
C++ Templates as Partial Evaluation

Todd L. Veldhuizen
�

Abstract

This paper explores the relationship between C++ tem-
plates and partial evaluation. Templates were designed to
support generic programming but unintentionally provided
the ability to write code generators and perform static com-
putations. These features are accidental, and as a result
their syntax and semantics are awkward. Despite being
unwieldy, these techniques have become somewhat popular
because they partially solve an important problem in scien-
ti�c computing{ how to provide libraries of domain-speci�c
abstractions without performance loss. It turns out that
the C++ template mechanism is really partial evaluation in
disguise: C++ may be regarded as a two-level language in
which types are �rst-class values and template instantiation
resembles o�ine partial evaluation. That C++ templates
have proven so useful underscores the potential importance
of partial evaluation as a language feature.

1 Introduction

1.1 Overview

C++ templates are of interest since they solve some impor-
tant performance problems in designing scienti�c comput-
ing class libraries (Section 1.2). Templates were intended to
support generic programming, but accidentally provided the
ability to perform static computations and code generation
(Section 2). It turns out that the C++ template mechanism
is a form of partial evaluation (Section 3); the experience of
library developers working with templates may o�er some
useful insights about partial evaluation as a language fea-
ture (Section 4).

1.2 Motivation

Scienti�c computing requires many abstractions. Every
subdomain has its own requirements, such as interval
arithmetic, tensors, polynomials, automatic di�erentiation,
meshes, and so on. For economic reasons, languages can only
provide the few concepts common to all, such as oating-
point numbers and arrays. In the past, people requiring
more than the limited abstractions provided by mainstream
languages have developed domain-speci�c languages (DSLs)
for sparse arrays, intervals, automatic di�erentiation, adap-
tive mesh re�nement, and others. Such languages are not

�Extreme Computing Laboratory, Indiana University Computer
Science Department, Bloomington Indiana 47405, USA. tveld-
hui@acm.org

ideal solutions: they tend to have short life-spans due to
limited support and portability, su�er from a lack of tools
(particularly debuggers), and it is usually impossible to use
two DSLs in the same source �le.

With the advent of languages such as C++ and For-
tran 90 which provided object-oriented features and opera-
tor overloading, it has become possible to create abstractions
using the language itself, and have notations which resemble
the mathematics being implemented. In recent years there
has been a proliferation of libraries which provide abstrac-
tions previously implemented as DSLs: data-parallel arrays,
sparse arrays, interval arithmetic, and automatic di�erenti-
ation are the most prominent examples.

However, the code generated by such libraries tends to
be naive. For example, array objects implemented using op-
erator overloading in C++ were originally 3-20 times slower
than the corresponding low-level implementation. This was
not because of poor design on the part of library develop-
ers, but rather because the language forced a style of imple-
mentation which was grossly ine�cient. These performance
problems are commonly called the abstraction penalty; ef-
forts to solve them have been many and ongoing.

One might think that a su�ciently smart optimizer
would eliminate the abstraction penalty. However, compil-
ers have di�culty because they lack semantic knowledge of
the abstractions: they do not know that a given piece of code
represents (for example) a sparse array operation; instead,
they just see pointers and loops. Knowledge of the seman-
tics is essential for doing appropriate optimizations. E�orts
to describe the semantics of a class to compilers have been
largely unsuccessful. Libraries tend to have layers of ab-
straction and side-e�ects which cause further di�culties for
optimizers. Also, it is doubtful there is a general-purpose
solution: every problem domain has its own optimization
tricks and peculiarities.

A more promising approach is to construct libraries
which both provide abstractions, and control how they are
optimized. This concept has been called \active libraries"
[5]. Such libraries handle high-level optimization them-
selves, leaving only low-level optimizations (register allo-
cation, instruction scheduling, software pipelining) to the
optimizer.

Meta-level processing systems such as Xroma [5],
MPC++ [9], Open C++ [3], and Magik [6] provide one pos-
sible route to building active libraries. Such systems open
up the compilation system and allow libraries to plug in
their own translation modules. While these approaches are
showing promise, a potential disadvantage is the complexity

1



of code which one must write: modern languages have com-
plicated syntax trees, and so code which manipulates and
generates these trees tends to be complex as well.

