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Introduction

In this paper we develop the techniques of applicative pro-
gramming by extending thelr domain of application to the global
environment of a computer system. Specifically, the standard para-
meter and result type is presumed to be a file. The structure of
a file roughly corresponds to a list structure with the most commonly
occurring file being a string of characters. We demonstrate how
the structure of a file and the demands of its physical mani-
festation determine the macroscopic behavior of the entire system.
Our concepts are illustrated by a text editor written as a function.

Applicative programming is a style of programming characterized
by referential transparency¥* with functions as the only control
structure. There are several languages that embody this principle:
pure LISP [22, 23, 24], ISWIM [3, 20], GEDANKEN [26], RED [2], and
PLASMA [16]. The definitions of these languages are characterized
by mathematically precise semantics which makes them attractive
tools for developing reliable software. This same precision has
made possible the development of software verification techniques
[3, 6, 7] which continue to improve the utility of such languages

for establishing the correctness of programs. Furthermore, experience

¥'The characteristic semantic feature of expressions is that they
are "evaluated"; that is, the semantic interpretation of an expres-
sion ultimately defines its "value." Furthermore, for "pure" expres-
sions, it 1s exclusively the value that has semantic importance.
This linguistic property is termed referential transparency [Quine,
1960], for it allows a subexpression to be replaced by any other
expression having the same value without any effect on the value

of the whole. Languages or language subsets having the property

of referential transparency are termed applicative; other adjectives
that have been used include declarative, denotative, descriptive,
and functional." [27]




[8, 16, 25, 30] demonstrates that such languages are an extremely
convenient way of expressing algorithms.

This last point deserves some historical perspective: since
the design of classic languages like FORTRAN followed hardware
design, which in turn followed Turing's state transition model of
a computing device, nearly all programmers are fluent in that style
of programming. Applicative programming traces its style back to
Church, Godel, and earlier, but it does not enjoy a similar popu-
larity today. Its alienation is not deserved, however, in light
of its precision, of its convenlence, and of its power in dealing with
parallel programming problems independently of machine models [12].

The results of this paper are based on recent results in the
semantics of applicative languages, specifically the "suspending
constructor"” [10], which is used by the programmer to create data
structures but whose execution may postpone manifesting parts of
the structure until they are essential to the system. The concept
is similar to call-by-need [29], to call-by-delayed-value [28],
and to lazy evaluation [15], but for us the only essentially sus-
pended structures are the files themselves. Yet it is the files,
specifically the files transmitted from the system to teletype con-
soles and to line printers, whose display is the visible behavior
of the system, and therefore these files determine what other struc-
tures will be built -- what computations are actually carried out
[11]! Other files, those maintained within the global environment
perhaps as part of a data base and never displayed in their
entirety on an external device, may remain suspended like internal

structures.



(It is important to recognize that there is no standard read
or print function implicit in an applicative language. The clas-
sic definitions of these functions include side-effects on the
status of the associlated files and devices with implications for
future invocations of these functions. These violate referential
transparency. Files must be arguments and results of the "main"
function. )

We extend this model of file structure to more complex com-
puting problems by developing conventions for allowing programs
written applicatively to have more than one file as output. It 1is
no problem to specify multiple input files for a program in the
applicative languages mentioned above; several input files become
several input arguments. The problem of output files is difficult
for two reasons. First, most interpreters use a recursion stack
to evaluate function invocations with the result that an output struc-
ture would have to be represented internally in its entirety before
output could begin; suspended data structures have lifted this
requirement [10, 11]. Second, most functions are perceived as
returning a single result so that decomposition of structures of
many results is cumbersome; the concept of functional combination
[9, 12, 13] (explained later) alleviates this burden so that the
programmer can manipulate multiple outputs conveniently.

Qur perspective on applicative programming is supported by
examples of the style we advocate. The significant example is the
text editor. It uses two input files and two output files, where

only one of each 1s an essentially sequential (not suspendable) file.



Those are the files which are keyed and printed on a full duplex
terminal. The other files, the input text and the edited text, will
be manifested in their final form during invocation of the editor
only as much as 1s necessary to the creation of the essentially
sequential files.

Partial evaluation or partial creation of files, as discussed
in this paper, is not new. The idea has been used for some time
by designers of operating and file systems, but the programs whose
execution exhibited such behavior have been notorilously difficult
to write. Terminology such as "coroutine" and "differential file"
has arisen around such mystical programming efforts. The signifi-
cant message of this paper is that similar behavior is available
without special effort 1f the problem is approached through appli-
cative programming and one essential tool: the suspending construc-
tor. If file manipulation programs are composed using an elementary
constructor, which is implemented as a suspending constructor in
splite of the programmer's intent, then this behavior appears by
fiat.

The remainder of this paper is divided into five sections.
The first develops the elements of our applicative language and
introduces functional combination. It then reviews the suspending
cons already mentioned. The second extends this cons to file
construction, establishing the dependence of the computation pro-
cess on the need for results to be displayed for the user. It deve-
lops the concept of files as functional input and output by consid-
ering the cases in which there are multiple input and multiple

cutput files. The third section presents a simple, though complete,



text editor defined applicatively, and explains how integrity

of "shared" files is established through referential transparency
of suspended files. The fourth section offers a perspective on

a simple I/0 bound multiprocessing system. Finally we present

a few conclusions.



Section I

An Applicative Language

The language we describe is similar to classic 1list proces-
sing languages like LISP [22] with respect to its data type. Since
we are emphasizing files in this paper we shall be using that term
more frequently although conceptually a file 1s nothing more than
a list stored externally. The following definitions may be more
easily read as definitions of lists; no confusion results 1f the terms
are taken to be interchangeable.

