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Abstract. A systematic transformation method based on incrementalization and value caching, gen-
eralizes a broad family of program improvement techniques. The technique and an interactive tool
supporting it are presented. Though highly structured and automatable, better results are obtained
through interaction with an external intelligence, whose main task is to provide insight and proofs in-
volving term equality. This process yields signi�cant performance improvements in many representative
program classes, including iterative schemes that characterize Today's hardware speci�cations. This is
illustrated by the derivation of a hardware-e�cient nonrestoring square-root algorithm.

Keywords and Phrases: Formal methods, hardware veri�cation, design derivation, formal synthesis,
transformational programming, oating point operations.

1 Introduction

The transformation technique described in this paper is familiar, in some form, to all programmers and
digital engineers. It centers on incremental computation, the exploitation of partial results to more e�ciently
calculate new results. We present here a general method for performing such optimizations and a tool called
CACHET for systematically applying that method formally.

We introduce incrementalization through a series of small examples, culminating with the derivation of a
nonrestoring integer square root implementation originally veri�ed in Nuprl by O'Leary, Leeser, Hickey, and
Aagaard [16]. That, too, was a tutorial methodological illustration using formalized reasoning in a hardware
oriented design context. The purpose of our comparison is to explore how the critical insights needed to justify
an implementation are discovered and introduced under deductive and derivational styles of reasoning.

This is not a question of which style is better, but of understanding how intelligent judgements are made
and how these activities are reected in the reasoning tools. The ultimate goal is a reasoning environment
supporting a variety of reasoning systems, both automatic and interactive. In order to successfuly reach
that goal, we seek better understanding of how human interaction is reected in reasoning processes. The
SQRT example is relatively simple, but it is representative of real designs in signal processing, arithmetic
units, microprocessor pipelines, and so on. The essence the veri�cation, the key insights, are of algebraic
identities|in this case, laws of arithmetic, but generally equational laws of a given abstract data type. So
we are interested how these are discovered and, once discovered, applied in a given reasoning framework.

This paper has two main goals. The �rst is to introduce the analyses and constructions make up incremen-
talization. We begin with an small motivating example relating it to stength reduction, a classical program
transformation technique. Two examples follow to illustrate generality, in particular, extending the idea of
strength reduction to nonlinear recursion patterns. In the software domain, application of incrementalization
has been shown to yield dramatic asymptotic performance improvements (e.g. [11]) by enabling recursion
removal.

Loop strength reduction is an important special case. The second goal is to illustrate how incremental-
ization specializes to the iterations common in hardware speci�cation. In this context an incrementalization
tool, like CACHE introduced in Section 3, facilitates the interplay of designer insight with formal manipu-
lation. A full exposition of incrementalization is covered in the several highly technical papers, cited earlier.
The examples developed here also appear in those papers. Our main purpose is to present incrementalization
as a formal method applied in a restricted speci�cation domain.
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1.1 Background

The core approach to incrementalization is described by Liu in her dissertation [12, 13]. An incrementaliza-
tion tool, CACHE is the focus of [8]. Subsequently, extensions to the basic approach have addressed with
caching, or maintaining partial results in auxiliary variables [10, 11]. Caching uses an on-line dependence
analysis to prune unneeded accumulators. In [9], Liu outlines the steps of a systematic, semi-automatable
incrementalization process, including a presentation of the sqrt derivation used here in Section 5.

The articles cited above give extensive reviews of related literature, of which there is a great deal, since
incrementalization uni�es a large class of program improvement techniques. In particular, incrementalization
restricted to iterative (or looping) constructs it is analogous to strength reduction. These are the kinds
of patterns we expect to see in hardware speci�cation, so the question arises whether incrementalization
specialized to strength reduction is useful.

Design derivation refers to a formalized design process in which a creative agent interacts with a reasoning
tool to transform a speci�cation into a correct implementation. Johnson, Bose, Miner, and others have
investigated an integrated framework for formalized design in which a derivational tool, DDD, interacts
with theorem prover, in this instance PVS. It is demonstrated in [2, 1] that such a heterogeneous framework
reduces the e�ort of verifying a microprocessor implementation. In [6, 14], a more tightly coupled relationship
between a derivational and deductive formalisms is explored.

