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Program Indentation¥*

Abstract: Proper indentation of programs is an important
aild for presenting easy to read programs. Previously indentation
has been provided manually or with various special purpose programs.
Here the basic principles underlying various indentation schemes
are presented. The problem of indentation is factored into two
parts: provliding level numbers to control indentation and separa-
ting the text into lines. The first part is dependent on the par-
ticular application. It is also straightforward to implement for
those languages where the appropriate level numbers are determined
from syntactic structure. The second part, while involving some
subtle considerations, can be handled by one of several general
algorithms. The line-breaking algorithm can be controlled by the
level numbers. This paper starts by developing a nomenclature for
describing and classifying a large class of indentation algorithms.
This class includes close approximations to all the popular methods
of indentation and line-breaking. Then the paper discusses the
effect of various algorithms in the class. Several which are superior
to the others are illustrated. The discussion is useful both for
designing a specialized indentation algorithm for a particular
language and for designing a general purpose algorithm for inclu-

sion in a compiler building program.

¥This work was supported by Indiana University and Bell Telephone
Laboratories.



l. Introduction

The idea of using indentation to display the structure of
programs originated with the development of LISP (1) and ALGOL (2).
Previously programming languages had followed the model of assem-
bly language and divided each input record intoc fields. It is
interesting that FORTRAN was compatible with indentation and before
1961 it was a common practice to use indentation to indicate con-
tinuation of statements which would not fit on one line (3). Of
course, a logical extension of this primitive use of indentation
leads, in a language with nested statements, to indentation based
on depth of nesting, which in turn provides a display of global
structure of the program. Finally by 1965 some authors were inden-
ting FORTRAN to indicate some aspects of global structures (4, 5).

Although proper indentation increases the readability of pro-
grams, there are some difficulties in providing it during initial
program preparation. Among these is the need to change the inden-
tation of large segments of the program when certain logic errors are
corrected. Also, some effort is required to put the indentation
blanks on each line. Therefore, there is interest in programs to
do indentation.

Programs which provide automatic indentation have been avail-
able for some time. Very little, however, has been published on
the subject. The conventions used by people are rather informal
in nature. Programs which do indentation are often ad hcc in
design. They often produce unusual results when fed statements
which require several lines for listing. This paper provides a

systematic study of indentation, which helps avoid glitches in



indentation algorithms and which leads to general indentation rou-
tines suitable for use with compilers for a large number of lan-
guages. Such a general indentation algeorithm can be a valuable part
of a compiler building program.

The problem of formatting a program can be divided into two
parts. The first part consists of deciding for each element of the
program the level of that element. The level of the first element
on a line determines the amount of indentation for that line. The
appropriate method for selecting level numbers is closely related
to the recursive aspects of the language ‘definition. For algebraic
languages there are usually two principle recursions, a statement
can contain a series of statements and an expression can contain
a number of expressions. Some languages also permlit very long iden-
tifiers, which will affect the rules for indentation. The details
of providing level numbers depend on the particular language one is
processing, but it is straightforward for those languages where the

indentation information can be obtained from syntactic structure.

Automatic indentation can also be applied to languages such
as FORTRAN, where indentation information must be obtained from
a direct analysis of program structure (6). Very little has been
done, however, to establish the appropriate relation between pro-
gram structure and indentation. A high quality algorithm for this
problem would also be useful for indenting ALGOL programs, where
part of the logical structure of programs is contained in the GOTO

statements and labels.



The second part of the formatting problem is to break the
listing into lines. This feature is needed because the original
lines of input may not fit onto a line of output after the leading
blanks for identation have been added. In uncrunching application
there usually is no indication of where the original line-breaks
were. The level numbers needed for indentation can also be quite
useful for line-breaking. For example, one common principle of
formatting is to avoid line-breaking deep within a structure, which
is similar to avoiding breaks at large level numbers. Since such
principles are useful for indenting any language, it is possible
to design a general purpose line-breaking routine.

The examples of this paper are developed from an ALGOL pro-
gram by Baumann et. al. (7). The program is shown without any
formatting in Figure 1. Under each symbol is the level number.

The level numbers in figure 1 have been obtained by setting the
level number of the first symbol to 1 and the level number of each
successive symbol to that of the previous symbol plus a displace-
ment. The displacement is obtained by summing the following terms:
1) +1 if the previous symbol was the first symbol of a statement,
declaration, or program, 2) -1 if the current symbol is end, 3) -n
if the previous symbol was the last symbol of n statement;_?several
statements can end on one symbol), and 4) 41 if the previous sym-
bol is end (to balance the =1 part of 2). The semi-colons occur
between_;;atements. These simple level numbers will help illustrate
most of the important differences between various line-breaking

algorithms without introducing unimportant detail. The quality of

the line-breaking in the examples would be improved, if a more



complicated set of level numbers, which assigned internal struc-
ture to statements, were used.

