
Automatic Time-Bound Analysis for a Higher-Order Language

Gustavo G�omez� and Yanhong A. Liu�

November 1999

1 Introduction

Analysis of program running time is important for reactive systems, interactive environments, compiler
optimizations, performance evaluation, and many other computer applications. It has been extensively
studied in many �elds of computer science: algorithms [21, 12, 13, 40], programming languages [38, 22, 31,
35, 34], and systems [36, 29, 33, 32]. Being able to predict accurate time bounds automatically and e�ciently
is particularly important for many applications, such as reactive systems. It is also particularly desirable to
be able to do so for high-level languages [36, 29].

Since Shaw proposed timing schema for analyzing system running time based on high-level languages [36],
a number of people have extended it for analysis in the presence of compiler optimizations [29, 9], pipelin-
ing [16, 23], cache memory [3, 23, 11], etc. However, there is still a serious limitation of the timing schema,
even in the absence of low-level complications. This is the inability to provide loop bounds, recursion depths,
or execution paths automatically and accurately for the analysis [28, 2]. For example, the inaccurate loop
bounds cause the calculated worst-case time to be as much as 67% higher than the measured worst-case time
in [29], while the manual way of providing such information is potentially an even larger source of error,
in addition to being inconvenient [28]. Various program analysis methods have been proposed to provide
loop bounds or execution paths [2, 10, 15, 17]. However, they apply only to some classes of programs or use
approximations that are too crude for the analysis. Also, separating the loop and path information from the
rest of the analysis is in general less accurate than an integrated analysis [27].

Liu and G�omez [24] studied a general approach for automatic and accurate time-bound analysis that
combines methods and techniques studied in theory, languages, and systems. They call it a language-based

approach since it primarily exploits methods and techniques for static program analysis and transformation.
However, the particular analysis there handles only �rst-order functions. Being able to handle higher-order
functions is important for analyzing most functional languages and for analyzing methods in object-oriented
languages with inheritance.

This paper extends the language-based approach to a higher-order language. As before [24], the approach
consists of transformations for building time-bound functions in the presence of partially known input struc-
tures, symbolic evaluation of the time-bound function based on input parameters, optimizations to make the
analysis e�cient as well as accurate, and measurements of primitive parameters, all at the source-language
level. To handle higher-order functions, special transformations are needed to build lambda expressions for
computing running times, to optimize the construction of the time lambda expressions, and to optimize the
symbolic evaluation. We describe analysis and transformation algorithms and explain how they work. We
have implemented this approach and performed a large number of experiments analyzing Scheme programs.
The measured worst-case times are closely bounded by the calculated bounds. We describe our prototype
system, ALPA, as well as the analysis and measurement results.

�This work is supported in part by ONR under grant N00014-99-1-0132 and NSF under grant CCR-9711253. Au-
thors' address: Computer Science Department, 215 Lindley Hall, Indiana University, Bloomington, IN 47405. Email:
fggomezes,liug@cs.indiana.edu. Phone: (812)855-f9761,4373g. Fax: (812)855-4829.

1



2 Language-based approach

Language-based time-bound analysis starts with a given program written in a high-level language, such as
Java, ML, or Scheme. The �rst step is to build a time function that (takes the same input as the original
program but) returns the running time in place of (or in addition to) the original return value. This is
done by associating a parameter with each program construct representing its running time and by summing
these parameters based on the semantics of the constructs [38, 5, 36]. This transformation is straightforward
for all constructs except lambda abstraction, i.e., �rst-class function, where additional transformations are
needed to build lambda expressions for computing running times, as proposed by Sands [35, 34]. We call
parameters that describe the running times of program constructs primitive parameters. To calculate actual
time bounds based on the time function, three di�cult problems must be solved.

First, since the goal is to calculate running time without being given particular inputs, the calculation
must be based on certain assumptions about inputs. Thus, the �rst problem is to characterize the input
data and re
ect them in the time function. In general, due to imperfect knowledge about the input, the time
function is transformed into a time-bound function.

In algorithm analysis, inputs are characterized by their size; accommodating this requires manual or
semi-automatic transformation of the time function [38, 22, 40]. The analysis is mainly asymptotic, and
primitive parameters are considered independent of the input size, i.e., are constants while the computation
iterates or recurses. Whatever values of the primitive parameters are assumed, a second problem arises, and
it is theoretically challenging: optimizing the time-bound function to a closed form in terms of the input
size [38, 5, 22, 31, 13]. Although much progress has been made in this area, closed forms are known only
for subclasses of functions. Thus, such optimization can not be automatically done for analyzing general
programs.

In systems, inputs are characterized indirectly using loop bounds or execution paths in programs, and such
information must in general be provided by the user [36, 29, 28, 23], even though program analyses can help in
some cases [2, 10, 15, 17]. Closed forms in terms of parameters for these bounds can be obtained easily from
the time function. This isolates the third problem, which is most interesting to systems research: obtaining
values of primitive parameters for various compilers, run-time systems, operating systems, and machine
hardwares. In recent years, much progress has been made in analyzing low-level dynamic factors, such as
clock interrupt, memory refresh, cache usage, instruction scheduling, and parallel architectures [29, 3, 23, 11].
Nevertheless, the inability to compute loop bounds or execution paths automatically and accurately has led
calculated bounds to be much higher than measured worst-case time.

In programming-language area, Rosendahl proposed using partially known input structures [31]. For
example, instead of replacing an input list l with its length n, as done in algorithm analysis, or annotating
loops with numbers related to n, as done in systems, we use as input a list of n unknown elements. We
call parameters for describing partially known input structures input parameters. The time function is then
transformed automatically into a time-bound function: at control points where decisions depend on unknown
values, the maximum time of all possible branches is computed; otherwise, the time of the chosen branch is
computed. Rosendahl concentrated on proving the correctness of this transformation. He assumed constant
1 for primitive parameters and relied on optimizations to obtain closed forms in terms of input parameters,
but again closed forms can not be obtained for all time-bound functions. Also, Rosendahl handles only
�rst-order functions. Sands studied time functions for higher-order functions [35, 34], but he did not address
any of the three problems described above. In addition, his analysis is presented only for named functions,
not general lambda abstractions.

Combining results from theory to systems, and exploring methods and techniques for static program
analysis and transformation, we have developed a general approach for computing time bounds automatically,
e�ciently, and more accurately. The approach has four main components.

First, we use an automatic transformation to construct a time-bound function from the original program
based on partially known input structures. The resulting function takes input parameters and primitive
parameters as arguments. The only caveat here is that the time-bound function may not terminate. However,
nontermination occurs only if the recursive/iterative structure of the original program depends on unknown
parts in the given partially known input structures.

Then, to compute worst-case time bounds e�ciently without relying on closed forms, we optimize the

2



time-bound function symbolically with respect to given values of input parameters. This is based on partial
evaluation and incremental computation. This symbolic evaluation always terminates provided that the
time-bound function terminates. The resulting function can be used repeatedly to compute time bounds
e�ciently for di�erent primitive parameters measured for di�erent underlying systems.

