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Abstract

We investigate how relational restructuring may be used to improve query perfor-

mance. Our approach parallels recent research extending semantic query optimization

(SQO), which uses knowledge about the instance to achieve more e�cient query pro-

cessing. Our approach di�ers, however, in that the instance does not govern whether

the optimization may be applied; rather, the instance governs whether the optimiza-

tion yields more e�cient query processing. It also di�ers in that it involves an explicit

decomposition of the relation instance. We use approximate functional dependencies as

the conceptual basis for this decomposition and develop query rewriting techniques to

exploit it. We present experimental results using both synthetic and real-world data.

These results lead to a characterization of a well-de�ned class of queries for which

improved processing time is observed.

1 Introduction

A powerful feature of relational query languages is that identities of relational algebra may

be used to transform query expressions to enhance e�ciency of evaluation. These trans-

formations are always valid, but whether they enhance or degrade e�ciency depends upon

�All authors were supported by NSF Grant IIS-0082407
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characteristics of the data. Furthermore, there are di�erent transformations and di�erent

characteristics such that the validity of these transformations are dependent on these charac-

teristics. This paper takes a characteristic of the second sort, namely functional dependency,

recasts it to a characteristic of the �rst sort, and investigates the resulting implications on

query evaluation.

Initially, functional dependencies were declared constraints, but dependencies that are

discovered in particular instances may also be used in query optimization. The di�culty with

using discovered functional dependencies is that they are brittle, so that a minor change to

the instance may mean that a dependency no longer holds. Previous work (described below)

has addressed this di�culty by trying to handle the situations in which a functional depen-

dency may break. Our work, on the other hand, uses a more supple notion, approximate

functional dependency (AFD), which bends but does not break as the instance changes. The

notion of AFD applies to any instance, parameterized only by \degree of approximation."

To our knowledge, this represents the �rst use of AFDs in query optimization. Indeed, ap-

proximate functional dependency is so ubiquitous that it disappears from discussion in most

of the paper, replaced by a relational decomposition which, among other things, captures

the \degree of approximation" in a simple manner.

This decomposition arises naturally from AFDs. The primary use of FDs is to decompose

a table by projection, that is vertically. On the other hand, AFDs induce a partition into

sets of tuples, that is horizontally, such that the FD holds in one of these partitions. These

decompositions combine into a Horizontal-Vertical decomposition (HV decomposition), which

is the heart of this paper, along with related query rewriting techniques that exploit the

decomposition.

Query optimization as considered here involves modifying a query such that semantics

is preserved but performance is enhanced. The �rst step is to replace the name of the de-

composed relation by an expression that recovers the table from the decomposition. One

would hope that o�-the-shelf query evaluators could optimize the rewritten query, but un-

fortunately our experiments have failed to bear this out. Thus we have de�ned query rewrite

rules that apply speci�cally to HV decomposed relations. As with other query rewriting,

application of these rules may be blocked in a particular query, just as the standard \push
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down selects" rules is blocked when the select condition spans both branches of a join. We

envision a scheme as shown in Figure 1; a query preprocessor that re-writes queries, taking

advantage of the knowledge about the decomposition.

Preprocessor Query Engine
Rewritten
Query

Query

Database

Knowledge
of AFD degrees

Figure 1: Queries are passed to a preprocessor that, using knowledge about the decomposition,

a�ects the rewrite to make processing more e�cient.

In order to appraise the decomposition and rewriting rules, we performed a number

of experiments using synthetic and real-world data. Synthetic data allowed control of the

\degree of approximation" of the AFD being tested. Real-world data was used to validate

the synthetic data generation model. These experiments showed that rewriting yielded

substantial performance improvements (on queries where they were not blocked, of course).

Most surprisingly, these improvements occurred not only in cases where the AFD was quite

close to an FD but also in cases that were far from an FD.

We envision our approach as only the beginning of a longer investigation of similar restruc-

turings and rewritings. There are two di�erent features that may vary in this investigation:

classes of queries where rewritings may apply or be blocked and characteristics of instances

that may suggest di�erent restructurings. For example, multi-valued or approximate multi-

valued decompositions are likely candidates.

The remainder of the paper is as follows. The next section provides a brief overview

of the work leading up to our approach. Section 3 presents basic de�nitions and provides

the theoretical background and results for the paper. Included in this are examples of

two di�erent query rewriting techniques. The results of experiments designed to test the

e�ectiveness of the rewriting techniques are presented and discussed in Section 4. Section 5

describes an approach for maintaining HV decompositions. The paper ends with conclusions
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and future work.

2 Previous work: SQO and dependencies

Two separate trains of research led toward the work reported in this paper: a long-running

and substantial e�ort in query optimization and a more recent interest in AFDs.

Semantic query optimization (SQO) began some two decades ago and was discovered

independently by King[14, 15] and Hammer et al.[9]. SQO is the use of \semantic knowledge

for optimizing queries..."[3, 12, 34]. Some researchers proposed that a query be rewritten

prior to being passed to the query engine. The query is rewritten (to an equivalent query)

according to a set of rewrite rules with the idea that the rewritten query will execute faster.

One such rule allows sub-queries to be merged into the outer block (thereby eliminating

the sub-query). This rewrite rule idea has been implemented in Starburst and IBM DB2

([27, 28]).

