
A framework for automated construction and

transformation of case-based reasoning systems �

Jing Ma, Arijit Sengupta and David Wilson

Computer Science Department

Lindley Hall, Indiana University

150 S. Woodlawn Ave

Bloomington, IN 47405

fjima,asengupt,davwilsg@cs.indiana.edu

July 20, 1999

Computer Science Technical Report 525

Indiana University, Bloomington

�Adapted from Sengupta, Wilson and Leake [SWL99a] with implementation details from Ma.

1

Abstract

Case Based Reasoning systems have gained immense popularity over the recent

years as problem-solving tools. Most case based reasoning systems, however, are devel-

oped essentially from scratch using proprietary systems and applications on a limited

number of platforms. Although methods have been proposed to describe the struc-

ture of a case based reasoner, none of these have been very successful outside their

application domains. In this paper, we �rst describe common methods for automating

CBR system construction. We then describe a general model for common CBR imple-

mentation, and describe in detail a framework of platform-independent construction

of systems based on this model. We discuss an implementation of such a system using

Java, and �nally describe ways systems can be developed using this framework.

1 Introduction

Achieving widespread case-based reasoning support for corporate memories will require
ex-

ibility in integrating implementations with existing organizational infrastructure and re-

sources. We need to investigate not only that particular implementations have addressed

some pieces of the puzzle, but also general implementation infrastructure on which all systems

can build. CBR systems as currently constructed tend to �t three general implementation

models, de�ned by broad implementation constraints on representation and process, which

re
ect evolutionary developments in CBR practice.

Traditionally, task-based implementations have addressed system goals based only on

the constraints imposed by the reasoning task itself. Most research systems, for example,

focus on particular (often idiosyncratic) methods and representations optimized to address

a speci�c reasoning task, either to demonstrate the e�ectiveness of the method or to meet

speci�c task goals.

Recently, there has been an increasing and successful trend of incorporating CBR into

1

enterprise systems (e.g [Wat97, SW98]) to leverage corporate knowledge assets by knowledge

management (e.g. [BFA99]). Enterprise implementations re
ect the additional implementa-

tion constraints imposed on CBR systems as part of an overall enterprise architecture (see

[KS96]). In our view, the most important implementational constraint in this context is that

typically such CBR integrations must operate in conjunction with database systems, the

mainstay of corporate knowledge activity. This will usually mean inter-operation with the

more prevalent relational database systems (e.g. [GW98, KS96, APMH95]), but may also

include object database systems (e.g. [Ell95]). Thus enterprise CBR implementations pro-

vide for and make use of database functionality. Note that not all \enterprise CBR systems"

will have an enterprise implementation in this sense.

Currently, CBR systems are emerging that take advantage of recent developments in

knowledge representation and sharing on the world-wide web (e.g. [Shi98, GW98, DFH+98]).

Web-based implementations re
ect additional constraints imposed on CBR systems by con-

forming to structured document representation standards for web/network communication,

in particular XML|Extensible Markup Language [BPS98]. Note that our type distinction

here is based on the construction of the reasoning system itself, not on how it presents in-

formation. Thus a task-based implementation might have a web interface, and a web-based

implementation might not.

These implementation characterizations are intended to be useful, not perfect. They rep-

resent implementation targets in constructing corporate memories, and varying task aspects

and contexts may prefer one to another. Thus it is important to understand (1) how the

models compare, (2) their individual construction, (3) their combination, and especially (4)

2

Enterprise
(RDBS/ODBS)

Web-Based
(XML/SGML)

Task-Based

Figure 1: Relating CBR implementation types

how one may be constructed by transforming another. Transformations are useful when

new task criteria suggest a model that di�ers from current implementation (conversion), and

when di�ering models are used in di�erent aspects of a combined system (combination, e.g.

database storage, web communication, task-based front end). This paper outlines a frame-

work of practical constructions and transformations, represented in �gure 1, that we expect

will play an important role in building and maintaining case-based corporate memories.