C++ templates may point the way to a more usable
solution. Template techniques have been used to solve the
performance problems of C++ for arrays and linear algebra,
and several libraries based on these techniques are being dis-
tributed (e.g. POOMA [11], Blitz++ [20], and MTL [14]).
The syntax used to implement these libraries is awkward.
Partial evaluation o�ers hope for a cleaner syntax: there is
a strong resemblance between templates and partial evalu-
ation, so some mechanism based directly on partial evalua-
tion might solve the abstraction penalty problem, and avoid
the awkward syntax of template techniques. There is some
precedent for this hope: at least one scienti�c computing
project [15] reinvented the notion of two-level languages to
provide a convenient notation for generating runtime library
routines for parallelizing compilers.

So there is potential for fruitful collaboration: library de-
velopers need the technologies being developed by the par-
tial evaluation community. Researchers in partial evalua-
tion might bene�t from the experience of library developers
working with templates: there is a growing understanding
of what features are useful for creating active libraries.

2 The capabilities templates provide

2.1 Generic programming

The original intent of templates was to support generic pro-
gramming, which can be summarized as \reuse through pa-
rameterization". Generic functions and objects have param-
eters which customize their behavior.1 These parameters
must be known at compile time (i.e. must be statically
bound). For example, a generic vector class can be declared
as:

template<typename T, int N>1

class Vector f
...

private:5

T data[N];
g;

// Example use of Vector
Vector<int,4> x;10

The Vector class takes two template parameters (line 1): T,
a type parameter, speci�es the element type for the vector; N,
a nontype parameter, is the length of the vector. To use the
vector class, template arguments must be provided (line 10).
This causes the template to be instantiated: an instance of
the template is created by replacing all occurrences of T and
N in the de�nition of Vector with int and 4, respectively.

Functions may also be templates. Here is a function
template which sums the elements of an array:

template<typename T>11

T sum(T* array, int numElements)
f

T result = 0;

1In generic programming, generic function means a parameterized
function; this is a di�erent meaning than in e.g. CLOS and Dylan.

for (int i=0; i < numElements; ++i)15

result += array[i];
return result;

g

// Example use20

double a[] = f 1, 2, 3, 4 g;
double a sum = sum(a,4);

This function works for built-in types, such as int and
float, and also for user-de�ned types provided they have
appropriate operators (=, +=) de�ned. Note that in line 22,
no template parameters are provided { the compiler infers
the template parameter T from the type of a. Templates
allow programmers to develop classes and functions which
are general-purpose, yet retain the e�ciency of statically
con�gured code.

2.2 Compile-time computations

Templates can be exploited to perform computations at
compile time. This was discovered by Erwin Unruh [17],
who wrote a program which produced these compile errors:

unruh.cpp 10: Cannot convert 'enum' to 'D<2>'23

unruh.cpp 10: Cannot convert 'enum' to 'D<3>'
unruh.cpp 10: Cannot convert 'enum' to 'D<5>'
unruh.cpp 10: Cannot convert 'enum' to 'D<7>'
unruh.cpp 10: Cannot convert 'enum' to 'D<11>'
...

The program tricked the compiler into calculating a list of
prime numbers! This capability was quite accidental, but
has turned out to be very useful. Here is a simpler example
which calculates pow(X,Y) at compile time:

template<int X, int Y>29

struct ctime pow f
static const int result =

X * ctime pow<X,Y-1>::result;
g;

// Base case to terminate recursion35

template<int X>
struct ctime pow<X,0> f

static const int result = 1;
g;

40

// Example use:
const int z = ctime pow<5,3>::result; // z = 125

In C++, :: is a scope resolution operator: A::Bmeans, \the
symbol B in scope A." The �rst template de�nes a structure
ctime pow which has a single data member result. The
static const quali�ers of result indicate that its value
must be known at compile time. ctime pow<X,Y> refers to
ctime pow<X,Y-1>, so the compiler must recursively instan-
tiate the template for Y,Y-1, Y-2, ... until it hits the base case
provided by the second template, which is called a partial
specialization. C++ compilers include a pattern-matching
system to select among templates; in general the most spe-
cialized template is selected. This pattern-matching aspect
of templates results in a resemblance to logic-programming
systems; the implementation of ctime pow above resembles
a logic-programming implementation of pow:

pow(X,Y) :- X * pow(X,Y-1).43

pow(X,0) :- 1.