Some researchers used additional information to rewrite queries. The most obvious can-

didates for use are integrity constraints (ICs)[35, 36], arbitrary predicates over the database

that must hold for any instance (e.g. a primary key). In this context, ICs have been used

to rewrite queries [24, 25, 30, 33, 34, 37]. For example, Paulley and Larson [24, 25] rewrite

to eliminate unnecessary group by and distinct operations; Sun and Yu [37] rewrite to elim-

inate unnecessary joins, add bene�cial restrictions, and eliminate redundant non-bene�cial

restrictions.

Functional dependencies (FDs) are a primary type of IC used in SQO. FDs possess a

number of useful properties that can be exploited directly or indirectly. Although the use

of FDs to induce lossless decompositions appears in basic database texts (e.g. [29]), there

has been little work exploiting these decompositions for query optimization. Interestingly,

as discussed by Cheng et al.[4], there does not appear to be any extensive commercial im-

plementation of SQO in the spirit with which they were intended{beyond the typical keys

and check constraints, likely because of their potentially complex nature, though convincing

arguments exist for their use[31].

Fundamentally di�erent from this use of declared constraints is that of discovering infor-
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mation about the instance itself that can be used in SQO. For example, several researchers

have incorporated rules discovered from the data to rewrite queries [1, 10, 32, 39]. For ex-

ample, Bell [1] uses discovered FDs to eliminate group by and distinct operations. Recently,

work by Godfrey et al.[6, 7] demonstrates that instance knowledge yields signi�cant, posi-

tive results in SQO. They use the concept of a soft constraint (SC), which reects knowledge

about the state of the database. Thus, SCs are weaker than traditional ICs in that they do

not impose any conditions upon the database. The role they play, then, is not to ensure

integrity, but to \semantically characterize the database"[7]. Godfrey et al. introduce two

classes of SCs, absolute soft constraints (ASC) and statistical soft constraints1 (SSC). ASCs

hold completely and absolutely during the current state of the database. In contrast, SSCs

do not hold completely. An obvious advantage of an ASC is that, when it holds, it can

be incorporated in SQO, since, for the time it holds true, it functions essentially like an

IC. ASCs can be applied to SQO for the purposes of: 1. query rewriting; 2. query plan

parameterization; and 3. cardinality estimation. An advantage of an SSC is that it need

not be checked against every update to verify whether it holds{rather, every so often the

SSCs must be brought up to date. While SSCs can be useful for cardinality estimation, they

cannot be used for query rewriting.

Godfrey et al. then describe how SCs would be incorporated into an RDBMS (since no

current system is available): 1. discovery, 2. selection, 3. maintenance. For ASCs, Godfrey

et al. focus on both checking when an ASC is violated and maintaining ASCs. Because of

their tenuous nature i.e., being state-dependent, considerable care must be given to both

checking and maintaining ASCs { a di�cult task. This is, in fact, the \Achilles heel" of

ASCs. A natural question arises from the work of Godfrey et al.: how can SSCs be used, if

at all, for query rewriting?

While the body of work deriving from SQO is substantial, a second, more recent body of

work concerning AFDs was even more signi�cant in the genesis of this paper.

The notion of a functional dependency was originally introduced as an IC for use in

database design. However, more recently, research has been conducted with the view point

1The term \statistical" is meant to connote that the soft constraint holds true for some, if not all, of the

data and not that any probabilistic techniques are used.
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that FDs represent interesting patterns existent in the data. In this setting, FDs are not

regarded as declared constraints. Researchers have investigated the problem of e�ciently

discovering FDs that hold in a given instance [11, 13, 16, 18, 20, 21, 23, 38]. Researchers

have also considered the concept of an FD \approximately holding" in an instance and have

developed measures to characterize the \degree of approximation". Piatetsky-Shapiro [26]

describe a measure derived from probabilistic considerations (this measure corresponds to

the � measure of Goodman and Kruskal [8]). Kivinen and Mannila [16] propose and evaluate

three di�erent measures derived from pragmatic considerations. One of their measures, g3,

correlates with the idea of \correction" that we use. Huhtala et al. [11] develop an algorithm

for e�ciently discovering all AFDs in a given instance whose g3 approximation measure is

below a user speci�ed threshold. Finally, approximation measures have been derived using

information theoretic methods [2, 5, 17, 19, 22].

3 De�nitions and Theoretical Results

In this section we describe the theoretical results that form the basis of our work. We start

by de�ning our notation and describe the distinction we make between bags and sets. Then,

we de�ne the fundamental concept of a horizontal-vertical decomposition and describe some

of its most important properties. After that, we describe two query rewriting techniques.

The �rst technique is guaranteed to always preserves correctness. The second technique is

guaranteed to preserve correctness only on a special class of queries described later. Finally,

we close the section with two hypotheses about how our rewriting techniques a�ect query

evaluation time.

We do not give proofs in this paper. Rather, we describe intuitively why the results work

and illustrate with examples. Rigorous proofs can be given, but, in our opinion, do not

illuminate the ideas.
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Figure 2: An instance, s, over schema fA;B;Cg.