A third component consists of transformations that enable more accurate time bounds to be computed:
lifting conditions, simplifying conditionals, and inlining non-recursive functions. These transformations
should be applied on the original program before the time-bound function is constructed. They may result
in larger code size, but they allow subcomputations based on the same control conditions to be merged,
leading to more accurate time bounds, which can be computed more e�ciently as well.

Finally, we measure primitive parameters at the source-language level and use the best conservative
estimations in computing the time bound. We have implemented these transformations and the measurement
procedures for a higher-order functional subset of Scheme. All the transformations and measurements are
done automatically, and the time bound is computed e�ciently and accurately. Examples analyzed include
various list processing and numerical programs.

The approach is general because all four components we developed are based on general methods and
techniques. Each particular component requires relative small improvements or modi�cations to existing
analyses or transformations, but the combination of them for the application of automatic and accurate time-
bound analysis for high-level languages is powerful. We used a higher-order functional subset of Scheme [1, 7]
for three reasons.

1) Functional programming languages, together with features like automatic garbage collection, have be-
come increasingly widely used, but methods for calculating actual running time of functional programs
have been lacking.

2) Much work has been done on analyzing and transforming functional programs, including complexity
analysis, and it can be exploited for analyzing actual running times e�ciently and accurately as well.

3) Analyses and transformations developed for functional languages can be applied to improve analyses
of imperative languages as well [39].

All our analyses and transformations are performed at source level. This allows implementations to be
independent of compilers and underlying systems. It also allows analysis results to be understood at source
level.

Language. We use a high-order, call-by-value functional language that has structured data, primitive
arithmetic, boolean, and comparison operations, conditionals, bindings, �rst-class functions, and mutually
recursive function calls. A program is a set of mutually recursive de�nitions. Its syntax is given by the
grammar below:

program ::= v1 , e1; :::; vn , en
e ::= v variable reference

j c(e1; :::; en) data construction
j p(e1; :::; en) primitive operation
j if e1 then e2 else e3 conditional expression
j let v = e1 in e2 binding expression
j letrec v = e1 in e2 recursive binding expression
j lambda (v1; :::; vn) e0 �rst-class function
j e0(e1; :::; en) function application

Constants are constructors of arity 0; for convenience, we write c instead of c() for them. We use construc-
tor nil to denote an empty list, with operator null? as the corresponding tester, and we use constructor cons
to build a list from a head element and a tail list, with operators car and cdr as the corresponding selectors.
For binary operations, we chose between in�x and pre�x notations depending on whichever is easier for the
presentation. For simplicity of the presentation, we restrict the discussion to single-variable bindings, but
the implementation handles multiple-variable bindings. For ease of analysis and transformation, we assume
that a preprocessor gives a distinct name to each bound variable.

3



Figure 1 gives an example program with de�nitions index and index-cps. Function index takes an item
and a list and returns the zero-based index of the item in the list, or �1 if the item is not in the list. It calls
function index-cps, which uses continuation-passing style (CPS) to avoid unnecessary additions if the item
is not in the list. We use this program as a small running example. To present various analysis results, we
also use several other examples as described in Section 5.

index , lambda (item, ls) index-cps(item, ls, lambda (x) x),

index-cps , lambda (item, ls, k)
if null?(ls) then �1
else if item = car(ls) then k(0)

else index-cps(item, cdr(ls), lambda (v) k(v + 1))

Figure 1: Example program with de�nitions index and index-cps.

Even though this language is small, it is su�ciently powerful and convenient for writing sophisticated
programs. Structured data is essentially records in Pascal, structs in C, and constructor applications in ML.
Conditionals and bindings easily simulate conditional statements and assignments, and recursions subsume
loops.

The absence of arrays and pointers in the language does not detract the generality of the method, since
time analysis with them is not fundamentally harder. The running times of the program constructs for them
can be analyzed in the same way as times of other constructs. For example, accessing an array element a[i]
takes the time of accessing i, o�setting the element address from that of a, and �nally getting the value from
that address. Note that side e�ects caused by these features often cause other analyses to be more di�cult.

For pure functional languages, lazy evaluation is important. Time functions that accommodate it have
been studied. The symbolic evaluation and optimizations we describe apply to it as well.

3 Constructing time-bound function

Constructing time functions. We �rst transform the original program to construct a time function,
which takes the original input and primitive parameters as arguments and returns the running time. This
can be done based on the semantics of each program construct. It is straightforward for all constructs except
�rst-class functions, i.e., lambda expressions.

For example, a variable reference is transformed into a symbol Tvarref representing the running time of
a variable reference; a conditional statement is transformed into the time of the test plus, if the condition is
true, the time of the true branch, otherwise, the time of the false branch, and plus the time for the transfers
of control. We introduce a new pre�x operator add to add two or more time expressions.

To handle lambda expressions, it is necessary to introduce new lambda expressions for computing the
running times. A lambda expression evaluates to a closure, where the body of the lambda is evaluated only
when the function represented by the closure is actually applied. Thus, the time for evaluating the body of
a lambda can also only be computed when the function is actually applied and, therefore, we need to build
a new lambda expression for computing the running time. The body of the time lambda expression will be
based on the body of the original lambda expression, and the time lambda expression will be evaluated to
a time closure. We introduce a special data constructor lambda-pair to build a pair of an original lambda
expression and its time lambda expression, and we use value and time as the corresponding selectors.

The time transformation T embodies the overall algorithm and is given below. It takes an original
program, builds lambda pairs for lambda expressions in each de�nition ei using transformation Tv , where
subscript v is mnemonic for value, and builds the time component of each lambda pair based on the value
component of the pair using transformation Tt, where subscript t is mnemonic for time. To avoid clutter, we
reuse identi�ers v1; :::; vn in the transformed program; this does cause any problem since the old meanings
of theses identi�ers are not used in the transformed program.

4



T

2
4
2
4

v1 , e1;

:::;

vn , en

3
5
3
5 =

v1 , Tv [[e1]] ;
:::;

vn , Tv [[en]]

v1 : Tv [[v]] = v

v2 : Tv [[c(e1; :::; en)]] = c(Tv [[e1]] ; :::; Tv [[en]])
v3 : Tv [[p(e1; :::; en)]] = p(Tv [[e1]] ; :::; Tv [[en]])
v4 : Tv [[if e1 then e2 else e3]] = if Tv [[e1]] then Tv [[e2]] else Tv [[e3]]
v5 : Tv [[let v = e1 in e2]] = let v = Tv [[e1]] in Tv [[e2]]
v6 : Tv [[letrec v = e1 in e2]] = letrec v = Tv [[e1]] in Tv [[e2]]
v7 : Tv [[lambda (v1; :::; vn) e0]] = lambda-pair(lambda (v1; :::; vn) Tv [[e0]] ;

lambda (v1; :::; vn) Tt [[Tv [[e0]] ]])
v8 : Tv [[e0(e1; :::; en)]] = value(Tv [[e0]]) (Tv [[e1]] ; :::; Tv [[en]])

t1 : Tt [[v]] = Tvarref
t2 : Tt [[c(e1; :::; en)]] = add(Tc; Tt [[e1]] ; :::; Tt [[en]])
t3 : Tt [[p(e1; :::; en)]] = add(Tp; Tt [[e1]] ; :::; Tt [[en]])
t4 : Tt [[if e1 then e2 else e3]] = if e1 then add(Tif ; Tt [[e1]] ; Tt [[e2]])

else add(Tif ; Tt [[e1]] ; Tt [[e3]])
t5 : Tt [[let v = e1 in e2]] = let v = e1 in add(Tlet; Tt [[e1]] ; Tt [[e2]])
t6 : Tt [[letrec v = e1 in e2]] = letrec v = e1 in add(Tletrec; Tt [[e1]] ; Tt [[e2]])
t7 : Tt [[lambda-pair(e1; e2)]] = Tlambda

t8 : Tt [[value(e0)(e1; :::; en)]] = add(Tfuncall; Tt [[e0]] ; Tt [[e1]] ; :::; Tt [[en]] ;
time(e0) (e1; :::; en))

