandler {
private AspectRepository _ar;
private Object _buf;

public static Object newInstance(Object buf, AspectRepository ar) {
return Proxy.newProxyInstance(buf.getClass().getClassLoader(),

buf.getClass().getInterfaces(),
new AspectWeaver(buf, ar));

}

private AspectWeaver(Object buf, AspectRepository ar) {
_ar = ar;
_buf = buf;

}

public Object invoke(Object proxy, Method m, Object[] args)
throws Throwable {

Object result = null;
try {

_ar.beforeAdvice(_buf, m, args);
result = m.invoke(_buf, args);
_ar.afterAdvice(_buf, m, args, result);

} catch (InvocationTargetException e) {
throw e.getTargetException();

}
return result;

}
}
Figure3

The aspect repository class is responsible for maintaining a list of aspects that are
published and registered by other classes, as shown in Figure 4.

public class AspectRepository extends Observable
implements AspectRepositoryIF {
public static final int ABORT = 1, BLOCK = 2, RESUME = 3;
private AspectTable aspectTbl = new AspectTable();
.
.
public synchronized void beforeAdvice(Object obj, Method m, Object[] args) {
Task task = new Task(m.getName());
int i, rc;
Aspect a;
Preference policyAdvice;
boolean mustWait = false;

for(i = 0; i < aspectTbl.size(); i++) {
a = aspectTbl.getAspect(i);
mustWait = false;
if (occupied)
mustWait = true;

else {
rc = a.beforeAdvice(obj, m, args);
if (BLOCK == rc)
mustWait = true;

}
while (mustWait) {



policyAdvice = (Preference)
aspectTbl.getAspect("SCHED").getPointcut("DEFAULT").getAdvice(0);

policyAdvice.enqueue(task);
try { this.wait(); }
catch(InterruptedException iex) { /* Ignore iex */ }
policyAdvice.dequeue(task);
if (task.equals(taskToBeAwakened)) {

mustWait = false; // Exit this while loop and
i = -1; // Force all the aspects to be checked again.

}
}

}
.
.

}
.
.
}
Figur 4

The AspectRepository contains the AspectTable, which has all the registered aspects
in it. Initially, the table is empty, i.e. no aspect is registered. Adding and removing
advices of certain aspect can be done by calling the corresponding methods of the
AspectTable. As shown in Figure 5.

public class AspectTable {
private Vector _aspects = new Vector();

public int size() { .. }
public boolean hasAspect(String aspect_name) { .. }
public Aspect getAspect(String aspect_name) { .. }
public Aspect getAspect(int index) { .. }
public Aspect addAspect(String aspect_name) { .. }
public boolean addAspect(String aspect_name, String pointcut_name,

String method_name, AdviceIF advice) {
.
.

}
public void removeAspect(String aspect_name, String pointcut_name,

String method_name) {
.
.

}
.
.

}

Figure 5



AspectTable can contain multiple Aspect objects. Each Aspect can contain
multiple Pointcuts. The method addPointcut() is used for adding new advice. The
removePointcut() method removes an advice from a given Aspect. The
beforeAdvice() and afterAdvice() methods are invoked inside the
AspectRepository’s corresponding methods as shown in figure 6, each Aspect
object has a number of Pointcut objects and a name for itself. The three arguments
passed in the beforeAdvice() method are a reference to the shared object, the
Method object, and the array of arguments to the specific shared object's method
begin called. All these arguments are to be used inside the current beforeAdvice()
method or to be passed on to the Pointcut.beforeAdvice() method. Most of the
time, not all of these arguments are used. Nevertheless, they need to be passed to
the beforeAdvice() method because some of the advices may utilize those
information. For example, a logging advice needs to know all the data passed to
the shared object. The afterAdvice() method has all the same parameters as those
of beforeAdvice() method. Additionally, it has an argument defined as Object
result. This represents the result of a specific shared method's method.

public class Aspect {
private String _aspect_name;
public Hashtable _pointcuts = new Hashtable();
.
.
public int beforeAdvice(Object obj, Method m, Object[] args){
if (_pointcuts.containsKey("DEFAULT")) {
Pointcut p = (Pointcut) _pointcuts.get("DEFAULT");
return p.beforeAdvice(obj, m, args);

}
return AspectRepository.RESUME;

}

public Object afterAdvice(Object obj, Method m, Object[] args, Object result){
if (_pointcuts.containsKey("DEFAULT")) {
Pointcut p = (Pointcut) _pointcuts.get("DEFAULT");
return p.afterAdvice(obj, m, args, result);

}
return null;

}
}

Figure 6

An Aspect can contain multiple Pointcut objects. And each Pointcut can contain
multiple Advices. The method addAdvice() is used for adding a new advice. The
removeAdvice() method removes an advice from a given Pointcut. The
beforeAdvice() and afterAdvice() methods are invoked by the corresponding Aspect’s
same-named methods. Class Pointcut is shown in Figure 7. Three arguments passed
in the beforeAdvice() method are a reference to the shared object, the Method object,
and the array of arguments to the specific shared object's method being called. All
these arguments are to be passed on to the advice's beforeAdvice() method. Four
arguments passed in the afterAdvice() method will also be passed on to the advice's
afterAdvice().



public class Pointcut {
private String _pointcut_name;
public Hashtable _advices = new Hashtable();
.
.
public int beforeAdvice(Object obj, Method m, Object[] args){
AdviceIF adv = (AdviceIF) _advices.get(m.getName());
if (adv == null)
return AspectRepository.RESUME;

return adv.beforeAdvice(obj, m, args);
}

public Object afterAdvice(Object obj, Method m, Object[] args, Object result){
AdviceIF adv = (AdviceIF) _advices.get(m.getName());
if (adv != null)
return adv.afterAdvice(obj, m, args, result);

return null;
}

}

Figure7

Actual behavior of each aspect is provided by an object whose interface is defined by
AdviceIF. They will be woven at runtime by the dynamic proxy, i.e. AspectWeaver.
The interface for Advice is shown in Figure 8.

public interface AdviceIF {
public int beforeAdvice(Object obj, Method m, Object[] args);
public Object afterAdvice(Object obj, Method m, Object[] args, Object result);

}

Figure 8

Shown below is the implementation of the synchronization advice for the bounded
buffer's get() method. The beforeAdvice() method returns one of the integer constants
defined in the AspectRepository; RESUME, BLOCK, and ABORT

public class Adv_SyncGet implements AdviceIF {
public int beforeAdvice(Object obj, Method m, Object[] args) {
BoundedBuffer bb = (BoundedBuffer) obj;
if (bb.getCnt() > 0 ) {
return AspectRepository.RESUME;