3.1 Basic Notation

Before describing our decomposition and query rewriting techniques, we introduce some basic

notation. We assume the reader is familiar with the basic concepts of relational database

theory (see [29] for a review). In what follows, we �x a relation symbol R with schema

fA;B;Cg. Our results can easily be generalized to apply to schema with any number of

attributes, however, for simplicity, we stick with fA;B;Cg.

Classical relational database theory is set-based (e.g. the relational algebra operators take

sets and return sets). However, in practice, people work with tables rather than sets. One

distinguishing property is that tables may contain repeats. This property impacts our work

signi�cantly and so cannot be ignored. Thus, when describing our theoretical foundations,

we operate with bags rather than sets. Whenever we write \relation instance" or \instance"

or \relation" we mean a bag and not necessarily a set. For example, the instance, s, of R

depicted in Figure 2 is a bag and not a set.

We also make the distinction between those relational algebra (RA) operators that return

sets and those that return bags. The ones that return sets (i.e. the ones that are duplicate

removing) are denoted in the standard way: �, �, ./, �, [, and � (projection, selection,

natural join, renaming, union, and minus, respectively). Their bag counterparts are denoted:

�̂, �̂, .̂/, �̂, [̂, and �̂. We call the relational algebra over all operators (bag and set) the bag

relational algebra (bag RA).

Let s1; s2 be instances over some schema S. We say that s1 and s2 are set equivalent,

written s1 � s2 if �S(s1) = �S(s2). In other words, s1 and s2 are equal once duplicates have

been removed. For example, consider the instance s, depicted in Fig. 2; call the instance
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resulting from the deletion of the �rst tuple sF ; call the instance resulting from the deletion

of the last tuple (and not the �rst) sL. s is set equivalent to sL but not sF .

Given, Q, a bag RA expression involving R, and E, another bag RA expression, let

Q[R  E] be the result of replacing all occurrences of R by E. Note that the result may

contain schema conicts.

Example 1 Let Q := �A;B(�C=0(R)). Let E := R1[̂�̂A;B(R2) where R1 has schema fA;Bg

and R2 has schema fA;B;Cg. Note that E has no schema conicts. The schema of E is

fA;Bg. By de�nition Q[R  E] is �A;B(�C=0(E)). This expression has a schema conict

since �C=0 is being applied to E which has schema fA;Bg.

Consider another example. Let Q0 := �A;B(R [ S) (S has the same schema as R,

fA;B;Cg). By de�nition Q0[R E] is �A;B(E [S). This expression has a schema conict

since E has schema fA;Bg while S has schema fA;B;Cg.

�

3.2 Horizontal-Vertical Decompositions

Let r be an instance of R. If the functional dependency A ! B holds in r,2 then r may

be decomposed vertically as rAB = �A;B(r), rAC = �̂A;C(r). This decomposition enjoys the

property of being join lossless: r = rAB .̂/rAC.

If A ! B does not hold in r, then r may still be decomposed. But we must �rst

horizontally decompose r into two disjoint, non-empty relation instances whose union is r,

such that A ! B holds in one of these relation instances. This instance is then vertically

decomposed. The result is a horizontal-vertical decomposition of r. The next set of de�nitions

makes this concept precise.

rc � r is said to be an A ! B correction for r if A ! B holds in r�̂rc: Often we omit

mention of A ! B and r when clear from context and only say that rc is a correction.

Given correction, rc, the horizontal-vertical decomposition (HV decomposition) induced is

r0AB, r
0
AC , and r

c where r0 is r�̂rc, r0AB is �A;B(r
0), and r0AC is �̂A;C(r

0).

2for all tuples t1; t2 2 r, t1[A] = t2[A] implies t1[B] = t2[B].
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Figure 3: Induced HV non-minimal decomposition, sc, s0AB , s
0
AC .
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Figure 4: Induced HV minimal decomposition, sc, s0AB , s
0
AC .

Recall the instance, s, in Figure 2. Clearly, A! B does not hold. Let sc = f(1; 3; 1); (2; 1; 1)g.

Since A ! B holds in s0 = f(1; 2; 1); (2; 1; 1)g, then sc is a correction. The HV decompo-

sition induced is depicted in Figure 3. Notice that s = (s0AB .̂/s
0
AC) [̂s

c. Moreover, in this

case, �̂A;B(s) = s0AB[̂�̂A;B(s
c). The �rst observation points to the lossless property of HV

decompositions. The second observation points to another property that will later be shown

important: if C is not needed in s, then the join can be eliminated from the decomposition.

In the previous example, sc is not minimal since a smaller correction can be found. For

example, sc = f(1; 3; 1)g is also a correction. The HV decomposition induced is depicted in

Figure 4. Notice that s = (s0AB .̂/s
0
AC) [̂s

c. Moreover, �̂A;B(s) � s0AB[̂�̂A;B(s
c) (but equality

does not hold). As in the previous example, the �rst observation points to the lossless

property of the decomposition, and the second observation points to the property that if C

is not needed in s, then the join can be eliminated from the decomposition. However, this

example shows that the property must be weakened to set equality rather than equality (see

Theorem 1).