2. Basic Components for Line-Breaking

There are a number of general principles which can be incor-
porated into line-breaking. Those indentation programs which
occasionally exhibit strange line-breaking behavior usually have
neglected one of these principles. Various line-breaking algor-
ithms are obtained by combining a selection of the principles.

The general operation of these algorithms is to start at the begin-
ning of the program to be listed, output the longest line consis-—
tent with the principles included in the algorithm (or one symbol
in case there is no such line or the only such line is empty), and
repeat until the entire program ig 1listed. Requiring at least one
symbol per line prevents looping while keeping the statement of
each principle simple.

This method of presenting line-breaking algorithms permits
consideration of a large number of possibilities since the basic
components can be easily combined in a large number of ways. Some
combinations may, however, imply others, sSo one should be careful
not to. include unused pieces when trying to give a simple specifi-
cation of a particular algorithm.

One can write routines for each principle and a routine to
find the longest segment (no longer than the longest possible line)
which is consistent with the principles. This approach is useful
when experimenting to select a good combination of principles.
When one wishes to produce an efficient production program, signi-

ficant savings can often be obtained by writing a program especially



for the selected combination of principles. An example of this is
shown in the appendix, where an explicit program is given for one
of the more useful indentation algorithms.

The following principles are rather general. For them to be
useful, however, there must be some correlation between the level
numbers and the structure of the text to be formatted. Especially,
the level numbers for elements within a structure (which is impor-
tant for indentation) should be no smaller than the first (or
alternately last) element. The beginning should be recognizable
by the level number increasing just after (or at) the first ele-
ment. The level number should come back to the original value near
the end of the structure. The details of defining level numbers
will be discussed later.

The following set of principles have been selected to include
all those that one is likely to consider for a level driven line-
breaking program. The usefulness of various combinations of the
principles will be considered in the next section. Each principle
except number 2 has a short example in parenthesis. In the example
symbols are represented by one digit level numbers. It is assumed
that each line can hold 5 symbols. The end of each 5 symbols is
indicated by a letter E. The place where the principle will break
the line is indicated by the letter B. Therefore the example for
principle 5, (1111B2E33), shows that if the input consists of four
symbols with a level of one, a symbol with level 2, and two symbols
with level 3 then for a line that can hold 5 symbols, principle 5
will cause the first four symbols to go on a line.

The principles to select from, to build a line-breaking algorithm

to be driven by level numbers, are organized by function as follows:



Basic

1. The output line can be no longer than some limit, typi-
cally 120 characters (11111BE). This principle should be included
in all algorithms. The examples use a line 1limit of 35 characters,
long enough to be realistic but short encugh for small examples to
illustrate some problems.

2. The line should not be broken in the middle of a symbol.
Actually special provisions should be made for very long symbols.
This principle along with the appropriate special provisions should
be included in each algorithm.

Display of Structure

3. (basic) A line cannot contain a symbol with a level num-
ber less than the level number of the first symbol on the line if
that symbol is immediately followed by a symbol with a larger level
number (21B2). This condition i1s a weak condition that will ensure
that the closing of each multi-line structure will be displayed. It
should be included (or be implicit) in each indentation algorithm.

L, (show end) A line cannot contain a symbol with a level
number less than that of the first symbol on the line (2Bl). This
implies principle 3. It ensures that each level on the way out of
a multi-line structure will have its own line.

5. (start with front) A line cannot end in a symbol followed
by a symbol of higher level number unless the second symbol is
followed by a symbol of even higher level number (1111B2E33). If
the level numbers are designed to increase just before (instead of
just after) the first symbol of a structure, then this principle
should be replaced by the principle that a line cannot end in a

symbol preceded by a symbol of lower level number unless it is also



followed by a symbol of higher level number (1112B3E3). This prin-
ciple will move one symbol to the next line when it is necessary to
cause a line to start at a structure boundary. This principle, of
course, can be overridden by the requirement that each line have at
least one symbol.

6. (no front at end) A line cannot end with a symbol which
is immediately followed by a symbol of higher level number (111B12E).
For level numbers that increase Just before the structure beginnings,
this principle should be changed to a line cannot end with a symbol
immediately preceded by a symbol of lower level number (1111B2E).
This principle implies principle 5. It prevents multi-symbol
lines from ending on the first symbol of a structure.

7. (show front) A line cannot end with a symbol which has a
level number greater than that of the first symbol (1B2). When
structures have both ends at the same level, this principle causes
each level going into a multi-level structure to have its own line.

8. (level line) A line must contain no symbols with a level
number less than that of the first symbol (232B1). It must either
end with a symbol that has the same level of the first symbol or it
must be followed by a symbol that has the same or lower level as
the first symbol. This principle implies principles 4 and 7. It
causes; each level going into and out of a multi-line structure to have
its own line.

9. (no substructure) Each line can contain only two levels
(12B3). For level numbers that increase Just before the first sym-
bol of a structure, this principle should be modified to permit

only one level per line (1B2). This principle prevents a line from

containing imbedded structure.



