
Just when you thought your little language was safe:

\Expression Templates" in Java

Todd L. Veldhuizen

Extreme Computing Laboratory

Indiana University Computer Science Department

Bloomington Indiana 47405, USA

tveldhui@acm.org

Abstract

Template techniques in C++ allow a modest degree of gen-
erative programming: creating specialized code for special-
ized problems. This use of templates has been controversial;
indeed, one of the oft-cited reasons for migrating to Java is
that it provides a simpler language, free of the complexities
of templates.

The essence of generative programming in C++ is not
templates { the language feature { but rather the underlying
algorithms in the compiler (template instantiation) which
unintentionally resemble an optimization called partial eval-
uation [14, 20]. By devising a partial evaluator for Java,
we reproduce some of the generative programming aspect-
s of C++ templates, without extending the Java language.
The prototype compiler, called Lunar, is capable of doing
\expression templates" in Java to optimize numerical array
objects.

1 Introduction

Good numeric performance for Java is mostly limited
to code written in what might be called JavaTran (Ja-
va/FORTRAN) style: Fortran 77-like code surrounded by
class declarations. A typical example is:

public class DoArrayStuff f
public static apply(float[] w, float[] x,

float[] y, float[] z)
f

for (int i=0; i < w.length; ++i)
w[i] = x[i] + y[i] * z[i];

g
g

It would be nice if we could use the object-oriented features
of Java in performance-critical code. Then we could write
high-level code using objects representing arrays, matrices,
tensors, and the like. Suppose we had a package which pro-
vided e�cient numerical array objects; with operator over-
loading as proposed by the Java Grande committee [7], we
could have Fortran-90 style array notation. Using such a
package, the DoArrayStuff code above could be written as:

public static apply(Array w, Array x, Array y,
Array z)

f
w = x + y * z;

g

Without operator overloading, one would write
w.assign(x.plus(y.times(z))).

Can this Array class be implemented e�ciently? This
question is familiar to designers of C++ numerical libraries.
There are four well-known implementation choices for array
libraries:

1. Compiler extension: Write a compiler or preproces-
sor which recognizes a particular array class, and op-
timizes it using special semantics. This is the intent
of the valarray class in the C++ standard, and of the
ROSE preprocessor for C++ [1]. In Java, this approach
is used by the Ninja compiler [13], which recognizes a
special set of array classes and performs optimizations
for them using \semantic inlining".

2. Pairwise evaluation: Each subexpression such as
y*z (or y.times(z)) returns an intermediate Array re-
sult. The extra loops, memory allocation, and memory
movement make this ine�cient. Automatically fusing
these loops is more di�cult than the equivalent Fortran
or C loop fusion problem, because the array pointers
and loop bounds are �elds of array objects. So far,
no commercial compiler has been able to eliminate the
temporary arrays.

3. Deferred evaluation: In this approach, operators
such as y*z (or y.times(z)) construct a parse tree of
an expression as a data structure. When a parse tree is
assigned to an array, a match can be sought in a library
of commonly used array expressions. This requires con-
siderable run-time overhead, and if the expression is not
found, one must revert to temporary arrays.

4. Expression templates [18]: This C++ technique is
similar to deferred evaluation, in that a parse tree of the
expression is created. The parsing is done at compile
time using C++ templates, by encoding the parse tree
as a template type.1 When a parse tree is assigned to
an array, a function like this is called:

template<class T>
void assign(Array w, Expr<T> expr)
f

for (int i=0; i < n; ++i)
w.data[i] = expr.eval(i);

g

1For example, x+y*z might be parsed as the template type
Expr<Array,Plus,Expr<Array,Times,Array> >

1

float pow(float x, int n)
f

if (n == 0)
return 1.0;

else
return x * pow(x,n-1);

g

float a, b;
a = pow(b,3);

(a) Some code

// pow has been specialized for n=3
float pow 3(float x)
f

return x * x * x;
g

float a, b;
a = pow 3(b);

(b) After partial evaluation

Figure 1: Partial evaluation example

For each array position i, expr.eval(i) traverses the
parse tree, evaluating the expression. C++ semantics
require that this traversal be done at compile time, so
the resulting loop is e�cient. This technique is the ba-
sis of C++ libraries such as Blitz++ [19] and POOMA
[9].

Of these approaches, expression template-based array li-
braries have been popular for C++, since they deliver ef-
�ciency without compiler extensions.

It turns out that templates in C++ are strikingly like
partial evaluation. A partial evaluator takes a program, per-
forms the operations which depend only on known values,
and outputs a specialized program [8]. The standard exam-
ple is shown in Figure 1.

C++ requires that all template parameters be known at
compile time. When a template parameter is given by an ex-
pression (for example, Vector<3+8>), that expression must
be evaluated at compile time. C++ templates e�ectively
require that a partial evaluator be built into the compiler
to evaluate template expressions [14, 20]. It is this partial
evaluation which makes possible expression templates and
other template-based optimizations.

So here is a thought. Perhaps if we implemented a partial
evaluator for Java, we could get the same performance ben-
e�ts one gets from templates in C++, without templates.

This turns out to be at least partly true. We demon-
strate a partial evaluator for Java that allows almost ar-
bitrary computations at compile time, and can be used to
implement \expression templates" and similar performance-
enhancing techniques from C++. We do this without any
language extensions; we do not use GJ or other genericity
proposals for Java.