2



Here is an array class which uses ctime pow to calculate the
number of array elements needed:

// Array which is the same length in45

// every dimension
template<typename T, int Length,

int Dims>
class IsoDimArray f

// ...50

static const int numElements =
ctime pow<Length,Dims>::result;

T data[numElements];
g

55

// A 3x3 array: will have 9 elements
IsoDimArray<float,3,2> x;

// A 3x3x3 array: will have 27 elements
IsoDimArray<float,3,3> x;60

When the IsoDimArray template is instantiated, ctime pow
is used to calculate the array size required. This allows the
array elements to be allocated on the stack, which is much
faster than dynamic memory allocation. Similar template
techniques can be used to �nd greatest common divisors,
test for primality, and so on { all at compile time. As an
extreme example, it is possible to implement a subset of Lisp
(encoded in templates) which is \interpreted" at compile
time [4].

2.3 Code generation

It turns out that control structures (loops, if/else, case
switches) can be mimicked in templates. For example, the
de�nition of ctime pow (Section 2.2) emulates a for loop
using recursion. These compile-time programs can perform
code generation by selectively inlining code as they are \in-
terpreted" by the compiler. This technique is called tem-
plate metaprogramming [19]. Here is a template metapro-
gram which generates a specialized dot product algorithm:

template<int I>61

inline float meta dot(float* a, float* b)
f

return meta dot<I-1>(a,b) + a[I]*b[I];
g65

template<>
inline float meta dot<0>(float* a, float* b)

f
return a[0]*b[0];70

g

// Example use:
float x[3], y[3];
float z = meta dot<2>::f(x,y);75

In the above example, the call to meta dot in line 75 results
in code equivalent to:

float z = x[0]*y[0] + x[1]*y[1] + x[2]*y[2];76

Recursion is used to unroll the loop over the vector elements.
The syntax for writing such code generators is clumsy. How-
ever, the technique has proven very useful in producing spe-
cialized algorithms for scienti�c computing. The MTL li-
brary [14] uses similar generators to construct fast, �xed-
size kernels for use in linear algebra routines. By composing
these kernels, MTL is able to provide linear algebra oper-
ations which are sometimes faster than the native libraries
provided by hardware vendors. Similar generators are used
by the Blitz++ library [21] to specialize algorithms for small,
�xed-size vectors and matrices.

It is even possible to create and manipulate static data
structures at compile time, by encoding them as templates.
This is the basis of the expression templates technique [18],
which creates parse trees of array expressions at compile
time. These parse trees are used to generate e�cient eval-
uation routines for array expressions. This technique is the
backbone of several libraries for object-oriented numerics
[11, 20].

2.4 Traits

The traits technique [12] allows programmers to de�ne
\functions" which operate on and return types rather than
data. As a motivating example, consider a template func-
tion which calculates the average value of an array. What
should its return type be? If the array contains integers,
a oating-point result should be returned. But a oating-
point return type will not su�ce for all arrays (for example,
complex-valued arrays).

The problem may be solved by de�ning a traits class
which maps from the type of the array elements to a type
suitable for containing their average. Here is a simple im-
plementation:

// default behavior: T -> T77

template<typename T>
struct average traits f
typedef T T average;80

g;

// specialization: int -> float
template<>
struct average traits<int> f85

typedef float T average;
g;

An appropriate type for averaging an array of type T is given
by average traits<T>::T average. This pair of templates
encodes the behavior, \use the array element type for cal-
culating averages, except use oat for arrays of integers."
Again, note the strong resemblance between this traits class
and a corresponding logic-programming implementation:

average type(T) :- T.88

average type(int) :- float.

Here is an implementation of average:

template<class T>90

typename average traits<T>::T average
average(T* array, int N)

f
typename average traits<T>::T average

result = sum(array,N);95

return result / N;
g

3



This version correctly handles arrays of integers, oating-
point, and complex arrays.

Similar problems are constantly encountered in tem-
plated class libraries. Templates provide general-purpose
rules for creating functions and classes; traits allow you to
handle the many exceptions which arise.

3 Templates as partial evaluation

Partial evaluators [10] regard a program's computation as
containing two subsets: static computations, which are per-
formed at compile time, and dynamic computations per-
formed at run time. A partial evaluator evaluates the static
portion of the program and outputs a specialized residual
program.

