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Abstract

We propose a general paradigm for generating optimal coordinate frame fields that may be ex-
ploited to annotate and display curves and surfaces. Parallel-transport framings, which work well
for open curves, generally fail to have desirable properties for cyclic curves and for surfaces. We
suggest that minimal quaternion measure provides an appropriate generalization of parallel trans-
port. Our fundamental tool is the “quaternion Gauss map,” a generalization to quaternion space
of the tangent map for curves and of the Gauss map for surfaces. The quaternion Gauss map
takes 3D coordinate frame fields for curves and surfaces into corresponding curves and surfaces
constrained to the space of possible orientations in quaternion space. Standard optimization tools
provide application-specific means of choosing optimal, e.g., length- or area-minimizing, quater-
nion frame fields in this constrained space. We observe that some structures may have distinct
classes of minimal quaternion framings, e.g, one disconnected from its quaternion reflection, and
another that continuously includes its own quaternion reflection. We suggest an effective method
for visualizing the geometry of quaternion maps that is used throughout. Quaternion derivations
of the general moving-frame equations for both curves and surfaces are given; these equations are
the quaternion analogs of the Frenet and Weingarten equations, respectively. We present examples
of results of the suggested optimization procedures and the corresponding tubings of space curves
and sets of frames for surfaces and surface patches.

1 Introduction

We propose a general framework for selecting optimal systems of coordinate frames that can be
applied to the study of geometric structures such as curves and surfaces in three-dimensional space.
The methods contain “minimal-turning” parallel-transport framings of curves as a special case,
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Figure 1: The (3,5) torus knot, a complex periodic 3D curve. (a) The line drawing is nearly
useless as a 3D representation. (b) A tubing based on parallel transporting an initial reference
frame produces an informative visualization, but is not periodic. (c) The arrow in this closeup
exposes the subtle but crucial non-periodic mismatch between the starting and ending parallel-
transport frames; this would invalidate any attempt totexturethe tube. The methods of this
paper provide robust parameterization-invariant principles for resolving such problems.

and extend naturally to situations where parallel-transport is not applicable. This article presents
additional details of the IEEE Visualization ’98 paper by the author [16].

Motivation. Many graphics problems require techniques for effectively displaying the properties
of curves and surfaces. The problem of finding appropriate representations can be quite challeng-
ing. Representations of space curves based on single lines are often inadequate for graphics pur-
poses; significantly better images result from choosing a “tubing” to display the curve as a graph-
ics object with spatial extent. Vanishing curvature invalidates methods such as the Frenet frame,
and alternative approaches such as those based on parallel transport involve arbitrary heuristics
to achieve such properties as periodicity. Similar problems occur in the construction of suitable
visualizations of complex surfaces and oriented particle systems on surfaces. If a surface patch
is represented by a rectangular but nonorthogonal mesh, for example, there is no obvious local
orthonormal frame assignment; if the surface has regions of vanishing curvature, methods based
on directions of principal curvatures break down as well.

While we emphasize curves and surfaces in this paper to provide intuitive examples, there are
several parallel problem domains that can be addressed with identical techniques. Among these are
extrusion methods and generalized cones in geometric modeling, the imposition of constraints on
a camera-frame axis in key-frame animation, and the selection of a 2D array of camera-frame axis
choices as a condition on a constrained-navigation environment (see, e.g., Hanson and Wernert
[20]).

Figure 1 summarizes the basic class of problems involving curves that will concern us here.
The line drawing (a) of a (3,5) torus knot provides no useful information about the 3D structure.
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Figure 2: (a) A smooth 3D surface patch having a non-orthogonal parameterization, along with
its geometrically-fixed normals at the four corners. No unique orthonormal frame is derivable
from the parameterization. If we imitate parallel transport for curves to evolve the initial frame
at the top corner to choose the frame at the bottom corner, we find that paths (b) and (c) re-
sult in incompatible final frames at the bottom corner. This paper addresses the problem of
systematically choosing a compatible set of surface frames in situations like this.

Improving the visualization by creating a tubing involves a subtle dilemma that we attempt to ex-
pose in the rest of the figure. We cannot use a periodic Frenet frame as a basis for this tubing
because inflection points or near-inflection points occur for many nice-looking torus knot parame-
terizations, and in such cases the Frenet frame is undefined or twists wildly. The parallel-transport
tubing shown in (b) is well-behaved but not periodic; by looking carefully at the magnified portion
next to the arrow in Figure 1(c), one can see a gross mismatch in the tessellation due to the non-
periodicity which would, for example, preclude the assignment of a consistent texture. While it
would be possible in many applications to ignore this mismatch, it has been the subject of a wide
variety of previous papers (see, e.g., [24, 36, 5]), and must obviously be repaired for many other
applications such as those requiring textured periodic tubes.