Rules v1 to v6 handle expressions other than lambda expressions or function calls, so they transform
subexpressions recursively. Rule v7 takes a lambda expression and creates a lambda pair; the �rst component
is the body transformed recursively by Tv , and the second component is the time body transformed further
by Tt. To make the transformation run in linear time, the resulting expression of Tv [[e0]] is shared. Rule
v8 takes an application of function e0 and transforms subexpressions recursively; since Tv [[e0]] evaluates to a
lambda pair, its value component is selected and applied to the transformed arguments.

Rule t1 transforms a variable reference to the time of a variable reference Tvarref . Rule t2 (respectively
t3) sums the times of evaluating the arguments and the time of the primitive (respectively constructor). Rule
t4 sums the times of the conditional transfer, of evaluating the condition, and of evaluating the true branch,
if the condition is true; otherwise, it sums the times of the conditional transfer, of evaluating the condition,
and of evaluating the false branch. Rules t5 and t6 include the bindings unchanged, because the transform
body may refer to the bound variable; they sum the times of making a binding, of evaluating the expression
for the bound variable, and of evaluating the body. Rule t7 just returns the time of evaluating a lambda
abstraction; there is no need to go into the body of the lambda, because this time does not depend on the
body. Rule t8 sums the times of making a function call, of evaluating e0 and all its argument expressions,
and of evaluating the function; the function is given by the time component of the lambda pair.

Transformation T as described above runs in linear time in terms of the size of the given program.
Intuitively, each subexpression is transformed at most twice: once by Tv and once by Tt. A formal proof
is done by an induction on the number of subexpressions in the program, and the number of nestings of
�rst-class functions.

Figure 2 shows the result of this transformation applied to function index-cps. Shared code is presented
with where clauses when this makes the code smaller. For ease of presentation, we give all constants the
same symbol Tconstant for their times.

This transformation is similar to the local cost assignment [38], step-counting function [31], cost func-
tion [35], etc. in other work. Our transformation extends those methods with bindings and general �rst-class
functions. It also makes all primitive parameters explicit at the source-language level. For example, each
primitive operation p is given a di�erent symbol Tp, and each constructor c is given a di�erent symbol Tc.

5



index-cps , lambda-pair(lambda (item, ls, k)
if null?(ls) then �1
else if item = car(ls) then value(k)(0)

else value(index-cps)(item, cdr(ls), lambda1),
lambda (item, ls, k)
if null?(ls) then add(Tif , add(Tnull?, Tvarref ), Tconstant)
else add(Tif , add(Tnull?, Tvarref ),

if item = car(ls)
then add(Tif , add(T=, Tvarref , add(Tcar , Tvarref )),

add(Tfuncall, time(k)(0), Tvarref , Tconstant))
else add(Tif , add(T=, Tvarref , add(Tcar Tvarref )),

add(Tfuncall, Tvarref , Tvarref , Tlambda

time(index-cps)(item, cdr(ls), lambda1),
add(Tcdr , Tvarref )))))

where lambda1 is
lambda-pair(lambda (v) value(k)(v + 1),

lambda (v) add(Tfuncall, time(k)(v + 1), Tvarref ,
add(T+, Tconstant, Tvarref )))

Figure 2: Function index-cps after transformation T .

Note that the time function terminates with the appropriate sum of primitive parameters if the original
program terminates, and it runs forever to sum to in�nity if the original program does not terminate, which
is the desired meaning of a time function.

Constructing time-bound functions. Characterizing program inputs in the time function is di�cult
to automate [38, 22, 36]. However, partially known input structures provide a natural mean [31]. A special
constant unknown is used to represent unknown values. For example, to represent all input lists of length
n, the following partially known input structure can be used.

list , lambda (n)
if n = 0 then nil

else cons(unknown; list(n� 1))

Similar structures can be used to describe an array of n elements, a matrix of m-by-n elements, etc.
Since partially known input structures give incomplete knowledge about inputs, the original functions

need to be transformed to handle the special value unknown. In particular, for each primitive function p, we
de�ne a new primitive function fp such that fp(v1; :::; vn) returns unknown if any vi is unknown and returns
p(v1; :::; vn) as usual otherwise. We also de�ne a new least upper bound function lub that takes two values
and returns the most precise partially known structure that both values conform with.

fp , lambda (v1; :::; vn)
if v1 = unknown

_ ::: _
vn = unknown

then unknown

else p(v1; :::; vn)

lub , lambda (v1; v2)
if v1 is c1(x1; :::; xi) ^

v2 is c2(y1; :::; yj) ^
c1 = c2 ^ i = j

then c1(lub(x1; y1); :::; lub(xi; yi))
else unknown

Also, the time functions need to be transformed to compute an upper bound of the running time. If the
truth value of a conditional test is known, then the time of the chosen branch is computed, otherwise, the
maximum of the times of both branches is computed.

Because functions are �rst-class objects, their values can also be unknown. If we try to apply an unknown

function, the result is unknown, and the time is in�nite, as shown below by de�nitions value apply and
time apply. We could keep more precise information than unknown. This can be a set of possible function
values. Then the upper bound of the times of applying all functions in the set can be taken. This is easy
to implement, but it may be expensive to compute if it is indeed needed. An important fact is that in all
examples we have tried, this is not needed, i.e., the naturally given partially known input contains enough
information to decide all lambdas at analysis time.

6



value apply , lambda (v0; v1; :::; vn)
if v0 = unknown

then unknown

else value(v0) (v1; :::; vn)

time apply , lambda (v0; v1; :::; vn)
if v0 = unknown

then in�nite

else time(v0) (v1; :::; vn)

The time-bound transformation Tb embodies the overall algorithm. It takes a program obtained from
time transformation T and builds the corresponding time-bound version. It uses two transformations: Tvb
and Ttb. Tvb transforms an expression that computes the original value, and Ttb transforms an expression
that computes the running time. Again, identi�ers v1; :::; vn are reused in the transformed program.