The point of these last two examples was (i) to illustrate two important properties of HV

decompositions, and (ii) to point out that these properties do not depend on the correction
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being minimal. Our query rewriting techniques rely on these properties. If these properties

were dependent on the decomposition being minimal, then maintaining the decomposition

in the presence of updates would be di�cult. But, these properties are not dependent on the

correction being minimal. Hence, we gain much greater maintenance exibility. Nonetheless,

maintenance is still a di�cult issue. We describe a simple method for maintaining the

decomposition in section 5, but, do not analyze its performance. We leave this as future

work.

In short, the fundamental properties of HV decompositions needed for our query rewriting

techniques are the following.

Theorem 1

1. r = (r0AB.̂/r
0
AC)[̂r

c.

2. �̂A;B(r) � r0AB[̂�̂A;B(r
c).

In part 2, if [̂ were replaced by [, then the result could be strengthened to equality (=)

rather than set equality (�). However, the merit of stating part 2 as done above will be

seen later when we discuss our second rewriting technique. In that setting, it will not matter

whether we use equality or set equality and for e�ciency purposes not removing duplicates

in the union will be an advantage in query evaluation.

3.3 Query Rewriting: Technique I

HV decompositions, in a sense, \expose" structural information about the instance. Our

basic idea is to rewrite queries using the decomposition such that structural information is

exposed to the DBMS query evaluator. Our thinking is that the optimizer could use this

structure to improve query evaluation. Theorem 1, part 1 provides the foundation of our

�rst rewriting technique (illustrated by the following example). Consider an example query,

Q:

Select Distinct R1.A, R1.B

From R as R1

Where R1.A = 0.
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Expressed in terms of the bag RA, Q := �A;B(�A=0(R)). If the HV decomposition r0AB,

r0AC , r
c is kept in the database, then, by Theorem 1, part 1, we haveQ(r) = �A;B(�A=0((r

0
AB.̂/r

0
AC)[̂r

c)).

So, Q can be rewritten as Q1:

Select Distinct R1.A, R1.B

From ((Select RAB.A as A, RAB.B as B, RAC.C as C

From RAB, RAC

Where RAB.A=RAC.A)

Union All

(Select A,B,C

From Rc)) as R1

Where R1.A = 0.

This technique of query rewriting preserves correctness on any SQL query, i.e. the

rewritten query is well-formed (no schema conicts) and, when handed to the DBMS query

evaluator, produces exactly the same result as the rewritten query. If R occurs more than

once (e.g. \R as R2"), then each occurrence of R is replaced as above. We call this Rewriting

Technique I.

3.4 Query Rewriting: Technique II

In the previous subsection, Q was rewritten as Q1. However, Q has properties that allow

further rewriting. First observe that attribute C does not appear in the output schema

of Q and is not used elsewhere in the query. As a result, only the attributes A and

B are needed; C can be projected out: Q(r) = Q(�̂A;B(r)). Hence, we have Q(r) =

�A;B(�A=0(�̂A;B((r
0
AB.̂/r

0
AC)[̂r

c))).

Now by Theorem 1 part 2, we have Q(r) � �A;B(�A=0(r
0
AB[̂�̂A;B(r

c))). But since �A;B

appears at the top level of Q (hence duplicates are removed from the output), then we may

replace set equality by equality: Q(r) = �A;B(�A=0(r
0
AB[̂�̂A;B(r

c))). So, Q may be rewritten

as Q2:

Select Distinct R1.A, R1.B
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From ((Select RAB.A as A, RAB.B as B

From RAB)

Union All

(Select Rc.A as A, Rc.B as B

From Rc)) as R1

Where R1.A = 0.

The decomposition join has been eliminated and we expect that Q2, when handed to the

DBMS query evaluator, will evaluate faster than Q1. Moreover, we would expect that Q2

will evaluate faster than Q if r0AB and rc are not large relative to r. If R occurs more than

once in Q, then replace each occurrence as above. We call this Technique II.

3.5 Limitations of Technique II

In the previous subsection, Q was rewritten as Q1 and then further rewritten as Q2. While

rewriting as Q1 (Technique I) always preserves correctness, rewriting as Q2 (Technique II)

does not. We would like to isolate syntactic properties of Q that guarantee that Technique

II preserves correctness. There are two ways in which Technique II may not preserve cor-

rectness: the rewritten query is not well-formed (has schema conicts), the rewritten query

does not produce the same output as the original on all inputs.

Since Technique II replaces R by an expression whose schema is fA;Bg, then the original

query cannot use C or else the rewritten query may have schema conicts. The top bag RA

expression in Example 1 illustrates how such a schema conict can arise. Moreover, if the

original query involves union or minus, then schema conicts can also arise. The bottom

RA expression in Example 1 illustrates how schema conicts can arise in the presence of

union. Hence, Technique II is not guaranteed to preserve correctness on queries that use C

or involve union or minus, because the rewritten query may not be well-de�ned.

Technique II produces a well-formed query when applied to queries that do not use C and

do not contain union or minus. However, the rewritten query may not necessarily produce

the same output as the original on all inputs. Clearly, if C is in the output schema of the

original query, then the rewritten query may not produce the same output. But, even if C is
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not in the output schema, the rewritten query may not produce the same output. Consider

the following example.

Select R1.A, R1.B

From R as R1

Where R1.A = 0.

