
E�cient Detection of Global Properties in Distributed Systems

Using Partial-Order Methods�

Scott D. Stoller Leena Unnikrishnan Yanhong A. Liu

15 July 2000

Abstract

A new approach is presented for detecting whether a particular computation of an asyn-

chronous distributed system satis�es Poss� (read \possibly �"), meaning the system could

have passed through a global state satisfying predicate �, or Def � (read \de�nitely �"),

meaning the system de�nitely passed through a global state satisfying �. Detection can be

done easily by straightforward state-space search; this is essentially what Cooper and Marzullo

proposed. We show that the persistent-set technique, a well-known partial-order method for

optimizing state-space search, provides e�cient detection. The resulting detection algorithms

handle larger classes of predicates and thus are more general than two special-purpose detection

algorithms by Garg and Waldecker, which detect Poss� and Def � e�ciently for a restricted

but important class of predicates. Furthermore, our algorithm for Poss� achieves the same

worst-case asymptotic time complexity as Garg and Waldecker's special-purpose algorithm for

Poss�. We apply our algorithm for Poss� to two examples, achieving a speedup of over 700

in one example and over 70 in the other, compared to unoptimized state-space search.

1 Introduction

Detecting global properties (i.e., predicates on global states) in distributed systems is useful for

monitoring and debugging. For example, when testing a distributed mutual exclusion algorithm, it

is useful to monitor the system to detect concurrent accesses to the critical sections. A system that

performs leader election may be monitored to ensure that processes agree on the current leader. A

system that dynamically partitions and re-partitions a large dataset among a set of processors may

be monitored to ensure that each portion of the dataset is assigned to exactly one processor.

An asynchronous distributed system is characterized by lack of synchronized clocks and lack

of bounds on processor speed and network latency. In such a system, no process can determine in

general the order in which events on di�erent processors actually occurred. Therefore, no process

can determine in general the sequence of global states through which the system passed. This leads

to an obvious di�culty for detecting whether a global property held.

�The authors gratefully acknowledge the support of NSF under Grants CCR-9876058 and CCR-9711253 and the
support of ONR under Grants N00014-99-1-0358 and N00014-99-1-0132. Email: fstoller,lunnikri,liug@cs.indiana.edu
Web: http://www.cs.indiana.edu/~fstoller,lunnikri,liug/

Cooper and Marzullo's solution to this di�culty involves two modalities, which we denote by

Poss (read \possibly") and Def (read \de�nitely") [CM91]. These modalities are based on logical

time as embodied in the happened-before relation, a partial order that re
ects causal dependencies

[Lam78]. A history of an asynchronous distributed system can be approximated by a computation,

which comprises the local computation of each process together with the happened-before relation.

Happened-before is useful for detection algorithms because, using vector clocks [Fid88, Mat89,

SW89], it can be determined by processes in the system.

Happened-before is not a total order, so it does not uniquely determine the history. But it

does restrict the possibilities. Histories consistent with a computation c are those sequences of the

events in c that correspond to total orders containing the happened-before relation. A consistent

global state (CGS) of a computation c is a global state that appears in some history consistent

with c. A computation c satis�es Poss� i�, in some history consistent with c, the system passes

through a global state satisfying �. A computation c satis�es Def � i�, in all histories consistent

with c, the system passes through a global state satisfying �.

Cooper and Marzullo give centralized algorithms for detecting Poss� and Def � [CM91]. A

stub at each process reports the local states of that process to a central monitor. The monitor

incrementally constructs a lattice whose elements correspond to CGSs of the computation. Poss�

and Def � are evaluated by straightforward traversals of the lattice. In a system of N processes,

the worst-case number of CGSs, which can occur in computations containing little communication,

is �(SN), where S is the maximum number of steps taken by a single process. Any detection

algorithm that enumerates all CGSs|like the algorithms in [CM91, MN91, JMN95, AV94]|has

time complexity that is at least linear in the number of CGSs. This time complexity can be

prohibitive. This motivated the development of e�cient algorithms for detecting restricted classes

of predicates [TG93, GW94, GW96, CG98]. The algorithms of Garg and Waldecker are classic

examples of this approach. A predicate is n-local if it depends on the local states of at most

n processes. In [GW94] and [GW96], Garg and Waldecker give e�cient algorithms that detect

Poss� and Def �, respectively, for predicates � that are conjunctions of 1-local predicates. Those

two algorithms are presented as two independent works, with little relationship to each other or to

existing techniques.

This paper shows that e�cient detection of global predicates can be done using a well-known

partial-order method. Partial-order methods are optimized state-space search algorithms that try to

avoid exploring multiple interleavings of independent transitions [PPH97]. This approach achieves

the same worst-case asymptotic time complexity as the aforementioned algorithm of Garg and

Waldecker for Poss�, assuming weak vector clocks [MN91], which are updated only by events

that can change the truth value of � and by receive events by which a process �rst learns of some

event that can change the truth value of �, are used with our algorithm. Speci�cally, we show

that persistent-set selective search [God96] can be used to detect Poss� for conjunctions of 1-

local predicates with time complexity O(N2S). In some non-worst cases, Garg and Waldecker's

2 of 26

algorithm may be faster than ours by up to a factor of N , because their algorithms also incorporate

an idea, not captured by partial-order methods, by which the algorithm ignores local states of

a process that do not satisfy the 1-local predicate associated with that process. For details, see

Section 8.

Our algorithms for detecting Poss� and Def � handle larger classes of predicates and thus

are more general than Garg and Waldecker's algorithms. Furthermore, our method for Poss� is

asymptotically faster than Cooper and Marzullo's algorithm for some classes of systems to which

Garg and Waldecker's algorithm does not apply. For some classes of systems, although our methods

for Poss� and Def � have the same asymptotic worst-case complexity as Cooper and Marzullo's

algorithm, we expect our method to be signi�cantly faster in practice; this is typical of general ex-

perience with partial-order methods. Our algorithm for detecting Poss� can be further optimized

to sometimes explore sequences of transitions in a single step. This can provide signi�cant speedup,

even reducing the asymptotic time and space complexities for certain classes of systems.

We give specialized algorithms PSPoss and PSDef for computing persistent sets for detection

of Poss� and Def �, respectively. These algorithms exploit the structure of the problem in order

to e�ciently compute small persistent sets. One could instead use a general-purpose algorithm for

computing persistent sets, such as the conditional stubborn set algorithm (CSSA) [God96, Section

4.7], which is based on Valmari's work on stubborn sets [Val97]. When CSSA is used for detecting

Poss�, it is either ine�ective (i.e., it returns the set of all enabled transitions) or slower than

PSPoss by a factor of S (and possibly by some factors of N) in the worst case, depending on how

it is applied. The cheaper algorithms for computing persistent sets in [God96] are ine�ective for

detecting Poss�. When CSSA (or any of the other algorithms in [God96]) is used for detecting

Def �, it is ine�ective.

For simplicity, we present algorithms for o�-line property detection, in which the detection

algorithm is run after the distributed computation has terminated. Our approach can also be

applied to on-line property detection, in which a monitor runs concurrently with the system being

monitored.

Property detection is a special case of model-checking of temporal logics interpreted over

partially-ordered sets of global con�gurations, as described in [AMP98, Wal98]. Those papers

do not discuss in detail the use of partial-order methods to avoid exploring all global states and do

not characterize classes of global predicates for which partial-order methods reduce the worst-case

asymptotic time complexity. Alur et al. give a decision procedure for the logic ISTL3. Poss�

is expressible in ISTL3 as 93�. Def � is expressible in ISTL as :92:� but appears not to be

directly expressible in ISTL3.

An avenue for future work is to try to extend this approach to e�cient analysis of message

sequence charts [MPS98, AY99].

Using known partial-order methods for temporal-logic model checking [God96, chapter 7], it

should be possible to use persistent-set selective search as the basis of new and e�cient algorithms

3 of 26

for detecting temporal global properties in asynchronous distributed systems, such as the \behav-

ioral patterns" of Babao�glu and Raynal [BR94].

An interesting open question is how the performance of persistent-set selective search compares

with that of symbolic methods (e.g., [SL98, Hel99]) for this class of problems.

Section 2 provides background on property detection. Section 3 provides background on partial-

order methods. Sections 4 and 6 present our algorithms for detecting Poss� and Def �, respec-

tively. Section 5 describes an optimized algorithm for detecting Poss� that can explore sequences

of transitions in a single step. Section 7 demonstrates the e�ectiveness of our approach on two

examples. Section 8 discusses other enhancements and optimizations. Section 9 compares PSPoss

and PSDef to general-purpose algorithms for computing persistent sets.