10. (one structure) A line can contain only one sequence of
symbols with level numbers greater than that of the start sym-
bol (1231B2). This causes each line to contain only one structure
of the outermost level.

Shallow Breaks

11. (end fix) A line cannot end in a sequence of symbols
which can be moved to the next line if this action will both
decrease the level number of the first symbol for the next line and
not cause any symbols to be removed from the end of the next line
(symbols may be added to the next line) (2B121, assuming principle 3
is also used). This principle requires consideration of the next
line while deciding how to format the current line. The recursive
version will be called 1llr. It does appear to be suitable for use
with a one pass indenter. Principle 11 or 1llr gives a way to prevent
deep breaks in those cases that can be handled without i1ncreasing
the number of lines of output.

12. (shallow end) A line which contains a symbol with a level
number less than or equal to that of the preceding symbol must end
on a symbol of smallest level number among those symbols with a
level number less than or equal to that of the preceding symbol
(121B32E). This principle helps prevent a line from breaking in a
deep structure at the end if the line contains complete structure.

13. (shallow break) A line-break cannot occur in a sequence of
symbols short enough to fit onto one indented line if that sequence
obeys principle 8 (level line) (11B222E221). This principle causes

those structures which will fit on a line to be given a line.
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3. Basic Line-Breaking Algorithms

Now various line-breaking algorithms that can be formed from
the basic principles will be considered. These algorithms break
lines with no information other than the level numbers of the sym-
bols. Later algorithms with additional features will be considered,
The discussion will assume level numbers increase on one symbol
after the start of a structure, although the situation is quite
similar for level numbers that increase at the start of a struc-
ture provided the appropriate alternative is taken when carrying
out some of the principles.

To ensure proper termination, in some cases it will be neces-
sary to assume the end of the input is followed by a non-printing
symbol with level number minus infinity. Also special action may
be needed to force the printing of the last line or two. Basically
the special symbol after the end should act like it needs to go on
a line by itself.

A1l the algorithms in the class being considered can be imple-
mented as one pass algorithms provided they do not include prin-
ciple 1llr. A buffer long enough to hold three lines of symbols and
their associated level numbers will be needed in some cases. One
line of storage is needed for the current line. For some algor-
ithms one line of storage is needed for the next line. Finally
for some algorithms it is necessary to look one symbol past the
second line. These limits assume that special action will be taken
for symbols _more than one line long.

With line-breaking algorithms there is a trade-off between

length of the listing produced and the detail of structure which



1

is displayed since display of structure uses up space on a listing.
A short listing is a help when studying long programs; so is display
of structure. In dentation of detaill structure helps understand
details of a program, but may camouflage some of the information
displayed about global structure. Thus there are a variety of
preferences for the compactness versus level of detall appropriate
for an indentation program. A poor algorithm, of course, can pro-
duce a long listing while not displaying structure well. In the
following, special attention is given to those algorithms that
produce compact listings, display detail well, or do some combin-
ation of those well.

All the algorithms considered contain principles 1, 2 and 3
(for some it is not necessary to include 3 explicitly since it is
implied by other principles). The basic algorithm includes only
these principles, and its effect on the sample program 1s shown in
Figure 2. The listing is quite compact and yet 1s considerably
more readable than the unformatted listing. The structure of multi-
line statements is shown, although not in the normal way. This
simple algorithm has two defects. First structure is not displayed
as explicitly as most people would like. Second it does not avoid
breaking lines deep within structures. Since one can obtain an
even more compact listing while occasionally choosing better break
points, there is no reason to recommend the basic algorithm.

The end fix algorithm uses principles 1, 2, 3 and 1ll. The
effect of this algorithm is shown in Figure 3. There is a lot of

similarity between figures 2 and 3. Close scrutiny shows
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that the differences result in a slight improvement in the display
of structure in Figure 3. Also the listing in figure 3 is one
line shorter than the listing in PFigure 2. Principle 11 is a use-
ful addition to most indentation algorithms since it will usually
improve both the selection of line-breaking points and the compact-
ness of listings. The end fix algorithm is recommended for those
that want very compact program listing.

One needs, however, to look to other possibilities if one wants
more display of strucuure. An algorithm with principles 1, 2, and
4 displays the end of a multi-line structure. Since it does
not avoid deep break points, however, a lot of space is wasted by
displaying a lot of detail that should be suppressed. Although the
effect would not be too bad with the sample program, it would be
much worse if the level numbers had been chosen to reflect the
internal structure of statements. This algorithm can be greatly
improved by including principle 11. In addition, adding principle
5 helps. There is no reason to recommend this algorithm.

An algorithm with principles 1, 2, 3, and 7 will display the
front of multi-line structures. Again adding principle 11 results
in a big improvement. There is no reason to recommend this algorithm.