This query is the same as query Q in subsection 3.3 except that the \Distinct" has been

removed. Technique II produces a well-de�ned query and by Theorem 1, part 2, it can

be seen that the rewritten query is set equivalent to the original query. However, equality

is not preserved. A \Distinct" in the original query is needed to ensure that equality is

preserved. Technique II is not guaranteed to preserve correctness on queries which do not

have a Distinct at their top level.

Consider yet another example:

Select Distinct R1.A

From R as R1

Group by R1.A

Having Count(R1.B) > 2.

Here, Technique II produces a well-de�ned query but does not preserve correctness for

reasons similar to the last example. Theorem 1, part 2 implies that replacing R by \((Select

* From RAB) Union All (Select A, B From Rc))" preserves set equality, equality is not

necessarily preserved. Hence Count may not produce the same result on the original query

as the rewrite. Technique II is not guaranteed to preserve correctness on queries involving

the aggregate operations count and sum. Aggregate operations max and min do not cause

problems, but, for simplicity of presentation, they are omitted from further discussion.

3.5.1 Formal Results

Enough intuition should be developed as to the limitations of Technique II. We give a result

(Corollary 1) that de�nes a general class of queries over which Technique II is guaranteed

13



to preserve correctness. First, though, we state a theorem that de�nes a general class of

bag RA expressions over which Technique II is guaranteed to preserve correctness up to set

equivalence. Corollary 1 falls out immediately by restricting the class further to those which

have � at their top level.

Let Q be any bag RA expression. Let E be the bag RA expression R0
AB[̂�̂AB(R

c) where

R0
AB is a relation symbol over schema fA;Bg and Rc is a relation symbol over schema

fA;B;Cg. Let Q2 be Q(R E).

Theorem 2 If Q does not involve union or minus, and the output schema of Q does not con-

tain C, and C does not appear in Q, then Q2 is well-de�ned and Q(r) � Q2(r
0
AB; �̂A;B(r

c)).

We say that a bag RA expression Q is top-level distinct if it is of the form �:::(Q
0). A

top-level distinct expression always returns a set.

De�nition 1 We say that a bag RA expression, Q, is join elimination re-writable (JE-

rewritable) if (i) Q is top-level distinct, (ii) Q does not involve union or minus, (iii) The

output schema of Q does not contain C, and (iv) C does not appear in Q (i.e. is not

part of any projection, selection, or renaming condition, and no join has C among its join

attributes).

Take note that the �rst example in subsection 3.3 is the SQL of the JE-rewritable, bag

RA expression �A;B(�A=0(r)). Theorem 2 implies the following result that de�nes the class

of bag RA expressions over which Technique II preserves correctness.

Corollary 1 If Q is JE-rewritable, then Q2 is well-formed and Q(r) = Q2(r
0
AB, �̂A;B(r

c)).

The SQL queries equivalent to the JE-rewritable, bag RA expressions are the queries

on which Technique II is guaranteed to preserve correctness. We call these JE-rewritable

queries.

3.6 Hypotheses

We have developed two query rewriting techniques: Q! Q1 (Technique I), Q! Q2 (Tech-

nique II). The �rst technique is guaranteed to preserve correctness for any query. The second
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is only guaranteed to preserve correctness for JE-rewritable queries. Q1 may evaluate faster

than Q when handed to the DBMS query evaluator, because Q1 exposes more of the struc-

ture of r, thereby allowing the optimizer to possibly take advantage of this structure. We

arrive at our �rst hypothesis. Let time(Q) denote the time required by the DBMS query

evaluator to evaluate Q (likewise, de�ne time(Q1)).

Hypothesis 1 (Rewriting Technique I) Given query Q, time(Q1) < time(Q).

We expect Q2 to evaluate faster than Q1 because of the elimination of the join in the HV

decomposition. Moreover, we expect Q2 to evaluate faster than Q when r0AB and rc are small

relative to r. Let jrj, jr0ABj, and jr
cj denote the number of tuples in r, r0AB, and r

c, respectively.

Let adom(A; r0AB) denote the active domain of A in r0AB (likewise de�ne adom(A; r)). By

de�nition of HV decompositions, jr0ABj = jadom(A; r0AB)j. We use jrj
jadom(A;r0

AB
)j+jrcj

to quantify

the size of r0AB and rc relative to r. For example, if jadom(A; r0AB)j is two percent of jrj and

jrcj is twenty percent of jrj, then jrj is 4.55 times as large as jr0ABj +jr
cj.

Hypothesis 2 (Rewriting Technique II) Given JE-rewritable query Q, if jrj
jadom(A;r0

AB
)j+jrcj

>

1, then

time(Q2) < time(Q). Moreover, if jrj
jadom(A;r0

AB
)j+jrcj

increases, then time(Q)� time(Q2) also

increases.

In the next section, we describe experiments designed to test our hypotheses.

4 Experimental Results

This section describes results from experiments designed to test the hypotheses given earlier.