2 Implementation Models

Our implementation characterizations can be applied at many levels of typical CBR systems,

and here we �nd it useful to di�erentiate CBR process (retrieval, adaptation, evaluation)

and (case) representation. Although we recognize the importance of complex object and

object-oriented database models, as well as Standard Generalized Markup Language (SGML,

[ISO86]), here we restrict our discussion to relational database models and XML.

Task-Based: Task-Based implementations account for the bulk of current CBR prac-

tice. These systems allow for highly tuned and e�cient metrics and representations, but

it may prove di�cult to reuse them outside of the system context. Some e�orts have used

3

standardized representations to ameliorate these di�culties (e.g. [MBC+94]), but this is not

widespread.

Enterprise: Integrating CBR implementations with enterprise database systems im-

poses standardization constraints that are almost universal in the enterprise community.

Representations must accord with the table model of relational database systems (RDBS),

while process must adopt Structured Query Language (SQL) conventions. CBR systems gain

the strengths of the underlying RDBS, such as security, concurrency control, backup/recovery,

and scalability. Moreover, integration allows the use of enterprise data both for normal cor-

porate tasks (e.g. reporting), as well as for reasoning. However, because SQL has been

designed to provide certain performance guarantees, it is limited in power, so re�ned metrics

may be di�cult to construct. Also, while complex cases are representable, they may be

di�cult to model in manual construction.

Web-based: XML is emerging as the vehicle for knowledge representation on the web.

It provides a medium that allows (1) de�nition of customized representational markup lan-

guages and (2) application independent exchange of these complex hierarchical represen-

tations over existing web/network channels. XML also allows for customizable display of

information using the associated Extensible Style Language1. While XML is currently vi-

able for use (e.g. for transfer and parsing), it is a fairly new standard, so support (e.g. for

browsing) is limited though growing. Its usability for applications such as CBR is also still

evolving relatively rapidly [HC99]. Thus some bene�ts are immediately available for individ-

ual systems, but developing standard representations for community knowledge sharing will

1http://www.w3.org/TR/1998/WD-xsl-19981216

4

be a crucial task for widespread use in the �eld. Since XML is primarily a representation

standard, it is not tightly coupled with process as are databases, so task-based applications

are generally required for process. However, direct structured query mechanisms, analogous

to SQL, are under development [Sen98, W3C98].

3 Realizing Implementations

The realization of a framework for automatic implementation transformation involves out-

lining process and representation for each model, as well as de�ning and exemplifying the

inter-model transformations. This section outlines the enterprise and web-based models

(we omit the multifarious task-based model that abounds throughout the literature), and

section 4 describes the transformations.

3.1 Enterprise/RDBS

Constructing an enterprise implementation involves associating a case structure with a corre-

sponding relational database schema. Figure 2 shows an Entity-Relationship (ER) model for

typical CBR systems, where stored data represents cases (problems) which result in proposed

decisions (solutions), and their outcomes (evaluations). Almost any general CBR system can

be represented using this ER model by appropriately identifying the di�erent components of

the problem space. Once represented within the model, the system can be fully implemented

in a RDBS. The construction is straightforward for feature-vector case structures, where a

single table row corresponds to a case, and the implementation will consist of at most four

linked tables, one each for the three entities, and one for the relationship. For more complex

case structures, relational normalization techniques are used to model the data.