Both DDD and CACHE are design derivation tools, operating on similar, but not, identical formal
languages. In the main, they apply to di�erent aspects of design, so it is reasonable to consider integrating
them in a single framework. CACHE applies to a control oriented expression of behavior, while DDD's
principle purpose is to build and manipulate architecture oriented expressions.

In the past few years, there has increasing attention to term-level reasoning in hardware veri�cation.
Validity checking with uninterpreted function symbols (e.g. [7]), is a way to increase the power of model
checking and adapt to data path aspects. At the same time, theorem proving approaches have repeatedly
demonstrated the essence of hardware veri�cation proofs lies in equational reasoning at the level of terms but
in the context of systems. Moore's description of a symbolic spreadsheet [15] reects this insight. Greve's use
of symbolic simulation in the JEM1 microprocessor veri�cation, and other similar case studies are exploring
interactive veri�cation methods centering on presenting algebraic identities to the engineer [4].

In 1993, Windley, Leeser, and Aagard pointed out that numerous hardware veri�cations have been found
to follow a common proof plan [19]. Incrementalization might be seen as a \super duper" derivation tactic,
but one that is applicable to a very broad range of speci�cation patterns.

1.2 Strength reduction

Incrementalization generalizes a basic programming technique found in virtually all treatments of program-
ming, however formal. The motivating illustration below comes an undergraduate textbook written in 1978
[18], which credits Dijkstra for the phrase \strength reduction" [3].

We want an algorithm to compute the integer square root of an input x; that is, an S such that f0 �
xg S fz2 � x < (z + 1)2g.?? The and in the postcondition suggests a loop with one conjunct providing the
test and the second an invariant [5]:

z := 0;
while x � (z + 1)2 do fz2 � xg z := z + 1

To get rid of the expensive term (z + 1)2, we can introduce an auxiliary variable u to hold this value. The
invariant becomes fz2 � x and u = (z+1)2g and the loop is be adapted to maintain the stronger condition.
Let u0 and v0 denote the values of u and v after the next loop iteration. The analyses (simultaneous in
general)

z0 = z + 1 and

u0 = (z0 + 1)2

= z0
2
+ 2z0 + 1 (?)

= (z + 1)2 + 2z0 + 1
= u+ 2z0 + 1 (!)

?? We use brackets f� � �g to express partial correctness here.



eliminates the squaring operation. Of course, u must be properly initialized.

z; u := 0; 1;
while x � u do z; u := z + 1; u+ 2(z + 1) + 1

There are four discussion points.
First, u exploits the algebraic identity, (x + 1)2 = x2 + 2x+ 1, at the third step in the derivation of u0.

In general, we cannot expect such insight be fully automated. From here on, we refer to the application of
algebraic laws an exercise of judgment, presumably by an ingenious agent. We indicate points of judgements

with the symbol `
!?
= '. However, even if no such interventions take place, some programs are improved

by saving intermediate results, as optimizing compilers commonly do. Incomplete or specialized equational
reasoning can improve the result still more, even if it can't always achieve the optimum.

Second, while incrementalization generally has the goal of exploiting partial results to eliminate expensive
operations, the measure of expense depends on the target technology. In the program above, if we regarded
the term 2z as expensive, we could eliminate it by introducing a second auxiliary variable variable, to

maintain fw = 2zg. The analysis w0 = 2z0 = 2(z+1)
!?
= 2z+2 = w+2 shows we can convert multipy-by-two

to add-two, provided we can see to apply the distributive law. Obviously, this is not an improvement for
hardware, and whether it is or isn't for software depends on the compiler. Thus, judgment may also be
needed in the tactical application of incrementalization.

Third, while we can certainly argue that the elimination of (z+1)2 improves the program, it is still linear
in the magnitude of its input. Faster convergence requires a better algorithm, such as the nonrestoring sqrt
in Section 5.

Finally, loop invariants are a formal device for declaring intent. They are used here for the more limited
purpose of reasoning about incremental computation. The underlying optimization tactic is loop unrolling
(or unfold/fold transformation). If we know the optimization technique being applied, using the more general
method of inductive assertions might be considered overkill. On the other hand one measure of a good method
is that it can be applied to a range of special circumstances.

2 Systematic incrementalization

In this section we survey the general approach to incrementalization, and we revisit applications to strength
reduction in Section 4.