A file is a sequence of elementary items or other files. This
recursive definition provides for sequential homogeneous files of
elementary items or for nested (tree) structured files. Elementary items
are often restricted to the character set of one's hardware, although
many languages permit items of other types: e.g. integer and real.

For the discussion here we restrict ourselves to a standard charac-
ter set but reserve the parenthesés as meta-characters to delimit
files. Thus, in the following examples of homogeneous files the
right parentheses acts as an end-of-file mark:

(FRBED)
(234567)

E%RED(8)(2MANYGREEN){BANANAS))
A program is defined as a function which takes as arguments one or
more files and returns as its value another file (which is inter-
preted to be composed of several files in certain examples below).
Our first programming notation is square brackets. (Parentheses
are notation for data.) A bracketed sequence evaluates to a file
of the evaluated items of that sequence in order. For example,

[6 5 4 3] evaluates to (6543).



Let X have the value
(2123)

and let y have the value
(BANANAS) ;

then [x y] evaluates to
((2123) (BANANAS)).

Bracketed sequences provide only for creating files of fixed
size and therefore they can be assoclated with record structures of
other languages. There is also a file building function, cons, for
puilding files of undetermined length; but before introducing it we
must deseribe the syntax for function invocation.

Function invocations are represented by a pair of items enclosed
by angle brackets: <f %2> . The function position, here denoted by
f, indicates the operation to be performed upon the argument 1ist Bs
Combined with square brackets this functional syntax is very sugges-—
tive of standard mathematical notation. Instead of min(i,j) we
write <min [1 jJ]> , and <sum [2 1 2 3 1]> evaluates to 9. (See also
[2] and [16] for similar applicative expressions.) With the bind-
ing of x from above, <sum x> evaluates to 8; this case illustrates
that the argument list need not be explicitly bracketed although
it usually is.

A most important primitive is cons; it takes two arguments,
an item or a file and a file, and returns a file whose first element
is that i1tem and whose remainder 1is the original file. Thus
<cons [2 yl> evaluates to (2BANANAS). Two complementary operations,

first and rest, return the first component of a file and the file



without its first component, respectively. Thus <first[x]> evalu-
ates to 2 and <rest[yl> evaluates to (ANANAS).

These three functions are particularly interesting [10], and we
shall return to them in the next section.

We shall use other elementary functions without definition;
their meaning is obvious from context. These are often arithmetic,
like sum, and include simple predicates: null tests whether its
argument is an empty file, and less tests the order of its two
arguments. Example functions are presented by relating a prototype
invocation to its definition in terms of a conditional expression.
This definition is presented as an alternating sequence of tests

and values, Wwhose interpretation is assisted by the insertion

of the "commenting words" if, then, elseif, and else. For example,

<min(i jl1> =
if <less[i j]1> then i
else .
The tests are evaluated in sequence until one succeeds; the value
immediately following that test is the value of the function. If
no test succeeds then the value of the function is the value of the
last expression in the sequence if the sequence is of odd length
(the else part).
As an example we present a recursive definition of the function

compress which removes all blanks from the file which is its

argument.
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<compress[stringl> =

if <nulllstringl> then [] 3 nothing left
elseif <blank?[<firstlstringl> J>
then <compress[<rest[stringl> 1> ;3 drop a blank

else <cons[<first[stringl>
<compress[<rest[stringl> 1> 1> ; copy a
character

It is also possible to define functions that take an arbitrary num-
ber of arguments in the same manner. An example is the function
concat which returns a file that is the concatenation of all its
arguments (each of which is a file). An auxiliary function, append,
is required to concatenate just two files.

<concat strings> =

if <nulll[strings]> then [] ; none left
else <append[<firstlstrings]>
<concat <rest[stringsl>> 1> ; binary
append
<append[stringa stringb]> =
if <nulllstringa]> then stringb ; nothing left
else <cons[<first[stringal>
<append[ <rest[stringal> ; COpy a
stringb]l> 1> . ; character

Integers may be used as functions; as a function the integer
i simply returns 1its izﬁ-argument. One use of this notation pro-
vides for array subscripting: If ¢ is bound to a file of filles
(a matrix) then <3<5 c¢>> evaluates to the third item in the fifth
file (or the entry in the third column of the fifth row). The func-
tion 1 is often used with the "invisible argument marker" symbol #
as an identity function.

The symbol # evaluates to a token which 1s ignored as a para-
meter to a function. Its evaluation is therefore useless except
as an eventual argument to some function; in that role it acts much

like the numeral zero: as a placeholder in argument structures

with no ultimate meaning itself. For example, if d is bound to the
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evaluation of [# # 9 # 7 # #] then <1 d> evaluates to 9, while <3 dg>
diverges since there is no third item in d taken as a parameter list.
A 1ist 1like d is often used in conjunction with functional
combination.

Functional Combination

Functional combination is described elsewhere in detail
£9, 12, 13] and we shall give it only a cursory definition by
example here. It provides a convenient syntax for expressing a
recursion which accumulates multiple results in the same way that
a single iterative traversal of data may yield several summary
results. In particular, we use it in this paper to describe a
recursive text editor which yields two output files where a single
computational step may affect both.

The hallmark of functional combination is the occurrence of
a 1list 1in the function position. Such a list is called a combina-
fion and must be composed of other allowable functions. For exam-
ple, [sum product quotient difference] is a combination; we assume
theilr normal arithmetic definitions. Each argument to a combination
is required to evaluate to a file, which we take to be a row of a
"parameter matrix." (Typically one of these rows results from a
recursive call on the function being defined to accumulate multiple
results.) The columns of the parameter matrix become argument lists
to respective elements of the combination. The result of such an
invocation is always a file whose elements correspond to the respec-

tive: columnar. applications.
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In order to facililitate the matrix interpretation of functional
combination its invocation will always appear with the arguments on
separate lines and vertically aligned wherever possible to suggest

the columnar relationship. For example:

<[sum product quotient difference% L
[ O 1 7 9

[13 3 # 2 ]
[ 0 3 1 # 11>

evaluates to (1977). The # symbol is used here as a placeholder
in expressing a row and as an ignored argument in interpreting a
column of the argument matrix.