5

Case
(Problem)

Decision
(Solution)

Outcome
(Evaluation)

0:M

0:M0:M

Results in

Figure 2: Entity Relationship diagram for a typical case-based reasoning process

Database systems can also be used for CBR process, for example by implementing k-

nearest neighbor (k-nn) retrievals. A number of novel data structures have been proposed in

the database literature for e�cient implementation of k-nn algorithms (e.g. [BBKK97]), but

standard database systems do not currently o�er such support. However, if the similarity

metric can be expressed as a numeric-valued function, database cases can be retrieved as

ordered by the similarity results. Thus we view database/CBR process as taking place on

at least three levels:

1. Simple Storage: The database is used only as a storage medium. All cases are re-

trieved and processed by an external system. This combines the storage bene�ts of

the database systems with task-based processing power, but requires a full task-based

implementation. The basic query to the database in this case is:

SELECT * FROM case_table

2. Simple Retrieval: A simple selection is performed based on conditions applied from

the target, and the resulting subset is processed externally. This shifts part of the

processing task to the database system, but may require considerable modeling e�ort

6

to pre-compute similarity as in [Shi98], or to relax query speci�cations as in [GW98,

DL97]. The basic query here is:

SELECT * FROM case_table WHERE conditions

3. Metric Retrieval: A metric function is used to order the rows based on a similarity

value, metric(c)|a function of the target case c. This uses only the database system

itself to perform a full k-nn analysis. This method is ine�cient, since it must both

compute and sort with every record and loses the e�ciency of optimized database

indexing. Thus it has been rejected in the past [SKS93], but could prove useful for

some implementations, since it does not require additional processing for retrieval. We

have used this method with good response time in a prototype application containing

4709 cases with 24 numeric-valued features. The basic query is:

SELECT * FROM case_table ORDER BY metric(k)

To take full advantage of database capabilities, a pre-selection of the cases in the case-base

could be performed using simple retrieval before evaluating metric retrieval, to reduce (if

possible by exact/ranged matching) the number of retrieved cases.

3.2 Web-based/XML

Based on the entity-relationship model of CBR in �gure 2, we can also describe the structure

of a full CBR system using an XML document type de�nition (DTD). The following DTD

was used for the current implementation:

<!ELEMENT CBR (DATA, PROCESS?)>

<!ATTLIST CBR NAME CDATA #REQUIRED>

7

<!ELEMENT DATA (PROBLEM, SOLUTION, EVAL?, RESULT?)>

<!ELEMENT PROBLEM (ATTRIBSET)>

<!ELEMENT SOLUTION (ATTRIBSET)>

<!ELEMENT EVAL (ATTRIBSET)>

<!ELEMENT RESULT (ATTRIBSET)>

<!ELEMENT ATTRIBSET (ATTRIB | ATTRIBSET)+>

<!ATTLIST ATTRIBSET NAME CDATA #REQUIRED>

<!ELEMENT ATTRIB (#PCDATA)>

<!ATTLIST ATTRIB TYPE CDATA #REQUIRED

REQD (REQD|NOTREQD) "NOTREQD"

ID (ID|NOTID) "NOTID"

SIZE CDATA #IMPLIED

RANGE CDATA #IMPLIED

CONSTRAINT CDATA #IMPLIED>

<!ELEMENT PROCESS (METRIC+, ADAPT*)>

<!ELEMENT METRIC (#PCDATA)>

<!ATTLIST METRIC NAME CDATA #REQUIRED

LANG CDATA #IMPLIED

TYPE CDATA #IMPLIED>

<!ELEMENT ADAPT (#PCDATA)>

<!ATTLIST ADAPT NAME CDATA #REQUIRED

LANG CDATA #IMPLIED

TYPE CDATA #IMPLIED>

XML documents conforming to this CBR DTD describe the structure (i.e. meta-data) of

particular CBR systems. Components of the case base are expressed as relations (attribute

sets) and their constituent attributes. Complex hierarchies are supported by allowing sub-

relations inside a relation (i.e., an ATTRIBSET inside another ATTRIBSET in the DTD).

In contrast to other DTDs for CBR [Shi98, HCD98], we allow representation of both process

(similarity, adaptation, evaluation) and case representation, either together or individually.

For example, we are currently working on an implementation that incorporates MathML2,

an XML DTD for describing mathematical structure and content, to represent similarity

metrics.