Tb

2
4
2
4

v1 , e1;

:::;

vn , en

3
5
3
5 =

v1 , Tvb [[e1]] ;
:::;

vn , Tvb [[en]]

vb1 : Tvb [[v]] = v

vb2 : Tvb [[c(e1; :::; en)]] = c(Tvb [[e1]] ; :::; Tvb [[en]])
vb3 : Tvb [[p(e1; :::; en)]] = fp(Tvb [[e1]] ; :::; Tvb [[en]])
vb4 : Tvb [[if e1 then e2 else e3]] = let v = Tvb [[e1]]

in if v = unknown

then lub(Tvb [[e2]] ; Tvb [[e3]])
else if v then Tvb [[e2]] else Tvb [[e3]]

vb5 : Tvb [[let v = e1 in e2]] = let v = Tvb [[e1]] in Tvb [[e2]]
vb6 : Tvb [[letrec v = e1 in e2]] = letrec v = Tvb [[e1]] in Tvb [[e2]]
vb7 : Tvb[[lambda-pair(lambda (v1; :::; vn) e1;

lambda (v1; :::; vn) e2)]]
= lambda-pair(lambda (v1; :::; vn) Tvb [[e1]] ;

lambda (v1; :::; vn) Ttb [[e2]])
vb8 : Tvb [[value(e0) (e1; :::; en)]] = value apply(Tvb [[e0]] ; Tvb [[e1]] ; :::; Tvb [[en]])

tb1 : Ttb [[T ]] = T

tb2 : Ttb [[add(e1; :::; en)]] = add(Ttb [[e1]] ; :::; Ttb [[en]])
tb3 : Ttb [[if e1 then e2 else e3]] = let v = Tvb [[e1]]

in if v = unknown

then max(Ttb [[e2]] ; Ttb [[e3]])
else if v then Ttb [[e2]] else Ttb [[e3]]

tb4 : Ttb [[let v = e1 in e2]] = let v = Tvb [[e1]] in Ttb [[e2]]
tb5 : Ttb [[letrec v = e1 in e2]] = letrec v = Tvb [[e1]] in Ttb [[e2]]
tb6 : Ttb [[time(e0) (e1; :::; en)]] = time apply(Tvb [[e0]] ; Tvb [[e1]] ; :::; Tvb [[en]])

Rule vb1 leaves variables unchanged, as they do not change with the introduction of the value unknown.
Rule vb2 transforms arguments of a constructor recursively. Rule vb3 transforms the arguments recursively
and replaces the primitive operator p by the new operator fp that returns unknown if any of the arguments
evaluates to unknown. Rule vb4 transforms subexpressions recursively, builds an expression that binds the
value of the transformed e1 to a distinct variable v, and if the value of v is unknown returns the least upper
bound of the values of the two transformed branches, otherwise returns the value of the appropriate branch
based on the value of v. Rules vb5 and vb6 do not directly use the value unknown, so they simply transform
subexpressions recursively. Rule vb7 uses Tvb to transform the value component of the lambda pair and uses
Ttb to transform the time component. Rule vb8 uses function value apply to apply the transformed function
to the transformed arguments.

Rule tb2 transforms subexpressions recursively. Rule tb3 is similar to rule vb4, except that it computes
the maximum time instead of the least upper bound when the value of the condition is unknown. Rules tb4
and tb5 use Tvb to transform the binding expression, and recursively use Ttb to transform the body. Rule tb6
uses time apply to handle unknown functions; it uses Tvb to transform the argument expressions because
the time lambda expression takes values as arguments.

Applying transformation Tb to function index-cps in Figure 2 yields function index-cps in Figure 3. Again,
shared code is presented with where clauses.

7



index-cps , lambda-pair(lambda (item, ls, k)
let v1 = fnull?(ls)
in if v1 = unknown then lub(�1, exp1)

else if v1 then �1 else exp1,
lambda (item, ls, k)
let v2 = fnull?(ls)
in if v2 = unknown then

max(time1, time2)
else if v2 then time1 else time2)

where exp1 is let v3 = item f= fcar(ls)
in if v3 = unknown then lub(value apply(k, 0), exp2)

else if v3 then time apply(k, 0) else exp2
where exp2 is value apply(index-cps, item, fcdr(ls), lambda1)

time1 is add(Tif , add(Tnull?, Tvarref ), Tconstant)
time2 is add(Tif , add(Tnull?, Tvarref ),

let v4 = item f= fcar(ls)
in if v4 = unknown then max(time3, time4)

else if v4 then time3 else time4)
where time3 is add(Tif , add(T=, Tvarref , add(Tcar , Tvarref ))

add(Tfuncall, time apply(k, 0), Tvarref , Tconstant))
time4 is add(Tif , add(T=, Tvarref , add(Tcar , Tvarref ))

add(Tfuncall, time apply(index-cps, item, fcdr(ls), lambda1),
Tvarref , Tvarref , add(Tcdr , Tvarref ), Tlambda ))

where lambda1 is lambda-pair(lambda (v) value apply(k, v f+ 1),
lambda (v) add(Tfuncall, time apply(k, v f+ 1),

Tvarref , add(T+, Tconstant, Tvarref )))

Figure 3: Function index-cps after time-bound transformation Tb.

4 Optimizing time-bound function

Time-bound functions may be extremely ine�cient to evaluate given values for their parameters. In fact, in
the worst case, the evaluation takes exponential time in terms of the input parameters, since it essentially
searches for the worst-case execution path for all inputs satisfying the partially known input structures.

This section describes symbolic evaluation and optimizations that make the computation of time bounds
drastically more e�cient so that it is feasible to compute them quickly for input sizes in the thousands.
The transformations consist of partial evaluation, realized as global inlining, and incremental computation,
realized as local optimization.

Partial evaluation of time-bound functions. In practice, values of input parameters are given for
almost all applications. This is why time-analysis techniques used in systems can require loop bounds from
the user before time bounds are computed. While in general it is not possible to obtain explicit loop bounds
automatically and accurately, we can implicitly achieve the desired e�ect by evaluating the time-bound
function symbolically in terms of primitive parameters given speci�c values of input parameters.

The evaluation simply follows the structures of time-bound functions. Speci�cally, the control structures
determine conditional branches and make recursive function calls as usual. The only primitive operations
are sums of primitive parameters and maximums among alternative sums, which can easily be done symbol-
ically. Thus, the transformation simply inlines all function calls, sums all primitive parameters symbolically,
determines conditional branches if it can, and takes maximum sums among all possible branches if it can
not.

The symbolic evaluation E de�ned below performs the transformations. It takes as arguments an ex-
pression e and an environment � of variable bindings and returns as result a symbolic value that contains
the primitive parameters. The evaluation starts with the application of the program to be analyzed to a
partially known input structure, e.g., index(unknown; list(100)), and it starts with an empty environment.
Assume adds is a function that symbolically sums its arguments, and maxs is a function that symbolically
takes the maximum of its arguments.

