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Abstract

This report describes a proposed project involving the formal deriva-
tion and system-level verification of a computer for executing compiled
Scheme.

1 Introduction

Figure 1 shows a prototype computer for compiled Scheme [8] programs. The
Schemachine’s memory subsystem maintains a symbolic processing heap,
including binary, string, and array objects plus varieties of list cells and
numeric representations. Its processing unit is tailored for Scheme run-time
objects, but does not include floating point hardware. Four of the five major
components, roughly 95% of the gate network, were derived from executable
algorithmic specifications using a mechanized transformation system. We
developed the Digital Design Derivation (DDD) system to explore algebraic
programming methodology applied to digital system design.

Language implementation, from fully abstract semantic specification to a
native-code implementation is a standard exercise in programming language
research; however, formalized synthesis of a working hardware implementa-
tion is a new achievement.

Project goal: A number of outstanding verification problem-
s remain before the entire system in Figure 1 could be consid-
ered correct in a formal sense. Our primary objectives are, first,

∗This research was supported, in part, by the National Science Foundation under grants
numbered MIP9208745 and MIP9610358.
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to solve these remaining problems to obtain a complete imple-
mentation proof, and, second, to reestablish links to the compiler
derivation research through which the Schemachine’s specification
originated.

Sections 2.1, 2.2, and 2.3 describe four specific tasks for completing the
Schemachine verification. A variety of reasoning tools are needed to com-
plete this work, but the reasoning framework, that is, the organizing system
in which reasoning subtasks are are integrated, is DDD.

An underlying topic of this research is heterogenious reasoning, explor-
ing the interaction of different formal systems applied to a common design
problem. DDD implements a specialized algebra for simply typed systems of
function definitions (representing transition systems) and networks of streams
(representing architectures). Its transformations enable the user to construct
efficient hardware implementations while preserving behavioral equivalence.
We use theorem provers, model checkers, and other reasoning tools to verify
partial properties, such as the correctness of arithmetic representations, the
noninterference of processes, or the validity of refinements.

Practitioners often speak of the difference between proving implemen-
tations and proving specifications. From that perspective, the first project
objective is an implementation proof for a full system consisting of a storage
manager, garbage collector, processing unit, and primitive memory. As such,
it represents an advance in higher level verification research, which until now
has focused on individual system components, such as the processor.

“Specification correctness,” our second objective, is inherited from a larg-
er body of research establishing a mathematical basis for accepting Schema-
chine, in composition with a compiler, as a valid Scheme executor. Both
DDD and the Schemachine reflect research in programming methodology
and compiler derivation by Wand, Friedman, Wise, Clinger, Haynes, among
others, starting in the early 1980s. In fact, the Schemachine’s processor is
almost the same as the virtual machine found in the textbook describing this
methodology (Section 2.1). Similarly, there is a strong connection to Vlisp,
a mathematically rigorous treatment of Scheme by Guttman, Wand, Rams-
dell, and others [17]. Fuller accounts of these relationships are in Sections
1.2, 3.1, and ??, the last of which is the required summary of recent NSF
supported results.
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1.1 Contributions of the research.

Generally, this research advances our understanding of system design and
produces tools and techniques reflecting that understanding. The results lay
the groundwork for more rigorous engineering practice, and more effective
training. We are interested both in broadening the scope and lowering the
cost of these practices.

In whole, this is a substantially more ambitious verification study than has
been attempted before. Although the immediate tasks deal with hardware
implementation, the methodology encompasses “programming” in a much
broader sense, transcending distictinctions between hardware and software.
The need for such a broadening is more evident than ever in system synthesis,
in reconfigurable technologies, in co-design and embedded software, and in
distributed programming.

We develop a particular formalism for a particular technology with the
understanding that a practical methodology must integrate several forms of
reasoning over a wide range of technologies. Challenging case studies are
fundamental to this science. It is encouraging that more and more of the
challenges are now arising through industrial experience. However, while
practical studies extend the reach of existing verification technology, studies
like the Schemachine push the horizon of what we consider to be a verifiable
object. Language implementation is one kind of stress test for higher abstrac-
tions of behavior, data, interface, and structure, and this project examines
of how those are ultimately reflected in hardware.

Second, this project contributes to a large body of work toward rig-
orous treatments of Scheme. Scheme is an extremely advanced program-
ming/modeling language. It is a strong candidate for design-critical appli-
cations. Schemachine is a proof in principle, and very nearly in fact, that a
high level lanuage can be secured in dedicated hardware using formal meth-
ods with a reasonable level of effort.