2 Background on Property Detection

A local state of a process is a mapping from identi�ers to values. Thus, s(v) denotes the value

of variable v in local state s. A history of a single process is represented as a sequence of that

process's states. Let [m::n] denote the set of integers from m to n, inclusive. We use integers [1::N]

as process names.

In the distributed computing literature, the most common representation of a computation c of

an asynchronous distributed system is a collection of histories c[1]; : : : ; c[N], one for each constituent

process, together with a happened-before relation ! on local states [GW94]. For a sequence h, let

h[k] denote the kth element of h (i.e., we use 1-based indexing), and let jhj denote the length of

h. Intuitively, a local state s1 happened-before a local state s2 if s1 �nished before s2 started.

Formally, ! is the smallest transitive relation on the local states in c such that

1. 8i 2 [1::N]; k 2 [1::jc[i]j � 1] : c[i][k] ! c[i][k + 1]).

2. For all local states s1 and s2 in c, if the event immediately following s1 is the sending of

a message and the event immediately preceding s2 is the reception of that message, then

s1 ! s2.

We always use S to denote the maximum number of local states per process, i.e., max(jc[1]j; : : : ; jc[N]j).

Each process i has a distinguished variable vt such that for each local state s in computation c,

s(vt) is a vector timestamp [Mat89], i.e., an array of N natural numbers such that for each j, if the

number k of local states of process j that happened-before s in c is zero and i 6= j, then s(vt)[j] = 0,

otherwise s(vt)[j] = k + 1. Vector timestamps capture the happened-before relation. Speci�cally,

for all local states s1 and s2, s1 ! s2 i� s1(vt) 6= s2(vt) ^ (8i 2 [1::N] : s1(vt)[i] � s2(vt)[i]). Two

local states s1 and s2 of a computation are concurrent, denoted s1 k s2, i� neither happened-before

the other: s1 k s2 = s1 6! s2 ^ s2 6! s1.

A global state s of a computation c is an array of N local states such that, for each process i, s[i]

appears in c[i]. A global state is consistent i� its constituent local states are pairwise concurrent.

4 of 26

s

s

s

s

.. -
@
@
@
@R -

vt

p1

vt

p2

2

h3; 0i

h0; 1i

h2; 0i

3

1

2

h0; 2i

3

1

h3; 3i

h1; 0i

Figure 1: Computation c0.

Intuitively, consistency means that the system could have passed through that global state during

the computation.

Concurrency of two local states can be tested in constant time using vector timestamps by

exploiting the following theorem [FR94]: for a local state s1 of process i1 and a local state s2 of

process i2, s1 k s2 i� s2(vt)[i2] � s1(vt)[i2] ^ s1(vt)[i1] � s2(vt)[i1]. Thus, a global state s is

consistent i� (8i; j 2 [1::N] : s[i](vt)[i] � s[j](vt)[i]).

A computation c satis�es Poss�, denoted c j= Poss�, i� there exists a CGS of c that satis�es

�.

Introduce a partial order �G on global states: s1 �G s2 = (8i 2 [1::N] : s1[i] = s2[i] _ s1[i]!

s2[i]). A history consistent with a computation c is a �nite or in�nite sequence � of consistent

global states of c such that, with respect to �G: (i) �[1] is minimal; (ii) for all k 2 [1::j�j � 1],

�[k + 1] is an immediate successor1 of �[k]; and (iii) if � is �nite, then �[j�j] is maximal.

A computation c satis�esDef �, denoted c j= Def �, i� every history consistent with c contains

a global state satisfying �.

Example. Consider the computation c0 shown in Figure 1. Horizontal lines correspond to pro-

cesses; diagonal lines, to messages. Dots represent events. Each process has a variable vt con-

taining the vector time. Variable pi contains the rest of process i's local state. Let sk1;k2 denote

the global state comprising the k1'th local state of process 1 and the k2'th local state of process

2. The CGSs of c0 are fs1;1; s2;1; s1;2; s2;2; s3;1; s3;2; s3;3g. Some properties of this computation

are: c0 j= Poss (p1 = 2 ^ p2 = 2), c0 j= Def (p1 + p2 = 2), c0 6j= Def (p1 = 2 ^ p2 = 2), and

c0 6j= Poss (p1 = 1 ^ p2 = 3).

3 Background on Partial-Order Methods

The material in this section is paraphrased from [God96]. Beware! The system model in this section

di�ers from the model of distributed computations in the previous section. For example, \state"

1For a re
exive or irre
exive partial order hS;�i and elements x 2 S and y 2 S, y is an immediate successor of x
i� x 6= y ^ x � y ^ :(9 z 2 S n fx; yg : x � z ^ z � y).

5 of 26

has di�erent meanings in the two models. Sections 4 and 6 give mappings from the former model

to the latter.

A concurrent system is a collection of �nite-state automata that interact via shared variables

(more generally, shared objects). More formally, a concurrent system is a tuple hP;O;T ; siniti,

where

� P is a set fP1; : : : ; PNg of processes. A process is a �nite set of control points. For convenience,

assume Pi \ Pj = ; for i 6= j.

� O is a set of shared variables.

� T is a set of transitions. A transition is a tuple hL1; G;C; L2i, where: L1 is a set of control

points, at most one from each process; L2 is a set of control points of the same processes as

L1, and with at most one control point from each process; G is a guard, i.e., a boolean-valued

expression over the shared variables; and C is a command, i.e., a sequence of operations that

update the shared variables.

� sinit is the initial state of the system.

A (global) state is a tuple hL; V i, where L is a collection of control points, one from each process,

and V is a collection of values, one for each shared variable. For a state s and a shared variable

v, we abuse notation and write s(v) to denote the value of v in s (the same notation is used in

Section 2 but with a di�erent de�nition of \state"). Similarly, for a state s and a predicate �, we

write s(�) to denote the value of � in s. A transition hL1; G;C; L2i is enabled in state hL; V i if

L1 � L and G evaluates to true using the values in V . Let enabled(s) denote the set of transitions

enabled in s. If a transition hL1; G;C; L2i is enabled in state s = hL; V i, then it can be executed

in s, leading to the state h(L nL1)[L2; C(V)i, where C(V) represents the new values obtained by

using the operations in C to update the values in V . We write s
t
! s0 to indicate that transition t

is enabled in state s and executing t in s leads to state s0.

An execution of a concurrent system is a �nite or in�nite sequence s1
t1! s2

t2! s3 � � � such that

s1 = sinit and for all i, si
ti! si+1. A state is reachable (in a system) if it appears in some execution

(of that system).

Suppose we wish to �nd all the \deadlocks" of a system. Following Godefroid (but deviating

from standard usage), a deadlock is a state in which no transitions are enabled. Clearly, all reachable

deadlocks can be identi�ed by exploring all reachable states. This involves explicitly considering

all possible execution orderings of transitions, even if some transitions are \independent" (i.e.,

executing them in any order leads to the same state; formal de�nition appears in Appendix).

Exploring one interleaving of independent transitions is su�cient for �nding deadlocks. This does

cause fewer intermediate states (i.e., states in which some but not all of the independent transitions

have been executed) to be explored, but it does not a�ect reachability of deadlocks, because the

6 of 26

stack := empty;
H := empty;
push initial state onto stack;
while (stack is not empty)

pop a state s from stack;
if (s is not in H) then

insert s in H;
for all t in PS(s)

s0 := the state that results from executing t in s;
push s0 onto stack

Figure 2: Algorithm PSSS (Persistent-Set Selective Search). PS(s) returns a persistent set.

intermediate states cannot be deadlocks, because some of the independent transitions are enabled

in those states. Partial-order methods attempt to eliminate exploration of multiple interleavings of

independent transitions, thereby saving time and space.

A set T of transitions enabled in a state s is persistent in s if, for every sequence of transitions

starting from s and not containing any transitions in T , all transitions in that sequence are indepen-

dent with all transitions in T . Formally, a set T � enabled(s) is persistent in s i�, for all nonempty

sequences of transitions s1
t1! s2

t2! s3 � � �
tn�1

! sn
tn! sn+1, if s1 = s and (8i 2 [1::n] : ti 62 T),

then tn is independent in sn with all transitions in T . As shown in [God96], in order to �nd all

reachable deadlocks, it su�ces to explore from each state s a set of transitions that is persistent

in s. State-space search algorithms that do this are called persistent-set selective search (PSSS).

Pseudo-code appears in Figure 2. Note that enabled (s) is trivially persistent in s. To save time

and space, small persistent sets should be used.