} else {
return AspectRepository.BLOCK;

}
}

public Object afterAdvice(Object obj, Method m, Object[] args, Object result) {
return null;

}
}



Dynamic Weaving and Reconfigurability

The Dynamic Weaver Framework has a number of advantages; it provides the capability
to add and remove aspects as well as pointcuts at runtime. This capability is the prime
factor that enables us to support reconfigurability in order to adapt to environment
changes and cope gracefully with any challenges that may have an impact on
performance degradation and safety and liveness properties of the running system.
Changes to the software systems may affect the structural or behavioral properties.
Although the Visitor pattern [7] may reduce the severity of the invasive changes and the
Decorator and Proxy pattern may support the engineering of the non-invasive changes,
these patterns offer very little to support the design and implementation of the
crosscutting concerns, especially in the cases where we desire to alter, add, or remove
these crosscutting concerns at run time from the running system. The DWF represents the
solution for all of these problems that are hard to anticipate fully during the design phase.

For instance, we may need to add a new pointcut or add a join point to a list of methods
that comprise the point cut. An example of this is the addition of a new methodgget() to
the pointcut of the synchronization aspect, or altering the advice class for a certain joint
point, like changing the scheduling point cut for the method get, to service requests based
on the priority of the thread.

Conclusion

In this paper we presented an approach by which aspects and components can be weaved,
altered or removed dynamically. This approach is a step toward automating the weaving
process at runtime. Recognizing the micro-architectural elements of crosscutting
concerns during the design phase is essential to ensure the reusability and
reconfigurability of the resulting software system, and the DWF is an attempt to meet
these desirable properties when crafting software systems.
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A Robust Algorithm for Partial Redundancy Elimination in Static
Single Assignment Form

Thomas VanDrunen

April 4, 2002

Abstract

Partial redundancy elimination (PRE) is a program transformation that optimizes by identifying expressions that
are redundant on at least one (but not necessarily all) execution paths of a control flow graph of the program. It
inserts computations along control flow edges on which such an expression is not redundant, and then eliminates the
expression by reloading its value from a temporary. Chow et al. [5, 11] devised an algorithm for performing partial
redundancy elimination on intermediate representation in static single assignment (SSA) form which preserves that
form across the transformation. Their algorithm, however, makes assumptions about the name space which may not be
valid if other optimizations already have been performed on the program. Furthermore, there are some cases where
the algorithm exposes redundancies but does not eliminate them, which requires the optimization to be performed
more than once to eliminate all redundant computations. We present an algorithm based on Chow’s which makes no
assumptions about the namespace and eliminates all redundancies in a single pass.

1 Introduction

While machine-level program optimization advances alongside of research in computer architecture, the optimizing
of intermediate representation (IR) also enjoys research attention. Besides being of theoretical interest because of
their generality and their amenability to proofs of correctness, these optimizations are useful in compiler construction
because they apply to compilation from almost any source language to almost any target architecture. Even though
system-dependent liabilities exist, causing effectiveness to vary (for example, keeping a value in a register instead
of recomputing it or writing to memory may increase register pressure and hurt performance by causing spills – it
depends on the number of registers and the cost of memory access), reducing the number of computations on a control
flow path will almost certainly improve performance at least modestly.

1.1 Partial redundancy elimination

Partial redundancy elimination (PRE) is one such program transformation. Pioneered by Morel and Renvoise [14], it
identifies computations that may have been performed at an earlier point in the program and replaces such computa-
tions with reloads from temporaries. We say “may have been performed” because PRE considers computations that
were performed on some, but not necessarily all, control flows paths to that point – in other words, computations that
arepartially redundant. In such cases, a computation must be inserted along paths to that program point that do not
already compute that value, and care must be taken so that the length of no path is ever increased and no execution
of the optimized program performs a computation which an execution of the unoptimized program would not have
done. The net effect is to hoist code to earlier program points. This transformation subsumes common subexpression
elimination and loop-invariant code motion.

Throughout this paper, we will discuss transformations as they would be performed on an IR that uses acontrol
flow graph (CFG) overbasic blocks. A basic block is a code segment that has no jump or branch statements except
for possibly the last statement, and none of its statements, except possibly the first, is a target of any jump or branch
statement. A CFG is a graphical representation of a procedure that has basic blocks for nodes and whose edges
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(a) Critical edge highlighted (b) With the critical edge having been removed

Figure 1: Critical edge example

a 

c a+ b
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d a+ b
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c t

d t

(a) Before PRE (b) After PRE

Figure 2: PRE example

represent the possible execution paths determined by jump and branch statements. We assume that all critical edges
have been removed from the CFG, that is, edges from blocks with more than one successor to blocks with more than
one predecessor. Such an edge can be eliminated by inserting an empty block between the two blocks connected by
the critical edge, as illustrated in Figure 1. We further assume that the instructions of the intermediate representation
that interest us are in three-address form, saving their result to a variable or temporary.

Another useful abstraction for control flow is thedominator tree. The nodes in the dominator tree are the same as
the nodes of the control flow graph, but the children of a given node are the nodes that are immediately dominated by
that node, that is, nodes that are dominated by it and are not dominated by any other node also dominated by it (note
that this excludes the node itself). Thedominance frontier of a basic block is the set of blocks that are not dominated
by that block but have a predecessor that is.

Having described the basics of program representation, we now consider an example of PRE performed on a code
fragment in that representation. In the unoptimized version of this fragment in Figure 2(a), the expressiona + b is
redundant when the left control flow path is taken, computed twice without any change to the operands. However, it is
not redundant along the right edge; even if it were computed sometime earlier in the program, the predecessor block
along that edge modifies one of the operands. Thus the expression ispartially redundant in the bottom basic block.

To remove the partially redundant computation, we insert a copy of it in the right predecessor, since the value of the
computation is unavailable along the incoming edge from it. This insertion makes the expression in the bottom basic
block fully redundant. If we allocate a fresh temporaryt and save each early computation to it, the later computation
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a1  
c a+ b

a2  

d a3 + b

a3  �(a1; a1)

Figure 3: SSA form

can be replaced by that temporary. In this way we produce the optimized code found in Figure 2(b).
Notice that PRE does not reduce code size. Both the optimized and unoptimized versions in this example contain

two occurrences of the computation. Moving the code, however, decreases the length of the left execution path. The
length of the right execution path is unchanged.