8



se1 : E [[v]] � = �(v)
se2 : E [[T ]] � = T

se3 : E [[c(e1; :::; en)]] � = c(E [[e1]] �; :::; E [[en]] �)
se4 : E [[p(e1; :::; en)]] � = p(E [[e1]] �; :::; E [[en]] �)
se5 : E [[add(e1; :::; en)]] � = adds(E [[e1]] �; :::; E [[en]] �)
se6 : E [[max(e1; :::; en)]] � = maxs(E [[e1]] �; :::; E [[en]] �)
se7 : E [[if e1 then e2 else e3]] � = E [[e2]] � if E [[e1]] � = true

E [[e3]] � if E [[e1]] � = false

se8 : E [[let v = e1 in e2 ]] � = E [[e2]] �[v 7!E [[e1]] �]
se9 : E [[letrec v = e1 in e2 ]] � = E [[e2]] �[v 7!E [[e1]] �]
se10 : E [[lambda (v1; :::; vn) e0]] � = he0; �i
se11 : E [[e0(e1; :::; en)]] � = e00[v1 7! E [[e1]] �; :::; vn 7! E [[en]] �] �0

if E [[e0]] � = he00; �
0i

As an example, applying symbolic evaluation to the time-bound function for index on an unknown item
and a list of size 100, we obtain the following result:

E [[index(unknown; list(100))]] ; = 101 � Tconstant + 802 � Tvarref + 201 � Tif

+ 201 � Tfuncall + 101 � Tlambda + 100 � Tcar

+ 100 � Tcdr + 101 � Tnull? + 99 � T+ + 100 � T=

Avoiding repeated summations over recursions. The symbolic evaluation above is a global opti-
mization over all time-bound functions involved. During the evaluation, summations of symbolic primitive
parameters within each function de�nition are performed repeatedly while the computation recurses. Thus,
we can speed up the symbolic evaluation by �rst performing such summations in a preprocessing step.
Speci�cally, we create a vector and let each element correspond to a primitive parameter. The transforma-
tion S performs this optimization. We introduce two new functions: addsv performs symbolic addition by
component-wise summation of the argument vectors, and maxsv computes the component-wise maximum
of the argument vectors.

program: S

2
4
2
4

v1 , e1;

:::;

vn , en

3
5
3
5 =

v1 , St [[e1]] ;
:::;

vn , St [[en]]

primitive parameter: St [[T ]] = create a vector of 0's except with the
component corresponding to T set to 1

summation: St [[add(e1; :::; en)]] = addsv(St [[e1]] ; :::;St [[en]])
maximum: St [[max(e1; :::; en)]] = maxsv(St [[e1]] ; :::;St [[en]])
all other: St [[e]] = e

Applying this optimization to the time-bound version of function index-cps in Figure 3 yields the de�nition
in Figure 4.

This incrementalizes the computation in each recursive step to avoid repeated summation. As other
transformations we have described, this is fully automatic and takes linear time, here in terms of the size of
the time-bound function.

The result of this optimization is dramatic. For example, optimized symbolic evaluation of the same
curried Ackermann with input h3; 7i takes only 1.68 seconds while unoptimized symbolic evaluation takes
127 seconds.

On small inputs, symbolic evaluation takes relatively much more time than direct evaluation, due to the
relatively large overhead of vector setup; as inputs get larger, symbolic evaluation is almost as fast as direct
evaluation for most examples. After the symbolic evaluation, time bounds can be computed in virtually no
time given primitive parameters measured on any machine.

Time-bound functions can further be made more accurate by lifting conditions, simplifying conditionals,
and inlining non-recursive functions, as done previously in [24].

9



index-cps

, lambda-pair(lambda (item, ls, k)
let v1 = fnull?(ls) in
if v1 = unknown then lub(�1, exp1)
else if v1 then �1 else exp1,

lambda (item, ls, k)
let v2 = fnull?(ls) in
if v2 = unknown then maxv(<0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0>, time1)
else if v2 then <0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0> else time1)

where exp1 is let v3 = item f= fcar(ls) in
if v3 = unknown then lub(value apply(k, 0), value(index-cps)(item, fcdr(ls), lambda1))
else if v3 then value apply(k, 0) else value apply(index-cps, item, fcdr(ls), lambda1)

time1 is let v4 = item f= fcar(ls) in
if v4 = unknown then

maxv(addv(<1 0 0 1 1 0 0 0 0 0 0 1 4 2 0 0 1 0>, time(k)(0)),
addv(<1 1 0 1 1 0 0 0 0 0 0 0 6 2 0 0 1 0>, time(index-cps)(item, fcdr(ls), lambda1)))

else if v4 then addv(<1 0 0 1 1 0 0 0 0 0 0 1 4 2 0 0 1 0>, time(k)(0))
else addv(<1 1 0 1 1 0 0 0 0 0 0 0 6 2 0 0 1 0>, time(index-cps)(item, fcdr(ls), lambda1))

where lambda1 is lambda-pair(lambda (v) value apply(k, v f+ 1),
lambda (v) addv(<0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 1 0>, time(k)(v f+ 1)))

Figure 4: Function index-cps after optimization for avoiding repeated summations.

5 Implementation and experimentation

We have implemented the analysis approach in a prototype system, ALPA (Automatic Language-based
Performance Analyzer). We performed a large number of measurements and obtained encouraging good
results.

The implementation is for a subset of Scheme. The prototype is implemented using Chez Scheme v6.0a
compiler [8]. The input is a program as de�ned in Section 2, but with Scheme syntax. The output is an
optimized time-bound function that takes an input size and returns the symbolic time bound of the program
for inputs of that size.

The computer used to take the measurements is a Sun Enterprise 450 Model 4400 with four 400MHz
cpu's, 1 GB of RAM, and 4.6 GB virtual memory.

Since the minimum running time of a program construct is about 0.1 microseconds, and the precision
of the time function is 10 milliseconds, we use control/test loops that iterate 10,000,000 times, keeping
measurement error under 0.001 microseconds, i.e., 1%. Such a loop is repeated 100 times, and the average
value is taken to compute the primitive parameter for the tested construct (the variance is less than 10%
in most cases). The calculation of the time bound is done by plugging these measured parameters into the
optimized time-bound function. We then run each example program an appropriate number of times to
measure its running time with less than 1% error.

All the measurements were done by starting a new Scheme process, loading the needed de�nitions,
measuring the time of interest, and exiting Scheme. This ensures that only the time related to the given
program is counted.

The example programs shown here are: ack : Ackermann function programmed using the standard �rst-
order recursive de�nition; ack-curried : a curried version of Ackermann function that uses higher-order
functions (and is almost twice as fast as the standard �rst-order function); tak-cps : the Takeuchi function in
CPS, part of the Gabriel benchmark suite [14]; reverse: standard �rst-order list reverse function; rev-cps : a
CPS version of reverse; split : taking a predicate and a list and returning two lists, one whose elements satisfy
the predicate and another whose elements do not satisfy the predicate; �x : factorial function programmed
using the Y combinator for a heavy use of higher-order functions; map: standard map function; union:
taking two sets and returning the union; index : taking an item and a list and returning the index of the
item in the list, or �1 if the item is not in the list.

Table 1 gives the results of symbolic evaluation of the time-bound functions for these example programs
on inputs of various sizes. Several counts of the primitive operations are merged to �t the table on the page.
All numbers are exact symbolic counts. They are veri�ed by using a modi�ed evaluator.