The same level algorithm uses principles 1, 2, 6, and 8. The

short samérlevel algorithm adds principle 10. Those that like

the same level algorithm probably prefer the short version. Prin-
ciple 6 prevents the beginning of a structure from being included

on the end of a line. Principle 8 forces complete structures onto
a line when possible. Principle 10 limits a line to one structure
at the outermost level. The effect of the short same level algor-

ithm is shown in Figure 4. The long version would have combined
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lines 2 and 3. This algorithm has considerable merit. The begin-
ning and end of each multi-line structure is clearly indicated.
Although the author knows of no established style of indentation
which is the same as that produced by the short same level algor-
ithm, it does treat begin and end exactly the same way as they are

handled in a popular style of indenting ALGOL. The only defect

of this algorithm is the long listing that it produces., While

many people initially conclude that this algorithm gives strange
indentation of long statements, they usually come to like all aspects
of it after a 1little consideration.

Replacing principle 8 with principle 9 can result in an even
longer listing with all structure displayed. For the sample program,
the results would be the same as Figure 4. On the other hand, if
the level numbers had been assigned to reflect the internal struc-
ture of statements, this algorithm would have produced a much longer
listing and it would have displayed structure in too much detail.
(The short level line algorithm with such level numbers on the
other hand would have limited itself to minor changes to improve
line-breaking within statements.) This algorithm is only useful
when the level numbers do not provide too much detall about the
structure of the input. This defect limits its usefulness as a

general purpose indentation method.

The end fix algorithm produces compact listings by avoiding
deep breaks in lines when this does not lengthen the listing. The
level line algorithm produces long listings with detail structure
by having each line contain a beginning element, some ending ele-
ments, or a complete structure. There are several interesting

algorithms which produce results of intermediate compactness by

always avoiding deep breaks without requiring level lines.
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The basic level end algorithm ses principles 1, 2, 3, and 12.
Principle 12 prevents end of the line from containing increasing
level numbers unless the whole line is made up of increasing level
numbers. Adding principle 6 produces the level end algorithm. It
prevents lines from ending with the first element of a structure.
The effect of the level end algorithm is shown in Figure 5. This
algorithm is very popular. Most LISP programs are indented with
i1t or one of its minor variations.

The basic shallow break algorithm uses principles 1, 2, 3, and
13. Principle 13 prevents structures that will fit on one line
from being broken. The shallow break algorithm also has principle
6. It happens that pigyre 5 also shows the effect of this algor-
ithm. The appendix contains a program for the level end with shal-
low breaks algorithm, which Uses principles 1, 2, 3, 6, 12 and 13.
The algorithm also has provisions for forced line-breaks (discussed
later). It does a very good job of indenting LISP programs. It
will also handle ALGOL correctly if forced line-breaks are used
before ends. Furthermore, it can be easily changed into several
other i;;gfesting algorithms. Principle 13 is a useful addition
to most indenting algorithms.

The shallow break with explicit level ends uses principles
1, 2, 3, 4, 6, 12 and 13. Principle 4 causes the end of a multi-
line structure to have its own line. The effect of this algorithm
is shown in figure 6. The results are quite close to those of a
standard way of indenting ALGOL. Adding internal structure to state-
ments would result in a listing just like ALGOL except for the

strange placement of some semi-colons. Even this difference would
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go away if the level numbers were assigned to decrease after semi-
colons instead of at them,

These examples show that one can obtain a number of high quality
indenting algorithms using no information other than level numbers.
Yet it is also clear that languages can have various structures
but which may need to be indented differently. Thus, it is dif-
ficult to handle both end and semi-colon correctly in ALGOL with
level number algorithﬁ;?_ Since there are some straightforward high
quality level number algorithms some people may want to switch.

In the next section some additional features are discussed, which
will be useful if one wishes to implement his favorite indentation
scheme,

4, Additional Features

Permitting the first phase of an indenting program to force
line-breaks permits added flexibility. With this feature the first
phase can decide to break lines at a place in some structures with-
out deciding to break at the corresponding place in other structures.
Without this feature one might have difficulty producing this effect
while still having both structures indented correctly. Even in
systems with forced line-breaks one normally wants to use one of
the preceding line-break algorithms to break long sequences which
do not contain a forced line-break. Although with most languages
it is easy to select points for forced line-breaks that will usu-
ally produce segments less than one line long it i1s usually dif-
ficult to select good points which will always produce short seg-

ments. A line-break algorithm for use with forced line-breaks should,
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of course, be selected to not produce too many breaks since the fea-
ture can be used to add additional breaks but not to prevent breaks.
Forced line-breaks give great flexibility but should be used care-
fully to avoid producing an overly complex system.

The sample program, as originally formatted by Baumann et.
al. (7), required a line-break before each statement and before each
end. They also used a fairly long line and the level end with shal-
Z;; breaks algorithm (or a close approximation to it). Several other
programs in the same book also use this style. There are, however,
several other slightly different styles of indentation used in other
parts of the book. The common ways of indenting ALGOL show how that
occasional use of forced line-breaks can produce useful indentation
methods.