We measure the performance of queries in the context of the decomposition strategy described

in the previous section. We �rst provide details about our method, including a description of

the data we used. Next, we report the results from experiments designed to test hypothesis 1

using synthetically generated data. Following that, we test hypothesis 2 using both synthetic

and non-synthetic data.
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4.1 Experimental Data

Datasets for the experiments were generated randomly, controlling for the size of the relation,

the size of the correction, and the size of the active domains for A and B. The order of tuples

was permuted to avoid long sequences of tuples in the dataset with the same A and B value.

The table used for the join query was generated from r by projecting out the unique B values

and adding a description �eld, which resulted in the schema S = fB;Dg.

Fixing the size of the active domains provides the bene�t of controlling for the selectivity

of the queries that select rows based on a constant. The constant used for these queries was

the value representing the median frequency. We �xed the size of adom(B; r) to be 100 for

each experiment. We considered three sizes for adom(A; r): 100, 1000, and 10000.

For all experiments, the size of the relation was 500,000 tuples. The size of the correction

ranged from 0{90% in 10% increments. Note that the 0% correction represents a case where

the functional dependency A! B holds. The decompositions generated for the experiments

were minimal, so jadom(A; r)j = jadom(A; r0AB)j in each case.

The datasets were stored as tables in an Oracle (Version 8.05) database running on Sun

UltraSparc 10 server running Solaris 7 equipped with 256 MB of RAM. No indexes were

generated for any of the tables. However, statistics were generated for all tables, allowing for

cost-based optimization. See Appendix A for a more thorough description of the synthetic

data generation procedure.

Queries were executed from a Java 1.3 application using the JDBC thin client interface

provided by Oracle. Each query was executed 5 times, with the mean completion time to

return the �nal row in the result reported. The standard deviations we observed were small

and are omitted from this report. We used the \NOCACHE" optimizer directive on each

query to avoid reusing the cache.3

3This directive speci�es that blocks are placed in the least recently used part of the LRU list in the bu�er

cache when a full table scan is performed. This was necessary when repeating a query to avoid misleading

results.
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4.2 Testing Hypothesis 1

We tested the following query:

Select Distinct R1.A,R1.B,R1.C

From R as R1

Where R1.A=constant

rewritten using Technique I as:

Select Distinct R1.A,R1.B,R1.C

From (Select RAB.A,RAB.B,RAC.C

From RAB,RAC Where RAB.A=RAC.A

Union All

Select A,B,C From Rc) as R1

Where R1.A=constant

As described in Subsection 3.3, the �rst query represents Q, while the second query

represents Q1. In the results, we refer to these queries as the original and the rewritten

query. Figure 5 depicts the timings we measured for these queries. From these results, it is

clear that the rewritten query performs worse than the original query. Consequently, it does

not appear that exposing the structure to the optimizer yielded any bene�ts. Interestingly,

the worst performance occurs in the case of a perfect functional dependency. We conclude

that our hypothesis is incorrect. We believe that the reason for failure is directly related to

the join in the rewritten query. A closer examination of the query plans makes clear why we

did not experience an improvement. The plan generated for the rewritten query did not push

the selects into the query. Instead, the original relation was materialized and then scanned

to get the answer.

4.3 Testing Hypothesis 2

We saw that rewriting Technique I resulted in slower queries due to the cost of carrying out

the join introduced by the decomposition. Rewriting Technique II, when applicable, does not
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Figure 5: Timings for the query rewritten using Technique I compared to the original query.

produce queries requiring the join. As a result, we expect that the performance of queries

rewritten with Technique II will be clearly faster than those rewritten with Technique I. Now

we test whether queries rewritten with Technique II are faster than the original queries.

To test hypothesis 2, the following four JE-rewritable queries were used.

1. Select Distinct R1.A,R1.B From R as R1 Where R1.A=constant

2. Select Distinct R1.A,R1.B From R as R1 Where R1.B=constant

3. Select Distinct R1.A,R1.B,S.D From R as R1,S Where R1.B=S.B

4. Select Distinct R1.A,R1.B From R as R1

Each query was rewritten as follows:

1. Select Distinct R1.A,R1.B

From (Select A,B From RAB Union All Select A,B From Rc) as R1

Where R1.A=constant

2. Select Distinct R1.A,R1.B

From (Select A,B From RAB Union All Select A,B From Rc) as R1

Where R1.B=constant

3. Select Distinct R1.A,R1.B,S.D

From (Select A,B From RAB Union All Select A,B From Rc) as R1, S Where R1.B=S.B
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4. Select Distinct R1.A,R1.B

From (Select A,B From RAB Union All Select A,B From Rc) as R1

Figure 6 shows the results for Query 1. In each case, we see that the rewritten queries

perform better than the original query when the size of the correction is small. As the size

of the correction increases, the performance of the rewritten queries degrades in a linear

fashion.
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Figure 6: Comparing the mean execution time for Query 1 to the size of the correction.

In Figure 7, we provide the results for Query 2, showing similar behavior to the Query 1

case. As shown in Figure 8 and Figure 9, the performance trend continues. However, since

the size of the output for these queries is substantial, the bene�ts of the decomposition are

obscured by the output size. Nevertheless, the rewritten queries continued to outperform

the original query for all but the largest correction sizes.
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Figure 7: Comparing the mean execution time for Query 2 to the size of the correction.
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Figure 8: Comparing the mean execution time for Query 3 to the size of the correction.
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Figure 9: Comparing the mean execution time for Query 4 to the size of the correction.
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Figure 10: Timings for queries against the census data.