4 Detecting Poss�

Given a computation c and a predicate �, we construct a concurrent system whose executions cor-

respond to histories consistent with c, express c j= Poss� as a question about reachable deadlocks

of that system, and use PSSS to answer that question. The system has one transition for each pair

of consecutive local states in c, plus a transition t0 whose guard is �. t0 disables all transitions, so

it always leads to a deadlock.

Each process has a distinct control point corresponding to each of its local states. The control

point corresponding to the k'th local state of process i is denoted `i;k. Thus, for i 2 [1::N], process

i is Pi =
S
k=1::jc[i]jf`i;kg. We introduce a new process, called process 0, that monitors �. Process

0 has a single transition t0, which changes the control point of process 0 from `0;nd (mnemonic for

\not detected") to `0;d (\detected"). Thus, process 0 is P0 = f`0;nd; `0;dg. The set of processes is

P =
S
i=0::NfPig. Initially, process 0 is at control point `0;nd, and for i > 0, process i is at control

7 of 26

point `i;1.

The local state of process i is stored in a shared variable pi. The initial value of pi is c[i][1]. For

convenience, the index of the current local state of process i is stored in a shared variable �i. The

initial value of �i is 1, and �i is incremented by each transition of process i. Whenever process i is

at control point `i;k, �i equals k. The set of shared variables is O =
S
i=1::Nfpi; �ig.

Transition ti;k takes process i from its k'th local state to its (k + 1)'th local state. ti;k is

enabled when process i is at control point `i;k, process 0 is at control point `0;nd (this ensures

that transition t0 disables all transitions), �i equals k, and the (k + 1)'th local state of process

i is concurrent with the current local states of the other processes. The set of transitions is

T = ft0g [
S
i=1::N;k=1::jc[i]j�1fti;kg, where t0 = hfl0;ndg; �(p1; : : : ; pN); skip; fl0;dgi and

ti;k = hf`i;k; `0;ndg;

�i = k ^ (8j 2 [1::N] n fig : c[j][�j](vt)[j] � c[i][k + 1](vt)[j]);

pi := c[i][k + 1]; �i := k + 1;

f`i;k+1; `0;ndgi

(1)

The guard can be simpli�ed by noting that c[i][�i](vt)[i] always equals �i. It is easy to show that

`0;d is reachable i� a state satisfying � is reachable, and that all states containing `0;d are deadlocks.

Thus, c j= Poss� i� a deadlock containing `0;d is reachable.

Example. The transitions of the concurrent system corresponding to c0 of Figure 1 are t0 and

t1;1 = hf`1;1; `0;ndg; �1 = 1 ^ �2 � 1; p1 := 2; �1 := 2; f`1;2; `0;ndgi

t1;2 = hf`1;2; `0;ndg; �1 = 2 ^ �2 � 1; p1 := 3; �1 := 3; f`1;3; `0;ndgi

t2;1 = hf`2;1; `0;ndg; �2 = 1 ^ �1 � 1; p2 := 2; �2 := 2; f`2;2; `0;ndgi

t2;2 = hf`2;2; `0;ndg; �2 = 2 ^ �1 � 3; p2 := 3; �2 := 3; f`2;3; `0;ndgi

(2)

An alternative is to construct a transition system similar to the one above but in which both

occurrences of `0;nd in ti;k are deleted. As before, c j= Poss� i� `0;d is reachable (or, equivalently,

t0 is reachable), but now, states containing `0;d are not necessarily deadlocks. PSSS can be used to

determine reachability of control points (or transitions), provided the dependency relation is weakly

uniform [God96, Section 6.3]. Showing that the dependency relation is weakly uniform requires

more e�ort than including `0;nd in ti;k and has no bene�t: we obtain essentially the same detection

algorithm either way.

We give a simple algorithm PSPoss that e�ciently computes a small persistent set in a state

s by exploiting the structure of �. Without loss of generality, we write � as a conjunction: � =
V
i=1::n �i, with n � 1. The support of a formula �, denoted supp(�), is the set of processes on

whose local states � depends. Suppose � is true in s. Then PSPoss(s) returns enabled (s); this is the

simplest choice that satis�es the de�nition. When such a state is reached, there is no need to try to

8 of 26

�nd a small persistent set, because we can immediately halt the search and return \c j= Poss�".

We return \c 6j= Poss�" if the selective search terminates without encountering a state satisfying

�; by construction, this is equivalent to unreachability of deadlocks containing `0;d. Suppose � is

false in s. The handling of this case is based on the following theorem, a proof of which appears in

the Appendix.

Theorem 1. Suppose � is false in s. Let T be a subset of enabled (s) such that, for all sequences of

transitions starting from s and staying outside T , � remains false; more precisely, for all sequences

of transitions s1
t1! s2

t2! � � � sn
tn! sn+1, if s1 = s and (8i 2 [1::n] : ti 62 T), then � is false in sn+1.

Then T is persistent in s.

To construct such a set T , choose some conjunct � of � that is false in s. Clearly, � cannot

become true until � does, and � cannot become true until the next transition of some process

in supp(�) is executed. Note that the next transition of process i must be ti;s(�i). Thus, for each

process i in supp(�), if process i is not in its �nal state (i.e., s(�i) < jc[i]j), and if the next transition

ti;s(�i) of process i is enabled, then add ti;s(�i) to T , otherwise �nd some enabled transition t that

must execute before ti;s(�i), and add t to T . To �nd such a t, we introduce the wait-for graph

WF (s), which has nodes [1::N], and has an edge from i to j if the next transition of process j must

execute before the next transition of process i, i.e., if s(�j) < c[i][s(�i) + 1](vt)[j] (we call this a

wait-for graph because of its similarity to the wait-for graphs used for deadlock detection [SG98,

Section 7.6.1]). Such a transition t can be found by starting at node i inWF (s), following any path

until a node j with no outedges is reached, and taking t to be tj;s(�j). The case in which ti;s(�i) is

enabled is a special case of this construction, corresponding to a path of length zero, which implies

i = j. Pseudo-code appears in Figure 3.

The wait-for graph can be incrementally maintained inO(N) time per transition, because a tran-

sition ti;k can a�ect only the O(N) edges incident on the node for process i. Let d = max(jsupp(�1)j;

: : : ; jsupp(�n)j). PSPoss(s) returns a set of size at most d if � is false in s. Computing PSPoss(s)

takes O(Nd) time, because the algorithm follows at most d paths of length at most N in the wait-

for graph. Thus, the overall time complexity of the search is O(NdNe), where Ne is the number of

states explored by the algorithm.

Suppose � is a conjunction of 1-local predicates. Then PSPoss returns sets of size at most 1,

except when � is true in s, in which case the search is halted immediately, as described above.

Thus, at most one transition is explored from each state. Also, the system has a unique initial state.

Thus, the algorithm explores one linear sequence of transitions. Each transition in T appears at

most once in that sequence, because t0 disables all transitions, and each transition ti;k permanently

disables itself by advancing process i past its k'th local state. jT j is O(NS), so Ne is also O(NS),

so the overall time complexity is O(N2S).

9 of 26

PSPoss(s)
if (� holds in s) _ enabled (s) = ; then return enabled (s)
else choose some conjunct � of � such that � is false in s;

return followWF(s; supp(�))

followWF(s,procs)
T := ;;
for all i in procs such that s(�i) < jc[i]j

start at node i in WF (s);
follow any path until a node j with no outedges is reached;
insert tj;s(�j) in T ;

return T

Figure 3: Algorithm PSPoss(s).

Example. Consider evaluation of c0 j= Poss (p1 = 2 ^ p2 = 3). Recall that this is false. For

this example, we resolve the non-determinism in PSPoss by taking the lowest-numbered choice.

PSPoss(s1;1) returns ft1;1g, although both processes are enabled in s1;1. Similarly, PSPoss(s2;1) re-

turns ft2;1g, although both processes are enabled in s1;1. Thus, the selective search avoids exploring

s1;2, s3;1, and teh four transitions incident on them.

Example. Consider evaluation of c j= Poss�1(p1)^�2(p2; p3), for predicates �1 and �2 such that

�1 is true in most states of process 1, and �2 is true in at most O(S) consistent states of processes

2 and 3. PSSS does not explore transitions of process 1 in states where �2 is false and �1 is true,

so its worst-case running time for such systems is �(S2). Garg and Waldecker's algorithm [GW94]

is inapplicable, because �2 is not 1-local. The worst-case running time of Cooper and Marzullo's

algorithm [CM91] for such systems is �(S3), because their algorithm does not exploit the structure

of the predicate.