1.2 Static single assignment form

Static single assignment (SSA) form is an intermediate representation property where each variable – whether rep-
resenting source-level variables chosen by the programmer or temporaries generated by the compiler – has exactly
one definition point. Even though definitions in reentrant code may be visited many times in the course of execution,
statically each SSA variable is assigned exactly once. If several assignments to a variable occur in the source program,
the building of SSA form splits that variable into several versions, one for each definition. Basic blocks where exe-
cution paths merge (such as the bottom block in our example) represent the consequent merging of variables by aphi
function. Phi functions occur only in instructions at the beginning of a basic block (before all non-phi instructions) and
have the same number of operands as the block has predecessors in the CFG, each operand corresponding to one of
the predecessors. The result of a phi function is the value of the operand associated with the predecessor from which
control has come. A phi function is an abstraction for moves among temporaries which would occur at the end of
each predecessor – SSA form does not allow such moves since each would have the same variable as its target. For
simplicity we will refer to phi functions and the instructions that contain them simply as�s. Figure 3 shows the SSA
form of the program considered above.

SSA is desirable for many transformations and analyses because it implicitly provides def-use information: For
any given use of a variable, the definition relevant to that use is known immediately because a variable (by which we
mean, an SSA version of a variable) has only one definition; a given definition’s set of uses is simply all places where
the target of the definition is used. SSA also relieves the optimizer from depending on the programmer’s choice of
variable names and the way variables are reused in the program, since a transformation may regard each version of a
variable as a completely different variable.

1.3 Related work

As already mentioned, PRE has its origin in the work of Morel and Renvoise [14]. They presented PRE as a general-
ization of two operations previously regarded as distinct: the elimination of redundant computations and the hoisting
of invariant computations out of loops. Drechsler and Stadel extended this work so that subexpressions can be cleanly
removed if they are redundant but contained in larger expressions that are not [8]. Thus the transformation generalizes
common subexpression elimination as well as invariant code motion.
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Knoop et al synthesized several previously known algorithms into a code motion technique that was computation-
ally optimal for eliminating redundant computations [12]. Under the hard constraint of control flow path optimality,
their algorithm placed computations as late as possible to reduce register pressure. This algorithm was made more
practical by Drechsler and Stadel in [9] and by the original authors in [13].

PRE was also given attention for its usefulness in concert with other program transformations. Briggs and Cooper
proposed reassociation and global value numbering as enabling optimizations to make PRE effective [4]. At the same
time, Click presented an alternative to PRE: a heuristic code motion technique that did not remove redundant code,
followed by a global value numbering phase [6]. This combination, he argued, was more effective than traditional
PRE. Value numbering was also used for redundancy elimination in Taylor Simpson’s Ph.D. thesis [16]. However,
although they have similar effects, value numbering is not completely comparable with PRE, as noted in section 12.4
of [15]. The recasting of the algorithm presented in this paper as a value numbering problem or the use of value
numbering in conjunction with it is an area of future investigation (see section 5).

One challenge to combining any set of optimizations is finding a suitable, common program representation. If all
optimizations use and preserve the same IR properties, then the task of compiler construction is simplified, optimiza-
tion phases easily can be reordered or reentered, and expensive IR-rebuilding is avoided. Despite SSA’s usefulness as
an IR, prior work on PRE not only had not used SSA, but, in the case of [4], explicitly broke SSA before performing
PRE. Chow et al presented a PRE algorithm which assumed and preserved SSA form, SSAPRE [5, 11]. It is on that
algorithm that the present work is principally based.

Another advancement was made by Bod´ık et al by considering path-based value numbering as a form of PRE and
noticing that more redundancies could be eliminated if changes were made to the CFG [2, 3]. These will be described
later in the paper.

The contribution of the present work is a simplification of Chow’s algorithm which relaxes restrictions made on
the input code and incorporates some of the techniques found in Bod´ık.

Rest of the paper. Our algorithm is presented as an advancement over the algorithm in [5, 11]. Section 2 summarizes
Chow’s SSAPRE algorithm and walks through examples on which it fails. Section 3 explains our robust algorithm.
Section 4 reports and comments on measurements of the performance of the optimization. Section 5 concludes by
considering future work, particularly plans to coordinate this algorithm with other optimizations.

2 Chow’s algorithm

2.1 Summary

Chow’s algorithm for SSAPRE associates expressions that are lexically equivalent when SSA versions are ignored.
For example,a1+ b3 is lexically equivalent toa2+ b7. We considera+ b as the canonical expression and expressions
like a1 + b3 as versions of that canonical expression; lexically equivalent expressions are assigned version numbers
analogous to the version numbers of SSA variables. Achi statement1 (or simply�) merges versions of expressions at
CFG merge points just as�s merge variables. The chis can be thought of as potential phis for a hypothetical temporary
that may be used to save the result of the computation if an opportunity for performing PRE is found.

As a� stores its result in a new version of the variable, so�s are considered to represent a new version of the
expression. The operands of a� (which correspond to the incoming edges just as� operands do) are given the version
of the expression that is available most recently on the path they represent. If the expression has never been computed
along that path, then there is no version available, and the� operand is denoted by?. �s and� operands are also
considered occurrences of the expression; expressions that appear in the code are differentiated from them by the term
real occurrences.

For a code-moving transformation to be correct, it must never insert a computation that will be performed on a path
in the optimized version along which it was never performed in the unoptimized version. (Since this optimization does
not alter the structure of the CFG, control flow paths in the optimized program correspond to paths in the unoptimized
program). In other words, it is incorrect to insert a computation if there exists a path from it to exit along which it is

1In [5, 11],�s are called Phis (distinguished from phis by the capitalization) and denoted in code by the capital Greek letter�.

4



Properties for�s
downsafe The value of the� is used on all paths to program exit.

canBeAvail None of the�s operands are? or the� is downsafe (i.e., the value has been computed on all
paths leading to this point or insertions for it can be made safely).

later Insertions for the� can be postponed because they will not be used until a later program point.
willBeAvail The value of the� will be available at this point after the transformation has been made; it can

be available and cannot be postponed.
Property for� operands

insert An insertion needs to be made so that this� operand’s value will be available.

Table 1: Chi and chi operand properties

Occurrence being inspected
Definition real occurrence � � operand

real
occurrence

Assign the old version if all cor-
responding variable have the same
SSA version; otherwise assign a
new version and push the item on
the stack.

Assign a new version and push the
item on the stack.