Finally, this project will produce useful artifacts for general purpose sym-
bolic processing. Although Schemachine’s processor is primarily an academic
exercise (at the moment) its memory system is novel, robust, and adaptable
to other architecures, especially for embedded software. Naturally, we are
looking at Java as a potential target since it relies on a fully garbage col-
lected heap (Section 3.2). If we can cultivate commercial partners, we will
also contemplate a DDD derivation of the Java virtual machine [23].
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1.2 Background and related research

The origins of this research lie in programming methodology work of the
early 1980s. Wand’s compiler derivation results [31, 30] were particularly in-
fluential. Very briefly, Wand’s technique involves a factorization of language
semantics into a recursive compiler and an iterative machine component, to-
gether with systematic techniques for introducing concrete representations
for more abstract data objects. This algebraic style of reasoning is not just
a way to develop compilers, however. It is the essence of a programming
methodology by Friedman, Wise, Haynes, Wand, and many others as pre-
sented in the text book Essentials of Programming Languages [14].

Starting around 1980, Johnson began adapting the methodology for the
construction of formal hardware models [19, 18, 20]. As early as 1983, a
specific goal was outlined to extend Wand’s compiler work by deriving a
hardware executor from the machine component [19, ch. 5]. Johnson asked
whether the language theorist’s notion of a virtual machine was adequate for
obtaining a reasonable hardware system. He found a significant gap between
the two, and embarked on a research program to close it.

By 1986, a first version of the DDD transformation system was used to
derive a garbage collector and realize it in programmed logic arrays [21, 5].
The collection algorithm was taken from, and tested against, an experimental
Scheme implementation due to Clinger [10]. This was the initial step in the
Schemachine project.

Clinger’s language work was influential in other ways. His Scheme com-
piler proof [9] gave us an early perspective on heterogeneous reasoning. That
proof presented as a retrospective argument about a given compiled byte-
code interpreter. In contrast, Wand’s style felt more constructive in that
an implementation results from a series of refinement steps. However, these
contrasting forms of argument are entirely compatable. The Proof is just
an explanation of the invention process, which is neither purely analytic nor
purely generative. This notion of interacting reasoning styles is not reflected
in current reasoning tools. It is a central topic of our research.

There was a good deal of related work in language-specific architecture
during the mid 1980s. A group at MITRE corporation built a combinator-
reduction machine and were in the process of formalizing it in M-EVES
when funding ran out [26]. Birtwistle’s group at Calgary proved a VLSI
implementation of Landin’s SECD machine in HOL [16]. Wehrmeister in-
dependently used DDD to derive a working SECD computer [32]. Both
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SECD machines machines included storage managment for a simple binary-
cell memory. Wehrmeister derived these as separate co-processes; Birtwistle
used a common data path.

In 1989-90, we built the high-performance memory for a more realistic
Scheme implementation. We re-targeted the earlier collector to this dual-
ported memory object. A processor based on Clinger’s byte-code interpreter
[10] was derived and nearly realized to hardware, but the student working
on it withdrew from graduate school. In 1992, Burger finished a processor
derivation [7], starting this time from a virtual machine sketch in [14, Ch. 12],
which by that time also incorporated Clinger’s ideas.

The MITRE group, eventually joining forces with Wand, produced a
Scheme implementation called Vlisp, explicating the compiler/machine deriva-
tion with extreme mathematical, albeit not mechanical, rigor [17]. The Vlisp

virtual machine [28] is quite close in form and level of abastraction to our
Schemachine specification. We believe DDD could be used to derive a hard-
ware implementation; see Section 3.1.

Computational Logic’s Short Stack is currently the most advanced study
of a verified programming system [15, 1]. It is an interpreter hierarchy con-
sisting of a microprocessor, loader, primitive operating system, assembler,
a compiler for a simple imperative language, and a verification condition
generator for that language. In a subsequent report, Flatau describes the
partial proof of a heap based applicative language in the same hierarchy [12].
The languages and memory models in Short Stack are more basic than ei-
ther Vlisp’s or Schemachine’s, but their correcntess proofs are fully machine
checked.

The cornerstone of CLI’s short stack is Hunt’s FM9001 microprocessor
[6], which actually exists as a VLSI gate array. Bose applied the DDD system
to the Hunt’s FM9001 specification, deriving a functionally equivalent piece
of hardware [4, 3, 2]. This work contrasts derivational and deductive styles
of verification, demonstrating that, in practice, one wants both.