On-line Detection. For simplicity, the above presentation considers o�-line property detection.

Our approach can also be applied to on-line property detection. Local states arrive at the monitor

one at a time. For each process, the local states of that process arrive in the order they occurred.

However, there is no constraint on the relative arrival order of local states of di�erent processes. For

on-line detection of Poss�, detection must be announced as soon as local states comprising a CGS

satisfying � have arrived. This is easily achieved by modifying the selective search algorithm to

explore transitions as they become available: there is no need for the selective search to proceed in

depth-�rst order, so the stack can be replaced with a \to-do set", and in each iteration, any element

of that set can be selected. This does not a�ect the time or space complexity of the algorithm.

10 of 26

5 Selective Search using Sequences of Transitions

When PSSS is used to detect Poss, the following optimization can be used to reduce the number

of explored states and transitions. In the else branch of PSPoss (in Figure 3), if the next transition

of process i is not enabled, then a path p from i to a node j with no outedges in WF (s) is found,

and j is added to T . If j 62 supp(�), then � and hence � cannot be truthi�ed merely by executing

the next transition of process j. More generally, � cannot hold until some process in supp(�)

has advanced. This suggests the following optimization. If process i is not waiting for any other

process in supp(�), then insert in T a minimum-length sequence w of transitions that ends with

a transition of process i. This sequence advances other processes just enough to enable the next

transition of process i. If process i is waiting for some other process in supp(�), then insert in T a

minimum-length sequence w of transitions that ends with a transition of some process in supp(�)

and that does not contain any other transitions of processes in supp(�).

To see that exploring the entire sequence w in a single step (and therefore not exploring any

other transitions out of the intermediate states) is a correct optimization, observe that � does not

hold in the intermediate states. Furthermore, suppose there is a state s0 such that s0(�) holds

and s0 is reachable from one of the intermediate states by a sequence w0 of transitions. Then

s0(�) holds, so w0 must contain a transition by a process in supp(�), so w0 must contain all the

transitions in some sequence w in T . Now we show that the transitions in w can be moved to the

front of w0 by repeated swapping of adjacent transitions that commute. By de�nition of w, the

transitions in w can be executed directly from s (i.e., without executing any other transitions �rst).

The structure of the transitions implies that concurrently enabled transitions in w0|except t0, if

present|commute. If t0 appears in w0, it must be the last transition in w0, so all transitions in w

can be moved to the front of w0 without a need to commute them with t0. Thus, s0 is reachable

from s by a sequence of transitions that has w as a pre�x.

Example. Consider the computation c1 illustrated in Figure 4. Processes 1 and 3 each have S

distinct local states; process 2 has a small constant number of distinct local states. Suppose we

want to evaluate c1 j= Poss�(p2; p3). If the predicate remains false during the search, then the

algorithm of Section 4 considers all interleavings of transitions of processes 1 and 3, so the worst-

case time complexity is �(S2). With the optimization presented in this section, all transitions of

process 1 are executed in a single step (together with a transition of process 2), so the worst-case

time complexity is �(S).

6 Detecting Def �

As in Section 4, we construct a concurrent system whose executions correspond to histories con-

sistent with c, express c j= Def � as a question about reachable deadlocks of that system, and use

11 of 26

B
B
BN

s q q q s s

s s q

s

sqq

ss

.. -

s
.. -

-

1 2 S�1 S

1

1

2

1 2 S�1 S
3

2 3

Figure 4: Computation c1.

PSSS to answer that question. The construction in Section 4 for Poss is similar to well-known

constructions for reducing safety properties to deadlock detection [God96], but our construction for

Def seems novel. The transitions are similar to those in (1), except the guard of each transition

is augmented to check whether the transition would truthify �; if so, the transition is disabled. If

sinit(�) holds, then c j= Def �, and no search is performed. Thus, in a search, � is false in all

reachable states. If the �nal state (i.e., the state satisfying
V
i=1::N �i = jc[i]j) is reachable, then

each sequence of transitions from sinit to the �nal state corresponds to a history consistent with c

and in which � never holds, so c 6j= Def �.

The processes are the same as in Section 4, except process 0 has control points `0;nv (m-

nemonic for \no violation of Def � detected") and `0;v (\violation of Def � detected"). Thus,

P =
S
i=1::NfPig, where P0 = f`0;nv; `0;vg and for i > 0, Pi =

S
k=1::jc[i]jf`i;kg. The shared vari-

ables are the same as in Section 4, plus a boolean shared variable h that keeps track of whether

a global state satisfying � has been encountered. Thus, O = fhg [
S
i=1::Nfpi; �ig. The initial

state is the same as in Section 4, except the control point for process 0 is l0;nv and the initial

value of h equals the value of � in the initial state of c. The transitions are similar to those in

Section 4, except the transition t0 executes, indicating a violation of Def �, if the �nal state of c

is reachable with h = false (i.e., without passing through a state satisfying �). The transitions are

T = ft0g [
S
i=1::N;k=1::jc[i]j�1fti;kg, where t0 = hfl0;nvg; :h ^ (8i 2 [1::N] : �i = jc[i]j); skip; fl0;vgi

and

ti;k = hf`i;kg;

�i = k ^ (8j 2 [1::N] n fig : c[j][�j](vt)[j] � c[i][k + 1](vt)[j])

pi := c[i][k + 1]; �i := k + 1; h := h _ �(p1; : : : ; p[N]);

f`i;k+1gi

(3)

Note that every reachable state containing l0;v is a deadlock. It is easy to show that c 6j= Def � i�

a deadlock containing l0;v is reachable.

12 of 26

Example. The transitions of the concurrent system corresponding to computation c0 of Figure

1 are
t1;1 = hf`1;1g; �1 = 1 ^ �2 � 1; p1 := 2; �1 := 2; h := h _ �(p1; p2); f`1;2gi

t1;2 = hf`1;2g; �1 = 2 ^ �2 � 1; p1 := 3; �1 := 3; h := h _ �(p1; p2); f`1;3gi

t2;1 = hf`2;1g; �2 = 1 ^ �1 � 1; p2 := 2; �2 := 2; h := h _ �(p1; p2); f`2;2gi

t2;2 = hf`2;2g; �2 = 2 ^ �1 � 3; p2 := 3; �2 := 3; h := h _ �(p1; p2); f`2;3gi

t0 = hfl0;nvg; :h ^ �1 = 3 ^ �2 = 3; skip; fl0;vgi

(4)

Without loss of generality, we write � as a conjunction: � =
V
i=1::n �i, with n � 1. active(t)

is the set of processes whose control points appear in transition t. For a set T of transitions,

active(T) =
S
t2T active(t). For a 1-local predicate � that depends on the state of process i,

nextTrue(k; �) is the index of the \next" local state of process i satisfying �, i.e., the smallest

k1 � k such that �(c[i][k1]) = true; this can be pre-computed for all k and � in O(SN) time. For

t 2 enabled (s), exec(s; t) is the state obtained by executing t from s, i.e., s
t
! exec(s; t). For a

1-local predicate �0, a state s such that s 6j= �0, and a set T of transitions, falseUntilEnd (�0; s; T)

ensures that �0 remains false for all sequences of transitions starting from s and staying outside T ,

except possibly in the last state of such a sequence (this is discussed in more detail in the proof of

Theorem 2).

falseUntilEnd(�0; s; T) = let fjg = supp(�0) in (5)

(9i 2 active(T) : c[i][s(�i)]! c[j][nextTrue(s(�j); �
0) + 1])

^ (8i1 2 [1::N] n (supp(�) [active(T)) : s(�i1) = jc[i1]j

_ (9i2 2 active(T) : i2 is reachable from i1 in WF (s)))

Pseudo-code for PSDef appears in Figure 5. The underlying idea in cases (c) � (e) is that, for a

state s with s(h) = false, T � enabled (s) is persistent in s if � remains false for all sequences of

transitions starting from s and staying outside T except that the last transition might be in T .

This idea is evident in the proof of Theorem refthm:def. PSDef (s) might return a singleton set if

s(h) = true; however, it is easy to see that exploring transitions from such states is unnecessary.

Theorem 2. PSDef (s) is persistent in s.

Proof: See Appendix.

For conjunctions of 1-local predicates, the worst-case time complexity of PSDef is the same as

PSPoss, namely O(N), assuming the wait-for graph is incrementally maintained and nextTrue is

pre-computed. Thus, the overall time complexity of the search is O(NNe), where Ne is the number

of states explored by the algorithm. PSDef (s) sometimes returns enabled (s), so Ne is �(SN) in

the worst-case. In many cases, though, PSDef (s) returns a proper subset of enabled(s), and the

selective search explores many fewer states than Cooper and Marzullo's algorithm.