Assign the old version if the defin-
ing occurrence’s variables have
SSA versions current at the point
of the� operand; otherwise assign
?.

chi

Assign the old version if all the
definitions of the variables domi-
nate the defining�; otherwise as-
sign a new version and push the
item on the stack.

Assign a new version and push the
item on the stack

Assign the old version if the def-
initions of the current versions of
all relevant variables dominate the
defining�; otherwise assign?.

Table 2: How to determine what version to assign to an occurrence of an expression

not used. Not only would this lengthen an execution path (defying optimality), but it could also cause the optimized
code to throw an exception that the unoptimized code would not. This property is calleddownsafety. A chi is downsafe
if its value is used on all paths to procedure exit. This and other properties of�s and� operands are summarized in
Table 1. Details about their use and how to compute them are discussed later.

SSAPRE has six phases.

� Insertion For any real occurrence of a canonical expression on which we desire to perform SSAPRE, insert�s at
blocks on the dominance frontier of the block containing the real occurrence and at blocks dominated by that
block that have a� for a variable in the canonical expression. (These insertions are made if a� for that canonical
expression is not there already.) These�s represent places that a version of an expression reaches but where it
may not be valid on all incoming edges and hence should be merged with the values from the other edges.

Rename Assign version numbers to all real expressions,�s, and� operands. This algorithm is similar to that for
renaming SSA variables given in [7]. While traversing the dominator tree of the CFG in preorder, maintain a
renaming stack for each canonical expression. The item at the top of the stack is the defining occurrence of
the current version of the expression. For each block in the traversal, inspect its�s, its real instructions, and
its corresponding� operands in the�s of its successors, assigning a version number to each. If an occurrence
is given a new version number, push it on the stack as the defining occurrence of the new version. When the
processing of a block is finished, pop the defining occurrences that were added while processing that block.
Table 2 explains how to assign version numbers for various types of occurrences depending on the defining
occurrence of the current version (this table is expanded from Table 1 of [11]). Note that� operands cannot be
defining occurrences.

Downsafety Compute downsafety with another dominator tree preorder traversal, maintaining a list of�s that have
not been used on the current path. When program exit is reached, mark the�s which are still unused (or used
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Figure 4: PRE example

only by operands to other�s that are notdownsafe) as notdownsafe.

WillBeAvail ComputecanBeAvail for each� by considering whether it isdownsafe and, if it is not, whether its
operands have versions that will be available at that point. Computelater by setting it to false for all�s with an
operand that has a real use for its version or is defined by a� that is notlater. ComputewillBeAvail by setting
it true for all�s for whichcanBeAvail is true andlater is false. Computeinsert for each� operand by setting
it to true for any operand in a� for which willBeAvail is true and either is? or is defined by a� for which
willBeAvail is false.

Finalize Using a table to record what use, if any, is available for versions of canonical expressions, insert computations
for � operands for whichinsert is true (allocating new temporary variables to store their value), insert�s in place
of �s for whichwillBeAvail is true, and mark real expressions for reloading that have their value available at
that point in a temporary.

Code Motion Replace all real expressions marked for reloading with a move from the temporary available for its
version.

2.2 Example

Consider the unoptimized program in Figure 4 (a). The expressionb+ c in block 4 is partially redundant because it is
available along the right incoming edge. If we perform SSAPRE on this canonical expression, (b) shows the program
after� Insertion and Rename. The occurrence in block 3 is given the version 1. Since block 4 is on its dominance
frontier, a� for this expression is placed there to merge the versions reaching that point, and the right� operand is
given version 1. Since the expression is unavailable from the left path, the corresponding� operand is?. The� itself
is assigned version 2. Since that� will be on top of the renaming stack whenb+ c in block for is inspected and since
the definitions of its variables dominate the�, it is also assigned version 2.

The� is clearlydownsafe, so it can be available. Since its right operand has a version defined by a real occurrence,
it cannot be postponed. Therefore,willBeAvail is true for it. The Finalize and Code Motion steps insert a computation
for its ? � operand and a phi in the place of the� to preserve the value in a new temporary. A move from that
temporary can then replace the real occurrence in block 4, as (c) displays.
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Figure 5: PRE after Constant Copy Propagation

2.3 Counterexamples

The preceding example illustrates how SSAPRE’s dependence on lexical equivalence weakens its ability to find all
redundancy. Since the definition ofc is a move froma1, b + c has the same value asb + a1 in block 2. This means
insertingb+ c in that block is not optimal – it may not be redundant lexically, but it clearly computes the same value.
Situations like this motivate research for making (general) PRE more effective, such as in [4]. In this case, all we
need is a simple constant copy propagation to replace all occurrences of c witha1, as shown in Figure 5(a). Now the
expression in block 4 is fully redundant even in the lexical sense.

Chow’s SSAPRE is fragile when used with a transformation like this. It assumes a stronger condition on the
code than SSA form, namely that no more than one version of a variable may be live simultaneously. Constant copy
propagation breaks this condition here, as botha1 anda2 are live at the exit of block 3, and, assuminga3 is used later
in the program, botha1 anda3 are live in block 4. In this case,b + a1 is given the same version in blocks 2 and 3;
b+ a2 in block 3, since it does not match the current versionb+ a2, is given its own version. See Figure 5(b).

What version should be given to the right operand of the� in block 4? Version 2 (b + a2) is the current defining
occurrence, and Table 2 suggests that its version should be used if its operands are the current versions of the variables.
Sincea2 is the corresponding operand to the� at that block, it can be considered current, and we give the� operand
version 2. However, this produces incorrect code – in the optimized program in Figure 5(c),g has valueb+ a2 on the
right path, notb+a1 as it should. [5, 11] give an alternative Rename algorithm called Delayed Renaming which might
avoid producing wrong code. In that algorithm, the “current” variable versions for a� operand are deduced from a
later real occurrence that has the same version as the� to which the operand belongs, adjusted with respect to the�s
at that block. In this case, the� has the same version asg  b+ a1. Since neitherb nora1 are assigned by�s, they
are the current versions for the� operand, and are found to mismatchb + a2; thus the� operand should be?. This
would still, however, miss the redundancy betweene b+ a1 andg  b+ a1.