1.1 Structure of this paper

We start by considering an analogue of the C++ \expression
templates" technique for Java (Section 2). This gives users
array notation, at the cost of very poor performance. When
this code is partially evaluated, we obtain performance simi-
lar to code written in JavaTran style (Section 3). A detailed

discussion of how these optimizations occur is deferred to the
appendix (Section A).

In Section 4, we overview the Lunar compiler and sum-
marize the optimizations performed. The operation of the
partial evaluator is illustrated by some examples using a
Complex class (Section 5).

We point out some shortcomings of our compiler and
some related work in Section 6.

2 A Java version of \Expression templates"

Our goal is to write a class Array which provides a 1-D array
of
oats. Users of this class will write code such as:

int n = 1000;
Array w = new Array(n);
Array x = new Array(n);
Array y = new Array(n);
Array z = new Array(n);

w = x + y * z; // an array expression

Since we do not yet have overloaded operators in Java, we
will write w=x+y*z like this:2

w.assign(x.plus(y.times(z)));

Array expressions will be evaluated for every element in the
array; the equivalent JavaTran version of w=x+y*z is:

float[] w, x, y, z; // ...
for (int i=0; i < n; ++i)

w[i] = x[i] + y[i] * z[i];

We are going to create a highly ine�cient mechanism for
evaluating array expressions which resembles the \expres-
sion templates" technique of C++. Then we will see that
a suitable optimizing compiler can automatically turn this
into the equivalent JavaTran implementation. More gener-
ally, such a optimizer has the potential to duplicate many
of the generative programming features of C++ templates.

For our pseudo-\expression templates" implementation,
we will need objects representing array expressions. We will
use the class hierarchy in Figure 2: Expr is a common base
class of array expressions, and Array is itself an expression.
To represent an expression such as y*z (or y.times(z)), we
use an instance of a class BinaryOpExpr (short for Binary
Operator Expression). BinaryOpExpr contains two expres-
sions and a pointer to a binary operator object; to create an
object representing y*z, we could write

Expr expr = new BinaryOpExpr(y, z, new Times());

where Times is an object representing multiplication. The
de�nitions of these classes are shown in Figures 3,4,5.

The expression base class Expr de�nes a single abstract
method float eval(int i) which evaluates an array ex-
pression at a single array index i. Hence we can assign an
expression to array using this method of class Array:

2There is a con
ict between the Java semantics of = and the se-
mantics desirable for array libraries. If w were a subarray, we would
want w=x+y*z to change the existing array of which w is part; making
w point to a new array created by x+y*z would be ine�ectual. This
problem might be solved by overloading (for example) w x+y*z.

2

Array BinaryOpExpr Times

Expr BinaryOperator

Plus

Figure 2: Inheritance diagram for the Array classes

public class Array extends Expr f

float data[];
int length;

public Array(int n)
f

data = new float[n];
length = n;

g

public float eval(int i)
f

return data[i];
g

public void set(int i, float value)
f

data[i] = value;
g

public void assign(Expr e)
f

int t = length;
for (int i=0; i < t; i=i+1)

data[i] = e.eval(i);
g

g

Figure 3: An Array class

public class Array extends Expr f
...
public void assign(Expr e)
f

for (int i=0; i < length; ++i)
data[i] = e.eval(i);

g
g

Figure 6 shows a test program which exercises the Array
class. It initializes some arrays, then evaluates the expres-
sion w=x+y*z. The method which assigns the expression to
w is Array.assign(Expr):

public void assign(Expr e)
f

for (int i=0; i < length; i=i+1)
data[i] = e.eval(i);

g

This method loops through the array, evaluating the array
expression for each i, and storing the result in w.data[i].
To evaluate each e.eval(i), six virtual function calls, three
bound checks, and numerous pointer indirections are re-
quired. Not surprisingly, performance is quite poor with
typical Java compilers. This loop has been benchmarked
at 0.7 M
ops using the Ka�e JIT compiler on a 300 MHz
sparcv9; that is roughly 1
op every 428 clock cycles.

With partial evaluation, all of this ine�ciency can be re-
moved. We have implemented a prototype compiler called

public abstract class Expr f
public abstract float eval(int i);

public Expr plus(Expr b)
f

BinaryOperator plus = new Plus();
return new BinaryOpExpr(this,b,plus);

g

public Expr times(Expr b)
f

BinaryOperator times = new Times();
return new BinaryOpExpr(this,b,times);

g
g

public class BinaryOpExpr extends Expr f
Expr a, b;
BinaryOperator op;

public BinaryOpExpr(Expr a, Expr b,
BinaryOperator op)

f
a = a;
b = b;
op = op;

g

public float eval(int i)
f

return op.apply(a.eval(i),b.eval(i));
g

g

Figure 4: The parse tree classes Expr and BinaryOpExpr

public abstract class BinaryOperator f
public abstract float apply(float a, float b);

g

public class Plus extends BinaryOperator f
public float apply(float a, float b)
f

return a+b;
g

g

public class Times extends BinaryOperator f
public float apply(float a, float b)
f

return a*b;
g

g

Figure 5: The BinaryOperator base class and two subclasses

3

public class Test f
public static void main(java.lang.String[] args)
f

// Create some arrays
int n = 12345;
Array w = new Array(n);
Array x = new Array(n);
Array y = new Array(n);
Array z = new Array(n);