Another feature that is occasionally useful is a multi-component
level number. By using only the first component for indentation
control while using the entire number (with lexicographic compari-
son) for line-breaking. This permits indentation to be controlled
only by the gross structure while the fine structfure can still con-
trol line-breaking.

Some authors vary the amount of indentation so that the first

symbol on one line will line up with the symbol at that level on

the previous line that had a symbol at that level. Thus "begin

integer aj; real x;" would be formatted with the r in real under

the 1 in integer. This can be handled by adding to the preceding

algorithms a table to convert level numbers into indenting amounts.

The entries are set going into structures and reset to empty going
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out. If the beginning of a line has a higher level than the end
of the previous line (resulting in empty beginning in required
entry in the conversion table) then the new line is started one
column to the right of where the previous line ended. This method
of indentation works well with simple programs, but causes the
indentation to approach the right margin too quickly with deeply
indented structures.

Another approach to line-breaking is to set up preferred break-
points according to features in the input. The break-points can have
a desirability ordering. The line is broken at the rightmost (or
leftmost) break-point of the most desirable type. In its pure form
this approach does not work well with languages that have recursive
structure. For example, one may prefer to break lines at plus rather
than at times. Yet with the input "a+bx(c+d)" it is better to break
at the times sign than to break at the second plus. Once this defect
is cured one obtains a method that is like the two component level
number method.

The problem of how to divide lines intec pages is similar to
the problem of dividing symbols into lines. The current practice
is to either fill each page up or else to go to a new page at the
start of each routine in the program being listed. There are a lot
of advantages to avoiding deep breaks when going from one page to
the next. The previous algorithms can be used to divide listings
into pages provided all lengths are measured in lines rather than
symbols. For this application one wants an algorithm which pro-

duces compact results, such as the end fix or shallow break algorithm.
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5. Syntactic Generation of Level Numbers

When one is generating level numbers based on the syntax of
the input, basically one wants the level number to increase near
the beginning of the structure and to come back to the same level
near the end. In between, the level numbers should not go below
the starting value and care must be taken when they are egual to

the starting value. Thus an if statement that has 1f, then and else

on the same level (with everything else at a higher level) may be
intended as though it was three statements. Usually one wants to
have the level number increase one symbol after the beginning of a
structure so that the tail of the structure will be indented if the
structure is broken in the middle. Often the level number should come
to the starting value one symbol after the end of the structure. If
the structure ends in a special word, such as end, whose function 1s
to indicate the end of the structure, it is more natural to return
to the starting level at that symbol. Occasionally one wants to
decrease the level number at the beginning of a structure (such as
label) to make it stand out. These basic features can be used to
provide proper level numbers.

To produce the level numbers one needs routines delayedincrease

and decrease to call during parsing. The routines affect two vari-

ables, level and levelincrement. When processing a symbol, level

is increased by levelincrement and then levelincrement is reset to

zero. The value of level is the level number for that symbol.

The routines are called between symbols. The routine delayedincrease

is usually called before the first symbol of a structure. It

increases levelincrement by one. The routine decrease is usually
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called at the end of a structure. It increases level by level-

increment minus one and resets levelincrement to zero. The rea-

son decrease interacts with levelincrement is to obtain a reason-

able effect on structures with only zero or one symbols. (If one is
a perfectionist, one needs to record a maximum and minimum value

of the level number for each symbol, and one needs to modify the
previous algorithms to use the level number pairs, so that very
short structures will be noticed by the indentation method.) The

two basic functions delayedincrease and decrease will serve most

needs for generating level numbers.
For some uses it is convenient to have an ordinary increase

or a decreaseprevious function (if the latter one is provided the

line-break algorithm must be careful not to believe a level number
until it stops changing). Often it will be useful to have a func-
tion to force a line-break. Finally for reasons of efficiency one
may wish special functions that have the effect of two calls to
fhe basic level number functions. Thus a function for decrease

followed by delayedincrease could be called before a label or end.

For use with two component level numbers one needs functions to
change the second component and functions to change the first com-
ponent while resetting the second component. Also in a multi-com
component system, 1if one component deals only with non-recursive
parts of the language, it may be useful to have functions to set

the component to a fixed value (this is similar to the idea of levels
of preferred break points mentioned earlier). One should, however,
stick to the basic routines unless one has a need for one of these

more complicated actions.
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The most natural way to indent a programming language is to
call delayvedincreagse at the start of each production of the gram-
mar for the language and to call decrease at the end. This will
never cause trouble for LL(k) grammars (8). It will also work for
many LR(k) grammars (9) which are not LL(k). The parser at the
start of a phrase must only know how many phrases are being star-
ted, not which ones. Indenting on every production, however, will
often produce too much indentation, so one may want to either indent
only certain productions or else use a multi-component method. The
production important for indentation usually starts with key words,
which removes all possible problems with the initial call to a level
number function. When the production ends with a terminal symbol,
that symbol often has the function of indicating the end of the
structure, and in that case one may wish to decrease the level num-
ber before the symbol instead of after it. Usually there is no
trouble having the parsing program call the level number routines
and the forced line-break routines at an appropriate time.