2http://www.w3.org/TR/REC-MathML/

8

Using the XML model: An instance of the above DTD describes the actual case struc-

ture, which is used by a separate XML application to generate the proper structural de�nition

(a separate DTD) of the case data. The actual case data can then be de�ned as conforming

instances of the generated DTD. This two-step process has the following advantages:

1. Consistency: By generating the case data DTD from the CBR system markup, we

ensure that no separate check is necessary to assert the consistency of the data with

the reasoning system.

2. Validation: Document type de�nitions in which the system attributes are represented

as generic identi�ers (tags) instead of XML attributes allows the case data to be vali-

dated against its DTD to ensure its integrity.

While XML has no particular associated process for retrieval, evolving query language

implementations such as DSQL in DocBase [Sen98] and XML-QL [W3C98] will enhance the

applicability of XML as a web-based CBR implementation model.

As a toy example of this process, consider the following instance of the above DTD

describing a simple linear systems analyzer (LSA), which includes (i) a
at feature vector

describing a linear system (the problem space), (ii) a solution vector that includes the data

structure used to solve the system and (iii) a result vector including the performance values.

<!DOCTYPE CBR SYSTEM "cbr.dtd">

<CBR NAME="LSA">

<DATA>

<PROBLEM>

<ATTRIBSET NAME="Features">

<ATTRIB TYPE="int" ID="ID">FeatureID</ATTRIB>

<ATTRIB TYPE="float">squareness</ATTRIB>

<ATTRIB TYPE="float">diagonalness</ATTRIB>

9

</ATTRIBSET>

</PROBLEM>

<SOLUTION>

<ATTRIBSET NAME="Sol">

<ATTRIB TYPE="int">DS</ATTRIB>

</ATTRIBSET>

</SOLUTION>

<EVAL>

<ATTRIBSET NAME="Eval">

<ATTRIB TYPE="float">Perform</ATTRIB>

</ATTRIBSET>

</EVAL>

</DATA>

<PROCESS>

<METRIC NAME="Similarity" LANG="SQL">

select FeatureID,sqrt(power((squareness - <? param squareness ?>),2)

power((diagonalness - <? param diagonalness ?>),2))

as distance

from Features order by distance ascending

</METRIC>

</PROCESS>

</CBR>

The system described in the above DTD contains a feature vector containing only two

features, a solution including the data structure used, and a result vector with performance

values. Based on this instance, a DTD for the actual case data is generated, which has the

following structure:

<!ELEMENT LSA (Features, Sol, Result,)>

<!ELEMENT Features (Featurestup*)>

<!ELEMENT Featurestup (FeatureID, squareness, diagonalness)>

<!ELEMENT FeatureID (#PCDATA)>

<!ELEMENT squareness (#PCDATA)>

<!ELEMENT diagonalness (#PCDATA)>

<!ELEMENT Sol (Soltup*)>

<!ELEMENT Soltup (SolID, DS)>

<!ELEMENT SolID (#PCDATA)>

<!ELEMENT DS (#PCDATA)>

<!ELEMENT Eval (Evaltup*)>

<!ELEMENT Evaltup (EvalID, Perform)>

<!ELEMENT EvalID (#PCDATA)>

10

<!ELEMENT Perform (#PCDATA)>

<!ELEMENT Result (Resulttup*)>

<!ELEMENT Resulttup (FeatureID, SolID, EvalID)>

The XML data conforming to the above DTD will represent the actual case data for this

CBR system. Such data can be automatically tagged using a text conversion process, or can

be generated from other structured content.

4 Transforming Implementations

Perhaps as important as the implementations themselves is the transformation of one im-

plementation to another. This is useful in two situations: When new task criteria prefer a

model that di�ers from current implementation, and when di�ering implementation models

are used in di�erent aspects of a combined system (e.g. database storage, web communica-

tion, task-based front end). Here we outline the transformations in the framework.