// Initialize with data
for (int i=0; i < n; i=i+1)
f

x.set(i,i*0.33f);
y.set(i,10.0f+i);
z.set(i,100.0f*i);

g

// The java front end does not yet handle
// implicit casts. These will be gone in
// the final paper.
Expr zexpr = z;
Expr yexpr = y;

// With operator overloading, this would be
// w = x + y * z
w.assign(x.plus(yexpr.times(zexpr)));

g
g

Figure 6: Test code for the Array class

Lunar that compiles Java to an intermediate form, partially
evaluates it, and emits C code. This is then compiled to ma-
chine code using a C compiler. When applied to the example
program (Figure 6), Lunar performs these optimizations:

� Constant and copy propagation through the heap, re-
solving (when possible) virtual method calls and point-
er indirection at compile time.

� Inlining virtual methods.

� Elimination of bound checks when they are provably
unnecessary.

� Elimination of unnecessary temporary objects.

The C code generated by Lunar for the Java expression
w.assign(x.plus(yexpr.times(zexpr))) is shown in Fig-
ure 7. (The complete output of the compiler is shown in
Appendix B). Lunar is able to eliminate all the virtual
functions, remove all bound checks, and even get rid of the
temporary BinaryOpExpr, Plus, and Times objects.

We include a detailed discussion of how Lunar transforms
the code w.assign(x.plus(y.times(z))) into the C code of
Figure 7 in the Appendix.

3 Benchmark results

We present preliminary benchmark results on a sparcv9 pro-
cessor at 300 MHz, using gcc -O3 as the back end compil-
er for Lunar. Figure 8 compares the performance of the
Lunar compiler to hand-coded C for the array expression
w = x+ y � z. The JavaTran series shows the performance
of Lunar on the loop

int i = 0;
for (; (i < 12345);)
f

int __a75 = (i * 4);
int __a71 = (i * 4);
float __a31 = *((float *) (array1d__96 + __a71));
int __a184 = (i * 4);
float __a171 = *((float *) (array1d__107 + __a184));
int __a163 = (i * 4);
float __a176 = *((float *) (array1d__118 + __a163));
float __a35 = (__a171 * __a176);
float __a76 = (__a31 + __a35);
*((float *) (array1d + __a75)) = __a76;
i = (i + 1);

g

Figure 7: C code generated by Lunar for the expression
w=x+y+z of Figure 6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

70

80

Array length (n)

M
flo

ps
/s

C version
JavaTran (PE)
Java ET (PE)
Java ET (no PE)

Figure 8: Benchmark results for the array expres-
sion w=x+y*z, comparing (from top to bottom) hand-
coded C, JavaTran-style code compiled with Lunar, Java
\Expression-templates" version compiled with Lunar (with
Partial Evaluation), Java \Expression-templates" compiled
with Lunar (no Partial Evaluation)

4

Phase Elapsed time (ms)
Parsing 916
Conversion to Lunar IL2 303
Prepasses 91
Partial evaluation 1569
Unparsing to C 678
Total 3557

Table 2: Time to compile the \expression templates in Java"
example of Figure 6, excluding C compilation time.

float[] w, x, y, z; // ...
for (int i=0; i < n; i=i+1)

w[i] = x[i] + y[i]*z[i];

The Java ET series show the performance of
w.assign(x.plus(y.times(z))) using Array objects.
When the partial evaluator is disabled (the \no PE" series),
performance takes a drastic hit { indicating that Lunar,
not gcc, is doing the important optimizations.3

Table 1 compares performance of Lunar to two JIT com-
pilers (Sun Hotspot and Transvirtual Ka�e).4 The partial
evaluator gives a modest improvement over the JavaTran-
style code, but the biggest improvement is for the Java ver-
sion of \expression templates".

Table 2 shows a summary of the time taken by Lunar
to compile the \expression templates in Java" example with
partial evaluation. The Lunar compiler is written in Java,
and was run using Sun Hotspot 1.3beta. Once the compiler
is able to compile itself, these times should decrease.

4 Compiler overview

Figure 4 shows an overview of the Lunar compiler. The front
end takes Java code and translates it into an intermediate
language, called Lunar Intermediate Language 2 (IL2). Pri-
or to partial evaluation, a prepass puts the code into a form
which makes partial evaluation simpler. This code is then
passed to the partial evaluator. The output from the partial
evaluator is then translated into C and compiled using a C
compiler.

Table 3 summarizes the analyses and transformations
currently implemented in Lunar. Many of these are similar
to those implemented in conventional compilers. However,
there are substantial di�erences between partial evaluation
and typical optimizers. Partial evaluators tend to have a

avour of symbolically executing a program, whereas typi-
cal imperative compilers are more
ow-graph based.

4.1 Lunar Intermediate Language

The Lunar intermediate language (IL) is low level, and bears
little resemblance to Java. It knows nothing about object
systems, method tables, inheritance, and the like. Figure 10

3The performance numbers for Lunar are slower than C for the
in-cache region because (a) type and aliasing information is lost en
route from the source language (Java) to the back end; and (b) loop
invariant hoisting is not yet implemented. Once these problems are
corrected, \expression templates" in Java compiled with Lunar should
be as fast as low-level C code.