6. Level Numbers from Structure

There are many languages which cannot be effectively indented
using only syntactic structure. Included are FORTRAN and SNOBOL.
For such languages to be indented effectively one must analyze the
flow of the program. A good technique for indenting based on pro-

gram flow would also be useful for indenting languages such as ALGOL
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and PASCAL where part of the flow information is contained in GOTO
statements.

FORTRAN is the main language which is occasionally indented
to show structure and which has most of the flow of control informa-
tion in GOTO statements. The current indentation practice for FORTRAN
is not nearly as well established as that for the more structured
languages. The basic goal appears to be to imitate the indenta-
tion that would be obtained if the program were converted to ALGOL.

Therefore loops are indented and sequences with the format of if then

statements have the part that can be skipped over indented. Struc-

tures that are as complex as if then else statements have no esta-

blished FORTRAN formatting style. Furthermore when 1dentifying
which sequences look similar to a corresponding ALGOL structure

one has a choice of using information relating to the linear order-
ing of the blocks of the program or of basing the identification

on the graphical properties of the flow structure.

The work of Lowry and Medlock (6) contains one suggestion on
how to indent FORTRAN programs. Although their paper has a good
algorithm for identifying loops their indentation algorithm does
not indent loops. The work of Baker (10) also implies a method of
indenting FORTRAN since the transformations she applies could be
revised to indent the original program (according to the way the
transformed program is indented) instead of transforming it into
a new language.

The algorithm the author likes best for indenting FORTRAN
programs 1s a further development of the one of Lowry and Medlock

(6). First the immediate predominator and the nesting level for

each block is computed. Then the initial block is assigned a level
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of one. After the level for a block is set, the level of the nodes
that 1t immediately predominates are set. First these predominated
nodes are grouped into maximal equivalence classes containing blocks
that can reach other blocks by paths that do not go through the immedi-
ate predominator. Each equivalence class which can reach no other
equivalence class (by paths of the type considered above) is given

a level number. If there is one such class it gets the same level
number as its immediate predominator. Otherwise these classes get

a level number one higher than the immediate predominator. For the
remaining classes notice which classes they can reach by paths which
do not go through an immediate predominator or through the blocks of
any of the blocks belonging to the classes. Each remalining class 1is
assigned a level number one higher than the level number of the
highest class 1t can reach. Each block in a class is assigned the
same level number as the class. After all the level numbers are
formed in this way, each one is increased by the nesting level of
its block. This gives the final indentation level.

This algorithm will indent loops, if statements, and case state-
ment equivalent structures in the normal way. The loops are defined
as in Lowry and Medlock (6) so that they have one entry, rather than
the way they are defined by Baker (10) (where they include all back-
wards transfers). The results of this algorithm are shown on a
program in the appendix, which has a rather complex flow structure.

An interesting variation to the above indentation algorithm is
to first collapse each loop into a single block. The resulting
structure is indented with the above algorithm. Then each loop is

considered separately and the process repeated for each loop. The
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level for blocks in a loop is the sum of the level it was assigned
when the loop was considered separately and the level assigned to
the loop when the whole loop was considered as a block. For those
programs that can be presented as while until loops this method will
give a result similar to that provided by indenting a while until
program (11). For the program in the appendix both methods give

the same results.

7. Practical Considerations

There are three practical problems that should be handled by
any formatting system. The first is very long symbols. These
can occur in most languages (consider Hollerith strings in FORTRAN).
Even when the language definition does not permit long symbols,
they may be present in the input due to errors. Many languages do
not permit blanks in a symbol and do not insert a character at the
end of a line. For these languages it is appropriate to suppress
some indentation when it permits a symbol to fit on one line.
For symbols that are too long to fit on a line, the indenter should
go Into a special mode where all of the symbol after the first
line 1is started in the first column (the first column should be blank
at all other times) and continues in full lines until the end of
the symbol. When meaningless blanks are permitted in symbols, the
symbols can be broken into maximum length pieces which can be inden-
ted normally (with extra indentation for the continuation segments) .
For languages which insert a character after each line it may be

possible to avoid the very long symbol problem.
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The second problem is large level numbers. One way to ensure
that there is room to list the program is to have a maximum effective
level number . Level numbers above this cause no more indentation.
One also does indentation with the level number modulo the maximum.
With a two pass algorithm one can first calculate the maximum amount
of indentation that will be needed. Then an amount of indentation
per level can be calculated. With this approach deeply indented
programs get one unit of indentation only after several units
of change in the level number. Although deep indentation does not
occur frequently, some provision should be made for it.