4.4 Census Data

Synthetic datasets are useful for repeated experiments since we can control the dependent

characteristics. Real data cannot be controlled in such a way. However, we can decompose

the real data in the same way and determine the size of the correction. Then, we can verify

that the timings of the queries against the real data are consistent with the synthetic data.

We chose a subset of the attributes contained in the census data, rather than the

complete table. The attributes we selected were industry;meansOfTransportation; and

maritalStatus, which correspond to A;B;C in our decomposition. Duplicate tuples were

not removed from the projection. The census data we used was the 1990 California 5%

sample, with 1.456 million rows. As done with synthetic data, we computed a minimal de-

composition. The correction and Adom(A; r0AB) were of size 233,140 (20%) and 245 (<0.02%),

respectively.

we considered was Select Distinct A,B From Census Where A=constant. Again, we

rewrote the query according to the previously described procedure. We used several con-

stants, based on the frequency of their occurrence in the data. Figure 10 shows these results

for 4 frequency cases: High (40%), Low (4%), Very-Low (0.4%) and Non-Existent (0%). For

these cases, the rewritten queries all performed better than the original queries. The e�ect of

the frequency of the A value was greater for the original query than for the rewritten query.

The second query we tested against the census data was: Select Distinct A,B from
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Census. The original query executed in an average of 16.7 seconds. In contrast, the rewritten

query had an average execution time of 6.9 seconds.

4.5 Discussion

Hypothesis 1 was incorrect due to the cost of the join introduced by the decomposition and

the fact that the optimizer did not take advantage of the decomposition. For example, as

shown in the queries below, the optimizer could have pushed selects into the decomposition.

The �rst query is the original query rewritten with Technique I used to test hypothesis 1.

The second query exploits the structure of the decomposition by pushing selects as deep as

possible, which is one of the most basic query optimization strategies. In these experiments

the query optimizer did not take advantage of the decomposition.

1. Select Distinct R1.A,R1.B,R1.C

From ( Select RAB.A,RAB.B,RAC.C From RAB,RAC Where RAB.A=RAC.A

Union All Select A,B,C From Rc) as R1

Where R1.A=constant

2. Select Distinct R1.A,R1.B,R1.C

From (Select RAB.A,RAB.B,RAC.C From RAB,RAC

Where RAB.A=constant and RAC.A=constant and RAB.A=RAC.A

Union All Select A,B,C From Rc Where A=constant) as R1

Queries that were able to use Technique II outperformed the original queries until the size

of the correction exceeded 50% - a certainly robust technique. We were pleasantly surprised

that the breaking point was so high. After all, it seems intuitive that the decomposition

will perform better when the AFD is close to an FD. It is surprising though, that the AFD

A! B in the original relation can be signi�cantly far from being an FD and result in better

performing queries. Observe that for our experimental datasets, the size of the active domain

does not materially a�ect the relative performance of the queries.

When using real data, the results are consistent with our synthetic data when considering

the size of the correction. The census data is larger than the synthetic datasets. However,
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the distribution of values is di�erent for the attributes we selected. In fact the distribution

is highly skewed. The rewritten queries perform better against the census data than against

the synthetic data. We believe that the skew in the distribution leads to this improvement.

5 Maintaining the Decomposition

So far, we have discussed the HV decomposition without regard to updates to the original

relation. In this section we discuss this issue, providing an overview of a strategy to support

inserts, updates and deletes.

From the de�nition of the HV decomposition, there exists minimal decompositions (rc is

minimal if for all corrections sc, jrcj � jscj). An update strategy can be used to guarantee

minimality when rc is initially minimal. We believe, however, that the cost of such a strategy

is too high to warrant its use. Instead, our strategy relaxes the minimality constraint.

Upon insertion of a tuple t, an index, for example (preferably a hash) would support

constant time lookup in r0AB. The following pseudo-code describes how to handle inserts for

a tuple t = ha; b; ci:

if exists (Select * From RAB Where A=a and B=b) Then

Insert Into RAC Values (a, c)

else

Insert Into Rc Values (a, b, c)

fi

When deleting a tuple, extra work is necessary to handle the case when deleting the last

occurrence of an a from r0AC , which forces a tuple to be deleted from r0AB. Ideally, the best

performance for the delete will result when an index on r0AC exists in addition to the index

on r0AB.

Given t = ha; b; ci to delete:

if exists (Select * From RAB Where A=a and B=b) Then

Delete from RAC Where A=a and C=c
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if not exists (Select * From RAC Where A=a) Then

Delete from RAB Where A=a and B=b

fi

else

Delete from Rc Where A=a and B=b and C=c

fi

Updates to existing tuples are handled by a delete followed by an insert. Since these op-

erations may yield a non-minimal decomposition, then it may be necessary to reorganize the

decomposition to restore minimality (if desired). This is probably best done as a scheduled,

batch process. As described in Subsection 4.3, the size of rc can be signi�cantly large while

still enjoying performance bene�ts, which indicates that a large number of insert or delete

operations can occur before reorganization is required.