4A clear de�ciency of these benchmark results is the lack of com-
parison to a good native Java compiler. The JIT compiler results were
a disappointment. There is some possibility that the Hotspot compil-
er was not actually doing JIT due to some misinstallation problem.
This issue will be resolved for the �nal paper.

public class Complex f
float re, im;

public Complex(float _re, float _im)
f
re = _re;
im = _im;

g

public float magnitudeSquared()
f
return re*re + im*im;

g

public Complex times(Complex y)
f
return new Complex(re*y.re - im*y.im,

re*y.im + im*y.re);
g

public Complex plus(Complex y)
f
return new Complex(re + y.re, im + y.im);

g
g

Figure 11: A Complex class

shows the subset of IL2 used in the code excerpts of this
paper. A Lunar program is a set of top-level de�nitions (d),
which contain expressions (e). Table 4 shows the primitive
operations used in the code excerpts of this paper.

5 Partial Evaluation examples

To illustrate the intermediate language and partial evalu-
ation, we look at two examples using a Complex number
class (Figure 11). These examples also illustrate the ability
of Lunar to optimize away small objects.

The Java front end converts the Complex class of Fig-
ure 11 into the Lunar IL2 program shown in Figure 12.5

Figure 13 shows the translation of a simple complex num-
ber example into Lunar. The method example(float a)
returns the value ja + 3ij2. The IL2 code illustrates how
object creation and method calls are translated. The par-
tial evaluator is able to propagate the parameter a through
the heap, inline the object constructor and virtual method
call to magnitudeSquared(), and calculate part of the mag-
nitude (3:0 � 3:0 = 9:0) at compile time. It also eliminates
the temporary Complex object q, which is no longer needed.

Figure 14 shows an example which creates three Complex
numbers on the heap. It calculates the squared-magnitude
of all three numbers and outputs them to standard out-
put. The partial evaluator resolves the virtual method
calls to times(...) and magnitudeSquared(), inlines and
completely evaluates them, then eliminates the temporary
Complex objects. The C code contains just three print state-
ments.

5The front end gives the program to the partial evaluator directly
as trees in memory, not via a temporary �le. This allows errors dis-
covered during partial evaluation to be reported at their appropriate
locations in the Java code.

5

JVM or compiler \JavaTran" \Expression
Templates"

Lunar (no PE); gcc -O2 backend 33.1 2.4
Lunar (with PE); gcc -O2 backend 74.6 74.6
Sun Hotspot 1.3beta (JIT) 1.4 0.4
Transvirtual Ka�e (JIT) 4.3 0.7

Table 1: M
ops/s for the array expression w = x+ y � z, n = 1000, single precision. PE=Partial Evaluation

Translation from IL0
 to C code

Low−level optimizations
(registers, instructions,
 scheduling)

(to C)
Code Gen

gcc −O3
Partial

Evaluator
Prepasses

Java
Front End

IL0 .c.java IL2 IL0 a.out

Translation to IL2

Liveness analysis
Escape analysis
Alias analysis
Stack allocation analysis
Copy propagation
Constant folding
Function specialization

Inlining
Dead code elimination

Global heap analysis

Lex/Parse
Semantic checks
Name analysis
Type analysis

Macro expansion

Alpha−conversion
Assignment elimination
Static initializer ordering

Bound check elimination

Name mangling

Lunar Lunar Lunar

Sequentialization

Figure 9: Overview of the Lunar compiler

Prepass transforms Purpose

Macro expansion Expand macros used to simplify the Java front end
Sequentialization Name intermediate values, simplify language structure
Assignment elimination Remove variable assignments; ensure that variable

names map uniquely to values within a scope.
�-conversion Rename variables to ensure unique names
Static initializer ordering Find initialization order for global variables;

delete unused functions and global variables.
Partial evaluator Purpose
Liveness analysis Decide how function parameters are used.
Escape analysis Decide if values might escape into the heap.
Alias analysis Decide if heap objects are alias-free.
Stack allocation analysis Allocate objects on the stack instead of the heap

when possible.
Copy propagation Find variables that refer to the same value.
Constant folding Fold constants, eliminate primitive operations
Function specialization Specialize functions according to known argument

values
Global heap analysis Constant and copy propagation through the heap.
Inlining Selectively inline functions to improve optimization.
Dead Code Elimination Eliminate dead variables, code, functions, and

global variables.
Bounds check elimination Remove bounds checks that are provably unnecessary.