Schemachine’s relationship to Vlisp is similar to that of FM9001 and
Short Stack. One difference is that Schemachine is a whole system archi-
tecture, including a non-trivial memory subsystem. Hence, for Schemachine,
the outstanding verification problems have to do with with system-level coor-
dination, rather than device-level correctness. FM9001 is just the processing
component of a system, although it does have a specified memory interface,
and more of Short Stack’s operating system is contained in the proof. Also,
the FM9001 hardware is built on a single chip and is six times faster. But
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these are transitory distinctions, since both studies are ongoing.

2 Research problems and topics
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Figure 2: Schemachine architecture

The conceptual architecture of Schemachine is shown in Figure 2. There
are five principal components. A manually designed, dual ported primitive
memory providing two heap semi-spaces, uses standard DRAM simms and
PLD devices. The other four components are obtained by DDD derivations
and realized in FPGA technology. A heap manager consists of collector,
initializer, and allocator processes. The cpu implements a virtual machine for
compiled Scheme.

Primitive memory is tailored to raise performance of the stop-and-copy
collector algorithm by supporting parallel read-write operations on the two
semi-spaces. In addition, the initializer runs in parallel with the cpu, sweeping
the inactive semi-space between garbage collections.

The prototype pictured in Figure 1 is actually a hardware emulator ; its
gate network projected into a number of inexpensive and reusable devices.
Physically, the design decomposes into a processor, heap manager, and prim-
itive memory interface, all of which could now fit on a single IC. But these
should instead be three distinct devices; we will be looking at caching strate-
gies for collector and cpu that will consume a lot of chip area.
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2.1 Refinement of the CPU derivation

Task A is to extend the DDD formal system to
close the remaining gap between the intuitive ma-
chine specification sketched in Figure 3 and the ar-
chitecturally biased DDD specification sketched in
Figure 4.

The Summary of Chapter 12 in the textbook Essentials of Programming
Languages outlines a method for factoring a language definition into a re-
cursive compiler and an interpreter of compiled actions. Figure 3 shows a
fragment of one form the machine component can take: a tail-recursive func-
tion with formal parameters representing the machine’s internal state. (cf.
eval-code in Fig. 12.4.4 of [14]). It is is a reasonable hardware specification,
but current DDD is not quite capable of reducing Figure 3 to a reasonable
architecture.

Figure 4 shows the corresponding DDD specification fragment actually
used for Schemachine. Owing to the inexperience of the specifier, it is con-
siderably more detailed than would have been necessary, but the problem it
illustrates is representative. The if-inst instruction leaves the accumulator
unchanged, but transitions to fetch contain

t ≡ (make-cite (obj.tag acc) (alu-out (alu a+0 (obj.ptr acc) ? ff))

for the next-state value of acc. This term anticipates an architecture that
always routes acc through the processor’s ALU, adding 0 in this instance.
DDD does not have enough term-rewriting capablility to justify replacing t
with acc even though to do so is perfectly valid.

Figure 4 is essentially an unfolding of Figure 3 into a system of about
170 microstates. DDD does have fold/unfold capabilities, but even an ex-
perienced DDD user would have to start with around 10 macrostates. We
want the formal derivation to start with Figure 3, or something even more
abstract.

Most of the 170 microstates explicate individual primitive operations.
Since these are ultimately allocated to arithmetic units, we should be able
to encapsulate them earlier and avoid any intermediate expression as large
as Figure 4. Of course, it is in the character of this research to repair such
deficiencies, only to expose more of them at higher levels of specification.
Even so, what is now permitted in DDD is substantially higher than that of
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(define elc (lambda (acc val* env k code pc) ...

(variant-case (vector-ref code pc)

...

[lit-inst (datum)

(elc datum val* env k code (add1 pc))]

...

[if-instruction (else-loc)

(if (true-value? acc)

(elc acc val* env k code (add1 pc))

(elc acc val* env k code else-loc))]

...))

Figure 3: Fragment of the Scheme instruction interpreter [7]

(define scheme-machine

(lambda (go interrupt halt)

(letrec (

...

[fetch (lambda (acc val* lex-env k code pc tag addr ie port mem cont)

(if (halt)

(save ...)

(if (and (interrupt) ie)

(malloc ...)

(fetch-1 ...))))]

...