Formally, programs are represented as recursion equations, that is, systems of �rst-order function def-
initions. Each de�ning expression is a conditional whose branches are either simple terms or expressions
involving recursive calls to the de�ned functions. Terms come from a ground type, or algebraic structure
whose speci�cation includes a set of equational laws. \Term level reasoning" refers to derivations according
to these laws. Decidability depends on the decision problem for the given structure. Most of our examples
involve arithmetic operations with the usual laws of algebra. Generally, the structure is an abstract data
type.

Our program notation is conventional with one exception: formal parameters may include nested identi-
�ers and aliasing. For example, the phrase

let r = (r1; r2) = E in : : :

binds the identi�er r to the value of expression E and also declares this value to be a pair whose �rst
and second elements are identi�ed by r1 and r2, respectively. We shall use these forms only for simple
destructuring.

In the case that all the functions de�ned in a system are tail-recursive, we have the equivalent of a
sequential program. In these cases, our examples include an alternative while-program notation, in the style
of Gries [5], for those who are more comfortable with that form of expression.

The incrementalization method is actually an interplay between two kinds of function extension, incre-
mentalization and caching, as indicated in Figure 1. Let F :W ! V and oplus: (W � Y ) ! W . F plays
the role of the speci�cation we are transforming and � is some state mutator, or arbitrary combination of
elementary operations applied to F 's argument.



�:W � Y !W original incrementalized

original F :W ! V
F 0:W � Y � V ! V

F 0(w; y; F (w)) = F (w � y)

caching
F :W ! V n

F (w) = v1where

hv1; v2; : : :i = F (w)

F
0
:W � Y � V n ! V n

F
0
(w; y; F (w)) = F (w � y)

Fig. 1. Components of incrementalization. These are not de�ning equations, but identities relating cached, incremen-
talized, and cached-incrementalized variants of F .

The incrementalization of F with respect to � is a function that computes F (w�y) given the value of
F (w). That is, F 0: (W � Y � V )! V has the property that

F 0(w; y; F (w)) = F (w � y)

The idea is this: given a speci�cation for F by which computing F (w � y) involves a recursive call to F (w),
we want to consider how F (w) is used in calculating the �nal result. Suppose that F builds a data structure;
then incrementalization involves analyzing how parts of the object F (w) are reused in creating the object
F (w � y). This dependence analysis may require unrolling chains of recursive calls far enough to identify
su�cient patterns of access, in a manner similar to strictness analysis.

Note: Only Example 2 makes use of values introduced from Y . In the other examples, we write �(w),
omitting mention of y.

Caching extends a function to return auxiliary results. F :W ! V is extended to F :W ! V k, so
that F (w) = hF (w); v2; : : : ; vki. The auxiliary values will be those partial results determined by dependence
analysis to be useful across recursive calls. That is, in incrementalization, the cached values, vi will be
components of, formally, subterms of v1 = F (w).

Thus, what we are really after is F
0
, the incrementalization of the caching extension of F , or, if you wish,

the caching extension of the incrementalized call to F . It is important to understand that this transformation
is being applied to an applied occurrence of F , one of possibly many points where F is called. It then remains

to incorporate F
0
in the original speci�cation of F , as we will see in the examples.

2.1 Example 1 { Application to recursive speci�cations

We begin with the \�bonnaci" scheme, below left. and incrementalized with respect to the term �(x)
�
= x+1.

The choice of � reects the fact that incrementalizing F means computing F (x+1) given F (x). Looking at
the original de�ning scheme, another candidate for �(x) might be x+ 2. In other words, the choice of � is
usually straightforward.

F(x)
�
= if x � 1

then 1
else F(x� 1) + F(x� 2)

F 0(x; r)
�
= if x � 0 then 1

else if x = 1then 2
else r + F(x� 1)

Incrementalization with respect to �, yields F 0, on the right above, such that F0(x;F(x)) = F(x + 1)
However, this function doesn't get us very far; the result is still a quadratic recursion pattern. A cache-and-
prune analysis accumulates not only F (x) but also all relevant intermediate values Assuming addition is
\cheap," there are two intermediate values, F(x� 1) and F(x� 2). A �rst caching approximation, F0, takes
the form on the left below with the incrementalized version on the right. Notice that the caching parameter,



r is now a nested data structure. Recall (Fig. 1) that if r = F (x) then F
0
(x; r) = F (x + 1) = hF(x+ 1); : : :i

F0(x)
�
=

if x � 1 then h1; -; -i
else let u = (u1; u2; u3) = F0(x� 1) in

let v = (v1; v2; v3) = F0(x � 2) in
hu1 + v1; u; vi

F0

0
(x; r)