Table 3: Analyses and transformations in the Lunar compiler

Primitive C equivalent Description
storew(p,i,x) ((word*)p)[i] = x store word, aligned
storew�nal(p,i,x) ((word*)p)[i] = x store word, \write-once"
readw(p,i) ((word*)p)[i] read word, aligned
alloc(i) malloc(i) memory allocation
f+(f1,f2) (f1 + f2)
oat addition
f-(f1,f2) (f1 - f2)
oat subtraction
f*(f1,f2) (f1 * f2)
oat multiplication

Table 4: Selected primitive operations in IL0

6

d ::= function f(v1, : : :, vk) e function de�nition
j global v = e global variable de�nition

e ::= c literal (decimal, character, string, or
oat)
j v variable use
j let [v1, : : :, vn] = e1 in e2 introduce variables
j p (e1, : : :, en) primitive
j e0 (e1, : : :, en) function call
j if e1 then e2 else e3 functional-style if
j begin e1 : : : en end sequence of expressions
j [e1, : : :, en] multiple-value construction
j [] void expression
j assign v := e variable assignment
j loop e loop expression
j break e break out of loop
j return e return value from function
j try e1 catch [v1, : : :, vk] e2 try/catch statement
j throw e throw statement

Figure 10: De�nitions (d) and expressions (e) in IL2

// Field layout
global Complex.re = 1
global Complex.im = 2

// Virtual function table
global Complex$vtable =

let vtable = alloc(16) in
begin
storewfinal(vtable,1,Complex.magnitudeSquared$)
storewfinal(vtable,2,Complex.times$Complex)
storewfinal(vtable,3,Complex.plus$Complex)
vtable
end

// Complex.Complex(float,float)
function Complex.Complex$float;float(this, re, im)

begin
java.lang.Object.Object$(this)
storew(this,Complex.re, re)
storew(this,Complex.im, im)

end

// Complex.magnitudeSquared()
function Complex.magnitudeSquared$(this)

f+(f*(readw(this,Complex.re),readw(this,Complex.re)),
f*(readw(this,Complex.im),readw(this,Complex.im)))

// Complex.times(Complex)
function Complex.times$Complex(this,y)

let $new a1 = alloc(12) in
begin
storewfinal($new a1,0,Complex$vtable)
Complex.Complex$float;float($new a1,

f-(f*(readw(this,Complex.re),readw(y,Complex.re)),
f*(readw(this,Complex.im),readw(y,Complex.im))),

f+(f*(readw(this,Complex.re),readw(y,Complex.im)),
f*(readw(this,Complex.im),readw(y,Complex.re))))

$new a1
end

Figure 12: Translation of Complex into Lunar. Names such
as Complex.times$Complex are a single identi�er.

public class ComplexTest f
public static float example(float a)
f
Complex q = new Complex(a,3.0);
float t = q.magnitudeSquared();
return t;

g
g

(a) Java code

function ComplexTest.example$float(a)
let q =
let $new a10 = alloc(12) in
begin
storewfinal($new a10,0,Complex$vtable)
Complex.Complex$float;float($new a10,a,3.0f)
$new a10
end

in
let t =
let $callee a11 = q in

(readw(readw($callee a11,0),1))($callee a11)
in t

(b) Translation into Lunar IL2

function ComplexTest.example$float 2(a 72)
let a 75 = f*(a 72,a 72) in
f+(a 75,9.0f)

(c) After partial evaluation

Figure 13: Partial evaluation example showing constant
folding and copy propagation through the heap.

7

public class ComplexTest2 f
public static void main(java.lang.String args[])
f

Complex x = new Complex(0.866, 0.5);
Complex y = new Complex(0.70711, 0.70711);
Complex z = x.times(y);

java.lang.System.out.println(x.magnitudeSquared());
java.lang.System.out.println(y.magnitudeSquared());
java.lang.System.out.println(z.magnitudeSquared());

g
g

(a) Java code which creates 3 temporary Complex objects

void sti dollunar umain ureturn uvalue()
f

print ufloat(0.999956f);
print ufloat(1.0000091f);
print ufloat(0.9999651f);

// Set global variable indicating program exit status
lunar main return value = 0;

g

(b) C output, after partial evaluation using
the de�nitions of Figure 12

Figure 14: Partial evaluation example showing aggressive
constant folding and elimination of temporary objects

6 Summary

6.1 Caveats

Lunar's Java front end handles a modest subset of Java 1.1.
It does not yet support (among other things) interfaces, syn-
chronization, or inner classes. It is possible that use of some
Java language features (for example, synchronization) will
make it harder to perform the optimizations described in
this paper.

Lunar runs in loose numerics mode. It uses the native

oating point hardware, without concern for whether this
correctly implements Java numeric semantics. This is not
a requirement, but a shortcut. Strict numerics could be
implemented, although they would likely have performance
implications on some platforms.

Lunar does not yet perform null pointer checking. The
plan is to follow the example of gcj, and trap SIGSEGV sig-
nals. This does not require changing any of the translation
or code generation; trapping is done by the hardware and
handled in a runtime library. Hence, the benchmark results
reported here are not compromised by our omission of null
pointer checking.

Our Java runtime does not do any garbage collection. In
most of the benchmark results presented, the partial eval-
uator eliminates all memory allocation inside loops. Hence
the absence of a garbage collector does not a�ect our perfor-
mance in a major way. The exception are the benchmarks
of Table 1 which show Lunar results without PE. For these
results, not doing garbage collection gives Lunar an unfair
advantage over the JIT compilers.

Some of the algorithms in Lunar are O(n lg n), and a
few are quadratic in certain (possibly unlikely) scenarios.
Lunar has not yet been tested on large Java programs, so
it is possible we will uncover scaling problems. The plan is
to provide a set of optimization switches -O1,-O2,..,-O5

which progressively enable more expensive and expansive
forms of partial evaluation.