4.1 Web-Based ! Enterprise

An XML representation of case structure can be converted to a database system using an

XML application that processes XML markup tags/content and generates appropriate Data

De�nition Language (DDL) statements to create tables in a relational database. Consider

the following fragment of a CBR system description, relating a person to their automobile:

<ATTRIBSET NAME="Person">

<ATTRIB ID="ID" REQD="REQD" TYPE="longint">SSN

</ATTRIB>

<ATTRIB TYPE="char" SIZE="20" REQD="REQD">Name

</ATTRIB>

<ATTRIBSET NAME="Auto">

<ATTRIB TYPE="char">Make</ATTRIB>

<ATTRIB TYPE="int">Year</ATTRIB>

11

</ATTRIBSET>

</ATTRIBSET>

By parsing this XML fragment and mapping the XML structure to relational table struc-

ture, the patterns can be translated into the following relational DDL statements:

create table Person (SSN longint not null,

Name char(20) not null);

create table Auto (Person_SSN longint not null,

Make char(50), Year int);

For complex case structures, the application can adopt a simple foreign key strategy by

augmenting a substructure with the key of the parent structure. In order to facilitate a

possible future back-translation, this application should also update a database catalog (or-

ganized list) with the role of each created tables in the CBR model. A similar transformation

application can be used to transform XML case data to �ll the generated tables.

The toy example on the LSA system described earlier would result in DDL statements

like the following:

create table Features (FeatureID int unique, squareness float(15) ,

diagonalness float(15))

go

create table Sol (SolID int, DS int)

go

create table Eval (EvalID int, Perform float(15))

go

create table Result (FeatureID int, SolID int, EvalID int)

go

The above structure can be improved by identifying the types of relationships, and by

incorporating single-attribute attributesets directly into the Result vector, which will result

in a more compact description of the system, as follows:

12

create table Features (FeatureID int unique, squareness float(15) ,

diagonalness float(15))

go

create table Result (FeatureID int, DS int, Perform float(15))

go

4.2 Web-Based ! Task-Based

The main task in transforming an XML implementation to a task-based implementation is

to identify a mapping between XML and task-based structures. We assume that the user or

developer of the task-based systems will have the necessary tools and information to create

case data in the task-based model. Taking CASUEL [MBC+94] as an example, an application

like the one described in section 4.1 can generate appropriate CASUEL declarations from the

XML structure. This process is similar to the Web-Based!Enterprise generation process,

except that the generated statements are in CASUEL instead of SQL.

CASUEL has a somewhat of an object-oriented modeling approach. Although it does not

support a complete object-oriented language, it does support abstract typing and inheritance.

However, going from XML to CASUEL, hence, is fairly straight forward, by creating classes

for every attribute set, and for a nested attribute set, simply making the subclass a member

of the parent class. If the data is available in XML as well, it can also be represented in the

CASUEL data format using the same format. The above toy example of the LSA will be

represented in CASUEL as follows:

defdomain LSA;

...

defclass Features a_kind_of class;

slots FeatureID, squareness, diagonalness.

13

defclass Sol a_kind_of class;

slots SolID, DS.

defclass Eval a_kind_of class;

slots EvalID, Perform.

defclass Result a_kind_of class;

slots FeatureID, SolID, EvalID.

4.3 Enterprise ! Web-Based/Task-Based

Transforming an existing database model into a conforming XML model or task-based model

is more involved. Because the database lacks explicit case structure (when using more than

a single table), transformation applications need to understand the role of various database

objects in the CBR representation. Maintaining a catalog of the database objects and their

roles, as suggested in section 4.2, should signi�cantly reduce the amount of reasoning required

prior to transformation. This process of role determination can be performed in several ways:

1. Manual interaction: The system may ask a user to assist in the process of determination

of the roles of each of the objects,

2. Catalog information: The system may use a catalog that includes the roles of each of

the objects,

3. Mining: The system may use data mining techniques to determine appropriate database

objects and their roles.