13 of 26

PSDef (s)
if enabled(s) = ; then return ; (a)
else if s(h) = true then

choose some t 2 enabled (s);
return ftg (b)

else choose some conjunct � that is false in s;
T := followWF(s; supp(�));
if (8t 2 T : exec(s; t) 6j= �) then return T (c)
else if there is a conjunct �0 such that s 6j= �0 ^ (supp(�) \ supp(�0) = ;) then

if (�0 is 1-local) ^ falseUntilEnd(�0; s; T) then return T (d)
else return T [followWF(s; �0) (e)

else return enabled(s) (f)

Figure 5: Algorithm PSDef (s).

Example. Consider evaluation of c0 j= Def (p1 = 2^p2 = 2). Recall that this is false. PSDef (s1;1)

returns ft1;1g, although both processes are enabled in s1;1. Thus, the selective search avoids ex-

ploring s1;2 and the two transitions incident on it. Also, h becomes true in s2;2, so it is unnecessary

to explore any transitions from that state.

On-line Detection. For on-line detection of Def �, detection must be announced as soon as all

histories consistent with the known pre�x of the computation contain a CGS satisfying �. As for

on-line detection of Poss�, this is easily achieved by modifying the selective search algorithm to

explore transitions as they become available, i.e., by replacing the stack with a \to-do set". The

algorithm announces that Def � holds whenever h is true in all states in the \to-do set". When

using PSDef on-line, falseUntilEnd and nextTrue cannot be evaluated if insu�ciently many local

states of process j have arrived; in that case, simply take falseUntilEnd to be false.

7 Examples

We implemented our algorithm for detecting Poss� in Java and applied it to two examples.

In the �rst example, called database partitioning, a database is partitioned among processes 2

through N , while process 1 assigns task to these processes based on the current partition. Each

process i 2 [1::N] has a variable partn i containing the current partition. A process i 2 [2::N] can

suggest a new partition at any time by setting variable chg i to true and broadcasting a message

containing the proposed partition and an appropriate version number. A recipient of this message

accepts the proposed partition if its own version of the partition has a smaller version number or

if its own version of the partition has the same version number and was proposed by a process i0

14 of 26

with i0 > i. An invariant Idb that should be maintained is: if no process is changing the partition,

then all processes agree on the partition.

Idb = (
^

i2[2::N]

:chg i))
^

i;j2[1::N];i6=j

partn i = partn j (6)

The second example, called primary-secondary, concerns an algorithm designed to ensure that

the system always contains a pair of processes that will act together as primary and secondary

(e.g., for servicing requests). This is expressed by the invariant

Ipr =
_

i;j2[1::N];i6=j

isPrimary i ^ isSecondary j ^ secondary i=j ^ primary j= i: (7)

Initially, process 1 is the primary and process 2 is the secondary. At any time, the primary may

choose a new primary as its successor by �rst informing the secondary of its intention, waiting for an

acknowledgment, and then multicasting to the other processes a request for volunteers to be the new

primary. It chooses the �rst volunteer whose reply it receives and sends a message to that process

stating that it is the new primary. The new primary sends a message to the current secondary

which updates its state to re
ect the change and then sends a message to the old primary stating

that it can stop being the primary. The secondary can choose a new secondary using a similar

protocol. The secondary must wait for an acknowledgment from the primary before multicasting

the request for volunteers; however, if the secondary receives instead a message that the primary is

searching for a successor, the secondary aborts its current attempt to �nd a successor, waits until

it receives a message from the new primary, and then re-starts the protocol. This prevents the

primary and secondary from trying to choose successors concurrently.

We implemented a simulator that generates computations of these protocols, and we used state-

space search to detect possible violations of the given invariant in those computations, i.e., to detect

Poss:Idb or Poss:Ipr. To apply PSPoss, we write both predicates as conjunctions. For :Idb, we

rewrite the implication P) Q as :P _Q and then use DeMorgan's Law (applied to the outermost

negation and the disjunction). For :Ipr, we simply use DeMorgan's Law. The simulator accepts N

and S as arguments and halts when some process has executed S�1 events. Message latencies and

other delays (e.g., how long to wait before suggesting a new partition or looking for a successor) are

selected randomly from the distribution 1+exp(1), where exp(x) is the exponential distribution with

mean x. The search optionally uses sleep sets, as described in [God96], as a further optimization.

Sleep sets help eliminate redundancy caused by exploring multiple interleavings of independent

transitions in a persistent set. Sleep sets are particularly e�ective for Poss� because, if � does

not hold in s, then transitions in PSPoss(s) are pairwise independent.

Search was done using four levels of optimization: no optimization (PSSS with PS = enabled),

persistent sets only (PSSS with PS = PSPoss), sleep sets only ([God96, Fig. 5.2] with PS =

enabled), and both persistent sets and sleep sets ([God96, Fig. 5.2] with PS = PSPoss). Most of the

15 of 26

results below represent averages over 100 computations; for large values of N or S, averages over 5

computations were used; the results were consistent enough that using more computations seemed

unnecessary. Let NT and NS denote the number of explored transitions and states, respectively.

Data collected by �xing the value of N at 3 or 5 and varying S in the range [2::80] indicate that

in all cases (i.e., for all four levels of optimization for both examples), NT and NS are linear in S.

This is because both examples involve global synchronizations, which ensure that a new local state

of any process is not concurrent with any very old local state of any process.

The following table contains measurements for the database partitioning example with N =

5 and S = 80 and for the primary-secondary example with N = 9 and S = 60. Using both

persistent sets and sleep sets reduced NT (and, roughly, the running time) by factors of 775 and

72, respectively, for the two examples.

Example No optimization Sleep Persistent Persis. + Sleep

NT NS NT NS NT NS NT NS

database partition 343170 88281 88280 88281 640 545 443 444

primary-secondary 3878663 752035 752034 752035 91874 61773 53585 53586

To help determine the dependence of NT on N , we graphed lnNT vs. N and �t a line to it

(using poly�t and polyval in Matlab); this corresponds to equations of the form NT = eaN+b. The

results appear in the following table and are graphed in Figure 6. The table also includes the ranges

of values of N and S used for the �ts. The dependence on S is linear, so using di�erent values of

S in di�erent cases does not a�ect the dependence on N (i.e., it a�ects b but not a).

Example No optimization Sleep Persistent Persis. + Sleep

database NT = e2:80N�2:57 NT = e2:48N�2:26 NT = e0:540N+3:35 NT = e0:301N+4:06

partition S = 25; N = [3::6] S = 25; N = [3::6] S = 50; N = [3::8] S = 50; N = [3::8]

primary- NT = e1:55N+1:12 NT = e1:35N+1:20 NT = e0:925N+3:07 NT = e0:888N+2:85

secondary S = 60; N = [4::9] S = 60; N = [4::9] S = 60; N = [4::9] S = 60; N = [4::9]

To determine whether a polynomial form would provide a better �t than the exponential form

used above, we also graphed lnNT vs. lnN and �t a line to it. The exponential form produced

a better �t in all cases except one: for the database partitioning example with both persistent

sets and sleep sets, NT = N1:54e3:16, shown in Figure 7, �ts better than NT = e0:301N+4:06, shown

in Figure 6 (goodness of �t, measured by sum of squares of di�erences, is 0.0155 vs. 0.0173).

Thus, within the measured region, the low-order polynomial form provides a better �t than the

exponential form. The results for NS are similar to those for NT . Speci�cally, in the measured

region, the dependence on NS on N �ts better to an exponential form than a polynomial form in

all cases except one, namely, the database partitioning example with both persistent sets and sleep

sets.

16 of 26

3 4 5 6 7 8
4

6

8

10

12

14

16

N

ln
(n

um
T

ra
ns

)
enabled
sleep
persistent
pst+slp

4 5 6 7 8 9
6

7

8

9

10

11

12

13

14

15

16

N

ln
(n

um
T

ra
ns

)

enabled
sleep
persistent
pst+slp

Figure 6: Datapoints and �tted curves for lnNT vs. N for all four levels of optimization. Left:
Database partitioning example with S = 25 for the two searches not using persistent sets and
S = 50 for the two searches using persistent sets. Right: Primary-secondary example with S = 60.