To determine which portions of a program may be evalu-
ated, a partial evaluator may perform binding time analysis
to label language constructs and data as static or dynamic.
Such a labelled language is called a two-level language. For
example, a binding-time analysis of some scienti�c comput-
ing code might produce this two-level code fragment:

float volumeOfCube(float length)

f
return pow(length,3);

g

float pow(float x, int N)

f
float y = 1;

for (int i=0; i < N; ++i)

y *= x;

return y;

g

in which static constructs have been overlined. A partial
evaluator such as CMix [1] would evaluate the static con-
structs to produce the residual code:

float volumeOfCube(float length)98

f
return pow3(length);

g

float pow3(float x)
f

float y = 1;105

y *= x;
y *= x;
y *= x;
return y;

g110

Such specializations can result in substantial performance
improvements for scienti�c code [2, 8].

3.1 C++ as a two-level language

C++ templates resemble a two-level language. Function
templates take both template parameters (statically bound)
and function arguments (dynamically bound). For example,
the pow function of the previous example might be declared
in C++ as:

template<int N>111

float pow(float x); // Calculate pow(x,N)

The static data (N) is a template parameter, and the dy-
namic data (x) is a function argument. To incorporate tem-
plate type parameters into this viewpoint, we need to regard
types as �rst-class values. For example, in a declaration such
as

template<typename X, int Y>113

void func(int i, int j);

we regard X as a type variable, as in ML. Since C++ is stat-
ically typed, type variables may only be statically bound.
This point of view has a certain simplifying power: for ex-
ample, one can view typedefs as declarations of type vari-
ables:

typedef float float type;115

can be regarded as equivalent to the (�ctional syntax)

typename float type = float;116

3.2 Template instantiation as o�ine PE

Partial evaluation of programs which contain explicit
binding-time information is called o�ine partial evaluation.
Template instantiation resembles o�ine partial evaluation:
the compiler takes template code (a two-level language) and
evaluates those portions of the template which involve tem-
plate parameters (statically bound values). For example,
consider this template class:

template<int X>117

struct ulam f
static const int result =
ulam<(X % 2 == 0) ? (X/2) : (3*X+1)>::result;120

g;

// Base case: X = 1
template<>
struct ulam<1> f125

static const int result = 0;
g;

The syntax A ? B : C is C's equivalent to the functional if
A then B else C. When ulam<X> is instantiated, the const
quali�er on result requires the compiler to evaluate the
right-hand side of the assignment at compile time. So it
determines if X % 2 == 0 (whether X is even). If true, it
instantiates ulam<X/2>; otherwise ulam<3*X+1> is instanti-
ated. In theory, this continues until the compiler hits the
base case X=1. Whether this recursion terminates for all X
is a well-known open problem. In C++, it is impossible to
determine if a chain of template instantiations will ever ter-
minate. For this reason, compilers place arbitrary limits on
the depth of template instantiation chains.

In C++, the binding time of code is inferred from the
binding time of data: if an expression is assigned to a
statically-bound value, the expression must be statically
bound. Templates in C++ allow only monovariant division;
it is not possible to have data or code which is statically
bound in one context, but dynamically bound in another.
For example, standard library routines such as pow and cos
cannot be used at compile-time and for practical applica-
tions this limitation is frustrating.

C++ does allow part-static, part-dynamic structures.
For example, the class

class Example f128

static const int x = 5;
int y;

g;

4



contains both a statically bound member (x), and a dynamic
member (y). (Note that the static keyword refers to x
being shared among objects of type Example, and not to
binding times). Mixed static-dynamic data structures have
proven very useful; for example, they are the basis of the
expression templates technique [18].

4 What can be learned from the C++ experience?

Asymmetry between the static and dynamic lan-
guage is bad. In C++, the static and dynamic aspects
of the language bear little resemblance to each other. The
static version of the language is maddeningly limited: there
are no oating-point numbers, no objects, and no side-
e�ects. It might be desirable to have near-perfect symme-
try between the static and dynamic languages, even to the
extent of allowing side-e�ects at compile-time. For exam-
ple, being able to do �le I/O and issue console messages
at compile-time would be very useful: a library could gen-
erate specialized code based on the contents of a data or
con�guration �le, and issue compile-time errors and warn-
ing messages. Not being able to issue customized diagnostic
messages in C++ has hurt the usability of template libraries.