The dashed lines in �gure 1 represent the extra information requirements for these trans-

formations.

14

4.4 Task-Based ! Web-Based/Enterprise

Converting from task-based to an XML or database format also depends on the actual task-

based model, and the availability of tools that can assist in such transformation. For example,

cases represented using CASUEL can be mapped into the corresponding XML schema or a

database format using an application built on top of a CASUEL parser.

5 Java Implementation

This section describes the architecture as well as the actual implementation of the transfor-

mation routines.

5.1 Languages, platform and tools

We used the Java programming language for the implementation of the transformation rou-

tines. One important consideration behind the use of an object-oriented language was that

they ensure easy extensibility using inheritance and overloading. We used external appli-

cations for the purpose of parsing XML and CASUEL. The XML parser (XP) is courtesy

James Clark (http://www.jclark.com), which provides a Java class library for parsing XML

documents into an event structure that can be processed for many di�erent purposes. The

transformation routines from CASUEL (currently under development) use the CASUEL

parser from INRECA, which is written in C with lex and yacc. We have plans for rewriting

the parser entirely using a Java-based parser generator.

The prototype system was designed to run over the World-Wide Web independent of

platform, a useful outcome for using Java as a programming language. We are currently

developing a version that can be run directly over the web using a world-wide web browser.

15

Because of the necessity of �le operations in this system, we need to consider workarounds

for the security restrictions in Java applets.

5.2 Supporting tools

The primary supporting application in the current version of the prototype is XP, an XML

parser. An XML instance is parsed through the parser, and the events generated from

the result of parsing is used for further processing purposes. XP reads through the XML

input and generates events corresponding to the start and end tags found in the XML. Each

of these events can be processed in sequence, while populating a data structure internally

(described below). The parser also includes names and values of the tags and attributes in

the event objects. This is very useful for the cases where further information on the tag are

available in one or more attributes.

5.3 The transformation process

This section describes the process of the XML to enterprise transformation. This is part of

the application interface which walks the user through the complete transformation process.

Currently only the XML to Enterprise transformation is fully functional. Implementations

of the other transformations are to be completed within the recent future.

In the graphical user interface, after the user selects web-based system as the starting

point, the interface changes to an editing mode where the user can enter an instance of

the CBR DTD. This can be either pasted into the edit bu�er, or written from scratch. In-

ternally, the XML instance is opened by EntityManagerImpl.openFile(), then parsed by

ParserImpl.parseDocument(), both methods in the XP parser library. Events are gener-

16

ated by ParserImpl while it parses through the XML instance. Some of these events include

(i) StartElement(), invoked when a start tag is identi�ed, and (ii) EndElement(), invoked

when an end tag is identi�ed.

The transformation engine then builds up an data structure representing the hierarchy

of elements in the XML tree, using the events generated from the parser. In this data

structure, there are two primary type of nodes AttributeSet, representing an attribute

set, and Attribute, representing an attribute in the attribute set. These two nodes were

implemented using Java classes with the same name, and were used to store the physical

data in the structure.

For the implementation of the transformation, three instances of AttributeSet were

used, one each corresponding to the problem, solution and evaluation. Thus, in response

to an attribset tag, an instance of the AttributeSet class is created, and similarly an

instance of the Attrib class is created corresponding to the attrib tags. The hierarchy of

these classes is maintained according to the XML structure. The algorithm that builds the

data structure uses a simple stack-based algorithm, to ensure the proper handling of the

most recently open attribset tag.

The actual conversion is performed by writer classes that implement the outputString()

method, which generates events corresponding to the type of output that is intended. For ex-

ample, for enterprise output, the outputString() method is implemented by the SQLWriter

class which generates appropriate SQL output corresponding to the current element of the

data structure.