Another example illustrates the use of functional combination
to return a file of two files each built up at each step of a
single recursion. The function deal takes a file as an argu-
ment and splits it into two files each of alternate elements from
the argument file; it 1s essentially the deal of a complete deck

of playing cards, as if for a two-handed game of 01d Maid.

<deal [deck]>

if <nullldeck]> then [[I[]] ; two empty
elself <null[<rest[deck]>]> then [deck []] ; odd deck
else <[cons cons][ ;3 deal two

[<1 deck> <2 deck>]
<deal [<rest [<rest[deck]>]> ]> JI>

Suspending cons

The function cons is representative of an entire class of
functions that build structures by filling in the values of fields
within nodes. Operationally 1t also serves as a space allocator
although that characteristic plays a lesser role in the following

discussion. We have proposed a new interpretation for cons and its
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extractor functions first and rest which avoids the construction

of those portions of structures that are never accessed after their
creation. The results apply to any operation that assigns a value
to a field, provided that it is possible to preserve a record of
all relevant bindings. This criterion is difficult to meet in a
system in which users can change assigned values, but it 1is easily
satisfied under a regime of applicative programming in which the
user can only create and implicitly release such bindings [17].

Using the function cons as a paradigm of structure-creating
functions, we briefly explain its implementation. When cons is invocked
by the user, the value returned is a pointer to a newly built struc-
ture. Rather than evaluate the arguments to cons and create the
complete structure, we create a structure consisting of two suspen-
sions. A suspension consists of a reference to the form (expression)
whose evaluation was deferred and a reference to the environment of
variable bindings in which the suspension was originally created.
These two structures must remain intact for the life of the suspension.
The reference to the form is a pointer to a piece of program, so
the space 1t occupiles usually represents no great overhead. Environ-
ments present more of a problem, since we are accustomed to viewing
them only as temporary structures. Moreover, use of destructive
assignment operations generally requires recreation of the entire
environment In order to assure the integrity of references to the
environment as 1t existed before the assignment. Destructive assign-
ments, if not well controlled, become costly; by design they do not

exist in our source language.
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When either of the "probing" functions first or rest is invoked,

the following events occur. A designated field of the argument is
checked to determine if it contalns a suspension (suspensions are
flagged and easily distinguished); if not, then its contents are
returned. If a suspension is present, then the evaluator is invoked
upon the designated form within the preserved environment. The
result 1s stored back in the designated field in place of the sus-
pension (for next time), and the value is returned as a final
result. These events constitute coercion of the suspension. The
two functions, first and rest, therefore act as probes into the data
structure, with possible effects of a predictable and benign sort,
rather than as simple extractor functions.

We introduce the term manifest to describe a structure which
is actually extant in its ultimate form. A structure that 1s not
completely manifest 1s said to be promised. At the implementation
level, promised structures are characterized by the presence of some
references that are suspended.

A fortunate side-effect of suspending the creation of data
structures is the ability to deal with infinite structures. Con-
sider the list defined (but never completely constructed) by the
invocation of <terms[0]> where

<terms[n]> = <cons[<reciprocal [<square[n]> 1>
<terms[<addl[n]> 1> 1>
That 1ist, the reciprocal of the squares of all the non-negative inte-
gers, might be familiar since its sum, excluding the first term,

converges to m2/6. Suppose that z were bound to the result of
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<terms[0]>; in fact, because of the suspending cons, z is initially
bound only to a promise of this result. As long as <1 z> is not
computed (since it diverges on division by zero) and as long as a
complete traversal of the structure is not attempted, the unbounded-
ness of z poses no problem. An access to <6 z>, if demanded by the
computation, would find the answer 0.04 even though that number

had not been present before that access; it would have been computed
had it been of interest earlier. (This use of cons is similar to
Landin's prefix* [20, also 4], but 1t differs precisely in that

the rest of the 1list z may be accessed without computing the diver-
gent first element.) More implications of cons on infinite struc-
tures may be found in [14].

The same technigues used for cons may be applied to any record
creating (field assignment) function within the system. We have
proposed an interpreter [10] in which all field assignments are
suspended. This change has a great impact because the construction
of environments may be suspended. This means that no argument will
be evaluated unless the corresponding formal parameter has been
accessed by some operation critical to the execution of the program.
This effects the call-by-need argument-passing protocol [29], the
call-by-delayed-value [28] and lazy evaluation scheme [15].

As a result of suspending, evaluations are delayed as long

as possible. Ultimately, all evaluations take place as a result

of the demands of the driver of the output device which tries

to move the contents of its file to the external device. As it

traverses the structure it is outputting, it invokes first and rest,
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causing top-level evaluation, which in turn results in the creation
and inspection of more structure, indirectly forcing all of the
necessary evaluations. Regardless of the intentions of the program-
mer, the only structures which are actually bullt are those that

are essential to deciding what information is to be output. Least-
fixed-point semantics for the language result [101].

Section IT

Promised files

What, then, is the essence of computation which determines
which probes must be made? We claim that the essence 1is the result;
in our case the result of the function invoked as a "main" or top-
level program. That result is either a file, as in The compress
example above, or a structure of files like those we shall discuss
later. The output file is handed to a device which consumes the
file. If the device is a random-access device similar to main memory
(but slower) then there is no reason to manifest the file immedi-
ately. It is sufficient to store it in its suspended form. If the
file is handed to a sequential device then suspensions could cause
trouble.