Figure 2 illustrates a corresponding problem for surface patches. While the normals to the four
corners of the patch are always well-defined (a), one finds two different frames for the bottom
corner depending upon whether one parallel transports the initial frame around the left-hand path
(b) or the right-hand path (c). There is no immediately obvious right way to choose a family of
frames covering this surface patch.

Our goal is to propose a systematic family of optimization methods for resolving problems
such as these.

Methodology. We focus on unit quaternion representations of coordinate frames because of the
well-known natural structure of unit quaternions as points on the three-sphere S3, which admits
a natural distance measure for defining optimization problems, and supports in addition a variety
of regular frame-interpolation methods (see, e.g., [37, 35, 31, 23]). We do not address the related
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Figure 3: (a) The camera frame interpolation problem is analogous to the problem of finding a
minimal-bending spline curve through a series of fixed key points. (b) The optimal curve frame
assignment problem is analogous to fixing the end points of a curve segment and choosingin
additiona family of lines along which the intermediate points are constrained to slide during the
optimization process; in 3D, the spline path need not pass through the constraint lines. (c) In
this paper, our sample points are generally close enough together that we apply the constraints to
piecewise linear splines analogous to those shown here.

question of optimal freely moving frames treated by the minimal-tangential-acceleration methods
(see, e.g., [2, 34, 11]); we are instead concerned with closely-spaced points on curves and sur-
faces where one direction of the frame is already fixed, and the chosen functional minimization
in quaternion space must obey the additional constraint imposed by the fixed family of directions.
Additional references of interest, especially regarding the treatment of surfaces, include [22, 32].
Figure 3 provides a visualization of the difference between the general interpolation problem and
our constrained problem: a typical spline minimizes the bending energy specified by the chosen
anchor points; requiring intermediate points to slide on constrained paths during the minimization
modifies the problem. In particular, 3D spline curves need not intersect any of the constraint paths.
In addition, we note that we typically have already sampled our curves and surfaces as finely as we
need, so that piecewise linear splines are generally sufficient for the applications we discuss.

Our solution to the problem is to transform the intrinsic geometric quantities such as the tangent
field of a curve and the normal field of a surface to quaternion space and to construct the quater-
nion manifold corresponding to the one remaining degree of rotational freedom in the choice of
coordinate frame at each point. Curves and surfaces in thesespaces of possible framescorrespond
to specific choices of thequaternion Gauss map, a subspace of the space of possible quaternion
frames of the object to be visualized. Mathematically speaking, the space of possible frames is
the circularHopf fiberlying above the point in S2 corresponding to each specific curve tangent or
surface normal (see, e.g., [39, 3]).

For space curves, specifying a frame assignment as a quaternion path leads at once to tubular
surfaces that provide a “thickened” representation of the curve that interacts well with lighting and
rendering models. For surface patches, the approach results in a structure equivalent to that of
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an anisotropic oriented particle system whose pairs of tangent vector fields in the surface produce
natural flow fields that characterize the local surface properties and are easy to display. We will
see that certain complex features of surfaces that are well-known in manifold theory arise naturally
and can be clearly visualized using the quaternion Gauss map.

In the course of the discussion, we introduce a useful method of visualizing the geometry of
the space of quaternions in which quaternion Gauss maps and the spaces of possible quaternion
frames are represented. We show how to compute the required subspaces of frames in practice,
and how to express this information in a form that can be used to optimize an energy measure,
thereby leading to optimal frame choices. We also outline in the appendix a treatment of the
curve and surface frame differential equations expressed directly in quaternion coordinates using
the quaternion Lie algebra; these methods expose essential fundamental features of the quaternion
frame methodology that are analogous to the Frenet and Weingarten equations.

Parallel Transport and Minimal Measure. Constraining each quaternion point (a frame) to its
own circular quaternion path (the axial degree of rotational freedom), we then minimize the quater-
nion length of the frame assignment for curves and the quaternion area of the frame assignment
for surfaces to achieve an optimal frame choice; this choice reduces to the parallel-transport frame
for simple cases. Our justification for choosing minimal quaternion length for curves is that there
is a unique rotation in the plane of two neighboring tangents that takes each tangent direction to
its next neighbor along a curve: this is the geodesic arc connecting the two frames in quaternion
space, and is therefore the minimum distance between the quaternion points representing the two
frames. The choice of minimal area for surface frames is more heuristic, basically a plausibility
argument that the generalization of minimal length is minimal area; no doubt this could be made
more rigorous.

By imposing other criteria such as endpoint derivative values and minimal bending energy (see
Barr et al. [2, 34]), the short straight line segments and polygons that result from the simplest
minimization could be smoothed to become generalized splines passing through the required con-
straint rings; since, in practice, our curve and surface samplings are arbitrarily dense, this was not
pursued in the current investigation.