17

6 User-interface

A user-interface to drive the creation and transformation of the systems was also developed

in Java. The interface was developed using a simple \wizard" model. The user is given

options to select the type of system she wants to start with. For the selected type of

system, the wizard then identi�es di�erent methods for specifying the system structure, and

incorporation of the data. Once the data is incorporated into the system, the wizard can

then present various methods for actual implementation, including implicit conversions if

necessary. In the end, the system allows the user to pose simple case retrievals.

The basic operation of the transformation wizard is explained in the control-
ow diagram

in �gure 3. At the beginning of the process, the system identi�es the type of the existing

system. It is possible to start without any system, in which case the user needs to design one

during the process. For an XML-based system, the user needs to describe the system using

an instance of our CBR DTD. This instance is then automatically translated into a database

schema. If a database connection is available, the system can also build the database objects

for which the DDLs are generated. If the original system has a database implementation, an

XML instance corresponding to that database structure is generated. For a CASUEL-based

system, both XML and database schema are generated (CASUEL to database is performed

by CASUEL to XML and then XML to database). At the end of these steps, the system

has the description of the system in XML, and an implementation in a database, which is

used to upload and enter data, as well as perform case retrieval operations.

The Java implementation of this conversion wizard is presently under construction, and

can be obtained from http://www.cs.indiana.edu/�asengupt/cbdb/.

18

System
 Type

XML->DB DB->XML
CASUEL->
 DB

CASUEL->
 XML

CBR System Data Entry or Upload

Query Interface Generation

Retrieval and Adaptation

Source System
Selection

XML/Web
Task-based/
 CASUELEnterprise/

Database

XML System
 Specification

Database
Connection

CASUEL
Specification

System with an XML specification and DB or XML implementation

Figure 3: Control-
ow of the CBR conversion wizard

19

7 Conclusion

We have presented a categorization of current CBR implementation models into three classes,

and shown how this view leads to practical support for building and maintaining case-

based corporate memories. The general transformations from one implementation model to

another allow for the conversion of existing implementations and facilitate the combination

of implementation types to meet new and changing task requirements. We also view these

methods as a natural extension and generalization of mining databases to aid in system

construction.

Based on this framework, we present three challenges to the community: (1) to cre-

ate community standard XML representation speci�cations for CBR, (2) to build a set of

standard methods/libraries for translating between these XML representations and standard

database representations, and (3) to develop standard CBR functionality within database

systems. This requires shifting some attention to building infrastructure for the �eld in ar-

eas that are constrained enough to be feasible and consequential enough to be worthwhile.

Community standards for representation have long been sought in many areas of AI. The

structural foundations provided by web-based and enterprise media, coupled with the impe-

tus for recognition as a community in developing successful case-based corporate memories

provides an environment ripe for achieving this goal for CBR. By providing general represen-

tational frameworks that already have ties to the world of practical application, as well as the

tools to integrate them with one another and with traditional practice, the CBR community

shapes the building blocks for constructing the next generation of successful research and

industrial CBR systems. As CBR practice evolves, we expect the di�erent implementation

20

types to become increasingly integrated, and we hope to facilitate that transformation.

8 Acknowledgements

This technical report is an extended version of [SWL99a], with details of the system imple-

mentation. Much of the motivation for this paper is also derived from [SWL99b], in which

the primary idea of the conversion model is proposed.

References

[APMH95] Jonathan RC Allen, David WR Patterson, Maurice D. Mulvenna, and John G.

Hughes. Integration of case based retrieval with a relational database system in

aircraft technical support. In Proceedings of ICCBR-95. Springer, 1995.

[BBKK97] Stefan Berchtold, Christian Bohm, Daniel Keim, and Hans-Peter Kriegel. A cost

model for nearest neighbor search in high-dimensional data space. In Proceedings

of the 16th ACM PODS Conference, 1997.

[BFA99] Irma Becerra-Fernandez and David W. Aha. Case-based problem solving for

knowledge management systems. In Proceedings of FLAIRS-99. AAAI Press,

1999. To Appear.

[BPS98] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Lan-

guage 1.0, 1998. http://www.w3.org/TR/1998/REC-xml-19980210.