A suspended file cannot be stored untransformed on a sequential
device since further access must transform it. Coercing a promised
file on a sequential device is unreasonable. The transformation
may stretch or shrink a portion of the file, requiring a repacking
of the entire file. It may require access to many parts of the
file because of the nested structure in suspensions, requiring that
the physical device be slewed repeatedly. Since the effect of all
these transformations is to manifest pieces of the file one at a
time, all the transformations should be anticipated by coercing 811

the suspensions in files sent to sequential devices.
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When one considers the role of sequential files in & system
this convention is even more reasonable. With the exception of
back-up copies of random-access storage, the role of sequential
devices is communication outside the system: people and other com-
puters. Teletypes, line printers, readers of punched cards all
fall into this category, as do magnetic tapes and phone lines when
used as a channel to such equipment. (Magnetic tapes used to save
and then to restore random access memory do not qualify. The
sequence of creation is immaterial to the order in which the data
are copied.)

When a file is transmitted to a sequential device it is tra-
versed sequentially as the contents are moved onto the external
medium. The traversal of the file uses the functions first and
rest which coerce any suspensions uncovered [11]. If the file were
entirely suspended then this traversal would determine where and
when various parts of the file became essential. The essence of
computation then becomes "What character is printed next?" Under
this philosophy nothing 1is computed unless it is directly relevant
to what is on an output file sent to a sequential device. One
should compare such behavior to execution of an infinite loop with
no WRITE statement in FORTRAN; i1s a poor program a sufficient
excuse for such waste?

The classic view of a device driver is a pilece of program that
looks out from the computer and watches over the device, making
sure that its status is readily available when the processor wants

it. We view an output device driver as a piece of code which looks
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into the processor from the device, continually demanding some-
thing from the program. For random-access devices the response to
the demand is probably a promised file. For sequential devices the
device driver is a traversal algorithm [11]; the demands are for
successive characters; the action of the processor 1s to manifest

a file on the external medium as its contents are encountered by
the device driver. Given that most files are suspended before they
reach a sequential device and given that there is little computa-
tion necessary to build a suspended file, practically all computa-

tion is invoked by these output drivers.

Figure 1. A device driver drawing output from
a program.
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A minor but pleasing effect is that computation is naturally over-
lapped with output since only the computation necessary to discover
which character is to be printed next is performed before printing
it.

The device driver for an input device is a simpler progran,
which looks from the processor out to the device, satisfying the
demands for a next character when the processor requests one from
the input file. Only the work necessary to satisfy the immediate
d?mand is performed. If the input device is random-access then
the item actually read could be a previously created suspension.

In this case the request to the input driver would be translated
into a coercion on the promised file structure. A part of the
creating program would actually run yielding the desired character
and transforming the file structure to avold repeating the same
computation on future access.

As an example we follow the behavior of the compress algor-
ithm, taking into account the effect of the suspending cons. Let-
ting the symbol A stand for the blank character, consider that func-
tion compressing the file (COAQOP). We assume that COAOP is the con-
tents of a file on some sequential device. None of it has been
read yet. The program compress is run until the first application of
cons, which is suspended, and the result is handed to the output
driver. In order to get to that application of cons the predicates
<null[string]> and <blank?[<firsttstring]>]> have been evaluated;
they have forced the file to be opened and the "C" to be read, res-

pectively. No more computation has been invested in building the
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"output file" that the driver gets. If the output device is random-
access then no more computation is done at this time: the output
file is stored as the suspension of the argument to that first
application of cons, including appropriate bindings back to the
input file (which cannot be destroyed as long as this promised file
survives).

If, however, the output file is sequential then the driver
will traverse it to transfer it to the physical device immediately.
This traversal proceeds one character at a time with computation
halting at a basis (terminal) condition or halting at a cons until
the traversal algorithm forces it to proceed further. Beginning
with the original suspended output file with the argument string

bound to (COAOP) the traversal and writing proceeds as follows:

The output file is opened. (
The first character of string is written. C
The traversal proceeds to a new invocation

of compress with string rebound to the

rest of string: (0OAOP).
The string is tested by null.

The first character of string is
tested by blank?

The first character of string is written. 0
The traversal proceeds to a new invocation

of compress with string rebound to the

rest of string: (AOP).
The string is tested by null.

The first character of string is
tested by blank? yielding success.

The traversal proceeds to a new Invocation
of compress with string rebound to the
rest of string: (OP).
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The string is tested by null.

The first character of string is
tested by blank?

The first character of string is written. 0]

The traversal proceeds to a new invocation
of compress with string rebound to the
rest of string: (P).

The string is tested by null.

The first character of string is
tested by blank?

The first character of string is written. P

The traversal proceeds to a new invocation
of compress with strin rebound to the
rest of string: ).

The string is tested by null
yielding success.

The output file is closed. )

On the surface the summary above appears to be a simple trace
program. It may be regarded either as a trace of an itera-
algorithm printing a structure or as a trace of the evaluation
recursive function. Remarkably, it is both. The basic algor-

is iterative [11]; since once a variable is rebound its former

value is never required so only one environment (set of bindings)

at a time is needed. Space required is bounded and no stack 1is

used; running time is proportional to the length of the original

input file as one would expect of good iterative code. Bvaluation

proceeds at the pace of the final output and because of suspending

cons the interpreter does not consume space for intermediate results

as does a classic interpreter for recursive programs.
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We have pointed out elsewhere [14] a rather startling dif-
ference between our semantics for such recursive function defini-
tions and the classic semantics. The output "driven" evaluation
allows at least the prefix of infinite structures to be printed,
up to the resource limit (time or line 1limit), whereas classic
semantics lead to divergence with an overflow of the recursion
stack. Our approach does not use a stack so that this artificial
constraint does not concern the user.