�
=

if x � 0 then h1; -; -i
else if x = 1 then h2; h1; -; -i; h1; -; -ii
else let (r1; r2; r3) = r in

let (r21; r22; r23) = r2 in

hr1 + r21; r; r2i

Now consider the result, hr1 + r21; r; r2i. You may be able to see that the value \of interest," r1 + r21 does
not depend on subcomponents r22, r23, or r3. An automatic, on-line analysis of transitive dependence [11]
con�rms that these elements do not need to be maintained and can be pruned. We get F1 on the left,
incrementalized with respect to x+ 1 on the right

F1(x)
�
=

if x � 1 then h1; -i
else

let (u1; u2; u3) = F0(x� 1) in
let (v1; v2; v3) = F0(x� 2) in
in

hu1 + v1; hu1-i; -i

F1

0
(x; r)

�
=

if x � 0 then h1; -i
else if x = 1 then h2; h1; -ii
else let (r1; r2) = r in

let (r21; r22) = r2 in

hr1 + r21; hr1; -ii

The structure r is now linear and not tree-like, a positive development. Incorporating these re�nements into
the original scheme, and doing some elementary restructuring, we obtain at the de�nition

F(x+ 1)
�
= if x � 0 then h1; -i

else if x = 1 then h2; 1i
else let (r1; r2) = F(x) in hr1 + r2; r1i

Replace x+1 by z and simplify to recover the original form of the conditional. The important outcome is that
the result is a linear recursion, derived, not proven inductively, although it certainly could be. Veri�cation
is subsumed by the pruning analysis. In fact, we haven't yet used the algebraic properties of addition. It
requires associativity to obtain the iterative version of �bonnaci. This, too, is derivable, using techniques
originating with Wand [17].

F(z; 1; 2) where

F(z; u; v)
�
=

if z � 0 then u

else F(z � 1; v; u+ v)

z; u; v := hinput ; 1; 2i;
while z > 0 do
z; u; v := z � 1; v; u+ v;

output := v;

2.2 Example 2 { Caching further extended

Having come this far, let us briey illustrate a further extension of caching to address auxiliary function
calls [10]. The example also serves to demonstrate the more typical use of incrementalization to re�ne data
structures. In the system below, CMP compares the sum of odd-position elements and the product of even-
position elements in a list of numbers.

CMP(x)
�
= �(Os(x)) � �(Es(x))

Os(x)
�
= if null(x) then nil

else cons(car(x);Es(cdr(x)))
�(x)

�
= if null(x) then 0

else car(x) +�(cdr(x))

Es(x)
�
= if null(x) then nil

else Os(cdr(x)
�(x)

�
= if null(x) then 1

else car(x) ��(cdr(x))



Suppose we have reason to incrementalize CMP with respect to

y � x
�
= cons(y; x)

Here we see the introduction of the free variable y in the state modi�er. Even if �(Os(x)) and �(Es(x))
are cached, CMP(cons(y; x)) remains expensive because even positions are now odd and vice versa. Hence,
� and � have to be recomputed. Caching the subterms in CMP's de�ning expression is not su�cient to
improve this program signi�cantly; we must also capture partial sums and products. The extended caching
incrementalization in [10] results in the following:

CMP(x)
�
= let v1 = Os(x) in

let v2 = Es(x) in
let u1 = �(v1) in
let u2 = �(v2) in
hu1 � u2; u1; u2; v1; v2i

CMP
0
(y; (r1; r2; r3; r4; r5))

�
=

h(y + r4) � r5; y + r4; r5; r2; y � r3i

In CMP
0
partial sums and products are cached, to be used when a number y is added to the list. Hence, the

incremental cost of computing CMP(y � x) goes from linear time to constant time.

3 Incrementalization specialized to strength reduction

Let us return to the the naive sqrt from Section 1.2 We present the derivation in both functional and
imperative syntax. For clarity, we move the computation of (z+1)2 out of the test and into the body of the
loop.

sqrt(x)
�
= S(x; 0; 1)

S(x; z; u)
�
=

if x < u then z

else S(x; z + 1; ((z + 1) + 1)2)

x; z; u := input ; 0; 1;
while x � u do

z; u := z + 1; ((z + 1) + 1)2;
output := z

There is only one occurrence of S to consider, but what is the � with respect to which S should be incre-
mentalized? Let us (not really arbitrarily) take it to be the update function that S performs,

�(x; z; u) = hx; z + 1; ((z + 1) + 1)2)i

No free values (ys) are used, so we have specialized from oplus: (W�Y )!W to oplus: (W !W , whereW in
this case consists of numeric triples. According to Figure 1, we want to construct S0 such that S0(w; S(w)) =
S(�(w)), but oplus was selected such that, in the looping branch, S(�(w)) = �(�(w)). In other words, the
choice of � amounts to loop unrolling.