The algorithms in Lunar do not require closed-program
analysis. However, the more of the program Lunar can see,
the better it can optimize.

Unlike C++ templates, Lunar o�ers no guarantee of
compile-time evaluation. There is no analogy to type tem-
plate parameters in C++, although Lunar can specialize
functions based on types related by an inheritance hierar-
chy.

6.2 Related work

There is a wealth of literature about compilers and partial
evaluation, both separately and their intersection. The idea
of resolving virtual functions through specialization was de-
tailed by Dean et al [4]. Lunar achieves a similar e�ect \for
free" by relying on the heap analyzer to propagate func-
tion names through dispatch tables. Khoo [10] used partial
evaluation to compile inheritance, doing what would (anal-
ogously) in Java be dispatch table (or vtable) layout, but he
did not use partial evaluation to resolve and inline virtual
functions.

Many of the C++-template-like optimizations performed
by Lunar are driven by a heap analyzer, which does constant
and copy propagation through the heap. This builds on a
tradition of partly-static data structures in the partial eval-
uation community (e.g. [3]), and of store analyzers in the
imperative world (e.g. [15, 16]).

Volanschi et al [21] describe a partial evaluator for Java
which relies on user annotations (\specialization classes") to
guide specialization of Java programs. This provides �ner
control of specialization than Lunar, at the cost of requiring
language extensions.

The bene�ts of partial evaluation for scienti�c programs
are well known; see for example [2, 6, 11]. Lunar is not
designed to optimize scienti�c programs per se, but rather
to provide reliable partial evaluation semantics which can be
used as a driving mechanism for performing domain-speci�c
optimizations (for example, \expression templates" for array
classes). In this regard it has similar goals as two- or multi-
stage languages (e.g. [17]) which seek to provide a natural
framework for writing \program generators".

6.3 Acknowledgments

Lunar uses JavaCC for lexing and parsing, and the GCC
compiler for its back end. The term JavaTran derives from
the similar term C++Tran coined by Scott Haney. I am
grateful to Kent Dybvig, Ken Chiuk, Jeremy Siek, and Steve
Karmesin for comments and discussion.

References

[1] Bassetti, F., Davis, K., and Quinlan, D. Opti-
mizing transformations of stencil operations for paral-
lel object-oriented scienti�c frameworks on cache-based
architectures. Lecture Notes in Computer Science 1505
(1998), 107{??

[2] Berlin, A., and Weise, D. Compiling scienti�c code
using partial evaluation. Computer 23, 12 (Dec 1990),
25{37.

8

[3] Consel, C. Binding time analysis for higher order
untyped functional languages. In 1990 ACM Confer-
ence on Lisp and Functional Programming (June 1990),
ACM, ACM Press, pp. 264{272.

[4] Dean, J., Chambers, C., and Grove, D. Selective
specialization for object-oriented languages. In Pro-
ceedings of the ACM SIGPLAN'95 Conference on Pro-
gramming Language Design and Implementation (PL-
DI) (La Jolla, California, 18{21 June 1995), pp. 93{102.

[5] Futamura, Y., Nogi, K., and Takano, A. Essence
of generalized partial computation. Theoretical Com-
puter Science 90, 1 (Nov. 1991), 61{79.

[6] Gl�uck, R., Nakashige, R., and Z�ochling, R.
Binding-time analysis applied to mathematical algo-
rithms. In System Modelling and Optimization (1995),
J. Dole�zal and J. Fidler, Eds., Chapman & Hall, p-
p. 137{146.

[7] Interim Java Grande report. Tech. Rep. JGF-TR-4,
Java Grande Committee, 1999.

[8] Jones, N. D. An introduction to partial evaluation.
ACM Computing Surveys 28, 3 (Sept. 1996), 480{503.

[9] Karmesin, S., Crotinger, J., Cummings, J.,
Haney, S., Humphrey, W., Reynders, J., Smith,
S., and Williams, T. Array design and expres-
sion evaluation in POOMA II. In ISCOPE'98 (1998),
vol. 1505, Springer-Verlag. Lecture Notes in Computer
Science.

[10] Khoo, S. C., and Sundaresh, R. S. Compiling in-
heritance using partial evaluation. In Proceedings of
the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (New Haven, CN, June
1991), vol. 26(9), pp. 211{222.

[11] Kleinrubatscher, P., Kriegshaber, A., Z�ochling,
R., and Gl�uck, R. Fortran program specialization.
SIGPLAN Notices 30, 4 (1995), 61{70.

[12] Kolte, P., and Wolfe, M. Elimination of redundan-
t array subscript range checks. In Proceedings of the
ACM SIGPLAN'95 Conference on Programming Lan-
guage Design and Implementation (PLDI) (La Jolla,
California, 18{21 June 1995), pp. 270{278.

[13] Moreira, J. E., Midkiff, S. P., Gupta, M., Arti-
gas, P. V., Snir, M., and Lawrence, R. D. Java
programming for high-performance numerical comput-
ing. IBM Systems Journal 39, 1 (???? 2000), 21{56.

[14] Salomon, D. J. Using partial evaluation in support
of portability, reusability, and maintainability. In Com-
piler Construction '96 (Link�oping, Sweden, 24{26 Apr.
1996), pp. 208{222.