Suppose then that a user were typing at a full duplex teletype
terminal where the keyboard was the input file to the function
compress and the printer was the output file. 1Initially the input
file is treated as if it were promised and could only be manifested
at the typing speed of the user. As the user types "(" the printer
echoes "(". As he types "C" the echo is "C". As he types "OAO"
the echo is only "00", and "P)" is echoed "P)". The computation
appears to be synchronized cleverly with the input when in fact the
output driver is "gobbling up" the characters as soon as the func-
tion and, indirectly, the input driver make them available. As the
user keys "(COAOP)" the printer types " (COOP)".

Multiple input files

Programs that have many files as input and only one file as out-
put are only a slight generalization of single-input/output-file
programs. If there are to be precisely N input files then the pro-
gram is written as a function which takes N parameters. Our model
also allows functilons to be written which take an arbitrary number
of files; such functions have but one formal parameter to represent

the argument list.
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As an example of this feature we exhibit the definition
of a multi-way merge using a selection tree [19]. The function
merge takes an arbitrary number of sorted files as arguments and
merges them into a single one. The last case in the definition
of mergen deserves a warning: the argument list for merge2 is
the result of functional combination.

Knuth comments on his solution that "from one standpoint 1t is
equivalent to ... two-way merges performed concurrently as co-
routines." Our code is written as two-way merges which perform as
coroutines only under the suspending implementation for the'gggg within
merge2. This code 1s easily composed using only the idea of two-way
merges; afterwards one pleasantly discovers the coroutine behavior

possible if cons suspends.

<merge files> = <mergen[files]>

<mergen[files]> = ; n-way merge
if <nulllfiles]> then [] ; empty
elseif <null[<rest[files]>]>
then <first[files]> ; one file
else <merge?2 <[mergen mergen][
<deal[files]> 1>> ; split them
<merge2[fl f2]> = ; 2-way merge

one empty
other empty
choose smaller
and recurse on
the remainder

if <«nnll[f2]> then £1
elseif <null[f1]> then f2
elseif <less[<first[fl]> <first[f2]>]>
then <cons[<first[fl]>
<merge2[<rest[fl]> f2]1>]1>
else <cons[<first[f2]>
<merge2[ f1 <rest[f2]1>]>]>

e e s be W W
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As before, the application of merge to promised files may not
cause any computation at all if the output file can itself be pro-
mised. If on the other hand it is sent to a sequential device, then
the device driver for that device will manifest the promised input
files in the order that the merge function requires their contents.
Still, as the algorithm is run only a finite amount of information
about each input file need be carried within the main memory of the
machine; all but the current elements of these files remain on
external devices.

Multiple output files

We now turn to the case in which a program has multiple output
files. While iterative programming languages ordinarily provide
for multiple output files it is not obvious how a function , which
usually returns a single result, can return instead three or four
results, each one an output file. To deal with this problem we
adopt the convention that the normal result of any top level function
is a file of files. When there is only one output file the result
would be a file of one file. The result for compress developed
above must then be ((COOP)).

Often multiple output files are generated using functional
combinations. As an example, consider the "inverse merge" opera-
tion performed by the receiver of a simplex ANSI 8-bit encoded mes-
sage. We present a function which takes a file of characters as
input and separates it into two files: the file excluding all
occurrences of the ten communication control characters and the file
of these control characters and text separators (e.g. unit, record,
group, and file separators) only. Only text separators appear in

both files.
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<separate[file]> =
if <null[filel]> then [[]I[]] ; empty
elseif <separator[<first[file]>]> '
then <[cons cons 1l ; separator to both
[<first[file]> <first{file]>] ; files
<separate[<rest[file]>]> 1>
elself <eomcontroll<firstlfilel>]>
then <[ 1 cons 1L ; control to second
[ # <first[file]l> ] ; file
<separate[<rest[file]>]> 1>
else <[cons 1 1L ; text to first file

[<first[file]> #
<separate[<rest[file]>]> 1>

If more output files are required then the result is a file of
corresponding length. Each element in the result file is turned
over to a single output driver. The characteristics of That device
(random-access/sequential and its relative speed) will determine
the actual behavior of the program and the pattern in which the
various components of the result are coerced; each of these "brother"
drivers may behave independently even though structures might be
shared. However, it is more appropriate to consider multiple output
files as being handed to drivers that are synchronized in some way.
If one device driver manifests its file completely while a brother
device (say a random-access one) leaves its file entirely promised,
then the environments that were released by coercion of the first
file may remain in the system because they are referenced indirectly
through the suspensions of the second. After the first file is
entirely manifest on the output device, many of the environments

generated in the process of coercing may remain. This causes a
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large space overhead in the representation of the second file. It
is generally better to traverse the second file concurrently with
the first file so that the intermediate environments need not be
maintained. There are two cases in which it would be wrong to
coerce the second file along with the first: 1f the second file
diverged despite the first file's convergencef, or if the manifes-
tation of the second file resulted in the creation of a set of environ-
ments disjoint from those used in the manifestation of the first.
Synchronization of multiple files may be achieved by pacing the
manifestation of all files to the fastest of the brother drivers.
Another strategy is more selective in coercing suspensions before
the structure is actually needed: when an environment is first
abandoned by the coercion of any suspension all other suspensions
referencing that environment are also coerced. We call this selec—
tive coercion dragging because the traversal of one file drags along
the evaluation of some others. Any environment released by manifes-
tatlon of the dragging file is then dereferenced by all other sus-
pensions and released, but the suspensions of the slower, dragged
files are not necessarily coerced to their ultimate value. Either
of these strategies may be implemented by logging suspensions for
later coercion off-line, just as computations ordered from an inter-

active computing session may be completed in background batch mode.