Let

(x0; z0; u0) denote � (x; z; u) = hx; z + 1; ((z + 1) + 1)2i

and let

(rx; rz ; ru) denote S(x; z; u) = hx; z + 1; ((z + 1) + 1)2i

We can derivey (Note: x0, z0, and u0 are not playing the same role here as in the introductory example.)

y The derivation is clearer if we replace occurrences of \z+1" by a fresh variable; but we think introducing metavari-
ables at this point would cloud the explanation of incrementalization.



S � �(x; z; u)
= S(x0; z0; u0)
= S(x; z+1; ((z+1) + 1)2) (defn. of �)
= hx; (z+1) + 1; (((z+1) + 1) + 1)2 i (defn. of S)
!?
= hrx; rz + 1; (((z+1) + 1) + 1)2 i (rx = x and rz = z+1)
!?
= hrx; rz + 1; ((z+1) + 1)2 + 2((z+1) + 1) + 1 i ((z+1)2 = v2 + 2v + 1)
= hrx; rz + 1; ru + 2((z+1) + 1) + 1 i (ru = ((z+1) + 1)2)
= hrx; rz + 1; ru + 2(rz + 1) + 1 i (rz = z+1)

The �nal value is in terms of r. We used judgment in the fourth step applying an algebraic identity, but also
in the third step, deferring the replacement of one occurrence of z+1 by rz .

The incrementalized loop body is now incorporated in the original program. In essence, we perform a
two-way \fold". Introducing S0 to the system, we get

sqrt(x) =
let (x; z; u) = hx; 0; 1i
in

if x < u then z

else S0( hx; z + 1; (z + 1)2i;
hx; z; ui)

where

S0((x; z; u); (rx; rz; ru)) =
if x < u then z

else S0( hrx; rz ; rui;
hrx; rz + 1; ru + 2rz + 1i)

x; z; u := input ; 0; 1;
if x � u then z

else

(x; z; u); (rx; rz ; ru) :=
hx; z + 1; ((z + 1) + 1)2i; hx; z; ui

while x � udo

(x; z; u); (rx; rz; ru) :=
hrx; rz + 1; ru + 2rz + 1i; hx; z; ui;

output := z;

Our goal is to get rid of w = (x; z; u). Since r = (rx; rz; ru) is just a trailer variable for w, if we initialized
it properly, we could, �rst, replace the test on w by a test on r, and second, eliminate w entirely by replacing
it by r; and then third, rename r to w. We arrive at the anticipated result:

sqrt(x)
�
= S(x; 0; 1)

S(x; z; u)
�
=

if x < u then z

else S(x; z + 1; 2u+ 2(z + 1) + 1)

x; z; u := input ; 0; 1;
while x � u do

x; z; u := x; z + 1; u+ 2(z + 1) + 1 :
output := z;

Because we knew at the outset that we were incrementalizing a loop, this �nal collapse is automatic, as long
as we can express the next value of r in terms of r. We shall see later that there are opportunities at this
point to optimize both the start-up and shut-down phases of the loop. It is also worth noting that including
x in the incrementalization is unnecessary. In Section 5 we will narrow our attention to those state variables
that bene�t from incrementalization.

Once again, the judgment was exercised at just two points in the derivation. Otherwise, we followed these
steps:

1. Move expensive terms out of tests, introducing variables as needed.

2. Solve the incrementalization problem. Pick a function call, F (e1 � � � ek) and an state modi�er, �, to in-
crementalize. In the iterative case, � = F = he1 � � � eki.

3. Incorporate the solution.

4. Simplify and fold. In Section 5 we will see that this involves three additional substeps.



4 CACHET: an incrementalization tool

CACHET [8, 13] is a program transformation tool supporting incrementalization. Figures 3 and 7 are snap-
shots of CACHET in operation.