The entry in Table 2 for processing real occurrences when a� is on the stack is also fragile. Figure 6 displays
another program before, during, and after SSAPRE. Since two canonical expressions (b + a andb + c) are being
processed, we distinguish their�s and version labels with� and�, respectively. The same program, before SSAPRE
but after constant copy propagation, is shown in Figure 7 (a). There is now only one canonical expression.� Insertion
and Rename produce the version in (b). The right� operand is? becausea1 in b+a1 is not “current” on that edge, not
being the corresponding operand to the�. Such a� represents the correct value forf  b+a3. However,g  b+a1
is also assigned the same version: the� is the definition of the current version, and the definitions of all the operands
of g  b + a1 dominate it, which are the conditions prescribed by Table 2. Consequently, the optimized version
assigns an incorrect value tog in (c).

In both cases, the problem comes from the algorithm assuming that only one version of a variable can be current
at a given time. Simple fixes are conceivable, but not without liabilities. Renaming variables to make this assumption
valid will merely undo the optimizations intended to make PRE more effective. The rules in Table 2 could be made
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Figure 8: Nested redundancy

more strict; for example, we could associate versions of variables with each� and make sure all versions match before
assigning a real occurrence the same version as a�. This would prevent the incorrect result in Figure 7, but since
b+ a1 in the original is indeed partially redundant, ignoring it would not be optimal.

Another case when SSAPRE misses redundancy is when a redundant computation has subexpressions. Consider
the program in Figure 8(a). The expressiona + b in block 4 is clearly partially redundant;c3 + d2 is partially
redundant also, sinced1 andd2 have the same value on that path. Essentially, it is the complex expressionc + a + b

that is redundant.
Figure 8(b) shows the program after� Insertion and Rename. As earlier, version numbers and�s for the two

expressions are distinguished with Greek letters.d2  a + b is given the same version as the corresponding� and
will be removed by later SSAPRE phases. However,f  c3+d2 containsd2, whose definition does not dominate the
�� . According to Table 2, we must assign the real occurrence a new version, even though the� represents the correct
value on the right path. The optimality claim of [5, 11] assumes that a redundancy exists only if there is no non-�

assignment to a variable in the expression between the two occurrences; this example frustrates that assumption, and
comparing this with the running example in [4] demonstrates that this situation is not unrealistic when PRE is used
with other optimizations. The optimized form we desire is in Figure 8(c), which would result if Chow’s SSAPRE were
run twice. (This situation is not just a product of our three-address representation, since it is conceivable thatd has
independent uses in other expressions.)

3 Algorithm

The problems with Chow’s algorithm stem from assumptions about lexical equivalence. From this point on, we will
abandon all notions of lexical equivalence between distinct SSA variables. We will ignore the fact that some SSA
variables represent the same source-level variables and consider any variable to be an independent temporary whose
scope is all instructions dominated by the its definition.

Our algorithm searches backward from an occurrence of an expression for an earlier computation of that expres-
sion’s value or for a merge point, at which it will place a�. A key difference between this and Chow’s algorithm is that
it searches backwards from expressions to be eliminated rather than forwards from expressions that provide values. If
the algorithm discovers the definition of a variable in the expression for which it is searching, it will alter the form of
that expression accordingly; for example, if it is searching fort3+ t7 and discovers the instructiont7  t1, then from
that point on it will look fort3 + t1. When a� is created, it is allocated a fresh temporary, which will be the target
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Figure 9: Unoptimized

of the� that will be placed there if the� is used in a transformation. The result of this phase is that instructions are
assigned temporaries that potentially store earlier computations of the instructions’ values. The instructions may be
replaced by moves from those temporaries.

Since all variables are distinct, so are all expressions. This relieves the need of the notion of canonical expressions
and the need for version numbers. Thus our algorithm has no renaming phase. Not only do the problems in Chow’s
algorithm come from ambiguities in the specification of Rename, but also our experience with implementation has
found Rename to be particularly prone to bugs.

The algorithm then analyzes the� operands that are? to determine which ones representdownsafe insertions and
analyzes the�s to determine which ones can be made available, which ones can be postponed, and, from these, which
ones should be made into�s. This happens in the two phases Downsafety and WillBeAvail.

Finally, where appropriate, insertions are made for� operands,�s are put in the place of�s, and redundant
computations are replaced with moves from temporaries. This phase, Code Motion, subsumes the Finalize phase in
Chow’s algorithm.

The next subsections describe the four phases of Robust SSAPRE (RSSAPRE) in detail. We clarify each step by
observing what it does on a running example. The unoptimized version is in Figure 9. Assignments with no right hand
side are assumed to come from sources we cannot use in RSSAPRE. For example,t1, t2, andt3 in block 1 may be
parameters to the procedure, andt9 in block 5 could be the result of a function call.
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3.1 � Insertion

� Insertion is the most complicated of the phases, and it differs greatly from the equivalent phase in Chow’s SSAPRE.
A � is a potential� or merge point for a hypothetical temporary, and it has an expression associated with it, for which
the hypothetical temporary holds a pre-computed value. The hypothetical temporary is allocated at the time the� is
created, so it is in fact a real temporary from the temporary pool of the IR; it is hypothetical only in the sense that we
do not know at the time it is allocated whether or not it will be used in the output program. The hypothetical temporary
also provides a convenient way of referring to a�s, since the� is the hypothetical definition point of that temporary.
In the examples, a� will be displayed by the Greek letter followed by its operands in parentheses and its hypothetical
temporary in parentheses. The expression it represents is written in the margin to the left of its basic block.

A � operand is an object that is associated with a CFG edge and either points to a temporary or is?. They are
represented in the examples accordingly, listed from left to right in the same order as their respective CFG edges
appear. However, an important feature of our algorithm is that�s at the same block can share� operands. Assume
that if two� operands are in the same block, are associated with the same CFG edge, and point to the same temporary,
then they are the same object.� operands that are? are numbered to show which ones represent distinct objects. The
temporary to which a� operand points is called thedefinition of that� operand, and if the� operand is?, we say that
its definition isnull. � operands also have expressions associated with them, as explained below, but to reduce clutter,
they are not show in the examples.

Real occurrences of an expression (ones that appear in the code and are saved to a temporary) also have definitions
associated with them, just as� operands do. This is the nearest temporary (possibly hypothetical) found that contains
the value computed by the instruction. If no such temporary exists, then the definition is?. In the examples, this
temporary is denoted in brackets in the margin to the left of its instruction. This notion of definition creates a relation
among real instructions,�s, and� operands and is equivalent to thefactored redundancy graph of [5, 11].

� insertion performs a depth-first, preorder traversal over the basic blocks of the program. In each basic block, it
iterates forward over the instructions. For each instruction on which we desire to perform PRE (in our case, binary
arithmetic operations), the algorithm begins a search for a definition. During the search, it maintains a search expres-
sione, initially the expression computed by the instruction where it starts. It also maintains a reference to the original
instruction,i. Until it reaches the preamble of the basic block (which we assume includes the�s and�s), the algorithm
inspects an instruction at each step.

