
Nordic Journal of Computing

Blood from Dahm's Turnip�

Kasey N. Klipsch and David S. Wise
Computer Science Dept.,

Indiana University
Bloomington, Indiana 47405{7104, USA

kklipsch@acm.org

Abstract. Dahm's compression of the table representing a COBOL data decla-
ration by Knuth, is compressed still further.

CCS Classi�cation: D.3.4 [Programming Languages]: Processors|Compilers,
COBOL; E.1 [Data Structures]: Trees.
General Terms: design, algorithms.

Key words: Multilinked structures, COBOL.

1. Introduction

Section 2.4 of The Art of Computer Programming [1] presents a problem
extracted from the design of a COBOL compiler. It is o�ered as an exercise
in data-structure and algorithm design for multi-linked structures. Three
algorithms are developed for building the structure, for checking quali�ed
references, and for �nding corresponding pairs. This data structure is then
modi�ed for a more e�cient representation, with a discussion on the rami-
�cations for the algorithms.
Knuth illustrates the tablular tree structure of the variables in a COBOL

program with this example from his Figure 2.4(4):

1 A 1 H

3 B 5 F

7 C 8 G

7 D 5 B

3 E 5 C

3 F 9 E

4 G 9 D

9 G

� Copyright c1999 by the authors. Permission to make digital or hard copies of part or
all of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage, and that copies bear this
notice and the full citation on the �rst page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior speci�c permission.
This work has been submitted for publication. Copyright may be transferred without
further notice and the accepted version may then be posted by the publisher.

Received September 1999.



2 KASEY N. KLIPSCH AND DAVID S. WISE

As he recognizes, David M. Dahm created an ingenious representation [p. 433{
434] to solve the problem. This paper presents a further space optimization
either on Dahm's structure or on Knuth's illustrative one.

2. Changes in the Data Structure

Aside from the tree structure illustrated above, the additional data that tells
\how much space each item of information occupies and in what format it
appears" [bottom, p. 424] applies only to the terminal nodes. That is, the
empty boxes at the right of Figure 2.4(5) [p. 428] are needed only for leaves.
Change the data structure, optimizing the structure for size, in one more

step that has a minimal e�ect on the speed of the algorithms.

� If the additional data is small (e.g. an integer) provide one bit as a tag
to identify a terminal node in the SCOPE �elds of Dahm's representation
(or in the CHILD �elds). Use the rest of that �eld to store the atomic
data in place of a null pointer (Knuth calls it �) or a reexive (Dahm's)
pointer.

� If the data is large, store it elsewhere and leave a pointer in the SCOPE
(or CHILD) �eld to another data area, disjoint from the Data Table.

Any algorithm can check whether or not a node is a terminal by checking
either the tag bit or the magnitude of this new pointer. If the Data Table is
stored sequentially this pointer can be compared to the table's bounds. In
particular, if the atomic information is stored below the entire Data Table,
then a SCOPE pointer that points backwards identi�es an atom, and one
pointing forwards is as Dahm prescribes.
So, with "data representing either a tagged datum or a reference to it,

Dahm's table [2.4{12, p. 434] is replaced by:

PREV SCOPE

A1: � G4
B3: � D7
C7: � "data0
D7: � "data1
E3: � "data2

PREV SCOPE

F3: � G4
G4: � "data3
H1: � G9
F5: F3 G8
G8: G4 "data4

PREV SCOPE

B5: B3 "data5
C5: C7 G9
E9: E3 "data6
D9: D7 "data7
G9: G8 "data8

3. Changes to the Algorithms

Every use of atomic SCOPE or CHILD changes but only Algorithm C is af-
fected. So the aggregate time won't increase much because Algorithm C
is used more rarely than A or B; in contrast, the compressed table may
increase locality and save memory-access time.
Algorithm A [p. 429]: A CHILD pointer is always initialized to � at Step

A6. Sometimes it is immediately updated while processing the next line at
A4. When it is not, the terminal data should be newly installed.



BLOOD FROM DAHM'S TURNIP 3

Algorithm C [p. 431]: There is an inexpensive change to the algorithm
used to �nd corresponding sets of data. In Step C2, instead of checking
whether or not the CHILD= �, one should check whether it is "data or not.
This is done by checking the tag bit or comparing its relative magnitude.
Dahm's Algorithm A [x2.4{12]: Atomic data is still stored at every

leaf, now either in a tagged SCOPE �eld or in a di�erent table.
Dahm's Algorithm C [x2.4{14]: Dahm's representation of the Data Ta-

ble requires the use of a new algorithm for C [x2.4{14, p. 607]. In Step C2
change the conditional statement from if SCOPE(P) = P or SCOPE(Q) = Q

to if SCOPE(P) = "data or SCOPE(Q) = "data. Similarly, the compar-
isons in C3 and C4 must detect "data as SCOPE(Q) or SCOPE(P); if present,
interpret these values as Q and P, respectively.

4. Conclusion

This optimization saves space for atomic information in every node of the
Data Table, especially in non-terminal nodes where such information is un-
necessary. When it �ts in the tagged SCOPE �eld, a 33% space savings is
realized. Even when the information must be moved to a new table, the
space required for leaves is unchanged while the space for all non-terminal
nodes shrinks.
Since the space for the Data Table always shrinks, the times for Algorithms

A, B, and C will always improve as more of the Data Table �ts in high-speed
cache. This time improvement might be dramatic enough to allow the parent
of P to be identi�ed by serially scanning P1 up the table until SCOPE(P1) � P;
that is, the stack of x2.4{14 might also be avoided.
While the problem was originally presented as a COBOL compiler, this

data compression can be used elsewhere. Any application that uses a static
tree with information only in leaves can use preorder sequential allocation
[p. 349], Dahm's SCOPEs [x2.3.3(5)], and the compression described here to
squeeze out any INFO �elds.

Acknowledgements

Supported, in part, by the National Science Foundation under a grant num-
bered CCR-9711269.

References

[1] D. E. Knuth. The Art of Computer Programming I, Fundamental Algorithms (3rd
ed.), Reading, MA: Addison{Wesley, (1997).