The primary window in CACHET is a syntax-directed program editor. The cursor addresses and oper-
ates on subexpressions, according to the program grammar, and not characters. Subwindows are used to
investigate subprograms and display analyses. For reasoning support, these subwindows inherit the contin-
gencies determined by conditional tests, new let bindings, and the accumulation of new function de�nitions.
There is substantial automated support for incrementalization, but, the operator must be familiar with the
incrementalization steps to take advantage of the automation.

Figure 3 illustrates an incrementalization of a simple sorting algorithm. The main window displays the
system under design, and de�nes the state modi�er and transformation context. The middle window shows a
process of expanding and symbolically evaluating the expression under the cursor in the primary window, and
similarly in the foremost window. The lower region of the foremost window shows an accounting of cached
subexpressions and their identi�ers. The buttons are transformations and operations that are meaningful
for the selected subexpression. To these may be added term rewrites that are speci�c to the ground type.
Figures 7(a{c) show CACHET applied to the next example, and are discussed in the conclusion.

5 Application to sqrt [16]

Figure 7 contains snapshots of the derivation of the nonrestoring integer square root implementation, speci�ed
by O'Leary, Leeser, Hickey and Aagaard [16]. A more detailed presentation of this derivation can be found in
[13]. We show highlights of the derivation in an imperative notation. The initial algorithm (left) and derived
implementation (right) are shown together in Figure 2.

n; i;m := input ; (l� 2); 2l�1;
while i � 0 do

p := n�m2;
if p > 0 then

m := m+ 2i

else if p < 0 then

m := m� 2i;
i := i� 1;

output := m

p; v; w := input ; 0; 22(l�1);
while (w � 1) do

if p > 0 then

p; v; w := p� v � w; v
2
+ w; w

4

else if p < 0 then

p; v; w := p+ v � w; v
2
� w; w

4

else

v; w := v

2
; w
4
;

output := v

Fig. 2. Speci�cation and implementation of nonrestoring sqrt

Of course, it should �rst be established that the initial algorithm is correct. O'Leary, et.al prove in Nuprl
in that the result is correct, except possibly in the least signi�cant bit [16]:

For any proper input, x; (sqrt(x)� 1)2 � i < (sqrt(x) + 1)2

The goal of the derivation is to re�ne this speci�cation with hardware in mind. The derivation in CACHET
requires a familiarity with the incrementalization strategy and a just a little special knowledge of arithmetic.
We will point out where judgment is exercised. The example follows the steps of incrementalization outlined
in Section 3.



5.1 Incrementalization

We are optimizing a loop, so incrementalization specializes to the case that the function F and state mu-
tator � (Fig. 1) are the same. In this case, the variable n is unchanged, and the loop index i decrements
independently variables. Let us therefore focus on the update to m, denoted by M below.

F (n;m; i) = �hn;m; ii = hn;M(n;m; i); i� 1i

where
M(n;m; i) = let p = n�m2 in

if p > 0 then m+ 2i

else if p < 0 then m� 2i

else m

A caching extension of M is

M(n;m; i)
�
= let p = n�m2 in

if p > 0 then
let u = 2i in hm+ u; p; u; 2mu; u2i

else if p < 0 then
let u = 2i in hm� u; p; u; 2mu; u2i

else hm; 0; -; -; -i

Let (m; p; u; v; w) denote M(n;m; i). Incrementalizing M under � yields

M
0
(m; p; u; v; w)

�
= if p > 0 then let p = p� v � w in

if p > 0 then hm+ u
2
; p; u

2
; v
2
+ w; w

4
i

else if p < 0 then hm� u
2
; p; u

2
; v
2
+ w; w

4
i

else hm; 0; u
2
; v
2
+ w; w

4
i

else if p < 0 then let p = p+ v � w in

if p > 0 then hm+ u
2
; p; u; v

2
+ w; w

4
i

else if p < 0 then hm� u
2
; p; u; v

2
+ w; w

4
i

else hm; 0; u
2
; v
2
+ w; w

4
i

else hm; 0; u
2
; v
2
+ w; w

4
i

Following Section 3, the initial formal parameter for M
0
is

(m; p; u; v; w; (rm; rp; ru; rv ; rw))

but this can be trimmed. Incrementalization results in an update involving only cached values; so we can
eliminate m, p, u, v, and w, then rename ((rm; rp; ru; rv ; rw)) for legibility. Judgment is exercised at three
points in this step.