The current instruction being inspected is either a computation ofe, the definition point of one of the operands of
e, or an instruction orthogonal toe. This last case will probably cover most of the instructions inspected, and such
instructions are simply ignored. If the instruction is a computation ofe (that is, the expression computed exactly
matchese), then the search is successful, and the temporary in which the current expression stores its result is given as
the definition ofi. When the current expression defines one ofe’s operands, then what happens depends on the type of
instruction. If it is not itself a candidate for PRE or a simple move (for example, a function call), then nothing can be
done; the search fails, andi’s definition is null. If the current instruction is a move, then we emende accordingly: the
occurrences ine of the the target of the move are replaced by the move’s source. The search then continues with the
new form ofe. If a constant copy propagation has been performed immediately before RSSAPRE, then this should
not be necessary, since simple moves will be eliminated. However, we make no assumptions about the order in which
optimizations are applied, and in our experience, such moves proliferate under many IR transformations.

If the current instruction stores the result of a PRE-candidate computation to an operand ofe, then we can con-
jecturally emende. Since blocks are processed in depth-first preorder and instructions processed by forward iteration,
we know that the instruction being inspected has already been given a definition. If that definition is not null, then we
can conjecture that the instruction will be replaced by a move from the temporary of its definition to the temporary
being written to, and we emende as if that move were already present. From a software engineering standpoint, such
conjectural emendations may be skipped during early development stages, and Section 4 shows results both with and
without them. However, they are necessary for optimality, since they take care of the situation in Figure 8. Without
them, RSSAPRE would require multiple runs to achieve optimality, especially in concert with the enabling optimiza-
tions described in [4]. If the instruction’s definition is null (or if conjectural emendations are turned off), such an
instruction should be treated the same way as non-PRE-candidates, and the search fails.

When the search reaches the preamble of a block, there are three cases, depending on how many predecessors the
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block has: zero (in the case of the entry block), one (for a non-merge point), or many (for a merge point). At the entry
block, the search fails. At a non-merge point, the search can continue starting at the last instruction of the predecessor
block with no change toi or e. At a merge point, the algorithm inspects the expressions represented by the�s already
place in that block. If one is found to matche, then that� – or more properly, that�’s hypothetical temporary –
is given asi’s definition. If no suitable� is found, the algorithm creates one; a new temporary is allocated (which
becomesi’s definition), and the� is appended to the preamble and to a list of�s whose operands need to be processed,
as will be described below. In either case, the search is successful.

When all basic blocks in the program have been visited, the algorithm creates� operands for the�s that have been
made. Since� operands have definitions just like real instructions do, this involves a search routine identical to the one
above. The only complications are�-operand sharing among�s at the same block and emendations with respect to�s
and other�s. For each� c in the list generated by the search routine and for each in-coming edge� at that block, the
algorithm determines an expression for the� operand for that edge. To do this, we begin with the�’s own expression,
e, and inspect the�s at the block and the�s that have already been processed. If any write to an operand ofe (that
is, if one ofe’s operands is the target of a� or the hypothetical temporary of a�), then that operand must be replaced
by the operand of the� that corresponds to� or the definition of the� operand that corresponds to�. (If such a�
operand is?, then we can stop there and know that the� operand we wish to create will be?, and it is impossible to
make an expression for it.) For example, ife = t4 + t6 and that block containst6  �(t1; t2), the left� operand will
have the expressiont4 + t1 and the righe will havet4 + t2. We call the revised expressione0. Once an expression has
been determined, the algorithm inspects the� operands corresponding to� of all the�s at that block that have already
been processed; if any such� operand has an expression matchinge0, then that� operand becomes an operand also of
c. This sharing of� operands is necessary to discover as many redundancies as [2], as the examples will show. If no
such� operand is found, the algorithm creates a new one withe0 as its expression, and it searches for a definition for
it in the same manner as it did for real instructions, in this casei referring to the� operand. Note that this may also
generate new�s, and the list of�s needing to be processed may lengthen.

The search for a definition for a� operand has one qualification. Extra caution needs to be made when doing a
conjectural emendation. If the current instruction being inspected writes to an operand ofe0 but is defined by a� that
depends oni (assumingi is a� operand), then the emendation should not be made. A� c depends on a� operandi
if i is an operand ofc or if i is an operand to a� that in turn has a� operand upon whichc depends. This situation
happens in loops, especially instructions that increment a loop counter. Making an emendation in such a case would
cause�s to be generated infinitely.

Consider the program in Figure 9. From the instructioni = t4  t1 + t3 in block 3, we search for an occurrence
of e = t1 + t3 and immediately hit the preamble of the block. Since it is not a merge point, the search continues in
block 1. The write tot3 is relevant toe, but since that instruction is not a move or a PRE candidate, the search fails
andi is assigned?. Similarly, the searches fromt5  t2 + t3 andt6  t1 � t5 fail.

For i = t8  t1 + t3; e = t1 + t3, the search takes us to the preamble of block 4. Since it is a merge point, we
place a� there with expressiont1+ t3 and allocatet19 as its hypothetical temporary, which also become the definition
of t8  t1+t3. Similarly for i = t10  t7+t3, we place a�, allocating the temporaryt20; and fori = t11  t7+t3,
a� with temporaryt21. For i = t13  t7 + t2; e = t7 + t2, when the preamble of block 4 is reached, we discover
that a� whose expression matchese is already present, and so its temporary,t20, becomesi’s definition. Finally,
searches from the two real instructions in block 7 produces the�s with temporariest22 andt23, which serves as the
real instructions’ definitions. Figure 10(a) displays the program at this point.

So far, this phase has generated five�s. The search for definitions for their operands is more interesting. Thet19
� has expressione = t1 + t3. Since none ofe’s operands are defined by�s, e also serves as the expression for the
�’s operands. Search from the left operand fails when it hits the write tot3 in block 1. Search from the right operand,
however, discoverst4  t1+ t3, which matchese; sot4 becomes its definition. Thet20 � has expressione = t7+ t2.
Sincet7  �(t1; t2) writes to one ofe’s operands, the two� operands will have the expressionst1 + t2 andt2 + t2.
Since neither have occurred in the program, two? � operands are created. Thet21 � has expressione = t7 + t3. The
� changes this tot1+ t3 for the left edge and tot2+ t3 for the right edge. The former is identical to the expression for
the left operand of thet19 �, so that operand is reused. Searching from the right� operand discoverst5  t2 + t3.