[15] Sarkar, V., and Knobe, K. Enabling sparse constant
propagation of array elements via array SSA form. Lec-
ture Notes in Computer Science 1503 (1998), 33{??

[16] Steensgaard, B. Sparse functional stores for imper-
ative programs. In ACM SIGPLAN Workshop on In-
termediate Representations (IR'95) (Jan. 1995), vol. 30
(3) of SIGPLAN Notices, ACM Press, pp. 62{70.

[17] Taha, W., and Sheard, T. Multi-stage programming
with explicit annotations. ACM SIGPLAN Notices 32,
12 (1997), 203{217.

[18] Veldhuizen, T. L. Expression templates. C++ Report
7, 5 (June 1995), 26{31. Reprinted in C++ Gems, ed.
Stanley Lippman.

[19] Veldhuizen, T. L. Arrays in Blitz++. In Proceed-
ings of the 2nd International Scienti�c Computing in
Object-Oriented Parallel Environments (ISCOPE'98)
(1998), Lecture Notes in Computer Science, Springer-
Verlag.

[20] Veldhuizen, T. L. C++ templates as partial evalua-
tion. In Proceedings of PEPM'99, The ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, ed. O. Danvy, San Antonio,
January 1999. (Jan. 1999), University of Aarhus, Dept.
of Computer Science, pp. 13{18.

[21] Volanschi, E.-N., Consel, C., Muller, G., and
Cowan, C. Declarative specialization of object-
oriented programs. In ACM SIGPLAN conference
on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA '97) (October 1997), p-
p. 286{300.

A Detailed discussion of \expression templates"
optimization

This appendix explains in detail how Lunar turns

w.assign(x.plus(y.times(z)))

into the loop code shown in Figure 7.

A.1 Eliminating the tree walk

We step through the optimizations performed by the partial
evaluator, referring to Figure 15, which shows the state of
the heap during this moment.

Lunar's Java front end uses virtual method tables (vta-
bles) to handle method dispatching. Every object has a
pointer to its vtable.6 Shaded cells in Figure 15 indicate
\write-once memory" marked by the Java front end. Write-
once memory is guaranteed to only be written once, and
never read before it is written. This allows the optimizer
to make stronger assumptions about the contents of such
cells (for example, write-once memory is immune to aliasing
e�ects).

Initially, we have this code:

Array w = new Array(n);
Array x = new Array(n);
Array y = new Array(n);
Array z = new Array(n);

// ...

w.assign(x.plus(y.times(z)))

6The vtable layout is simpler than it would be for a compil-
er which handled the full Java language. Lunar's front end does
not handle interfaces, and Figure 15 omits methods inherited from
java.lang.Object for simplicity.

9

vtable ptr
a
b

eBinaryOpExpr

"x"

op

a
b
op

BinaryOpExpr

"y"

"z"

vtable ptr
Plus

vtable ptr
xArray

data
length

Array
vtable ptr
data
length "n"

vtable ptr
Times

vtable ptr

Array.assign$Expr

Array.set$int;float

Expr.plus$Expr

Expr.times$Expr

vtable: Array
Array.eval$int

Array
vtable ptr
data
length "n" "n"

...

float[]

"n"

...

float[]

"n"

...

float[]

"n"

y z

Times.apply$float;float

vtable: Times

Plus.apply$float;float

vtable: Plus

vtable: BinaryOpExpr
BinaryOpExpr.eval$int

Expr.times$Expr

Expr.plus$Expr

Figure 15: Heap state when the array expression w.assign(x.plus(y.times(z))) is evaluated. Shaded heap cells are \write-
once" memory created by the Java front end. Names in quotes, such as "x", are variable names used for copy propagation
through the heap. Arrows are pointers; bold arrows highlight the parse tree of w=x+y*z. Not shown are compiler-generated
names for temporary objects.

10

Since w was created locally, Lunar can follow its vtable point-
er to �nd the method Array.assign(Expr). This method
can be inlined:

// Result of inlining Array.assign(Expr)
Expr e = x.plus(y.times(z));
for (int i=0; i < w.length; i=i+1)

w.data[i] = e.eval(i);

By similar means, it can inline x.plus(..) and
y.times(...):

Expr a1 = new BinaryExprOp(y,z,new Times());
Expr e = new BinaryExprOp(x, a1,new Plus());
for (int i=0; i < n; i=i+1)

w.data[i] = e.eval(i);

Since e is locally constructed, Lunar knows its vtable point-
er, and can resolve e.eval(i) to BinaryOpExpr.eval(..)
and inline it:

Expr a1 = new BinaryExprOp(y,z,new Times());
Expr e = new BinaryExprOp(x, a1,new Plus());
for (int i=0; i < n; i=i+1)

data[i] = e.op.apply(e.a.eval(i),e.b.eval(i));

The whole e object was constructed locally, so the optimizer
can follow vtable pointers to determine that:

e.op.apply(...) is Plus.apply(...)
e.a.eval(...) is Array.eval(...)
e.b.eval(...) is BinaryOpExpr.eval(...)