M computes the intermediate result n�m2 and � updates m to m� u. Thus, M � � computes

n� (m� u)2
!?
= n�m2 � 2mu� u2 (1)

and so M caches 2mu and u2. The partial result m2 is pruned because it is not used separately. In M , w

maintains the value u2 and so in M
0

w0 = (u0)2 =
�u
2

�2
!?
=

w

4
(2)

In M
0
the 5-tuple returned is simpli�ed according to the context, that is, contingencies determined by

the tests. For example, in the �rst branch, with both p > 0 and p > 0 the fourth component is

2m0n0 = 2(m+ u)
u

2

!?
=

2mu

2
+

2u2

2
=

v

2
+ w (3)



5.2 Incorporating, folding, and simplifying

Incorporating the incrementalized result in the original program opens opportunities to optimize in three
ways, each based on dependence analyses already used in incrementalization, and each possibly involving
tactical judgment. The goal is elimination of unneeded terms.

1. Replace the loop test. M
0
no longer refers to the loop index, i. If we can remove i from the test (Fig. 2,

left), it is no longer needed at all. In M u's original role was to maintain 2i, so

i0 � 0 () i � 1 () u � 2 () u2 � 4 () w � 4 (4)

Thus, i is unneeded since we can use either u or w.
2. Minimize maintained information. On termination the loop test fails, that is,

i0 = �1 () i = 1 () u = 1 (5)

Furthermore the only value needed is m, the �rst component ofM
0
, which depends on the previous value

of m, u, and p. Since u = 1 we can recover this value as

if p > 0 then
v

2
+ 1 else if p < 0 then

v

2
= 1 else

v

2

Analyzing the dependencies in M
0
we determine that the only values needed to maintain p and v are

components p, v, and w. Thus, if we choose w to compute the loop test in the preceding step, we can
eliminate u.

3. Fold and initialize. The body of the loop in sqrt's implementation, Figure 2, incorporates a version of

M
0
with values m and u pruned.

5.3 Review of the example

Judgment, in the form of equational reasoning, was involved in all the steps of incrementalization. Caching,
(1 and 2) incrementalization (3), incorporation and folding (4 and 5), all entailed theorems depending on
arithmetic identities. Induction was not explicit, although it might be argued that folding is an inductive
tactic. The entailed dependence analyses are already provided for incrementalization.

6 Conclusions and directions

Understanding incrementalization in its full generality is substantial undertaking, at least at our current
stage of understanding. A more specialized tool for strength reduction might be appropriate to practice,
especially in hardware implementation. On the other hand, understanding the more general method may be
worth the investment in applications where hardware/software decomposition is involved. It is similar to the
issue of whether to use a general purpose theorem prover for special purposes.

Of course, CACHET supports a class of program optimizations, not a complete calculus for program
re�nement, so the analogy to a theorem prover can only be taken so far. The main point of this study is that
the creative input to sqrt's implementation veri�cation boil down to a few algebraic laws, tactically applied.
This is the case whether the proof is deductive or derivational.

Figure 7 shows CACHET applied to the sqrt example, beginning with the initial representation of the
update function. In frame (b) we are in the process of developing the cached auxiliary values. In frame (c)
the cached partial values are being incorporated in the loop. It is at this stage where, for example, the
distributive law for multiplication is invoked to in order to exploit these values. The CACHET tool was
developed with a view toward applications to generally recursive software speci�cations. A specialization to
loop forms would suggest some modi�cations to the user interface, but these appear to be quite super�cial.
There are other hardware oriented tactics to explore. For example, pipelining is a kind of incrementalization
but we do not know whether CACHET can adapt to it.

The implementation in Figure 2 is the same as that of O'Leary, et. al. [16]. In that study, elimination of
the loop index is done in the architectural (structural) description, rather than the behavioral one. Formal
derivation and subsequent re�nement of a correct architecture for Figure 2 is straightforward in the DDD
algebra. Whether a given design optimization is better done earlier, in CACHET, or later, in DDD, is a
matter for further research.
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Fig. 3. First view of the CACHET tool.



(a) (b)

Fig. 4. Snapshots of the SQRT derivation in
CACHET.
Frame (a) shows the initial de�nition of sqrt's
update state modi�er. In Frame (2), cached val-
ues have been determined. In Frame (3) these
cached values are being incorporated in the in-
crementalized computation.

(c)