[if-inst (lambda (acc val* lex-env k code pc tag addr ie port mem cont)

(if (not (same-type? acc <imm> <false>))

(fetch (make-cite (obj.tag acc)

(alu-out (alu a+0 (obj.ptr acc) ? ff)))

val* lex-env k code (add pc (c24 0) tt) tag

(add addr (c24 0) ff) ie port mem cont)

(fetch (make-cite (obj.tag acc)

(alu-out (alu a+0 (obj.ptr acc) ? ff)))

val* lex-env k code

(add (obj.ptr (memrd mem pc)) code tt) tag

(add addr (c24 0) ff) ie port mem cont)))]

...))))

Figure 4: Fragment of the Schemachine CPU specification
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current behavioral synthesis languages, and we must continue to extend the
gap, in order to justify the interactive character of the system.

2.2 The heap manager

Task B is to enhance the stand-alone storage man-
agement subsystem for higher performance, result-
ing in a useful artifact for general purpose symbolic
processing.

Task C is a validation that the major components
of the Schemachine system are coherently synchro-
nized.

The heap manager consists of three processes. The allocator is the storage
manager, mediating between the cpu and the collector, a stop-and-copy s-
torage reclamation algorithm. The initilizer sweeps the inactive semispace in
parallel with cpu, presetting an invalid bit in each cell. Pre-initialization has
no overhead under normal cpu consumption patterns. A filter on the mem-
ory bus clears any invalid referent as it passes into the cpu. This, together
with the property that the cpu cannot manufacture a pointer, guarantees the
integrity of the heap, which in turn is a basis for assuring access security. Un-
der this scheme, it is possible to have (prove) full security without memory
protection hardware.

init

activeactive

inittrailer

collector

cpu

allocate
copy

Noninterference among cpu, collector, and initializer is a coherence property.
It may be automatically verifiable for appropriate reductions of collector,
initializer, and allocator using finite-state methods [11]. We want a reasoning
framework that accomodates reasoning with proxy specifications. Such a
framewok needs mechanized transformation for reducing full specifications
to abstracted processes that can be “model checked,” as well as provisions
for maintaining inherited properties in their instances.
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2.3 The DRAM interface

Task D is to automatically verify the DRAM bus,
for coherence, timing, and clocking.

DRAMS are considerably more complicated than the simple memory models
typical in verification studies. Ubiquitous in practice, DRAMS present a rep-
resentative problem for high-level system specification and verification. Re-
cently, the terms interface specification and transaction modeling have arisen
for this problem class. Briefly, the topic is to develop formal rules to derive
the nontrivial sequential interactions implementing abstract operations such
as read and write.

The Schemachine is a good case study because a hierarchy of data ab-
stractions is involved. DRAMs implement a dual-ported memory. The mem-
ory implements an array object. The array implements a heap. The heap
implements both user data structures and the run-time objects (closures,
continuations, etc.) for Scheme execution. The run-time objects implement
byproducts of the compilation process.

Hierarchical data abstraction as developed in language research does not
adequately address the temporal/behavioral aspects that dominates hard-
ware system design. Our formalism for process decomposition is general
enough to handle DRAMs [27] but not all these results have been incorpo-
rated in the DDD tool yet.

As Figure 5 shows, Schemachine’s dual-ported memory model is realized
by a single 32-bit bus in which access to the two semi-spaces are interleaved in
both space and time. Certain frequently occuring pairs of memory accesses,
can be done in 4/3 of a DRAM write cycle. They include a read/write step in
the innermost cycle of collector and any cpu access in parallel with initilizer’s
cell marking. A semispace swap is accomplished by reassigning the fields.

A hierarchical clocking scheme implements the two levels of sequential
behavior. The system clock ticks at the variable rate of DRAM memory
protocol, enabled by a microclock that makes asynchronous refresh cycles
transparent to the higher behavior. Although verification studies of RISC
pipelines involve multilevel time scales [13] interacting clocks pose new prob-
lems in formalization.
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read(NEW, a) ‖ write(OLD, b, c)

write(NEW, a, b) ‖ read(OLD, c)
read(NEW, a) ‖ mark-next(OLD)

write(NEW, a, b) ‖ mark-next(OLD)

Figure 5: DRAM memory bus timing

3 Extending the research

3.1 Linking Schemachine and Vlisp

Task E is to investigate doing a hardware derivation of Vlisp’s
fsbcm machine model.