Finally an indentation algorithm should take appropriate action
if the level numbers start to go below the inifial level. Although
this should never happen with a well designed level system and legal
input, the indentation program should do something reasonable with illegal
inputs. An appropriate action is to permit the level number to
become one less than the initial level, but no lower. This will
give a visual indication of the trouble.

8. Conclusions

A moderate number of basic principles have been presented which
can be combined to provide algorithms for formatting programs. These
are useful both for devising new algorithms and for categorizing
existing algorithms. These methods divide the problem into provi-
ding level numbers and then breaking lines based on the level numbers.
The provision of level numbers depends on the language being for-

matted. Line-breaking can be handled with general purpose algorithms.
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Three algorithms deserve special mention. The level end algor-
ithm is the standard method for indenting LISP., Adding the shallow
break condition gives an improved variation. Some people prefer
the short version of the algorithm. The algorithm is also quite
good for formatting ALGOL in a standard way provided forced line-
breaks are used. The short level line algorithm gives a very simple
consistent way to display all the structure that won't fit on a line.
It is the best algorithm when the length of the listing is not very
important. Finally the end fix algorithm 1s the one to use if one
wants to compact listing while maintaining a minimally adequate dis-
play of structure. Usually one will want a variation of one of

these three algorithms.

Acknowledgements: I wish to thank Dick McCullough who corrected

several errors in the program in the appendix.



Appendix

The following FORTRAN, routine, OUTSYM, will indent programs
according to the level end with shallow break algorithm. It depends
on the parser to read the input, store it in the buffer CHARB, to
calculate the level number for each symbol, and to zero the buffer
LEVELB. The parser should call OUTSYM after each symbol (although
it would be simple to remove this condition). Also the parser must
handle symbols that are too long to fit on a line and prevent the
level numbers from being less than or equal to zero. Finally the
routine assumes the input has no leading blanks, i.e.

CHARB (1) # blank.
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begin integer n; read(n); begin int

1 2 32 23392 2
eger 1; real svalue,dvalue,pnorm,qn
3 43 3 4l by gk
orm scalar, arra E ﬂ for i -

ui 4iuE3 =3

=l

4 b 4 y 45555553

or

1 until n do read(y[
il by q 4555

1l ste
I

=13

)

=

l
il

1): svalue := dvalue :

3

i

55 3 4 b L u3 3
A

rray s[l:n]; scalar := 0; for i :=
I 5555554 y 55y I§5 5

L)

)
5

step 1 until n do begin s[i] :=
w5 5 5 9 5 8I0F T 7

y[il; scalar := scalar+s[i]xx[1
i

1]+
TTTITT16 6 7 TETT IS

; svalue := svalue+s[ilxs[i] end;

6 & T TTreTitTrTT 54

el —Jr—1 -

pnorm := scalar/svalue; for i := 1
5 55 5 =T 5 55

step 1 until n do print(s[iJxpnorm)
5 5 595 5 5666666 66

end; begin array d[l:n]; scalar :
33 3 '} 5555551 y 5

03 for 1 :

= step 1 until n do be
54 45 5

55 55 5

1

5
gin d[i] := x[il-y[i]; scalar := sc
5 6771 T TTITFITITTA 5 7
]
i

X

7
alar+d[ilxx[i]; dvalue := dvalue+d[
TITTIUAPErTG 6 7 TTEY

i]xd[i] end; gnorm := scalar/dvalue
TPITTTT 54 4 5B 55 5

; for i = 1 gstep 1 until n do prin

4 45 55 5 5 5 53 5

t(d[ilxqnorm) end; prlnt(abs(pnormz

5666666 66 — 33 34 4u

sqrt(svalue)-qnormxsqrt(dvalue))

) B
Ll Ly L4 4h i

end

nd end
2 &

1 step 1.until n do read(x[il); £
it I

0; begin a



Figure 1
The sample program with our identation and with the
-indentation level for each symbol.



begin integer n; read(n); begin
integer 13 Eeal sval&e, value

spbnorm,gnorm,scalar;
array .y danls dor 3 =1
step 1 until n do read(x[i]

2

for i :=1 step 1 until n do
read(y[1i]7;
svalue := dvalue := 03 begin

apray s8[lin]; sealar I= (3
for 1 := 1 step 1 until n

do begin s[i] := x[1]J+y[i
].
scaiar := scalar+s[i]xx
0
svalue := svalue+s[i]xs
[i] end;
pnorm := scalar/svaluej; for

1 =] sfep 1 until n do
print(s[iJxpnorm) end;
begin array d[l:n]; scalar :=

05
for i := 1 step 1 until n
do begin d[i] := x[1]-y[1
5
scalar := scalar+d[i]xx
C[1i1;
dvalue := dvalue+d[i]lxd-
[i] end;
gnorm := scalar/dvalue; for

i :=1 step 1 until n do
print(d[ i]lxgnorm) end;
print(abs(pnormxsqrt(svalue)-
gnormxsqrt(dvalue))) end

end

Figure 2

The sample program indented with the basic algorithm.