[DFH+98] Michelle Doyle, Maria Angela Ferrario, Conor Hayes, P�adraig Cunningham, and

Barry Smyth. CBR Net:- smart technology over a network. Technical Report

TCD-CS-1998-07, Trinity College Dublin, 1998.

21

[DL97] Jirapun Daengdej and Dickson Lukose. How case-based reasoning and coopera-

tive query answering techniques support RICAD? In Proceedings of ICCBR-97,

pages 315{324. Springer, 1997.

[Ell95] Jeremy Ellman. An application of case based reasoning to object oriented

database retrieval. In Ian Watson, editor, First United Kingdom Workshop on

Case-Based Reasoning. Springer, 1995.

[GW98] Dan Gardingen and Ian Watson. A web based case-based reasoning system

for HVAC sales support. In Applications & Innovations in Expert Systems VI.

Springer, 1998.

[HC99] Conor Hayes and P�adraig Cunningham. Shaping a CBR view with XML. In

Proceedings of ICCBR-99, 1999. To Appear.

[HCD98] Conor Hayes, P�adraig Cunningham, and Michelle Doyle. Distributed CBR using

XML. In Proceedings of the KI-98 Workshop on Intelligent Systems and Elec-

tronic Commerce, number LSA-98-03E. University of Kaiserslauten Computer

Science Department, 1998.

[ISO86] International Organization for Standardization, Geneva, Switzerland. ISO

8879: Information Processing { Text and O�ce Systems { Standard General-

ized Markup Language (SGML), 1986.

[KS96] H. Kitano and H. Shimazu. The experience sharing architecture: A case study

in corporate-wide case-based software quality control. In Case-Based Reasoning:

Experiences, Lessons, and Future Directions. AAAI Press, 1996.

22

[MBC+94] Michael Manago, Ralph Bergmann, No�el Conruyt, Ralph Traph�oner,

James Pasley, Jacques Le Renard, Frank Maurer, Stefan Wess,

Klaus-Dieter Altho�, and Sylvie Dumont. CASUEL: A com-

mon case representation language. INRECA Consortium. Avail-

able on the World-Wide Web at http://wwwagr.informatik.uni-

kl.de/�bergmann/casuel/CASUEL toc2.04.fm.html, 1994.

[Sen98] Arijit Sengupta. Toward the union of databases and document management:

The design of DocBase. In Proceedings of COMAD-98. Tata McGraw Hill, 1998.

[Shi98] Hideo Shimazu. A textual case-based reasoning system using XML on the world-

wide web. In Proceedings of the Fourth European Workshop on Case-Based Rea-

soning. Springer, 1998.

[SKS93] Hideo Shimazu, Hiroaki Kitano, and Akihiro Shibata. Retrieving cases from

relational data-bases: Another stride towards corporate-wide case-base systems.

In Proceedings of IJCAI-93, 1993.

[SW98] Markus Stolpmann and Stefan Wess. Intelligente Systeme f�ur E-Commerce und

Support. Addison Wesley, 1998.

[SWL99a] Arijit Sengupta, David Wilson, and David Leake. Constructing and transforming

cbr implementations: Techniques for corporate memory management. In Pro-

ceedings on ICCBR Workshop on Practical Case-Based Reasoning Strategies for

Building and Maintaining Corporate Memories, Munich, Germany, July 1999.

23

[SWL99b] Arijit Sengupta, David C. Wilson, and David B. Leake. On constructing the

right sort of CBR implementation. In Proceedings of the IJCAI-99 Workshop on

Automating the Construction of Case Based Reasoners, 1999. To Appear.

[W3C98] W3C. XML-QL: A query language for XML, 1998.

http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[Wat97] I. Watson. Applying Case-Based Reasoning: Techniques for Enterprise Systems.

Morgan Kaufmann, San Mateo, CA, 1997.

24