For space curves, specifying a frame assignment as a quaternion path leads at once to tubular
surfaces that provide a “thickened” representation of the curve that interacts well with texturing,
lighting, and rendering models. For surface patches, the approach results in a structure equivalent
to that of an anisotropic oriented particle system (also a species of texture) whose pairs of tangent
vector fields in the surface produce natural flow fields that characterize the local surface properties
and are easy to display.

Background. General questions involving the specification of curve framings have been inves-
tigated in many contexts; for a representative selection of approaches, see, e.g., [24, 36, 5, 28].
The quaternion Gauss map is a logical extension of the quaternion frame approach to visualizing
space curves introduced by Hanson and Ma [19, 18]. The formulation of the quaternion form of
the differential equations for frame evolution was introduced as early as the 1890’s by Tait [41].
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Figure 4: A smooth 2D curve with its normal and tangent frame fields. The segmentsd and
f are intended to be straight.

For basic information on orientation spaces and their relationship to quaternions, see, e.g., [1,
33, 25]. Our own conventions are summarized in the appendix. The task of visualizing quaternions
is also important, and we will describe our own approach below; for an interesting alternative, see
Hart, Francis, and Kauffman [21]. Additional background on the differential geometry of curves
and surfaces may be found in sources such as the classical treatise of Eisenhart [8] and in Gray’s
MATHEMATICA -based text [12], which inspired a number of the illustrations in this paper.

2 The Differential Geometry of Coordinate Frames

Our first goal is to define moving coordinate frames that are attached to curves and surfaces in
3D space. We will assume that our curves and surfaces are defined in practice by a discrete set of
sample points connected by straight line segments, so that numerical derivatives can be defined at
each point if analytic derivatives are not available. We begin with a pedagogical presentation of
the properties of 2D curves, and then extend the surprisingly rich concepts that arise to 3D curves
and surfaces.

2.1 Orientation Maps of 2D Curves

Suppose we have a smooth, arbitrarily differentiable 2D curvex(t) = x(t)x̂ + y(t)ŷ. The curve
itself generates a continuous set of changing tangents and normals of the form

T(t) = dx(t)=dt = x0x̂+ y0ŷ (1)

N(t) = y0x̂� x0ŷ : (2)

We choose this relative orientation convention so that in any dimension the tangent vector is ex-
pressible as the positive-signed cross-product of the normal(s); see [15] for further details. Unit
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Figure 5: 2D Gauss map sketches of (a) the normal directions and (b) the tangent directions
corresponding to the U-shaped curve in Figure 4. All these vectors lie on the unit circle in 2D.
The straight line segments alongd andf in Figure 4 correspond to single points in both maps.

length vectors will hereafter be distinguished with the conventional notationv̂ = v=kvk, so the
normalized tangent and normal directions are denoted byT̂ andN̂.

In Figure 4, we show an example of a 2D curve with its tangent and normal fields. Thenor-
malizedtangent and normal fields have only one degree of freedom, which we denote by the angle
�(t); the column vectorŝN andT̂ then represent a moving orthonormal coordinate frame that may
be expressed in the form

h
N̂ T̂

i
=

"
cos � � sin �
sin � cos �

#
: (3)

We may derive a 2D version of the frame equations by differentiating the frame to get

N̂0(t) = +v�T̂ (4)

T̂0(t) = �v�N̂ ; (5)

where�(t) is the curvature andv(t) is the “velocity” relative to the infinitesimal measure of curve
lengthds2 = dx(t) � dx(t), that is,d�(t)=dt = (ds=dt)(d�(s)=ds) = v(t)�(t).

Note: we will find sign choices to be a subtle exercise throughout this paper. In Figure 4, the
fact that the normal̂N is chosen to point to theoutsideof a curve encircling an enclosed area in
the right-hand sense makes the system inequivalent to the Frenet frame of the corresponding 3D
curve, which would havêN pointinginwardseverywhere except around the pointe, and would be
undefined along the straight segmentsd andf .
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2D Tangent Map and Gauss Map. A 2D version of the Gauss map [8, 12] used in the classical
differential geometry of surfaces follows when we discard the original curve in Figure 4 and restrict
our view to showonly the path of the normalized normals, as in Figure 5(a), or the normalized
tangents, as in Figure 5(b); both vector fields take values only in the unit circle. We note that any
sufficiently small open neighborhood of the curve has unique tangent and normal directions, up
to the possibility of a shared limit point for straight segments such asd andf in Figure 4; over
the whole curve, however, particular neighborhoods of directions may be repeated many times,
resulting in an overlapping, non-unique 2D map, as indicated schematically in Figure 5. We will
accept this as a feature, not necessarily a deficiency, of the construction.