begin integer n; read(n); begin

integer i; read svalue,dvalue
spnorm,gnorm,scalar;

array x,yliinl; fer i =1
step 1 until n do
read(x[1]1); A

for i := 1 step 1 until n do
read(y[1]1); el

svalue := dvalue := 03 begin
array s[1l:n]l; scalar T= bR
for 1 = 1 gsktep 1 il n

do begin
s[i] := x[i]+y[i];
scalar := scalar+s[ilxx
[2]3
svalue := svalue+s[ilxs
[1i] end;
pnorm := scalar/svalue; for
i =1 step 1 until n do

print(s[i]xpnorm) end;
begin array d{i:n]; .
Sealar == 03 for I = 1

step 1 until n do begin
a1l == x[1i]=yl17;
scalar := scalar+d[i]lxx
[1];
dvalue := dvalue+d[i]xd
[i] end;
gqnorm := scalar/dvalue; for
i 3= 1 step 1 mntil n do
print(d[i]xgnorm) end;
print(abs(pnormxsqrt(svalue)-
gnormxsqrt (dvalue))) end

end

Figure 3

The sample program indented with the end fix

algorithm.



begin
integer n;

read(n) ;
begin
integer ij;
rea
svalue,dvalue,pnorm,qnorm,
scalar

5
aray x.yll:nl;

for
1 :=1 step 1 until n do

read(x[i])

3
Tor
i :=1 step 1 until n do
read(y[i])
3
svalue := dvalue := 0;
begin
array s(1l:nls
scalar := 0;
for
1 :=1 step 1 until n do
begin
BE3l o= x[d34y[17;
scalar
:= scalar+s[i]xx[1i]
évalue
:= svalue+s[i]xs[1i]
end
5norm := scalar/svalue;
for
i :=1 step 1 until n do
print(s[i]xpnorm)
end;
begin
array dil:nl;
scalar := 0j
for
1 :=1 step 1 until n do
begin ;
afi] := x[1]-y[i];
scalar
:= scalar+d[i]xx[i]
-]
dvalue
:= dvalue+d[i]xd[i]
end
3
gnorm := scalar/dvalue;
for _
i = 1 step 1 until n do
print(d[iIxgnorm) i
end;
print
(abs(pnormxsqrt(svalue) -
gnormxsqrt (dvalue)))
end

end



' Figure U4
The sample program indented with the short same level algorithm.



begin integer nj; read(n);
begin integer i;
real svalue,dvalue,pnorm,
gnorm,scalar;
array x,yll:nl;
for i1 := 1 step 1 until n do
T read(x[1]7; N
for 1 := 1 step 1 until n do
~ read(y[117;
svalue := dvalue := 0;
begin array s[1l:n];
secalar = 03
for i :=1 step 1 until n
do
begin s[i] := x[1]+y[1i];
scalar := scalar+s[i]xx
[i];
svalue := svalue+s[ilxs
[i] end;
pnorm := gcalar/svalue;
for i := 1 step 1 until n
do print(s[iJxpnorm) end;
begin array d[i:n];
scalar := 0; :
for 1 := 1 step 1 until n
do
begin d[i] := x[i]-y[i];
scalag ‘= scagag+g[i];x
[il;
dvalue := dvalue+d[i]xd
[i] end;
qnorm' := scalar/dvalue;
for i := 1 step 1 until n
~ do print(d[iJxgnorm) end;
print(abs(pnormxsqrt(svalue)-
gnormxsqrt(dvalue))) end
end

Figure 5

The sample program indented with the level end algorithm
or with the shallow break algorithm.



begin integer nj; read(n);
begin integer i;
real svalue,dvalue,pnorm,
gnorm,scalar

3
areay. F.yLLlml;
For £ 1= 1 step 1 until n do
read(y[il);
svalue := dvalue := 03
begin array s[l:n];
scalar := 0;
for 1 3= 1 step 1 until n

do
begin S[1] == x[1lty[1];
scalar := scalar+s[i]xx

[i]
évalue := gvalue+s[ilxs
[i]
end

-
pnorm := scalar/svalue;
for @ 2= 1 gbep 1 untdl n
do print(s[iJxpnorm)
end;
begin array d[l:n];
scalar == 03
for i t= 1 step 1 uncil n
do
begin d[i] := x[i]-y[1i];
scalar := scalar+d[i]xx

[i]

5
dvalue := dvalue#+d[i]xd
1]

end

3
for 1 := 1 sfep 1 unbil u
do print(d[i]*gnorm)

end;

print(abs(pnormxsqrt(svalue)-
gnormxsqrt(dvalue)))’

end
end

Figure 6
The sample program indented with the shallow break with
explicit level ends algorithm.
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