Turning to block 6, thet22 � has expressiont7 + t14, which the�s change tot7 + t9 for the left edge andt7 + t12
for the right. On the left side, a search for a definition for the� operand halts at the non-PRE-candidate write tot9 in
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Figure 10: During chi insertion
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block 5. The right hand search discoverst11  t7 + t3. The left and right� operands for thet23 � (e = t15 � t16)
have expressionst10 � t8 andt1 � t11, respectively. On the left,t10  t7 + t2 andt8  t1 + t3 in block 5 affect
the search expression, which we conjecturally emend tot20 � t19. When the preamble of block 4 is reached, a new�

must be placed, allocating the temporaryt24. On the right,t11  t7 + t3 causes the search expression to be emended
to t1 � t21, which also requires a new� at block 4. Finally, we search for definitions for the� operands of the two�
recently placed in block 4. The program at the end of the� Insertion phase is shown in Figure 10(b).

3.2 Downsafety

Recall that an inserted computation isdownsafe only if the same computation is performed on all paths to exit. Avoid-
ing inserting computations that are notdownsafe prevents lengthening computation paths and causing exceptions that
would not be thrown in the unoptimized program. Since� operands represent potential insertions, we consider down-
safety to be a property of� operands rather than of�s as in [5, 11] and Table 1. The second phase of RSSAPRE is
a static analysis that determines which� operands aredownsafe. We are interested only in� operands that are? or
defined by a�; if a � operand’s definition is the result of a real instruction, no insertion would ever need to be made
for it.

The question of whether a� operand’s value is used on all paths to program exit is akin to liveness analysis for
variables and can be determined by a fixed-point iteration. At the entry to a block that is a merge-point, the� operands
of its�s become “live.” A use of their value – which happens if a real instruction has the hypothetical temporary of the
� as a definition – “kills” them. All� operands that are not killed in that block are “live out”, and must be considered
“live in” for the block’s successors.

The fact that�s share� operands complicates downsafety, since if a� operand is an operand to several�s, a use
of any of their hypothetical temporaries will kill it. Moreover, the use of a�’s hypothetical temporary will kill all of
that�’s � operands. To handle this, in addition to a set of live� operands, we must maintain on entry and exit of every
block a mapping from temporaries to sets of� operands which a use of them will kill.

What if a� operand’s value is used as the definition to another� operand? We could consider that� operand
to be a use occurring at the end of the corresponding predecessor block (not in the block that contains its�). That
would complicate things because if the� operand was the only killer for the first� operand on a path to exit, then the
downsafety of the first would depend on the downsafety of the second. Chow’s algorithm handled this by propagating
a false value for downsafety from�s already found to be false to�s that depended on them. We can handle this with
our map structure: If a use oft1 will kill � operand!1, � operand!2 hast1 as its definition, and a use oft2 will
kill !2, then we say thatt2 will also kill !1. The effect this has is that the use of a temporary as the definition of a
� operand cannot itself kill another� operand, but that the fate of both� operands are linked on subsequent paths to
exit.

Supposelive in(b), live out(b), map in(b), andmap out(b) are the live in and out sets and mappings in and out,
respectively, for a blockb, and that�(i) finds the definition of instructioni. Then to compute downsafety, we must
solve the following data flow equations:

live in(b) =
S

b02pred(b) live out(b0)

= [set of� operands atb
map in(b) =

S
b02pred(b) map out(b0)

f
S
t 7! � j � at b with temporaryt and set of� operands�

live out(b) = live in(b)
�f! j �(i) = t andmap in(t) = !for some instructioni 2 b

or for some correspondingchi operandi in a successorg
map out(b) = map in(b)

Table 3 lists what� operands aredownsafe in our example and why. As in the Figures,� operands are identified
by their definition. Of particular interest is?1 because it isdownsafe only because it is shared: it is killed on the left
path because it belongs to thet19 � and on the right because it belongs to thet21 �. If these were considered separate
� operands, then a redundancy would be missed.
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?
1 downsafe: killed by t8  t1 + t3 on the left path andt11  t7 + t3 on the right.

t4 Irrelevant: defined by real instruction.
?
2 downsafe: killed by t10  t7 + t2 on the left path andt13  t2 + t2 on the right.
?
3 downsafe: killed by t10  t7 + t2 on the left path andt13  t2 + t2 on the right.

t5 Irrelevant: defined by real instruction.
?
5 Not downsafe.
?
6 Not downsafe.
?
7 Not downsafe.

t6 Irrelevant: defined by real instruction.
?
4 downsafe: killed by t17  t7 + t14.

t11 Irrelevant: defined by real instruction.
t24 downsafe: killed by t18  t15 � t16.
t25 downsafe: killed by t18  t15 � t16.

Table 3: Downsafety for the running example.

3.3 WillBeAvail

The WillBeAvail stage computes the remaining properties for�s and� operands, namely,canBeAvail, later, and
willBeAvail for �s andinsert for � operands. The most important of these iswillBeAvail because it characterizes�s
that will be turned into�s for the optimized version.

We first determine whether it is feasible and safe for a� to be made into a�. If all of a �’s operands either have
a real use or aredownsafe, then that� is canBeAvail. A � is alsocanBeAvail if all of its � operands that are not
downsafe are defined by�s which alsocanBeAvail, since, even though an insertion for that� operand would not be
safe, no insertion is needed if the value will be available from the defining�.

To this end, after initializingcanBeAvail to true for all�s in the program, we iterate through all�s. If a� c has a�
operand that is notdownsafe and is? (and if canBeAvail has not already been proven false forc), we setcanBeAvail
to false for it. Then we make an inner iteration over all�s; for any� that has an operand defined byc, if has a
non-downsafe � operand but is still markedcanBeAvail, then itscanBeAvail should be cleared in the same manner. In
our example, all�s arecanBeAvail except for the ones with temporariest24 andt25. Since they each have at least one
? � operand that is notdownsafe.

Next, we computelater, which determines if a� can be postponed. This will prevent us from making insertions
that do no benefit and would only increase register pressure.later is assumed true for all�s thatcanBeAvail. Then we
iterate through all�s, and if a� c is found for whichlater has not been proved false and which has an operand defined
by a real occurrence, we resetlater for it. To do this, we not only setlater to false, but, similarly to howcanBeAvail
was propagated, we also iterate through all�s; if any is found that has an operand withc as a definition, that�’s later
is reset recursively. The idea is that if the definitions of any of a�’s variables are available (either because they are
real occurrences or because they are�s that cannot be postponed), the� itself cannot be postponed. In our example
thet20 � is later because both of its operands are?. Thet23 � is alsolater because both of its operands come from
�s for whichcanBeAvail is false. These computations can be postponed.