With these functions inlined, the code becomes:

Expr a1 = new BinaryExprOp(y,z,new Times());
Expr e = new BinaryExprOp(x, a1,new Plus());
for (int i=0; i < n; i=i+1)

data[i] = e.a.data[i] + e.b.op.apply(e.b.a.eval(i),
e.b.b.eval(i));

Lunar does copy propagation through the heap. This al-
lows it to determine that e.a is the array x. After more
expansions and inlining, we get:

// e.a is x
// e.b.op.apply(...) is Times.apply(...)
// e.b.a.eval(...) is Array.eval(...)
// e.b.b.eval(...) is Array.eval(...)
Expr a1 = new BinaryExprOp(y,z,new Times());
Expr e = new BinaryExprOp(x, a1,new Plus());
for (int i=0; i < n; i=i+1)

data[i] = x.data[i] + (e.b.a.data[i] * e.b.b.data[i]);

From the heap analysis, the optimizer knows that e.b.a is
y and e.b.b is z:

// e.b.a is y
// e.b.b is z
Expr a1 = new BinaryExprOp(y,z,new Times());
Expr e = new BinaryExprOp(x, a1,new Plus());
for (int i=0; i < n; i=i+1)

data[i] = x.data[i] + (y.data[i] * z.data[i]);

Presto { the overhead of traversing the parse tree has been
eliminated.

At this point, the optimizer sees that a1, e, and the
Plus and Times objects are written to, but are never read
from nor escape. This allows Lunar to eliminate these ob-
jects, resulting in:

for (int i=0; i < n; i=i+1)
data[i] = x.data[i] + (y.data[i] * z.data[i]);

A.2 Bound check elimination

The next step is bound check elimination. An expression
such as x.data[i] expands into C code like this:

// Get x.data
char *__a26 = *((char **) (x + Array_dotdata));

// Read array size, stored just before the
// beginning of the array
int __a81 = *((int *) (__a26 + -4));

// Bound check
if (((unsigned) i) >= __a81)
bound_check_handler(i, __a81);

// Read x.data[i]
int __a82 = (i * 4);
float __a80 = *((float *) (__a26 + __a82));

To eliminate these bound checks, Lunar uses a little bit of
generalized partial computation [5]. In partial evaluation,
values are either known or not known. In generalized par-
tial computation, one can know partial information about
values. Consider the loop

for (int i=0; i < n; i=i+1)
w.data[i] =;

The loop condition is i < n and the initial value of i is
i = 0. Lunar eliminates variable assignments prior to partial
evaluation, so the loop condition is a loop invariant: i < n
is always true in the body of the loop, and using the initial
binding of i, Lunar can conclude that 0 � i < n.

For the environment of the loop body, Lunar binds i to
an interval, rather than a value. This indicates that the
exact value of i is unknown, but that it lies within some
interval:

i 7! [0; n)

For the expression w.data[i], the bound check can be elim-
inated only if Lunar can prove that 0 � i < w:data:length.
Lunar discovers that w.data.length is also n by doing copy
propagation through the heap. Then the bound check is
0 � i < n, which is trivially true since i 7! [0; n).

Generalized partial computation is one of several ap-
proaches to bound check elimination (see [12] for a summa-
ry). It is used in Lunar because it �ts nicely into the partial
evaluation framework. It can eliminate bound checking for
some situations, but not all.

The general problem of bound check elimination (Given
a program P, can all bound checks be safely eliminated?) is
undecidable, so being able to eliminate checks in common
situations is as good as one can hope for.

B Lunar output for the \expression templates" ex-
ample

void sti__dollunar_umain_ureturn_uvalue()
f

char *__a68 = 0;
char *array1d = alloc(49384, 4);
*((int *) (array1d + -4)) = 12345;
char *array1d__96 = alloc(49384, 4);
*((int *) (array1d__96 + -4)) = 12345;
char *array1d__107 = alloc(49384, 4);
*((int *) (array1d__107 + -4)) = 12345;

11

char *array1d__118 = alloc(49384, 4);
*((int *) (array1d__118 + -4)) = 12345;

// Initialize the arrays with some data
for (int i = 0; (i < 12345);)
f

float __a43 = ((float) i);
float __a42 = (__a43 * 0.33f);
int __a73 = (i * 4);
*((float *) (array1d__96 + __a73)) = __a42;
float __a48 = ((float) i);
float __a47 = (10.0f + __a48);
int __a128 = (i * 4);
*((float *) (array1d__107 + __a128)) = __a47;
float __a53 = ((float) i);
float __a52 = (100.0f * __a53);
int __a135 = (i * 4);
*((float *) (array1d__118 + __a135)) = __a52;
i = (i + 1);

g

// Code generated for
// w.assign(x.plus(yexpr.times(zexpr)));
for (int i = 0; (i < 12345);)
f

int __a75 = (i * 4);
int __a71 = (i * 4);
float __a31 = *((float *) (array1d__96 + __a71));
int __a184 = (i * 4);
float __a171 = *((float *) (array1d__107 + __a184));
int __a163 = (i * 4);
float __a176 = *((float *) (array1d__118 + __a163));
float __a35 = (__a171 * __a176);
float __a76 = (__a31 + __a35);
*((float *) (array1d + __a75)) = __a76;
i = (i + 1);

g
_dollunar_umain_ureturn_uvalue = 0;

g

12