2D “Quaternions.” In the appendix, we present the details of a derivation of a quaternion-like
approach to the representation of 2D frames that may be informative to some readers. A brief
summary begins by noting that the normal and tangent vectors can be parameterized by a quadratic
form in the two variablesa andb as

h
N̂ T̂

i
=

"
cos � � sin �
sin � cos �

#
=

"
a2 � b2 �2ab
2ab a2 � b2

#
; (6)

where imposing the constrainta2 + b2 = 1 guarantees orthonormality of the frame.
By taking derivatives and extracting common factors, we find that the single matrix equation

"
a0

b0

#
=

1

2
v(t)

"
0 ��
+� 0

#
�

"
a
b

#
(7)

in the two variables with one constraint containsboththe frame equationŝT0 = �v�N̂ andN̂0 =
+v�T̂. The N̂0 andT̂0 equations are superficially a more complex set of two vector equations
in four variables with three constraints. Equation (7) is effectively thesquare rootof the frame
equations. Rotations may be realized as complex multiplication in(a + ib), and the pair(a; b) =
(cos(�=2); sin(�=2)) parameterizes any rotation. Since(a; b) � (�a;�b), the variables give a
double covering of the space of rotations if we take the angular range from0! 4� instead of2�.
These are precisely the properties we expect of quaternion representations of rotations.

2.2 3D Space Curves

We now move on to three-dimensional space curves. The fundamental difference in 3D is that,
while the tangent direction is still determinable directly from the space curve, there is an additional
degree of rotational freedom in the normal plane, the portion of the frame perpendicular to the
tangent vector. This is indicated schematically in Figure 6.

Tangent Map. The tangent direction of a 3D curve at each point is given simply by taking the
algebraic or numerical derivative of the curve at each sample point and normalizing the result. Each
tangent direction thus has two degrees of freedom and lies on the surface of the two-sphere S2. The
curve resulting from joining the ends of neighboring tangents is thetangent mapof the curve. As
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Figure 6: General form of a moving frame for a 3D curvex(t), with the tangent direction̂T
determined directly from the curve derivative, and the exact orientation of the basis(N̂1; N̂2) for
the normal plane determined only up to an axial rotation aboutT̂.

in the 2D case treated above, the tangent map of a 3D curve is not necessarily single-valued except
in local neighborhoods, and may have limit points (e.g., if there are straight segments). In Figure
7(a,b), we show examples of two classic 3D curves, one a closed knot, the (2,3) trefoil knot lying
on the surface of a torus, and the other the open helix:

xtorus(p; q)(a; b; c)(t) = (a+ b cos(qt)) cos(pt) x̂+ (a+ b cos(qt)) sin(pt) ŷ + c sin(qt) ẑ

xhelix(a; b; c)(t) = a cos(t) x̂+ b sin(t) ŷ + ct ẑ :

Differentiating these curves yields the tangent maps in Figure 7(c).

General Form of Curve Framings in 3D. The evolution properties of all possible frames for
a 3D curvex(t) can be written in a unified framework. The basic idea is to consider an arbitrary
frame to be represented in the form of columns of a3� 3 orthonormal rotation matrix,

Curve Frame=
h
N̂1 N̂2 T̂

i
: (8)

Here T̂(t) = x0(t)=kx0(t)k is the normalized tangent vector determined directly by the curve
geometry, and which is thus unalterable;(N̂1(t); N̂2(t)) is a pair of orthonormal vectors spanning
the plane perpendicular to the tangent vector at each point of the curve. SincekT̂k2 = kN̂1k

2 =
kN̂2k

2 = 1 and all other inner products vanish by definition, any change in a basis vector must be
orthogonal to itself and thereby expressible in terms of the other two basis vectors. Thus the most
general possible form for the frame evolution equations is

2
664
N̂0

1(t)

N̂0

2(t)

T̂0(t)

3
775=v(t)

2
64

0 +kz(t) �ky(t)
�kz(t) 0 +kx(t)
+ky(t) �kx(t) 0

3
75
2
664
N̂1(t)

N̂2(t)

T̂(t)

3
775 ; (9)

wherev(t) = kx0(t)k is the velocity of the curve if we are not using a unit speed parameterization.
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(a) (b) (c)

Figure 7: Tangent maps. (a) The (2,3) torus knot and the helix as 3D line drawings. (b) Illus-
trating an application of tubing to make the 3D curves more interpretable. (c) The corresponding
normalized tangent maps determined directly from the curve geometry. These are curves on the
two-sphere, and have also been tubed to improve visibility.
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The particular choice of notation and signs for the curvaturesk in Eq. (9) is compellingly
motivated by the quaternion Lie algebra treatment in the appendix, and its natural properties are
also exposed using the Darboux form of the equations,

N̂0

1 = v(t)F� N̂1

N̂0

2 = v(t)F� N̂2 (10)

T̂0 = v(t)F� T̂ ;

whereF generalizes the Darboux vector field (see, e.g., Gray [12], p. 205):

F = kxN̂1 + kyN̂2 + kzT̂ : (11)

The square magnitude of the total “force” acting on the frame iskFk2 = k2x+k2y +k2z , and we will
see below that this is a minimum for the parallel-transport frame.