Table 2 shows the calculated and the measured worst-case running time for these programs with various
input sizes. The item me/ca is the measured time expressed as a percentage of the calculated time. In

10



program size var ref constant cons null? car/cdr +/- compare if let(rec) lambda funcall
ack h3,1i 472 328 0 0 0 153 164 164 0 0 106

h3,5i 190848 127560 0 0 0 63533 63780 63780 0 0 42438
h3,7i 3122332 2082904 0 0 0 1040439 1041452 1041452 0 0 693964
h3,9i 50237624 33497192 0 0 0 16744513 16748596 16748596 0 0 11164370

ack h3,1i 277 171 0 0 0 98 62 62 6 4 111
curried h3,5i 105989 63787 0 0 0 42194 21346 21346 6 4 42443

h3,7i 1734421 1041459 0 0 0 692954 347492 347492 6 4 693969
h3,9i 27908901 16748603 0 0 0 11160290 5584230 5584230 6 4 11164375

tak-cps h19,8,1i 16121904 1560183 0 0 0 1560183 2080245 2080245 1 1560185 3640430
h19,9,1i 46538205 4503696 0 0 0 4503696 6004929 6004929 1 4503698 10508627
h19,9,3i 2582251 249894 0 0 0 249894 333193 333193 1 249896 583089

h19,10,1i 122680095 11872266 0 0 0 11872266 15829689 15829689 1 11872268 27701957
reverse 10 299 10 55 66 110 0 0 66 0 0 66

20 1094 20 210 231 420 0 0 231 0 0 231
50 6479 50 1275 1326 2550 0 0 1326 0 0 1326
100 25454 100 5050 5151 10100 0 0 5151 0 0 5151
200 100904 200 20100 20301 40200 0 0 20301 0 0 20301
500 627254 500 125250 125751 250500 0 0 125751 0 0 125751
1000 2504504 1000 500500 501501 1001000 0 0 501501 0 0 501501
2000 10009004 2000 2001000 2003001 4002000 0 0 2003001 0 0 2003001

rev-cps 10 422 11 55 66 110 0 0 66 0 56 123
20 1537 21 210 231 420 0 0 231 0 211 443
50 9082 51 1275 1326 2550 0 0 1326 0 1276 2603
100 35657 101 5050 5151 10100 0 0 5151 0 5051 10203
200 141307 201 20100 20301 40200 0 0 20301 0 20101 40403
500 878257 501 125250 125751 250500 0 0 125751 0 125251 251003
1000 3506507 1001 500500 501501 1001000 0 0 501501 0 500501 1002003
2000 14013007 2001 2001000 2003001 4002000 0 0 2003001 0 2001001 4004003

split 10 128 33 12 11 30 0 20 41 0 10 32
20 248 63 22 21 60 0 40 81 0 20 62
50 608 153 52 51 150 0 100 201 0 50 152
100 1208 303 102 101 300 0 200 401 0 100 302
200 2408 603 202 201 600 0 400 801 0 200 602
500 6008 1503 502 501 1500 0 1000 2001 0 500 1502
1000 12008 3003 1002 1001 3000 0 2000 4001 0 1000 3002
2000 24008 6003 2002 2001 6000 0 4000 8001 0 2000 6002

�x 10 275 22 0 0 0 20 11 11 0 212 233
20 545 42 0 0 0 40 21 21 0 422 463
50 1355 102 0 0 0 100 51 51 0 1052 1153
100 2705 202 0 0 0 200 101 101 0 2102 2303
200 5405 402 0 0 0 400 201 201 0 4202 4603
500 13505 1002 0 0 0 1000 501 501 0 10502 11503
1000 27005 2002 0 0 0 2000 1001 1001 0 21002 23003
2000 54005 4002 0 0 0 4000 2001 2001 0 42002 46003

map 10 84 2 10 11 20 10 0 11 0 1 22
20 164 2 20 21 40 20 0 21 0 1 42
50 404 2 50 51 100 50 0 51 0 1 102
100 804 2 100 101 200 100 0 101 0 1 202
200 1604 2 200 201 400 200 0 201 0 1 402
500 4004 2 500 501 1000 500 0 501 0 1 1002
1000 8004 2 1000 1001 2000 1000 0 1001 0 1 2002
2000 16004 2 2000 2001 4000 2000 0 2001 0 1 4002

union 10 705 10 10 121 230 0 100 231 10 0 121
20 2605 20 20 441 860 0 400 861 20 0 441
50 15505 50 50 2601 5150 0 2500 5151 50 0 2601
100 61005 100 100 10201 20300 0 10000 20301 100 0 10201
200 242005 200 200 40401 80600 0 40000 80601 200 0 40401
500 1505005 500 500 251001 501500 0 250000 501501 500 0 251001
1000 6010005 1000 1000 1002001 2003000 0 1000000 2003001 1000 0 1002001
2000 24020005 2000 2000 4004001 8006000 0 4000000 8006001 2000 0 4004001

index 10 72 11 0 11 20 9 10 21 1 12 21
20 142 21 0 21 40 19 20 41 1 22 41
50 352 51 0 51 100 49 50 101 1 52 101
100 702 101 0 101 200 99 100 201 1 102 201
200 1402 201 0 201 400 199 200 401 1 202 401
500 3502 501 0 501 1000 499 500 1001 1 502 1001
1000 7002 1001 0 1001 2000 999 1000 2001 1 1002 2001
2000 14002 2001 0 2001 4000 1999 2000 4001 1 2002 4001

Table 1: Results of symbolic evaluation of time-bound functions (exact counts).

11



general, all measured times are closely bounded by the calculated times (with about 70-98% accuracy).

ackermann ackermann (curried)
size calculated measured me/ca calculated measured me/ca

h3,1i 0.03207 0.02861 89.2002 0.02059 0.01503 72.9892
h3,5i 12.8462 10.6540 82.9348 7.89957 5.33000 67.4719
h3,7i 210.051 174.943 83.2863 129.241 89.1780 69.0009
h3,9i 3379.19 2888.33 85.4739 2079.53 1517.27 72.9621

takeuchi (CPS)
size calculated measured me/ca

h19,8,1i 576.058 509.402 88.4289
h19,9,1i 1662.87 1473.49 88.6111
h19,9,3i 92.2675 81.6250 88.4655

h19,10,1i 4383.53 3912.50 89.2543

reverse reverse (CPS) split
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.02410 0.01854 76.9136 0.02872 0.02395 83.3632 0.00877 0.00769 87.7389
20 0.08873 0.06615 74.5462 0.10591 0.08774 82.8435 0.01710 0.01489 87.0741
50 0.52675 0.38781 73.6221 0.63007 0.52147 82.7634 0.04211 0.03588 85.2049
100 2.07054 1.53300 74.0385 2.47907 2.06100 83.1357 0.08378 0.07103 84.7775
200 8.20967 6.03300 73.4864 9.83483 8.13700 82.7365 0.16713 0.14151 84.6698
500 51.0395 37.9980 74.4481 61.1641 50.6200 82.7609 0.41717 0.35321 84.6673
1000 203.797 158.995 78.0164 244.252 202.042 82.7185 0.83391 0.70749 84.8399
2000 814.470 656.137 80.5600 976.205 815.471 83.5348 1.66738 1.40501 84.2642