Reection and meta-objects would be useful. A
common headache in using C++ templates is that there is no
way to enforce constraints on template parameters. If users
unwittingly violate constraints, the result might be a cryp-
tic error message, or in the worst case, the program might
crash mysteriously. A staged or multilevel language with
some simple reection capabilities could provide a straight-
forward way to enforce constraints on template parameters
(an idea due to Vandevoorde [5]). For example, the sum
function template of Section 2.1 assumes that the template
type parameter T is some numeric type which may be initial-
ized to 0 and has the operator += de�ned. With reection
and staging, the sum function could examine the parameter T
and issue a friendly diagnostic message if these requirements
were not met.

There are open problems in reconciling multilevel
capabilities with other language features. Templates
interact with other language features in bizarre ways. Some
might regard this as evidence of poor design, but some of
these shortcomings point the way to interesting, possibly
unsolved problems. How can static initialization be handled
sensibly in a multilevel language, particularly one with rel-
ative binding times? Is it possible to provide a multilevel
language which preserves separate compilation? (This has
been an enormous headache for C++). How should object-
oriented language features interact with multilevel language
features?

First-class types are good. The ability to construct
and manipulate types has proven extraordinarily useful in
writing scienti�c C++ libraries. In particular, the traits
technique{ being able to write functions which operate on
and return types{ has proven very valuable.

Fixed rules for selecting among multiple tem-
plates are bad. In C++, the rules for matching templates
are well-designed { they work 95% of the time. It is the
other 5% which is annoying, since the rules are hard-coded
into the language. One can sometimes trick the compiler
into selecting particular templates, but sometimes not. In a
multilevel language, it would be possible to implement these
rules in the language itself while avoiding the overhead of
systems such as CLOS which resolve multimethods at run-

time. This would allow matching rules to be customized
when necessary. Languages in the ML family, with their pat-
tern matching syntax, might provide a natural mechanism
for duplicating the template pattern matching features.

Explicit binding-time annotations are good. Good
optimizers with inter-procedural analysis and procedure
cloning are approaching the power of online partial evalua-
tion. But undirected specialization is only marginally use-
ful to library developers. Optimizing the trade-o� between
compile-time and run-time evaluation is tricky: some non-
trivial scienti�c computing codes have no dynamic inputs.
Most importantly, online partial evaluation implies an as-
sumption that execution time is proportional to the amount
of computation. In most scienti�c computing codes, the cost
is in data ow between the caches and main memory. On-
line PE can generate residual code with \less computation,"
but so far not \smarter computation". To generate smarter
code, one needs a predictive model of the hardware: its
caches, pipelines, and so on. These are very di�cult de-
cisions to automate. For example, the Cray optimizer has
roughly 108 possible settings of its optimization switches;
�nding the best settings for a given code requires tedious
experimentation, even by experts. However, in the hands
of a library developer who understands the hardware, ex-
plicit binding-time annotations can be a powerful perfor-
mance tool, since compile-time computations can be used
to rearrange the ow of the run-time computation for e�-
cient cache use.

It is su�cient to label data with binding times.
In C++ templates, binding-time annotations apply to data
only { there is no way to label pieces of code as static or
dynamic. The binding times of code constructs follows nat-
urally from binding times of data. Although this may sound
limited, in practice it has been su�cient to solve many im-
portant performance problems in C++.

5 Conclusions

C++ templates have acquired a reputation as being overly
complex. In their defense, templates started as a simple
mechanism, and developed gradually over a decade in re-
sponse to experimentation and the needs of users. This in-
cremental process contributed to their current state of dis-
array. However, this same process has resulted in a use-
ful inventory of the capabilities which library developers re-
quire. Anyone developing similar mechanisms based on par-
tial evaluation may bene�t from examining this inventory.

C++ with templates may be regarded as a two-level lan-
guage in which types are �rst-class, statically-bound val-
ues. Template instantiation bears a striking resemblance to
o�ine partial evaluation. That templates have proven so
useful in C++ is an encouragement for continued work on
partial evaluation as a language feature. Languages incorpo-
rating partial evaluation may o�er a way to provide generic
programming, code generation, and compile-time computa-
tion via a single mechanism with simple syntax. In partic-
ular, research on explicit binding-time annotations, staging,
and the relationship between partial evaluation and type
systems could have many fruitful applications; developers of
scienti�c computing libraries would bene�t from language
features like these.