The arbitrariness of the basis(N̂1(t); N̂2(t)) for the plane perpendicular tôT(t) can be ex-
ploited as desired to eliminate any one of the(kx; ky; kz) (see, e.g., [4]). For example, if

M̂1 = N̂1 cos � � N̂2 sin �

M̂2 = N̂1 sin � + N̂2 cos � ; (12)

differentiating and substituting Eq. (9) yields

M̂0

1 = M̂2(kz � �0)� T̂(kx sin � + ky cos �) (13)

M̂0

2 = �M̂1(kz � �0) + T̂(kx cos � � ky sin �) : (14)

Thus the angle�(t) may be chosen to cancel the angular velocitykz in the(N̂1(t); N̂2(t)) plane.
The same argument holds for any other pair. Attempting to eliminate additional components pro-
duces new mixing, leaving at least two independent components in the evolution matrix.

Tubing. For completeness, we note that to generate a ribbon or tube such as those used to display
curves throughout this paper, one simply sweeps the chosen set of frames through each curve point
p(t) to produce a connected tube,

x(t; �) = p(t) + cos � N̂1(t) + sin � N̂2(t) :

The resulting structure is sampled int and over one full2� period in� to produce a tessellated tube.
Arbitrary functions of(t; �) can be introduced instead of the cosine and sine to produce ribbons
and general linear structures.

Classical Frames. We now note a variety of approaches to assigning frames to an entire 3D
space curve, each with its own peculiar advantages. Figure 8 compares the tubings of the (2,3)
trefoil knot and the helix for each of the three frames described below.

11



(a) (b) (c)

Figure 8: Curve framings for the (2,3) torus knot and the helix based on (a) Frenet frame, (b)
Geodesic Reference frame (minimal tilt from North pole), and (c) Parallel Transport frame, which
is not periodic like the other frames.
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� Frenet-Serret Frame.This classical frame is determined by local conditions at each point of
the curve, but is undefined whenever the curvature vanishes (e.g., when the curve straightens
out or has an inflection point). For the Frenet frame,kx = 0, ky is the inverse radius of
curvature, i.e., the curvature�(t), andkz(t) is the torsion�(t), which mixes the two normal
vectors in their local plane. This choice produces the usual equations

2
664
T̂0(t)

N̂0(t)

B̂0(t)

3
775=v(t)

2
64 0 �(t) 0
��(t) 0 �(t)

0 ��(t) 0

3
75
2
664
T̂(t)

N̂(t)

B̂(t)

3
775 : (15)

Note that the squared Darboux vector is thuskFk2 = �2 + � 2 � �2.

If x(t) is any thrice-differentiable space curve, we can identify the triad of normalized Frenet
frame vectors directly with the local derivatives of the curve,

T̂(t) =
x0(t)

kx0(t)k

N̂1 = N̂(t) = B̂(t)� T̂(t) (16)

N̂2 = B̂(t) =
x0(t)� x00(t)

kx0(t)� x00(t)k
;

with � = kx0(t)� x00(t)k=kx0(t)k3, � = x0(t)� x00(t) � x000(t)=kx0(t)� x00(t)k2. For further
details, see [8, 12].

� Parallel-Transport Frame. This frame is equivalent to a heuristic approach that has been
frequently used in graphics applications (see, e.g., [24, 36, 5, 28]). A careful mathemati-
cal treatment by Bishop [4] presents its differential properties in a form that can be easily
compared with the standard features of the Frenet frame. The parallel transport frame is
distinguished by the fact that it uses the smallest possible rotation at each curve sample to
align the current tangent vector with the next tangent vector. The current orientation of
the plane normal to the tangent vector depends on the history of the curve, starting with
an arbitrary initial frame, and so one is essentially integrating a differential equation for
the frame change around the curve. The frame depends on the initial conditions, and can-
not be determined locally on the curve like the Frenet frame. The algorithm with the best
limiting properties [27] for computing this frame involves determining the normal direction
N̂ = Ti � Ti+1=kTi � Ti+1k to the plane of two successive tangents to the curve, finding
the angle� = arccos(T̂i � T̂i+1), and rotating the current frame to the next frame using the
3� 3 matrixR(�; N̂) or its corresponding quaternion (see appendix)

q(�; N̂) = q(arccos(T̂i � T̂i+1);Ti �Ti+1=kTi �Ti+1k) : (17)

If the successive tangents are collinear, one leaves the frame unchanged; if the tangents are
anti-collinear, a result can be returned, but it is not uniquely determined.
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To identify the parallel transport frame with Eq. (9), we setky ) k1,�kx ) k2, andkz = 0
to avoid unnecessary mixing between the normal components (effectively the definition of
parallel transport); this choice produces Bishop’s frame equations,

2
664
N̂0

1(t)

N̂0

2(t)

T̂0(t)

3
775=v(t)

2
64

0 0 �k1(t)
0 0 �k2(t)

k1(t) k2(t) 0

3
75
2
664
N̂1(t)

N̂2(t)

T̂(t)

3
775 : (18)

SincekT̂0k2 = (k1)
2 + (k2)

2 is an invariant independent of the choice of the normal frame,
Bishop identifies the curvature, orientation, and angular velocity

�(t) =
�
(k1)

2 + (k2)
2
�1=2

�(t) = arctan

 
k2
k1

!