+The term convergent (divergent) normally applies to functions
which (do not) terminate with an answer. Our use of these terms
applied to files reflects the fact that these data structures
may exhibit similar behavior since they may be evaluated through
a coercion.
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Section IIT

A text editor

We now present a rather compleX function that takes two files
as input and produces two flles as output. One input file and one

output file are tied to a full duplex teletype. The user creates

the teletype input file as a sequential file while he causes the
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other to be read from a mass storage unit (which may be a random
access device -- we assume it is); one output file 1s routed back
to that unit.

The function is a text editor. The user-constructed (editing)
input file contains the editing commands to be performed on the second
input file (the text). These commands are echoed on the teletype
printer along with interleaving responses from the editing process.
The edited file output to the mass storage unit may be assumed to
be suspended, although much of it may be dragged into existence by
the traversal required to manifest the teletype output file. 1In
the case that the user is editing only the first third of his text,
only the first third of the input file from mass storage is neces-
sary to create the responses on his teletype, and so no more than
the first third of the edited file will be dragged onto mass stor-
age. The remainder will be represented as a promise referencing the
latter two thirds of the text fille indirectly. It is entirely pos-
sible that the balance of the original text (the first third) may
have been abandoned after the editing session. Under this assump-
tion the space required on mass storage to represent the text before
and after editing is roughly comparable, although the better part
of the text is as yet unaltered. Future use of the edited file
will determine if it is ever to be manifested in its entirety.

The text is an ordinary file of characters, one of which is
distinguished in its treatment by the editor. This is the newline
character N, which is used as a delimiter for the t-command

explained below. Other commands treat N, as an ordinary character.
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The editor has only a basic set of commands; the implicit cursor
moves in a forward direction through the text and all changes are
made at the cursor position. The commands are summarized below:

(t) types a line from the cursor position forward to
and including the next N,;

(r) repositions the cursor at the beginning of the text;
(d) deletes the character to the right of the cursor;

(1 target) inserts the target string to the left of
the cursor;

(f target) finds the first occurrence of the target string
to the right of the cursor repositioning the
cursor just after it. Success is reported if
the target string is found or else the cursor
is moved to the end of the text and failure is
reported;

(s target replacement) locates target string just as the
f-command does and reports success or failure,
but replacement string is substituted for target
string 1f found and the cursor 1s moved past 1it.

We require the system to send a prompt character (denoted : ) to
the teletype after every command line (terminated by N.).

Driver functions

<editor[commands text]> = ; top level
if <nulllcommands]> then [ [] text] ; for r-restart
else <editbind <onepass[commands text]l>> ;

<editbind[message commands text]> = ; returns 2
<[concat 1 ][ files: tele-
[message # ] type and
<editor[commands text]> J> ; new text.

Wwe e e

<onepass[commands text]> =
if <null[commands]> then [[] [] text]
elseif <legall[<first[commands]>]>

stop
legal command?’

we e

its explicit and
implicit parameters

<rest[<first[commands]>]>
[text <rest[commands]>]]>> I>

then <[concat I 1 1
[<first[commands ]> # # i ; echo command
[(NL) # # ] ; newline
<<first[<first[commands]>]> ; apply the basic
<concat[ ; editor command to
3

else <[concat 1 1 1k
[ (ILLEGALACOMMAND) # # ] ;7 echo error message
EEHas ) # # ] ; newline” and prompt

<onepass[<rest[commands]> text]>]> ; continue
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<t[text commands]> =
<[concat 3. ;S . type a line
[<line[text]> # # ] : and continue
<onepass[commands text]>]> ; to next command

<r[text commands]> =
[(:) commands text] ; return to top-level

<d[text commands]> =
if <omll[text]l>

" then <[concat 1 R
[ (EMPTYAFILE) # # % echo error message,
Eie:) # #

<onepass[commands text]>]>

and continue
else <onepass[commands <rest[text]> ]>

2
; newline and prompt
; delete and continue

<i[target text commandé]> =

<[concat 1 concat ][
Py # target] ; insert target
<onepass[commands text]>]> ; and continue

<f[target text commands]> =
if <nullftext]>

" then <[concat 3. A

[ (FATLEDATOAFINDA) # #]

[target # #]

[(No:) #  #]

<onepass[commands text]>]> 3 continue
elseif <l<prefix?[target text]>>

then <[concat 113

[ (FOUNDA) #  #]

[target # #]

[(N:) # #] ; found it and

<onepass[commands text]>}> ; continue
else <[ 3 Il cons 1C

I # # <first[text]>] ; search some more

<f[target <rest[text]> commandsl> ]>

<s[target replacement text commands]> =
if <nullltext]>

" then <[concat T ][
[(FAILEDATOAFIND ) # #]
[target # #]
[(No:) ##]
<onepass[commands text]>]»> ; continue
elseif <l<prefix?[target text]l>>
then <[concat 1l concat ]
[ (FOUNDA) # replacement ]
[target # # ]
[(N.:) # # ] ; replace and
<onepass [ commands ; continue

<2<prefix?[
target text]>>]>]1>

else <[ 78 3 3 cons 1L
i # # <first[text]> ]
<s[target ; search some more
replacement

<rest[text]> commands]>]>
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Auxiliary functions

<line[text]> =
1f <null[text]> then [] s take all ;
cTlseif <Nu?[<firstltext]>]> then (M) ; characters up to
else <cons[<firstltext]> : and including the
<line[<rest[text]>]> 1> ; next N

<prefix?[target text]> =
if <null[target]> then [TRUE text]
elseif <null[text]> then [FALSE text]

compare for
pattern match

W

e

elseif <same[<first[target]> .
<first[text]>]> ; returning rest
then <prefix?[<rest[target]> ; of text

<rest[text]>]>
else [FALSE text]

The outermost call to the function appears as
<editor[tty text]>

where we understand that the first file on the output 1list is to
be displayed on the user's teletype and the second file i1s to be
the edited text; the program only runs because of the persistence
of the output driver that manifests a file on the user's console
in spite of the inertia of the other ocutput driver. As soon as
there has been sufficient computation to determine the next charac-
ter on the console output then that character appears. That is,
it is possible for this program to echo the commands typed in full
duplex (assuming reasonable processor speed) without requiring that
the teletype input file be complete. Computation proceeds as each
command is entered, allowing more output to appear.