6 Conclusion and Future Work

In this paper we investigated an approach (paralleling recent work extending SQO) to im-

prove query evaluation. Our approach is based on decomposing relation instances with

respect to AFDs and rewriting queries to take advantage of these decompositions (HV de-

compositions). The primary idea is that the semantic information contained in an AFD can

be exposed by creating an HV decomposition of the relation instance. This information can

then be exploited to speed up query evaluation: rewrite the query to use the decomposition

instead of the original relation, then, issue the rewritten query to the DBMS query engine

instead of the original query. This process is expressed pictorially in Figure 1. Two things

in particular should be pointed out about how our approach �ts into the literature. First, it

represents (to our knowledge) the �rst use of AFDs in query evaluation. Second, it addresses

the question raised by the work of Godfrey et al. described in Section 2. Our primary mo-

tivation was not to speci�cally address the question. We discovered after we had obtained

our results that they could be used to address the question.

We investigated two rewriting techniques. Technique I replaces all occurrences of the
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Figure 11: The preprocessor rewrites JE-rewritable queries provided that the correction is not too

large.

relation symbol by its decomposition. This technique is guaranteed to preserve correctness

on all SQL queries. The motivation was that the optimizer can take advantage of the

decomposition and produce a more e�cient plan. Our experiments, however, point out

that this was not the case. The introduction of the decomposition join caused the rewritten

queries to run more slowly. Technique II replaces all occurrences of the relation symbol by the

decomposition without the join. This technique is only guaranteed to preserve correctness

on a special class of queries (JE-rewritable queries). However, our experiments show that

queries rewritten with this technique tend to evaluate signi�cantly faster than the original

query, provided the correction was not too large.

Our results suggest how the architecture depicted in Figure 1 can be sharpened. We have

observed that Technique II can o�er signi�cant speed-up, but, it can only be applied to JE-

rewritable queries. So, the original relation should be kept along with its HV decomposition.

The preprocessor examines the query to see if it is JE-rewritable. If so, and if the correction

is not too large, then the query is rewritten. Otherwise, the query is not rewritten and the

original query is handed to the DBMS query engine. See Figure 11.

There are a number of directions for future work. 1. Address the primary drawback

to Technique II: it is guaranteed to preserve correctness only on JE-rewritable queries. In
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particular, modify our approach to handle aggregate operations like count and sum. This

can be achieved by modifying the construction of r0AB to keep counts. The signi�cant issue

is then sharpened: how to rewrite queries to use the counts. 2. Investigate other rewritings

in the AFD context. For example, an FD can allow elimination of outer join and group by

operations. 3. Investigate the use of other decompositions. A natural candidate is a decom-

position induced by approximate multi-valued dependencies, which creates two correction

relations r+; r�. 4. Investigate methods for maintaining an HV decomposition. Does the

extra time required for processing inserts and deletes eclipse the gains in query evaluation?

Also, when should corrections be reorganized to minimize rc? The r+, r� decomposition

mentioned above is intriguing because deletes are processed via r�.

In closing we point out that the primary purpose was to introduce the idea of exploiting

AFDs in query evaluation via HV decompositions and demonstrate that the idea is fertile

grounds for future work. We feel that we have achieved this goal.
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Appendix A

In this section we provide details on the procedure and algorithm we used to generate syn-

thetic data for our experiments. Pseudo-code for the algorithm is provided, as well as

descriptions of the various control variables used.

The goal for the procedure is to generate relations r; r0AB; r
0
AC, and rc, as described

previously. The following variables are used to control the generation:

Variable Description

sizeOfR The number of tuples in r.

sizeOfRc The number of tuples in rc.

sizeOfA The size of Adom(A; r).

sizeOfB The size of Dom(B; r).

maxRepeats The maximum number of consecutive (a; b) values.

Note that sizeOfB represents the maximum number of possible B values in r, which

di�ers from sizeOfA - the actual number of A values. The algorithm generates both r and

the decomposition in the same pass. The data generation algorithm is shown below:
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procedure Generate(sizeOfR, sizeOfRc, sizeOfA, sizeOfB, maxRepeats) :

// create the possible a and b values

A[1..sizeOfA] = unique random values between 1 and sizeOfR;

B[1..sizeOfB] = random values between 1 and sizeOfR;

// create the a,b functional dependencies

for i = 1 to sizeOfA

AB[i] = random value taken from B;

insert into RAB values (A[i], AB[i]);

// create the tuples in R and Rc and Rac

currentTuple := 0;

currentA := 1;

while currentTuple < sizeOfR

repeat := random value between 1 and maxRepeats;

if (currentTuple >= (sizeOfR - sizeOfRc)

b := random value taken from B such that b != AB[currentA]

for i = 1 to repeat

if (currentTuple >= (sizeOfR - sizeOfRc) then

// generate the tuples in R and Rc

insert into R values (A[currentA], b, currentTuple);

insert into Rc values (A[currentA], b, currentTuple);

else

// otherwise generate the FD tuples in R and RAC

insert into R values (A[currentA], AB[currentA], currentTuple);

insert into RAC values (A[currentA], currentTuple);

31



fi

currentTuple++;

end for;

// cycle through all the possible A values

currentA++;

if currentA > sizeOfA then

currentA := 1;

end while;

end Generate;
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