!(t) =
d�(t)

dt
:

k1 andk2 thus correspond to a Cartesian coordinate system for the “curvature polar coordi-
nates”(�; �) with � = �0+

R
!(t) dt; !(t) is effectively the classical torsion�(t) appearing in

the Frenet equations. Note that the squared Darboux vectorkFk2 = kT̂0k2 = k21 + k22 = �2

is now a frame invariant. It is missing the torsion component present for the Frenet frame,
and thus assumes its minimal value.

� Geodesic Reference Frame.In this paper, we will often need a frame that is guaranteed to
have a particular axis in one direction, but we will not care about the remaining axes because
they will be considered as a space of possibilities. A convenient frame with these properties
can always be constructed starting from the assumption that there exists a canonical reference
frame in which, say, thêz axis corresponds to the preferred direction. Thus ifv̂ is the
desired direction of the new axis, we can simply tilt the reference axisẑ into v̂ along a
minimal, geodesic curve using an ordinary rotationR(�; n̂) or its corresponding quaternion
(see appendix):

q(�; n̂) = q(arccos(ẑ � v̂); ẑ� v̂=kẑ� v̂k) : (19)

Clearly any reference frame, including frames related to the viewing parameters of a moving
observer, could be used instead ofẑ. This frame has the drawback that it is ambiguous
whenever̂v = �ẑ; sequences of frames passing through this point will not necessarily be
smoothly varying since only a single instance of a one-parameter family of frames can be
returned automatically by a context-free algorithm. Luckily, this is of no consequence for our
application. As we will discuss later in the quaternion framework, this property is directly
related to the absence of a global vector field on the two-sphere.

� General Frames. We will henceforth work with the general framework for coordinate
frames of arbitrary generality, rather than choosing conventional frames or hybrids of the
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frames described so far (see, e.g., Klock [24]). While the classical frames have many funda-
mentally appealing mathematical properties, we are not in fact restricted to use any one of
them. Keeping the tangent vector field intact, we may modify the angle of rotation about the
tangent vector at will to produce an application-dependent frame assignment. An example
of such an application is a closed curve with inflection points: the Frenet frame is periodic
but not globally defined, the parallel transport frame will not be periodic in general, and
the Geodesic Reference frame will be periodic but may have discontinuities for antipodal
orientations. Thus, to get a satisfactory smooth global frame, we need something close to
a parallel transport frame but with a periodic boundary condition; an example of an ad hoc
solution is to take the Parallel Transport frame and impose periodicity by adding to each ver-
tex’s axial rotation a fraction of the angular deficit of the parallel transport frame after one
circuit. But this is highly heuristic and depends strongly on the chosen parameterization. In
the following sections, we introduce a more comprehensive approach.

2.3 3D Surfaces

If we are given a surface patchx(u; v) with some set of non-degenerate coordinates(u; v), we may
determine the normals at each point by computing

N(u; v) = xu � xv ; (20)

wherexu = @x=@u andxv = @x=@v. For surfaces defined numerically in terms of vertices
and triangles, we would choose a standard procedure such as averaging the normals of the faces
surrounding each vertex to determine the vertex normal. Alternatively, if we have an implicit
surface described by the level-set functionf(x) = 0, the normals may be computed directly from
the gradient at any pointx satisfying the level set equation:

N(x) = rf(x) :

The normalized normal is defined as usual byN̂ = N=kNk.
For 3D curves, the geometry of the curve determined the tangent vectorT̂ and left a pair of

normal vectors(N̂1; N̂2) with one extra degree of freedom to be determined in the total frame
[N̂1 N̂2 T̂]. The analogous observation for surfaces is that the geometry fixes thenormalat each
surface point, leaving a pair oftangentvectors(T̂1; T̂2) with one extra degree of freedom to be
determined in the total surface frame,

Surface Frame=
h
T̂1 T̂2 N̂

i
: (21)

When a(u; v) surface parameterization is available, the surface partial derivativesxu andxv

can in principle be used to assign a frame
h
T̂1 T̂2 N̂

i
(using Gram-Schmidt ifxu � xv 6= 0), but

there is no reason to believe that this frame has any special properties in general. In practice, it is
extremely convenient to define a rectangular mesh on the surface patch, and a grid parameterized
by (u; v) typically serves this purpose.
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(c) (d)

(a) (b)

Figure 9: Classical Gauss maps of surfaces. (a) An ellipsoid and (b) a portion of a torus. (c,d)
The corresponding standard Gauss maps of the normal vectors onto the sphere. Patches with
coincident normals (e.g., for the full torus) would overlap in this representation.
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Classical Gauss Map. The surface analog of the tangent map of a curve is the Gauss map,
which takes a selection of points on the surface, typically connected by a mesh of some sort, and
associates to each point its normalized surface normal. The Gauss map is then the plot of each of
these normals in the coordinate system of a unit sphere S2 in R3. The Gauss map is guaranteed
to be unique in some sufficiently small open set of each point of a regular surface, but may be
arbitrarily multiple valued for the entire surface; note also that many nearby surface points can be
mapped to a single point in the Gauss map, e.g., for certain types of planar curves in the surface or
a planar area patch.