We now trace a short editing session. Suppose the input text
(whether manifest or promised) is the file

(THEAQUICKABROWN
FOXAJUMPEDAOVERATHEALAZYADOG) 2

After the user initiates the editor from his teletype he can begin
typing commands. Initially there is no prompt since the program
first must establish that the command file is nonempty; this is

implicit in the code. Suppose he types
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(THEASICKADOWNFOXAJUMPEDAOVERATHE ALAZYADOG) .
However, the text from FOX forward would not necessarily be recopied
as a result of the editing; this would happen only if the remainder
of the file were coerced. The prefix up through S should be "dragged"
along as a result of the last substitute command, but the phrase
ICKADOWN may be a suspended copy of the file dragged just before
the r-command.

When the text is used in its entirety this fragmentation would
be invisible except that the computation necessary to manifest the
promised text would have to be performed; if the file is never used
it will never be done. If the prefix of the file were again edited,
perhaps to insert the needed space after DOWN, then the suffix
would still remain uncopied.

File integrity

The purpose of this section is to demonstrate that the refer-
ential transparency of an applicative [27] system guarantees the
integrity of what are classically perceived as shared files. When
such files are rewritten in a dynamic file system, precautions are
required to insure the reliability of the processes under changes
that may place files 1n an unstable state. The accessing programs
must be cleared through a semaphore [5] or monitor [18] in order
to keep other processes away while such changes take place.

Any program that "changes" a file 1s implemented as a func-
tion which returns the transformed file as one of perhaps several
results. Future accesses into the transformed file take this out-
put file as an input parameter. (This model may be implemented

under any applicative system, although one function would have to be



33

completely evaluated before its output could be used by another.)
Under this model a file may only be "shared" if it is used as an
input argument to functions which do not change it. Among functions
which do change it there is no provision for simultaneous operation
on that file. Conceptually, one function invocation is completed
before another is initiated, and the programmer may assume this

when he defines the functions that probe and perhaps transform a file.
Hence under our model of a system with promised files, internal
changes in files may proceed without the necessity of introducing
semaphores.

While it is common to conceive of several processes simulta-
neously, using and possibly changing the same file in a data base
system, such processes are never actually simultaneous. Each pro-
cess, 1n turn, must pass through a monitor [18] or gatekeeper which
has the option of securing a file temporarily in order to effect a
change. Although queries appear to enter the system simultaneously,
they form a queue at the gate to each file.

This queueing is brought about naturally in a functional pro-
gramming system. If a function is written to search a file then
that file will be an argument to that function. If that function
(even rarely) might transform the file as a result of the search,
as in AVL [1] insertion, then the possibly transformed file will
be one of the several outputs of the function. If the transformed
file is to be the subject of another search then it will be the input
parameter to another invocation of the same function. In the mind
of the programmer all these intermediate results are manifest files;

if they are on a random access device, in fact they are promised.
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The use of a promised file in a subsequent search will prob-
ably involve coercing. Coerced suspensions may have originated in
several prior invocations of the searching function. Therefore,

a snapshot of the state of the file might give the illusion that

all these prior invocations were still running, seemingly in parai-
lel but in fact more like coroutines. If the file is not changed

by a function (read-only), as long as the most current promise of the
file (obtained from a well-monitored file directory) is passed as

an argument it is possible for more than one processor at a time to
be traversing and coercing suspensions which define different incar-
nations of the same file. In that way the classic model of a

shared, dynamic file may be realized.
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The classic model is realized using functional programming
depending on referential transparency to protect against ill-defined
data structures. The role of the gatekeeper is played by the device
drivers which pass the output file from one invocation through the
file directory to be the input file of the next.+ Parallelism is
allowed because files may be promised by building them with sus-
pending cons [12]. Another rather pleasing effect of this approach
is that only the minimal work is required to respond to a query into
the file system. Much can be left suspended for future gueries to

perform, if that material is ever needed. If it is needed then the

Job requesting it may have to bear the entire expense of its
creation.

There is justice in charging the computation necessary to main-
taln a data base according to the inquiries. It is then trivially

cheap to add (without searching) to a file but expensive to read

+Semaphores or monitors are still required to manage the file
directory in order to determine unambiguously "Who's next?" The
computation of a new entry to the directory is thereby secured,
but that computation suspends after its first reference is dis-
covered -- a brief effort compared to a file protected against
all use while it is entirely rewritten.
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such files. This places the cost of a data base on the users,
where 1t belongs, and encourages sources to insert new information
by charging them substantially less than users.

A metaphor, suggested by E.I. Organick, is the driver who must
shovel the shared driveway if he 1s the first one to leave after
the blizzard. He either accepts his labor as the price of his
unsociably early departure, or he learns to sleep later and let the
law of averages spread the winter's work more evenly across his
neighbors.

In an active data base a frequent gquery should encounter rather
few suspensions and will be inexpensive. Occasionally, a query might
find that many suspensions lie in its path to the answer., increasing
the cost to get there. As a result the true costs of sustaining
a large dynamilic file are equitably distributed among the users;
common queries remain cheap but access to obscure or rapidly
changing information will incur a computational toll.