At this point, computingwillBeAvail is straightforward. A� will be available if it can be made available and there
is not reason for it not to be – that is, if it iscanBeAvail and notlater. In our example, all�s arewillBeAvail except
for the ones associated witht20, t24, andt25. From this we also can computeinsert, which characterizes� operands
that require a computation to be inserted. If a� operand isinsert if it belongs to awillBeAvail � and is either? or
defined by a� for which willBeAvail is false. Being in awillBeAvail � implies that such a� operand isdownsafe. In
our example,� operands?1 and?4 are insert. willBeAvail andinsert can be computed on demand when they are
needed in the next phase.
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3.4 CodeMotion

The earlier phases having gathered information, the final stage, CodeMotion, transforms the code by inserting�s and
anticipated computations and eliminating redundant computations. The net effect is to hoist code to earlier program
points.

If willBeAvail is true for a�, then the value it represents should be available in a temporary in the optimized
program; a� needs to be put in its place to merge the values on the incoming paths. The operands to this new�

will be the temporaries that hold the values from the various predecessors. Ifinsert is true for any of its operands
(indicating that the value it represents is not available, that is, has not been computed and stored in a temporary), then
a computation for that value must be inserted at the end of the predecessor block it represents. Any real occurrence
whose definition is another real occurrence or awillBeAvail � is redundant, and can be replaced with a move from the
temporary holding its value – if it is defined by a�, the temporary is that which is the target of the� put in place of
the�; if it is defined by a real occurrence, the temporary is the one that stores the result of that occurrence.

Four steps complete the changes to the code: Inserting appropriate computations, creating new�s, and eliminating
fully redundant computations.

To do the insertions, we iterate over all� operands. If any is markedinsert, then we allocate a new temporary,
manufacture an instruction which computes the� operand’s expression and stores the result in the fresh temporary,
append that instruction at the end of the corresponding basic block, and set the fresh temporary to be the� operand’s
definition. In our example,?1 requires us to insertt26  t1 + t3 in block 2, wheret26 is fresh. Similarly, we insert
t28  t1 + t3 at block 5 for?4.

We then iterate over all�s. For a� c thatwillBeAvail, we insert a� at the end of the list of�s already present at the
block. That� merges the temporaries that definec’s � operands intoc’s hypothetical temporary. Because insertions
have been made, all valid� operands will have temporaries for definitions by this point. In our example, we create
t19  �(t26; t4) andt21  �(t26; t5) in block 4 andt22  �(t28; t11).

Finally, we iterate over all instructions. If any is defined by the target of another real instruction or of awillBeAvail
� (which by this time has been made into a�), it is replaced with a move instruction from its definition to its target.
In our example,t11  t7 + t3 in block 6 is replaced witht11  t21 andt17  t7 + t14 in block 7 is replaced with
t17  t22.

Figure 11 displays the final program. The improvement can be seen by comparing the number of computations on
each possible execution path: left-left, left-right, right-left, and right-right. In the unoptimized program, the number
of computations are four, four, seven, seven, respectively; in the optimized program, they are four, three, six, five. The
benefit varies among the possible paths, but never is a path made worse.

4 Performance

We have implemented this algorithm for the optimizing compiler of JikesRVM [1], a virtual machine that executes Java
classfiles. Our implementation has the option to perform or not to perform conjectural emendations. Table 4 displays
the results for running seven benchmarks from the SPECjvm2000 suite. The columns give the results for executing the
benchmark without RSSAPRE, RSSAPRE without conjectural emendations, and full RSSAPRE. The numbers are in
milliseconds as reported by Java’sSystem.currentTimeMillis() call. In each case, the benchmark was run
once so that it would be compiled in full by the dynamic compiler, and then (without restarting the virtual machine,
avoiding recompiling the benchmarks) run ten times with execution time measured for each run. The large cells give
the average time over ten runs, with the range in parentheses. The smaller columns for the two PRE versions measure
the number of times the optimization was applied by counting the number of static computations eliminated.

The RSSAPRE runs are consistently better in all cases except for db, where it makes no impact. RSSAPRE
with conjectural emendations found only a modest number of optimization opportunities that were not found when
conjectural emendations were turned off. Only two cases show it to have a definite impact on performance; while the
performance of mpegaudio is better with conjectural emendations, it appears to cause the improvement in compress
over the unoptimized version to retreat. This may be because the more aggressive version puts particular pressure
on the registers. We speculate that if RSSAPRE were used with the enabling optimizations suggested by [4] that the
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nop pre pre+

201 compress 14553 13945 11 13971 12
(14449-14798) (13829-14195) (13853-14208)

202 jess 8054 8021 15 8003 15
(7653-8610) (7598-8629) (7596-8613)

205 raytrace 5977 5830 15 5783 18
(5953-6030) (5805-5879) (5757-5874)

209 db 29484 29165 7 30059 7
(25949-33525) (25896-33610) (25679-33884)

222 mpegaudio 12679 11771 71 11724 79
(12550-13424) (11757-11815) (11709-11777)

227 mtrt 6413 6305 15 6243 18
(6267-6658) (6135-6583) (6140-6537)

228 jack 10557 9259 16 9243 17
(10409-10778) (9094-9493) (9081-9474)

Table 4: Performance results
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number of transformations, especially with conjectural emendations, would rise greatly, and the true impact would be
shown. This is an area of future work, to which we turn now.

5 Future work

As already mentioned, we are eager to implement the reassociation and value-numbering optimizations described in
[4] to see how effect they make our algorithm. To our knowledge, these optimizations have not been used with so rich
a version of PRE, nor while maintaining SSA form.

In addition to this, the algorithm should be extended to handle array and object references. Throughout this work,
we have assumed that the only expressions we are concerned with are arithmetic. Object references can also benefit
from PRE, although alias analysis will make it more complicated. Array SSA form [10], used in JikesRVM, will be of
benefit here.

The contribution of this work is a simpler, more robust version of Chow’s SSAPRE. The error-prone Rename phase
has been eliminated, Downsafety has been recast as a version of a standard data flow problem, the algorithm no longer
makes assumptions about the namespace, and a wider range of redundancies are eliminated. It is now fit to be used in
conjuction with other optimizations.
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