In Figure 9, we show a coordinate mesh on an elliptical surface and its single-valued Gauss
map, as well as a quarter of a torus and its Gauss map; the Gauss map of the entire torus would
cover the sphere twice, and there are two entire circles on the torus that correspond to single points,
the North and South poles, in the Gauss map.

Surface Frame Evolution. The equations for the evolution of a surface frame follow the same
basic structure as those of a space curve, except the derivatives are now directional, with two lin-
early independent degrees of freedom corresponding to the tangent basis(T̂1; T̂2) in the surface.
Typically (see [8, 12]), one assumes a not-necessarily-orthogonal parameterization(u; v) that per-
mits one to express the tangent space in terms of the partial derivatives(xu; xv), giving the normals
N̂(u; v) of Eq. (20). Then one can express the local curvatures in terms of any linearly independent
pair of vector fields(U; V) as

DUN̂�DVN̂ = K (U�V) (22)

DUN̂�V +U�DVN̂ = 2H (U�V) : (23)

With U = xu � r andV = xv � r, we get the classical expressions. As Gray succinctly notes,
since all the derivatives of̂N are perpendicular tôN, the whole apparatus amounts to constructing
the tangent map of the Gauss map.

If we try to build the geometry of surfaces from a parametric representation, then each direc-
tional derivative has a a vector equation of the form of Eq. (9). Thus we may write equations of
the general form

@

@u

2
664
T̂1(u; v)

T̂2(u; v)

N̂(u; v)

3
775=

2
64

0 +az(u; v) �ay(u; v)
�az(u; v) 0 +ax(u; v)
+ay(u; v) �ax(u; v) 0

3
75
2
664
T̂1(u; v)

T̂2(u; v)

N̂(u; v)

3
775 (24)

and

@

@v

2
664
T̂1(u; v)

T̂2(u; v)

N̂(u; v)

3
775=

2
64

0 +bz(u; v) �by(u; v)
�bz(u; v) 0 +bx(u; v)
+by(u; v) �bx(u; v) 0

3
75
2
664
T̂1(u; v)

T̂2(u; v)

N̂(u; v)

3
775 : (25)

The last lines of each of Eqs. (24) and (25) are typically combined in textbook treatments to
give 2

4 @N̂(u;v)
@u

@N̂(u;v)
@v

3
5 = [K]

"
T̂1(u; v)

T̂2(u; v)

#
: (26)
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(a) (b) (c)

Figure 10: Examples of frame choices for the upper portion of an ordinary sphere. (a) Frames
derived from standard polar coordinates on sphere. (b) Geodesic Reference frame for the sphere;
each frame is as close as possible to the canonical coordinate axes at the North pole. (c) Frames
derived from projective coordinates on the sphere, which turn out to be the same frame field as
the Geodesic Reference frame.

where the matrix[K] has eigenvalues that are the principal curvaturesk1 andk2, and thus

K = det [K] = k1k2 (27)

is the Gaussian curvature and

H =
1

2
tr [K] =

1

2
(k1 + k2) (28)

is the mean curvature.

Examples of Surface Framings. If we are given a description of a surface, we can compute
normals and choices of the corresponding frames by various means. In Figure 10, we illustrate
three of these for the sphere. The first is derived from the standard orthonormal polar coordinate
system, and the second is the extension to surfaces of the Geodesic Reference frame, which assigns
the frame closest to a standard reference axis at the North Pole. The third is a frame based on polar
projective coordinates for the sphere,

x(u; v) =
2u

1 + u2 + v2

y(u; v) =
2v

1 + u2 + v2
(29)

z(u; v) =
1� u2 � v2

1 + u2 + v2
;

which map the real plane into the unit sphere withx2 + y2 + z2 = 1 except for the point at
infinity corresponding to the South pole. In fact, the polar projective coordinates generate the
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same assignments as the Geodesic Reference frame does, so, except for the difference in locations
of the grid sampling, these are the same framings.

Note: Do not be confused by alternatesamplingsof the sameframings; if a parameterization
x(u; v) gives a frame withT1 = @x(u; v)=@u andT2 = @x(u; v)=@v, we can change to a polar
sampledmesh, (r = (u2 + v2)1=2; � = arctan(v; u)), yet still retain the same frames at the same
pointsx(r; �) = x(u = r cos �; v = r sin �).