�x map union index
size calculated measured me/ca calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.02059 0.01981 96.1887 0.00578 0.00476 82.2714 0.04512 0.03547 78.5966 0.00476 0.00344 72.26890
20 0.04087 0.03879 94.9079 0.01133 0.00900 79.4816 0.16680 0.13401 80.3414 0.00894 0.00647 72.37136
50 0.10169 0.09605 94.4445 0.02798 0.02169 77.5121 0.99204 0.80972 81.6212 0.02148 0.01561 72.67225
100 0.20308 0.19183 94.4597 0.05572 0.04360 78.2375 3.90155 3.08000 78.9429 0.04273 0.03073 71.91668
200 0.40584 0.38599 95.1080 0.11121 0.08781 78.9532 15.4734 12.1280 78.3794 0.08575 0.06166 71.90670
500 1.01413 0.97661 96.3001 0.27768 0.22843 82.2614 96.2121 75.1470 78.1055 0.21951 0.15412 70.21092
1000 2.02794 1.93700 95.5154 0.55513 0.48007 86.4776 384.186 315.918 82.2304 0.43402 0.31197 71.87917
2000 4.05556 4.00700 98.8024 1.11003 0.95652 86.1700 1535.42 1260.83 82.1163 1.05827 0.77977 73.68346

Table 2: Calculated and measured worst-case times (in milliseconds.)

6 Related work and conclusion

An overview of comparison with related work in time analysis appears in Section 2. Certain detailed com-
parisons have also been discussed while presenting our method. This section summarizes them, compares
with other related work, and concludes.

Compared to work in algorithm analysis and program complexity analysis [22, 35, 34, 40], this work
consistently pushes through symbolic primitive parameters, so it allows us to calculate actual time bounds
and validate the results with experimental measurements. There is also work on analyzing average-case
complexity [13], which has a di�erent goal than worst-case bounds. Compared to work in systems [36, 29,
28, 23], this work explores program analysis and transformation techniques to make the analysis automatic,
e�cient, and accurate, overcoming the di�culties caused by the inability to obtain loop bounds, recursion
depths, or execution paths automatically and precisely. There is also work for measuring primitive parameters
of Fortran programs for the purpose of general performance prediction [33, 32], where information about
execution paths was obtained by running the programs on a number of inputs; for programs such as insertion
sort whose best-case and worst-case execution times di�er greatly, the predicted time using that method could
be very inaccurate.

Reistad and Gi�ord [30] studied static analysis that helps estimating running times in the presence of
�rst-class procedures, and the results of the estimation were used for dynamic parallelization. Their analysis
produces only a formula that needs to be computed at run time after information about the particular input is
available; they do not analyze time bounds in the presence of incomplete knowledge about the input as we do.
Also, their cost systems do not handle user-de�ned recursive procedures as we do; as pointed out by Hughes
and others [19], the extension to user-de�ned recursive procedures is a major one that a�ects the entire
system. They also mention that they handle imperative constructs, but the analysis and transformations
given do not handle mutable data, so relevant constructs can be simulated easily using bindings.

Several type systems [19, 18, 6] have been proposed for reasoning about space and time bounds, and some
of them include implementations of type checkers [19, 6]. These do not analyze cost, or build cost functions.
Programmers are required to annotate their programs with cost functions as types; some programs have to
be rewritten to have feasible types [19, 18].

12



A number of techniques have been studied for obtaining loop bounds or execution paths for analyzing
time bound [28, 2, 10, 15, 17]. Manual annotations [28, 23] are inconvenient and error-prone [2]. Automatic
analysis of such information has two main problems. First, even when a precise loop bound can be obtained
by symbolic evaluation of the program [10], separating the loop and path information from the rest of the
analysis is in general less accurate than an integrated analysis [27]. Second, approximations for merging
paths from loops, or recursions, very often lead to nontermination of the time analysis, not just looser
bounds [10, 15, 27]. Some new methods, while powerful, apply only to certain classes of programs [17]. In
contrast, our method allows recursions, or loops, to be considered naturally in the overall execution-time
analysis based on partially known input structures. In addition, our method does not merge paths from
recursions, or loops; this may cause exponential time complexity in the analysis, but our experiments on
test programs show that the analysis is still tractable for input sizes in the thousands. We have also studied
simple but powerful optimizations to speed up the analysis.

In the analysis for cache behavior by Ferdinand and others [11], loops are transformed into recursive
calls, and a prede�ned callstring level determines how many times the �xed point analysis iterates and thus
how the analysis results are approximated. Our method allows the analysis to perform the exact number
of recursions, or iterations, for the given partial input data structures. Recent work by Lundqvist and
Stenstrom [27] is based on essentially the same ideas as ours. They apply the ideas at machine instruction
level and can more accurately take into account the e�ects of instruction pipelining and data caching, but
their method for merging paths for loops would lead to nonterminating analysis for many programs, for
example, a program that computes the union of two lists with no repeated elements. We apply the ideas at
source-level, and our experiments show that we can calculate more accurate time bound and for many more
programs than merging paths, and the calculation is still e�cient.

The idea of using partially known input structures originates from Rosendahl [31]. We have extended it to
manipulate primitive parameters, to handle binding constructs, and most importantly, to include higher-order
functions. The power of our method also lies in the optimizations of the time-bound function using partial
evaluation, incremental computation, and transformations of conditionals to make the analysis more e�cient
and more accurate. Partial evaluation [4, 20], incremental computation [26, 25], and other transformations
have been studied intensively in programming languages. Their applications in our time-bound analysis are
particularly simple and clean; the resulting transformations are fully automatic and e�cient.

We have started to explore a suite of new language-based techniques for time analysis, in particular,
analyses and optimizations for further speeding up the evaluation of the time-bound function. To make
the analysis even more accurate and e�cient, we can automatically generate measurement programs for all
maximum subexpressions that do not include transfers of control; this corresponds to the large atomic-blocks
method [29]. We also believe that the lower-bound analysis is symmetric to the upper-bound analysis, by
replacing maximum with minimum at all conditional points; there, special pruning actually allows us to
speed up the analysis even further. Finally, we plan to accommodate more lower-level dynamic factors for
timing at the source-language level [23, 11]. In particular, we have started applying our general approach to
analyze space consumption [37] and hence to help predict garbage-collection and caching behavior.

In conclusion, the approach we developed is based entirely on program analysis and transformations
at the source level. The methods and techniques are intuitive; together they produce automatic tools for
analyzing time bounds e�ciently and accurately. We �nd the accuracy of the experimental results very
encouraging, especially considering that we are analyzing recursive programs at source-level, with garbage
collection, and currently without special treatment for instruction pipelining or cache e�ects.

References
[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer Programs. MIT Press and

McGraw-Hill, 1985.

[2] P. Altenbernd. On the false path problem in hard real-time programs. In Proceedings of the 8th EuroMicro Workshop on
Real-Time Systems, pages 102{107, L'Aquila, June 1996.