Section IV

I/0 bound multiprocessing system

In this section we present a brief perspective on an I/0 bound
operating system; showing how it might interact with a file system.
The description is not intended to be complete, but it indicates
how applicative programming techniques may relate to another aspect
of system programming. We assume the existence of a system evalu-
ator for our language operating at this "top-level." It is not
necessary that the evaluator be implemented as a single process.
Any mechanism for parallelism consistent with the semantics of our
language [12] may be used to enhance its performance by using as

many processors as are available.
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A file system is postulated in the form of a global environ-
ment. Bindings in the global environment provide system functions

(cons, null, first, etc.), system constants (N., 2, TRUE, etc.),

and current copies of files. When a file is updated 1t is necessary
to use a modified global environment wherever the updated file is
to be available; the new environment is used for all future "top-
level" functions. Any suspensions referencing the former copy of
the file through the former global environment are preserved; the
referential transparency of the system extends to global environments,

"The system's input queue is an unbounded (conceptually infinite)
list of jobs. Each job is a list of three items that may be defined
with references to whatever global environment will be in effect when
it is run. The first is a function; the second is a 1list of input
file assignments which will evaluate to input files; the third is
a list of output file assignments. The output assignments will be
used by the monitor to update its global environment by dispatch-
ing the outputs of the function applied to the input files to the
specified output devices/destinations. The number of input files
for a job should be as large as the number of parameters for its
function (since top-level functions are functions on files). Each
output file should have a device specified as well.

First we define the function eval®* (function definition
implicit in the syntax of [12, 13] where the concept of starred
combinators is presented.) which applies the system evaluator to a
series of expressions in the current global environment.

<eval¥*[ forms globalenv]> =
if <null[forms]> then []

else <cons[<eval[<first[forms]> globalenv]>
<eval¥*[<rest[forms]> globalenv]> 1> .




37

(As in LISP [24] the function eval takes as arguments a form and an
environment in which to evaluate it.)

The monitor itself is deflned as a function that returns an
environment. In ordinary operation it will never have the oppor-
tunity to return a value, as it must first complete processing the
active (conceptually infinite) input queue. The global environ-
ment being created conceptually contains all the results that have
been produced as well as the bindings of all file names. We postu-
late the function forward which distributes a list of files among
a list of devices, thereby creating a new environment from an old
one (like pairlis [24]). As discussed earlier in the paper, various
devices treat these files with various degrees of immediacy; these
distinctions affect the apparent performance of the system but not
the formal definition of the ultimate environment.

<monitor[queue globalenv]> =
if <null[queue]> then globalenv
else <monitor[<rest[queue]>
<process <first[queue]>> 1> ;
<process[ function infiles outdrivers]> =
<forward[<function <eval¥*[infiles globalenv]>>
outdrivers
globalenv]>

The list of jobs 1is provided by the users of the system.
Nothing ‘in our model requires them to be processed completely
one at a time. Even if the output device specified by a job is
sequential, requiring that the associated file be manifested, never-
theless the device driver may run the programs so slowly that a
processor will be idle and have much opportunity to proceed to other

jobs before the manifestation is complete. As a result of this

behavior, and others allowed by our model [12]1 the monltor we have
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specified above "timeshares" automatically. The only contention
within the system is among the device drivers.

We close this section with an example of a job which is an
interactive interpreter for our language. The function for the
Job is interpret. Two input files are needed, a list of forms and
a single environment. The first is bound to the user's keyboard;
the second is taken as the system's global environment in effect
when the job was started. The single output file will be sent to
the printer or the teletype. This 1s just one Jjob; many jobs like
this may be specified (for different teletypes) and may be active
in a time-shared mix.

<interpret[forms envl]> =
if <null[forms]> then []
else <append[ [<first[forms]> NL
<eval[<first[forms]> env]> NL PR]

<interpret[<rest[forms]> env]> J>

Coneclusion

We have indicated how the techniques of first-order applica-
tive programming, in combination with suspended evaluation .
for the constructor function, may be used to implement a file sys-
tem. In order to provide a convenient facility for multiple output
from a file building procedure, the language enhancement known as
functional combination is provided. Each file is created and sent
to its output device in suspended form; computation therefore pro-
ceeds in response to and in a sequence determined by requests for
text characters from these devices, and evaluation proceeds only

far enough to determine what the next output character will be.
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A randomly accessed file may never exist in its manifest form,
only as promises which get updated from time to time. This observa-
tion holds regardless of whether the file is built as a linear or
a tree-like structure and it may intimidate the user who grew up
with manifest files. But just as the user who grew up with punched
cards learned to entrust his file to magnetic storage media when
he was convinced it would be there when he needed it, so also will
the user accustomed to manifest files learn to trust promised ones
whenever he becomes convinced that his information will be there
when he uses it.

The new file semantics permits the text editor program to exhibit
the desired sequence of behavior while remaining applicative in
form; without suspended evaluation an applicative program could
not be made to pause with a partial result. The use of random
access storage devices makes it possible to postpone the explicit
creation of the contents of a file until they are needed by another
program; at that point only those portions accessed by the other
program will be manifested.

We have indicated that, in an I/0 bound environment, an opera-
ting system could be written to take advantage of the fact that the
top-level programs are output-driven to help determine how to allo-
cate computational resources. As with the text editor the possibllity
of an applicative formulation of a system is a result of the suspen-
sions since they permit the system to produce output before receiving

all its input.
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Applicative formulations of algorithms have the advantages of
expressiveness and reliability. Formerly, the class of procedures
characterized by an interactive process requiring intermittent
input, with output produced in response to each input segment, was
beyond the scope of this approach. As we have shown with the exam-
ple of the text editor, this is no longer the case; proponents of
applicative programming styles now have the capacity to employ theilr
method in a broader area.

The language we have used 1s described elsewhere in more com-
plete detail [9, 10, 12]. It has been implemented within LISP and
as a separate interpreter written entirely in PASCAL [31]. Much
development remains before the possibilities for parallelism [12]
and promised (random-access) files is realized. The implementation
in its present state, however, produces all of the syntactic beha-
vior, all of the semantic behavior, and some of the pragmatic

behavior described in this paper.
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