Vlisp is a mathematically rigorous implementation of Scheme, relating
a fully abstract language semantics through several levels of interpretation
to a particular compiler-machine decomposition. The final virtual-machine
description, fsbcm, is very similar in to Schemachine’s cpu specification.
Figures 6 and 7 show fragments of the Vlisp virtual machine description at
levels corresponding to the DDD expressions in Figures 3 and 4, respectively.
Schemachine’s cpu is expressed as system of tail-recursive functions. Fsbcm

is expressed in an imperative style (cf. eval-code in Fig. 12.4.3 of [14]), but
two modes of expression are interconvertable.

Vlisp’s machine is represented by a complex of 17 Scheme variables;
seven are shown in Figure 7, and the rest are embedded in the memory model.
Schemachine’s cpu machine state is represented by 12 lambda parameters in
Figure 4; there are seven more state elements in collector and allocator. The
state size, level of abstraction, and complexity of actions are very similar in
the two specifications. We therefore believe that DDD could reduce fsbcm to
hardware. However, we anticipate problems in dealing with exceptions, which
are apparently outside the fsbcm model because it is intended for native-
code targets. There are potentially serious implications for heap integrity.
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Fetch(M)(ip,up, sp, s, h)⇒ Execute(M)(ip,M(ip),up, sp, s, h)
...
Execute(M)(ip, jump-if-false,up, sp, s, h)
⇒ Fetch(M)(ip ′,M(ip), sp − 1, s, h)

where ip′ =

{
ip + 2 if truish(s(sp))
M(ip + 1) otherwise

...

Figure 6: Fragment of Vlisp’s stored-code interpreter [29] (cf. Fig. 3).

;;;

;;; virtual machine state

;;;

...

(define *template* unspecified)

(define *codevector* *hp*)

(define *offset* 0)

(define *value* unspecified)

(define *env* unspecified)

(define *cont* unspecified)

(define *spare1* unspecified)

...

;;;

;;; implementation of [jump-if-false m1 m2] instruction

;;;

...

(if (= (value-ref) false)

(set! *offset* (+ 3 (compute-offset (current-instr-param 1)

(current-instr-param 2))))

(set! *offset* (+ *offset* 3))

...

Figure 7: Fragment of Vlisp’s virtual machine, transcribed from [29]
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3.2 Linking Schemachine and Java

Task F is to initiate a long-term case study with the Java virtual
machine, and derive variants of the heap subsystem for possible
use in embedded design.

Currently, there is considerable interest in verified Java core implemen-
tations, but the interested parties have already committed their cores to
proprietary VLSI and are enlisting formal methodists for retrospective verifi-
cation. Interest in derived implementations may develop, should Java reach
status as a de facto standard. It is difficult to obtain a pre-determined imple-
mentation using DDD, but we may be able to target a general architecture
and use automatic verification on its components. The Java virtual ma-
chine specification [23] is at roughly the same modeling level as our Scheme
cpu, assuming some of its object-access instructions are factored into inter-
face specifications. This as just the kind of decomposition problem, bridging
software and hardware, that is of interest at this stage of our research.

At the same time, Schemachine’s heap subsystem could readily be adapt-
ed to supporting Java execution. Given its security features this may be of
interest to core providers. We will pursue this prospect if interest develops.
We do plan to revise the collector for generation scavaging and to explore
a page oriented caching scheme. Both these enhancement pose interesting
formal challenges.

3.3 Summary

Tasks A (p. 8) and B (p. 10) enhance the DDD system to support high-
er design specifications and more complex architectural descriptions. Such
enhancements can take the form of sophisticated transformations or better
integration with other verification tools. This aspect is a continuation of our
ongoing study of heterogenious reasoning in system design [24, 2, 25, 3, 22].

The essence of Task C (p. 10) is proving that the decomposition of
Schemachine into five concurrent components preserves behavior and does
not result in any interference pathologies. As noted earlier, we think this
is the key issue facing design methodology today. Task D (p. 11), proving
the physical memory interface, is clearly a candidate for automatic verifi-
cation. Since it entails a shift in time granularity, how its proof plays into
heterogenious reasoning is of central interest.
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Task E (p. 12) re-integrates this work with research from which it origi-
nated. We are told that the Vlisp effort is currently inactive, but hope this
connection will rekindle interest for safety critical applciations. Whether or
not this happens, bringing Schemachine and Vlisp’s fsbcm closer together
brings a kind of closure to our branch of the larger study. Task F (p. 14) is
one approach to promoting this research to a broader audience.
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