In all cases, the time required for the search is directly proportional to the number of explored

transitions, so we generally report only the latter. The constant of proportionality is somewhat

larger for the optimized searches. For example, consider the primary-secondary example withN = 9

and S = 60. With no optimizations, 3878663 transitions were explored in 254 sec; with persistent

sets and sleep sets, 53585 transitions were explored in 5.58 sec. Thus, the detection algorithms

explored approximately 15300 transitions/sec and 9600 transitions/sec, respectively, in these two

cases.

A state match occurs when an explored transition leads to a previously visited global state.

The number of state matches equals NT � (NS � 1), since every transition leads to a new global

state or a previously visited state other than the start state. Sleep sets completely eliminated state

matches.

Garg and Waldecker's algorithm for detecting Poss� for conjunctions of 1-local predicates

[GW94] is not applicable to the database partitioning example, because :Idb contains clauses like

partn i 6= partn j which are not 1-local. Their algorithm can be applied to the primary-secondary

example by putting :Ipr in disjunctive normal form (DNF) and detecting each disjunct separately.

:Ipr is compactly expressed in conjunctive normal form.

:Ipr =
^

i;j2[1::N];i6=j

:isPrimary i _ :isSecondary j _ secondary i 6= j _ primary j 6= i (8)

Putting :Ipr in DNF causes an exponential blowup in the size of the formula. This leads to an

exponential factor in the time complexity of applying their algorithm to this problem.

Stoller and Schneider's algorithm for detecting Poss� [SS95] o�ers no bene�t for formulas with

17 of 26

1 1.5 2
4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6
Database Partition: persistent−sleep set search, S = 50

ln(N)

ln
(n

um
T

ra
ns

)

Figure 7: Datapoints and �tted curves for lnNT vs. lnN for search using persistent sets and sleep
sets for database partitioning example with S = 50.

the logical structure of :Idb or :Ipr, because the minimum-sized �xed sets for such formulas have

size N � 1.

8 Discussion

Weak Vector Clocks. An important optimization, applicable to detecting Poss and Def , is

to use weak vector clocks, as described by Marzullo and Neiger [MN91]. Standard vector clocks

[Mat89], as sketched in Section 2, are updated by every event. Weak vector clocks are updated

only by events that can change the truth value of � and by receive events by which a process �rst

learns of some event that can change the truth value of �. A local state of process i is appended to

c[i] only when the (weak or standard) vector clock of process i changes, so using weak vector clocks

can decrease S. Let Sw denote that decreased value. Garg and Waldecker use a di�erent technique

for reducing the number of local states considered by their algorithms. Their algorithm for Poss

has worst-case time complexity O(N2Ss), where Ss is the maximum number of send events by a

single process. Their algorithm for Def has worst-case time complexity O(N2Sr), where Sr is the

maximum number of receive events by a single process. For some classes of computations, Sr or

Ss are smaller than Sw by a factor of N . For some classes of computations, Ss, Sr, and Sw are

asymptotically equal.

Possibility Detection Decomposition. The Possibility Detection Decomposition Algorithm

(PDDA) of Stoller and Schneider [SS95] detects Poss� for arbitrary predicates �, is as fast as

Garg and Waldecker's algorithm when � is a conjunction of 1-local predicates, is asymptotically

faster than Cooper and Marzullo's algorithm for a general class of predicates, and is never asymp-

18 of 26

totically slower than Cooper and Marzullo's algorithm. PDDA uses as a subroutine an algorithm

for detecting Poss� for � a conjunction of 1-local predicates. Naturally, PSSS can be used as that

subroutine. Furthermore, the fundamental idea underlying PDDA can be viewed as a specialized

partial-order method. Roughly speaking, the idea is to choose an appropriate set F of processes,

called a �xed set, and explore only sequences of transitions in which processes in F advance �rst

and then processes outside F advance (actually, during the �rst phase, the processes outside F

might need to advance, too, but just enough to enable transitions of processes in F ; this is indepen-

dent of the predicate being detected). This avoids exploring many interleavings of the transitions

of processes in F with transitions of processes outside F . Persistent sets and sleep sets do not

seem to capture this optimization. One direction for future work is to see whether this specialized

partial-order method can be generalized to apply to other state-space search problems.

9 Comparison to General-Purpose Persistent Set Algorithms

This section compares PSPoss and PSDef with the general-purpose persistent set algorithms in

[God96]. Familiarity with [God96, Chapter 4] is assumed.

9.1 Persistent Sets for Poss

One of the most sophisticated general-purpose algorithms for computing persistent sets is the

conditional stubborn set algorithm (CSSA) [God96, Section 4.7], which is based on Valmari's work

on stubborn sets [Val97]. We consider two ways of using CSSA instead of PSPoss for detecting

Poss�. With the �rst way, CSSA is ine�ective, returning all enabled transitions. With the second

way, CSSA is slower than PSPoss by a factor of S (and possibly by some factors of N , which we

did not analyze in detail) in the worst case.

9.1.1 Comparison to CSSA Based on Read and Write Operations

We take the operations on all shared variables to be read and write. CSSA is parameterized by a

binary relation .s on operations [God96, p. 65], where op .s op
0 is read as \op0 might be the �rst

operation to interfere with op from s". We adopt the usual notion of interference between reads

and writes: if op is a read from a shared variable v and op0 is a write to v, then op .s op
0. Consider

applying CSSA in a state s. In step 1, we choose a transition te that is enabled in s, and take

Ts = fteg. We execute step 2 for the �rst time, with t = te. Since te is enabled in s, we execute

step 2(b). For a transition hL1; G;C; L2i, let pre(hL1; G;C; L2i) = L1 . Note that for all transitions

t1 and t2 with t1 6= t2, pre(t1) \ pre(t2) = f`0;ndg. Thus, for all transitions t
0 6= te, t

0 and te are in

con
ict [God96, p. 44], so after step 2(b)i, Ts = T . Thus, CSSA returns enabled (s).

We can eliminate this problem by re-de�ning the transitions. Speci�cally, we eliminate both

occurrences of `0;nd from the de�nition (1) of ti;k. Now, c j= Poss� i� local state `0;d is reachable,

19 of 26

i.e., i� a state (which is not necessarily a deadlock) containing `0;d is reachable. Selective search

using persistent sets and sleep sets can be used to test reachability of a local state, provided the

dependency relation is weakly uniform [God96, Section 6.3]. Consider applying CSSA in a state s.

In step 1, we choose a transition te that is enabled in s, and take Ts = fteg. We execute step 2

for the �rst time, with t = te. Since te is enabled in s, we execute step 2(b). Step 2(b)i adds no

transitions to Ts, because no transition t0 6= te is in con
ict with te. For each j 62 f0; ig, let t0j be

the next transition of process j, i.e., t0j = tj;s(�j). The command of t0j writes to �j, and the guard

of t reads from �j, and the former operation might be the �rst to interfere with the latter from s,

so step 2(b)ii adds t0j to Ts. Thus, CSSA returns enabled (s).

One might hope to eliminate this problem by classifying the write operations v := a and v := a0

with a 6= a0 as di�erent operations on v. This allows a more re�ned relation .s to be introduced,

since from a given state s, only certain values can be the �rst value assigned to a given variable

in a sequence of transitions starting from s. However, this re�nement alone does not actually have

any e�ect on this problem. A deeper re�nement of the operations does have an e�ect, as described

next.

9.1.2 Comparison to CSSA Based on Computation-Speci�c Operations

In this section, we customize the operations on shared variables �1; : : : ; �N according to the computa-

tion. Speci�cally, each conjunct in the guard of a transition ti;k is considered to be a boolean-valued

operation on the variable that it accesses (each conjunct accesses exactly one variable). Operations

of the form c[j][�j](vt)[j] � c[i][k+1](vt)[j] are computation-speci�c, i.e., they depend on the com-

putation c. The operations on the variables variables p1; : : : ; pN are taken to be reads and writes,

as in Section 9.1.1. Write operations v := a and v := a0 with a 6= a0 are considered to be di�erent

operations on v.