[3] R. Arnold, F. Mueller, D. B. Whalley, and M. G. Harmon. Bounding worst-case instruction cache performance. In
Proceedings of the 13th IEEE Real-Time Systems Symposium. IEEE CS Press, Los Alamitos, Calif., 1994.

[4] B. Bj�rner, A. P. Ershov, and N. D. Jones, editors. Partial Evaluation and Mixed Computation. North-Holland, Amster-
dam, 1988.

[5] J. Cohen. Computer-assisted microanalysis of programs. Commun. ACM, 25(10):724{733, Oct. 1982.

13



[6] K. Crary and S. Weirich. Resource bound certi�cation. In Conference Record of the 27th Annual ACM Symposium on
Principles of Programming Languages. ACM, New York, Jan. 2000.

[7] R. K. Dybvig. The Scheme Programming Language, Second edition. Prentice-Hall, Englewood Cli�s, N.J., 1996.

[8] R. K. Dybvig. Chez Scheme User's Guide. Cadence Research Systems, 1998

[9] J. Engblom, P. Altenbernd, and A. Ermedahl. Facilitating worst-case execution time analysis for optimized code. In
Proceedings of the 10th EuroMicro Workshop on Real-Time Systems, Berlin, Germany, June 1998.

[10] A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of execution time. In In Proceedings of Euro-
Par'97, volume 1300 of Lecture Notes in Computer Science, pages 1298{1307. Springer-Verlag, Berlin, Aug. 1997.

[11] C. Ferdinand, F. Martin, and R. Wilhelm. Applying compiler techniques to cache behavior prediction. In Proceedings of
the ACM SIGPLAN 1997 Workshop on Languages, Compilers, and Tools for Real-Time Systems, pages 37{46, 1997.

[12] P. Flajolet, B. Salvy, and P. Zimmermann. Lambda-Upsilon-Omega: An assistant algorithms analyzer. In T. Mora, editor,
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, volume 357 of Lecture Notes in Computer Science,
pages 201{212, Rome, Italy, July 1989. Springer-Verlag, Berlin.

[13] P. Flajolet, B. Salvy, and P. Zimmermann. Automatic average-case analysis of algorithms. Theoretical Computer Science,
Series A, 79(1):37{109, Feb. 1991.

[14] R. P. Gabriel. Performance and Evaluation of LISP Systems. MIT Press series in computer systems. MIT Press, Cam-
bridge, MA, 1985

[15] J. Gustafsson and A. Ermedahl. Automatic derivation of path and loop annotations in object-oriented real-time programs.
Journal of Parallel and Distributed Computing Practices, 1(2), June 1998.

[16] M. G. Harmon, T. P. Baker, and D. B. Whalley. A retargetable technique for predicting execution time. In Proceedings of
the 11th IEEE Real-Time Systems Symposium, pages 68{77. IEEE CS Press, Los Alamitos, Calif., Dec. 1992.

[17] C. Healy, M. Sj�odin, V. Rustagi, and D. Whalley. Bounding loop iterations for timing analysis. In Proceedings of the IEEE
Real-Time Applications Symposium. IEEE CS Press, Los Alamitos, Calif., June 1998.

[18] J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space: Towards embedded ML programming.
In Proceedings of the 1999 ACM SIGPLAN International Conference on Functional Programming, pages 70{81. ACM,
New York, Sept. 1999.

[19] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized types. In Conference Record of
the 23rd Annual ACM Symposium on Principles of Programming Languages, pages 410{423. ACM, New York, Jan. 1996.

[20] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation. Prentice-Hall,
Englewood Cli�s, N.J., 1993.

[21] D. E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, Reading, Mass., 1968.

[22] D. Le M�etayer. Ace: An automatic complexity evaluator. ACM Trans. Program. Lang. Syst., 10(2):248{266, Apr. 1988.

[23] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin, K. Park, S.-M. Moon, and C.-S. Kim. An
accurate worst case timing analysis for RISC processors. IEEE Trans. Softw. Eng., 21(7):593{604, July 1995.

[24] Y. A. Liu and G. G�omez. Automatic accurate time-bound analysis for high-level languages. In Proceedings of the ACM
SIGPLAN 1998 Workshop on Languages, Compilers, and Tools for Embedded Systems, volume 1474 of Lecture Notes in
Computer Science, pages 31{40. Springer-Verlag, June 1998.

[25] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental computation. ACM Trans. Program. Lang.
Syst., 20(3):546{585, May 1998.

[26] Y. A. Liu and T. Teitelbaum. Systematic derivation of incremental programs. Sci. Comput. Program., 24(1):1{39, Feb.
1995.

[27] T. Lundqvist and P. Stenstr�om. Integrating path and timing analysis using instruction-level simulation techniques. Tech-
nical Report No. 98-3, Department of Computer Engineering, Chalmers University of Technology, G�oteborg, Sweden,
1998.

[28] C. Y. Park. Predicting program execution times by analyzing static and dynamic program paths. Real-Time Systems,
5:31{62, 1993.

[29] C. Y. Park and A. C. Shaw. Experiments with a program timing tool based on source-level timing schema. IEEE Comput.,
24(5):48{57, 1991.

[30] B. Reistad and D. K. Gi�ord. Static dependent costs for estimating execution time. In Proceedings of the 1994 ACM
Conference on LISP and Functional Programming, pages 65{78. ACM, New York, June 1994.

[31] M. Rosendahl. Automatic complexity analysis. In Proceedings of the 4th International Conference on Functional Pro-
gramming Languages and Computer Architecture, pages 144{156. ACM, New York, Sept. 1989.

[32] R. H. Saavedra and A. J. Smith. Analysis of benchmark characterization and benchmark performance prediction. ACM
Transactions on Computer Systems, 14(4):344{384, Nov. 1996.

[33] R. H. Saavedra-Barrera, A. J. Smith, and E. Miya. Machine characterization based on an abstract high-level language
machine. IEEE Transactions on Computers, 38(12):1659{1679, Dec. 1989. Special issue on Performance Evaluation.

[34] D. Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, Department of Computing, Imperial College,
London, U.K., Sept. 1990.

[35] D. Sands. Complexity analysis for a lazy higher-order language. In Proceedings of the 3rd European Symposium on
Programming, volume 432 of Lecture Notes in Computer Science, pages 361{376. Springer-Verlag, Berlin, May 1990.

[36] A. Shaw. Reasoning about time in higher level language software. IEEE Trans. Softw. Eng., 15(7):875{889, July 1989.

14



[37] L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Automatic accurate stack space and heap space analysis for high-level
languages. Technical report, Computer Science Department, Indiana University. To appear.

[38] B. Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528{538, Sept. 1975.

[39] D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard. Value dependence graphs: Representation without taxation. In
Conference Record of the 21st Annual ACM Symposium on Principles of Programming Languages. ACM, New York, Jan.
1994.

[40] P. Zimmermann and W. Zimmermann. The automatic complexity analysis of divide-and-conquer algorithms. In Computer
and Information Sciences VI. Elsevier, 1991.

15