5



6 Acknowledgments

This work was supported in part by NSF grants CDA-
9601632 and CCR-9527130. I am grateful to Robert Gl�uck
for useful discussions about partial evaluation and tem-
plates, to Michael Ashley and Olivier Danvy for shepherding
this paper, and to anonymous reviewers for many helpful
suggestions.

References

[1] Andersen, L. O. Program Analysis and Specialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994. (DIKU report
94/19).

[2] Berlin, A., and Weise, D. Compiling scienti�c code
using partial evaluation. Computer 23, 12 (Dec 1990),
25{37.

[3] Chiba, S. A Metaobject Protocol for C++. In OOP-
SLA'95 (1995), pp. 285{299.

[4] Czarnecki, K., and Eisenecker,
U. Meta-control structures for tem-
plate metaprogramming. http://home.t-
online.de/home/Ulrich.Eisenecker/meta.htm.

[5] Czarnecki, K., Eisenecker, U., Gl�uck, R., Van-
devoorde, D., and Veldhuizen, T. L. Generative
Programming and Active Libraries. In Proceedings of
the 1998 Dagstuhl-Seminar on Generic Programming
(1998), vol. TBA of Lecture Notes in Computer Sci-
ence. (in review).

[6] Engler, D. R. Incorporating application semantics
and control into compilation. In USENIX Conference
on Domain-Speci�c Languages (DSL'97) (October 15{
17, 1997).

[7] Gl�uck, R., and J�rgensen, J. An automatic pro-
gram generator for multi-level specialization. Lisp and
Symbolic Computation 10, 2 (1997), 113{158.

[8] Gl�uck, R., Nakashige, R., and Z�ochling, R.
Binding-time analysis applied to mathematical algo-
rithms. In System Modelling and Optimization (1995),
J. Dole�zal and J. Fidler, Eds., Chapman & Hall,
pp. 137{146.

[9] Ishikawa, Y., Hori, A., Sato, M., Matsuda, M.,
Nolte, J., Tezuka, H., Konaka, H., Maeda, M.,
and Kubota, K. Design and implementation of met-
alevel architecture in C++ { MPC++ approach. In
Reection'96 (1996).

[10] Jones, N. D. An introduction to partial evaluation.
ACM Computing Surveys 28, 3 (Sept. 1996), 480{503.

[11] Karmesin, S., Crotinger, J., Cummings, J.,
Haney, S., Humphrey, W., Reynders, J., Smith,
S., and Williams, T. Array design and expres-
sion evaluation in POOMA II. In ISCOPE'98 (1998),
vol. 1505, Springer-Verlag. Lecture Notes in Computer
Science.

[12] Myers, N. A new and useful template technique:
\Traits". C++ Report 7, 5 (June 1995), 32{35.

[13] Nielson, F., and Neilson, H. R. Two-Level Func-
tional Languages. Cambridge University Press, Cam-
bridge, Mass., 1992.

[14] Siek, J. G., and Lumsdaine, A. The Matrix Tem-
plate Library: A generic programming approach to high
performance numerical linear algebra. In International
Symposium on Computing in Object-Oriented Parallel
Environments (1998).

[15] Stichnoth, J., and Gross, T. Code composition as
an implementation language for compilers. In USENIX
Conference on Domain-Speci�c Languages (1997).

[16] Taha, W., and Sheard, T. Multi-stage programming
with explicit annotations. ACM SIGPLAN Notices 32,
12 (1997), 203{217.

[17] Unruh, E. Prime number computation, 1994. ANSI
X3J16-94-0075/ISO WG21-462.

[18] Veldhuizen, T. L. Expression templates. C++ Report
7, 5 (June 1995), 26{31. Reprinted in C++ Gems, ed.
Stanley Lippman.

[19] Veldhuizen, T. L. Using C++ template metapro-
grams. C++ Report 7, 4 (May 1995), 36{43. Reprinted
in C++ Gems, ed. Stanley Lippman.

[20] Veldhuizen, T. L. Arrays in Blitz++. In ISCOPE'98
(1998), vol. 1505 of Lecture Notes in Computer Science.

[21] Veldhuizen, T. L., and Ponnambalam, K. Linear
algebra with C++ template metaprograms. Dr. Dobb's
Journal of Software Tools 21, 8 (Aug. 1996), 38{44.

6