The dependency relations on the operations of each object are as follows. Introduce the following

abbreviations for operations on �j :

assign(j; k) = �j := k + 1 (9)

test(i; j; k) = c[j][�j](vt)[j] � c[i][k + 1](vt)[j] (10)

The conditional dependency relation for �j is the smallest symmetric (in the �rst two arguments)

ternary relation such that (free variables are implicitly universally quanti�ed)

k 6= k0) hassign(j; k); assign(j; k0); vi 2 D�j (11)

test(i; j; k)[�j := v] 6= test(i; j; k)[�j := k0 + 1]) htest(i; j; k); assign (j; k0); vi 2 D�j (12)

Equation (12) says that there is a dependency between a test and an assignment i� the assignment

changes the result of the test. The conditional dependency relation for pi is the smallest symmetric

20 of 26

(in the �rst two arguments) ternary relation such that

a 6= b) hpi := a; pi := b; vi 2 Dpi (13)

a 6= v) hread (pi); pi := a; vi 2 Dpi (14)

Consider the relation .s. The fact that the sequence of vector timestamps in a local computation

is non-decreasing implies that, if a conjunct op of the form c[j][�j](vt)[j] � c[i][k + 1](vt)[j] in the

guard of a transition t is true in a state s, then a subsequent write operation op0 to �j cannot falsify

it, so op 6 .s op
0. Thus, by exploiting enough information about the structure of the system, .s can

be re�ned to avoid the above problem. To see this, consider applying CSSA in a state s. In step 1,

we choose a transition te that is enabled in s, and take Ts = fteg. We execute step 2 for the �rst

time, with t = te. Since te is enabled in s, we execute step 2(b). Assume the transitions have been

re-de�ned as in Section 9.1.1. Step 2(b)i adds no transitions to Ts, because no transition t0 6= te is

in con
ict with te. For each j 62 f0; ig, let t0j be the next transition of process j, i.e., t0j = tj;s(�j).

Since te is enabled in s, the operations in its guard are true, so the write to �j in the command of

t0j does not interfere with those operations, so this �rst execution of step 2(b)ii does not necessarily

add t0j to Ts.

t0 and te are parallel [God96, p. 45] and the read from pi in the guard of t0 might be the �rst

operation to interfere with the write to pi in the command of te from s, so step 2(b)ii adds t0 to

Ts. So, we execute step 2 again, this time with t = t0. Suppose t0 is disabled in s (otherwise, we

can stop the search and report Poss�), so we execute step 2(a). Assuming the search is halted as

soon as a state in which t0 is enabled is encountered, it is easy to see that s contains `0;nd, not `0;d,

so step 2(a)i is inapplicable, so we execute step 2(a)ii. In step 2(a)ii, we choose a conjunct � in the

guard of t0 (i.e., a conjunct of �) that is false in s, and for each i in supp(�), we add to Ts the

next transition of process i, namely, ti;s(�i), since the write to pi in the command of that transition

might be the �rst to interfere with the read from pi in t0's guard. Let ti;k be one of the transitions

so added to Ts. Consider executing step 2 with t = ti;k. If ti;k is enabled in s, we execute step

2(b), which does not cause any new transitions to be added to Ts. Suppose ti;k is disabled in s, so

we execute step 2(a). Since ti;k is the next transition of process i, we conclude that some conjunct

op of the form c[j][�j](vt)[j] � c[i][k + 1](vt)[j] in the guard of ti;k is false. Thus, step 2(a)i is

inapplicable, and we choose the aforementioned conjunct op in step 2(a)ii. This execution of step

2(a)ii adds to Ts the �rst transition tj;k0 of process j that truthi�es op.

Suppose tj;k0 appears near the end of the local computation of process j, and s(�j) < k0. When

executing step 2(a) with tj;k0, we can choose step 2(a)i and add tj;k0�1 to Ts, or, because the conjunct

�j = k0 is false, we can choose step 2(a)ii, which will have the same e�ect, namely, adding tj;k0�1

to Ts, because the write to �j in the command of tj;k0�1 is the �rst operation that might interfere

with �j = k0 from s. If the other conjuncts in the guard of tj;k0 are true, then these are the only

possible choices. When executing step 2 with tj;k0�1, the same situation may arise. Eventually,

21 of 26

this may add to Ts the transitions tj;k0; tj;k0�1; tj;k0�2; : : : ; tj;s(�j). Thus, the worst-case size of Ts is

�(S), and the worst-case time complexity of CSSA is �(S), ignoring factors of N . In contrast, the

worst-case time complexity of PSPoss is O(Nd), independent of S.

9.2 Comparison to Other Algorithms

Since CSSA based on computation-speci�c operations is e�ective but expensive, it is natural to ask

whether any of the simpler algorithms in [God96] would be equally e�ective and cheaper.

Stubborn Set Algorithm. The stubborn set algorithm [God96, Section 4.5] is ine�ective, re-

turning all enabled transitions, even if the transitions are re-de�ned as in Section 9.1.1 and the

relations can-be-dependent and do-not-accord are based on the operations and dependency rela-

tions D�j and Dpi in Section 9.1.2. To see this, consider applying CSSA in a state s. In step

1, we choose a transition ti;k that is enabled in s, and take Ts = fti;kg. We execute step 2 for

the �rst time, with t = ti;k. Since ti;k is enabled in s, we execute step 2(b). Let j 62 f0; ig, and

let k0 = s(�j). Note that tj;k0 is the next transition of process j, and that tj;k0 uses assign(j; k
0).

We argue that test(i; j; k) and assign(j; k0) do-not-accord. Suppose assign(j; k0) makes test(i; j; k)

true; then, in any state s in which test(i; j; k) is false, assign(j; k0) and test(i; j; k) are enabled and

dependent. Suppose assign(j; k0) makes test(i; j; k) false; then, in any state s in which test(i; j; k) is

true, assign(j; k0) and test(i; j; k) are enabled and dependent. Thus, in either case, test(i; j; k) and

assign(j; k0) do-not-accord, so step 2(b)ii adds tj;k0 to Ts. Thus, the algorithm returns enabled (s).

Overman's Algorithm. Overman's Algorithm [God96, Section 4.4] is ine�ective, returning all

enabled transitions, even if the transitions are re-de�ned as in Section 9.1.1 and the relation .s

of Section 9.1.2 is used instead of the less precise can-be-dependent relation (cf. [God96, Section

4.8]). Theorem 4.20 in [God96, Section 4.6] then implies that the Con
icting Transitions Algorithm

[God96, Section 4.3] is also ine�ective. Consider applying Overman's Algorithm in a state s. In

step 1, we choose a transition ti;k that is enabled in s, and take P = fig. Execute step 2 for the

�rst time with t = ti;k. Step 2(a) adds nothing to P . Consider step 2(b) with t0 = t0. ti;k and t0

are parallel [God96, p. 45] and the read from pi in the guard of t0 might be the �rst operation to

interfere with the write to pi in the command of ti;k from s, so step 2(b) inserts 0 in P . Execute

step 2 for the second time with t = t0. Step 2(a) has no e�ect. For each process j 62 f0; ig, consider

step 2(b) with t0 being the next transition of process j, i.e., t0 = tj;s(�j). t0 and t0 are parallel,

and the write to pj in the command of t0 might be the �rst operation to interfere with the read

from pj in the guard of t0 from s, so step 2(b) inserts j in P . Thus, Overman's Algorithm returns

enabled(s).

22 of 26

9.3 Persistent Sets for Def

We consider using CSSA instead of PSDef for detecting Def �, and conclude that CSSA is ine�ec-

tive, returning all enabled transitions. The comparisons in [God96, Sections 4.6, 4.8] then imply

that the simpler persistent-set algorithms in [God96] are also ine�ective.

We adopt the same operations on shared variables as in Section 9.1.2, i.e., computation-speci�c

operations for �1; : : : ; �N , and read and write operations for p1; : : : ; pN . Consider applying CSSA

in a state s. In step 1, we choose a transition te that is enabled in s, and take Ts = fteg. We

execute step 2 for the �rst time, with t = te. Since te is enabled in s, we execute step 2(b). Step

2(b)i adds no transitions to Ts, because no transition t0 6= te is in con
ict with te. Let tj;k be a

transition other than te that is enabled in s. The command of tj;k writes to pj, and the command

of te reads from pj (in the assignment statement that updates h). The former operation might be

the �rst to interfere with the latter operation from s, so step 2(b)ii adds tj;k to Ts. Thus, CSSA

returns enabled (s).

References

[AMP98] Rajeev Alur, Ken McMillan, and Doron Peled. Deciding global partial-order proper-
ties. In Proc. 25th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 1443 of Lecture Notes in Computer Science, pages 41{52. Springer-
Verlag, 1998.

[AV94] Sridhar Alagar and S. Venkatesan. Techniques to tackle state explosion in global predicate
detection. In Proc. International Conference on Parallel and Distributed Systems, pages
412{417, December 1994.

[AY99] Rajeev Alur and Mihalis Yannakakis. Model checking of message sequence charts. In
Proc. 10th Int'l. Conference on Concurrency Theory (CONCUR), volume 1664 of Lecture
Notes in Computer Science, pages 114{129, 1999.

[BR94] �Ozalp Babao�glu and Michel Raynal. Speci�cation and veri�cation of behavioral patterns
in distributed computations. In Fourth International Working Conference on Dependable
Computing for Critical Applications, 1994.

[CG98] Craig M. Chase and Vijay K. Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11(4):169{189, 1998.

[CM91] Robert Cooper and Keith Marzullo. Consistent detection of global predicates. In Proc.
ACM/ONR Workshop on Parallel and Distributed Debugging, 1991. ACM SIGPLAN
Notices 26(12):167-174, Dec. 1991.

[Fid88] C. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In
Proceedings of the 11th Australian Computer Science Conference, pages 56{66, 1988.

[FR94] Eddy Fromentin and Michel Raynal. Local states in distributed computations: A few
relations and formulas. Operating Systems Review, 28(2), April 1994.

23 of 26

[God96] Patrice Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems,
volume 1032 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[GW94] Vijay K. Garg and Brian Waldecker. Detection of weak unstable predicates in distributed
programs. IEEE Transactions on Parallel and Distributed Systems, 5(3):299{307, 1994.

[GW96] Vijay K. Garg and Brian Waldecker. Detection of strong unstable predicates in distribut-
ed programs. IEEE Transactions on Parallel and Distributed Systems, 7(12):1323{1333,
1996.

[Hel99] Keijo Heljanko. Using logic programs with stable model semantics to solve deadlock and
reachability problems for 1-safe petri nets. In W. Rance Cleaveland, editor, Proc. 5th
Intl. Workshop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1579 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

[JMN95] R. Jegou, R. Medina, and L. Nourine. Linear space algorithm for on-line detection of
global predicates. In J. Desel, editor, Proc. Int'l Workshop on Structures in Concurrency
Theory (STRICT '95). Springer, 1995.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558{564, 1978.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed systems. In
M. Corsnard, editor, Proc. International Workshop on Parallel and Distributed Algo-
rithms, pages 120{131. North-Holland, 1989.

[MN91] Keith Marzullo and Gil Neiger. Detection of global state predicates. In Proc. 5th Int'l.
Workshop on Distributed Algorithms (WDAG), volume 579 of Lecture Notes in Computer
Science, pages 254{272. Springer, 1991.

[MPS98] Anca Muscholl, Doron Peled, and Zhendong Su. Deciding properties of message sequence
charts. In FoSSaCS '98, volume 1378 of Lecture Notes in Computer Science, pages 226{
242, 1998.

[PPH97] Doron Peled, Vaughan R. Pratt, and Gerard J. Holzmann, editors. Proc. Workshop on
Partial Order Methods in Veri�cation, volume 29 of DIMACS Series. American Mathe-
matical Society, 1997.

[SG98] Abraham Silberschatz and Peter B. Galvin. Operating System Concepts. Addison Wesley,
5th edition, 1998.

[SL98] Scott D. Stoller and Yanhong A. Liu. E�cient symbolic detection of global properties
in distributed systems. In Alan J. Hu and Moshe Y. Vardi, editors, Proc. 10th Int'l.
Conference on Computer-Aided Veri�cation (CAV), volume 1427 of Lecture Notes in
Computer Science, pages 357{368. Springer-Verlag, June 1998.

[SS95] Scott D. Stoller and Fred B. Schneider. Faster possibility detection by combining two
approaches. In Jean-Michel H�elary and Michel Raynal, editors, Proc. 9th Internation-
al Workshop on Distributed Algorithms (WDAG '95), volume 972 of Lecture Notes in
Computer Science, pages 318{332. Springer-Verlag, September 1995.

24 of 26

[SW89] A. Prasad Sistla and Jennifer Welch. E�cient distributed recovery using message logging.
In Proc. Eighth ACM Symposium on Principles of Distributed Computing. ACM SIGOPS-
SIGACT, 1989.

[TG93] Alexander I. Tomlinson and Vijay K. Garg. Detecting relational global predicates in dis-
tributed systems. In Proc. ACM/ONR Workshop on Parallel and Distributed Debugging,
1993. ACM SIGPLAN Notices 28(12), December 1993.

[Val97] Antti Valmari. Stubborn set methods for process algebras. In Peled et al. [PPH97], pages
213{231.

[Wal98] Igor Walukiewicz. Di�cult con�gurations - on the complexity of ltrl. In Proc. 25th
International Colloquium on Automata, Languages, and Programming (ICALP), volume
1443 of Lecture Notes in Computer Science, pages 140{151. Springer-Verlag, 1998.

Appendix: Selected De�nitions and Proofs

De�nition of Independence [God96]. Transitions t1 and t2 are independent in a state s if

1. Independent transitions can neither disable nor enabled each other, i.e.,

(a) if t1 2 enabled (s) and s
t1! s0, then t2 2 enabled (s) i� t2 2 enabled (s0);

(b) condition (a) with t1 and t2 interchanged holds; and

2. Enabled independent transitions commute, i.e., if ft1; t2g � enabled (s),

then there is a unique state s0 such that s
t1! s1

t2! s0 and s
t2! s2

t1! s0.

Proof of Theorem 1: It su�ces to show that for each transition t in T , t is independent with

tn in sn. � is false in s, so t0 62 enabled (s), so t is ti;k, as de�ned in (1), for some i and k. Note

that tn 6= t0, because by hypothesis, � is false in sn. The transitions of each process occur in the

order they are numbered, and ti;k 2 enabled (s), so the next transition of process i that is executed

after state s is ti;k; in other words, from state s, no transition of process i can occur before ti;k

does. Since ti;k 2 T and (8i 2 [1::n] : ti 62 T), it follows that tn is a transition of some process i0

with i0 6= i^ i0 6= 0. From the structure of the system, it is easy to show that, once ti;k has become

enabled, such a transition tn cannot enable or disable ti;k and commutes with ti;k when both are

enabled. Thus, ti;k and tn are independent in sn.

Proof of Theorem 2: We start with some observations. No enabled transition ever becomes

disabled. After h becomes true, its value never changes. Two transitions that are both enabled in

a state s are dependent in s only if the order they are executed a�ects the �nal value of h, i.e.,

only if s
t1! s1

t2! s12 and s
t2! s2

t1! s21 and s(h) = false and exactly one of s1 and s2 satis�es �.

Consider each return statement in PSDef . For the return statements in lines (a) and (f),

correctness follows from the fact that enabled (s) is persistent in s. For (b), correctness follows

easily from the above observations.

25 of 26

For (c), suppose s1 = s and s1
t1! s2

t2! s3 � � �
tn�1

! sn
tn! sn+1 and (8i 2 [1::n] : ti 62 T). Suppose

tp 2 T and sn
tp
! sp

tn! spn and sn
tn! sn+1

tp
! snp (this de�nes sn, spn, and snp; note that these

execution fragments are feasible, i.e., tn and tp are enabled in the appropriate states). Based on the

above observations, it su�ces to show that sp(h) = sn+1(h). In branches (c) ��(e), s(h) = false,

and the de�nition of T implies that � remains false for all sequences of transitions that stay outside

of T , so sn+1(h) = false, so it su�ces to show that sp 6j= �. The de�nition of T implies that

(8i 2 supp(�) : sn(�i) = s(�i)), the condition on line (c) of the pseudo-code implies that executing

tp in s or sn leaves � false, so sp 6j= �, so sp 6j= �.

For (d), consider the same setup as for (c). Again, it su�ces to show that sp 6j= �. Since

�0 is 1-local and s 6j= �0, falseUntilEnd(�0; s; T) ensures that �0 remains false for all sequences of

transitions starting from s and staying outside T , except possibly in the last state of the sequence.

To see this, note that the �rst conjunct of falseUntilEnd ensures that only the last transition of

process j in such a sequence could truthify �0, and the second conjunct ensures that the sequence

contains only transitions of process j, because every other process is either in
(T) or waiting for

a process in
(T). Thus, sn+1 might satisfy �0, but sn 6j= �0. If
(tp) 62 supp(�0), then tp does not

a�ect �0, so sp 6j= �0. If
(tp) 2 supp(�0), then
(tp) 62 supp(�) (because supp(�0) and supp(�) are

disjoint); the de�nition of T implies sn 6j= �, so sp 6j= �.

For (e), consider the same setup as for (c). Again, it su�ces to show that sp 6j= �. By de�nition

of T [followWF(s; supp(�0)), sn 6j= � and sn 6j= �0. supp(�0) and supp(�) are disjoint, so a single

transition can truthify at most one of � and �0, so sp 6j= �.

26 of 26