3 Quaternion Frames

In Section 2.1, we discussed the nature of 2D frames and noted a means of re-expressing the four
equations with three constraints of the conventional frame system more efficiently; we showed a
transformation into an equivalent set of two equations involving a single pair of variables obeying
a unit length constraint and whose rotation transformation properties were realized by complex
multiplication. Quaternions accomplish exactly this same transformation for 3D rotations: they
permit the nine coupled frame equations with six orthonormality constraints in 3D to be succinctly
summarized in terms of four quaternion equations with the single constraint of unit length. De-
tailed derivations along with other basic properties of quaternions are provided for reference in the
appendix. A brief summary is given below.

Quaternion Frame Equations. Our task is now to rephrase the general properties of curve and
surface frames in quaternion language so that, for example, we have a sensible space in which to
consider optimizing frame assignments.

We begin with the standard definition for the correspondence between3� 3 matricesRi
j and

quaternionsq:
Rq(V)i =

X
j

Ri
jV

j = q � (0; V i) � q�1 : (30)

Henceforth, we will use the notation “�” to distinguish quaternion multiplication, and will use “�”
when necessary to denote ordinary Euclidean inner products. Next, we express each orthonormal
frame component as a column ofRi

j by using an arbitrary quaternion to rotate each of the three
Cartesian reference axes to a new, arbitrary, orientation:

N̂1 orT̂1 = q � (0; x̂) � q�1

N̂2 orT̂2 = q � (0; ŷ) � q�1 (31)

T̂ orN̂ = q � (0; ẑ) � q�1 :

(Technically speaking, in the above equationT̂ really means the quaternion(0; T̂) with only a
vector part, etc.) All this can be transformed into the following explicit representation of the frame
vectors as columns of a matrix of quaternion quadratic forms:

h
[N̂1] [N̂2] [T̂]

i
=h

[T̂1] [T̂2] [N̂]
i
=
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2
64
q20 + q21 � q22 � q23 2q1q2 � 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 � q21 + q22 � q23 2q2q3 � 2q0q1
2q1q3 � 2q0q2 2q2q3 + 2q0q1 q20 � q21 � q22 + q23

3
75 : (32)

Note: MATHEMATICA users should remind themselves that matrices are stored as lists of rows in
MATHEMATICA , so one musttransposea standard matrix to easily retrieve column vectors from
Eq. (32) and avoid mysterious sign errors.

Taking differentials of Eq. (31), we generate expressions of the form

dq = q � (q�1 � dq) = q �
1

2
(0;k) (33)

dq�1 = (dq�1 � q) � q�1

= �(q�1 � dq) � q�1

= �
1

2
(0;k) � q�1 (34)

where
k = 2(q0 dq� q dq0 � q� dq) :

Substituting these expressions into the the calculation for the first column, we immediately find the
expected commutators of quaternion multiplication:

dN̂1 = dq � (0; x̂) � q�1 + q � (0; x̂) � dq�1

=
1

2
q � ((0;k) � (0; x̂)� (0; x̂) � (0;k)) � q�1

= q � (0;k� x̂) � q�1 :

The rest of the columns are computed similarly, and a straightforward expansion of the components
of the cross products proves the correspondence between Eq. (33) and Eq. (9).

To relate the derivative to a specific curve coordinate system, for example, we would introduce
the curve velocity normalizationv(t) = kx0(t)k and write

q0 = v(t)
1

2
q � (0;k) : (35)

One of our favorite ways of rewriting this equation follows directly from the full form for the
quaternion multiplication rule given in the appendix; since this multiplication can be written as an
orthogonal matrix multiplication on the 4D quaternion space, we could equally well write

2
6664
q00
q01
q02
q03

3
7775 = v(t)

1

2

2
6664

0 �kx �ky �kz
+kx 0 +kz �ky
+ky �kz 0 +kx
+kz +ky �kx 0

3
7775 �
2
6664
q0
q1
q2
q3

3
7775 : (36)

This is the 3D analog of Eq. (7).
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At this point, there are many other directions we could carry this basic structure, but we will
not pursue the general theory of quaternion differential geometry further here. We will conclude
with a short summary of the quaternion treatment of the classical surface equations. Starting from
Eq. (33), we are led immediately to the quaternion analogs of Eqs. (24) and (25):

qu � @q=@u =
1

2
q � (0; a) (37)

qv � @q=@v =
1

2
q � (0;b) : (38)

But how shall we express the curvatures in a way similar to the classical formula in Eq. (26)?
An elegant form follows by pursuing the quaternion analog of the vector field equations given in
Eqs. (22,23). We write

qu � q
�1
v = �

1

4
q � (0; a) � (0;b) � q�1

= �
1

4
q � (�a � b; a� b) � q�1

= �
1

4

h
�a � b Î+ (a� b)x T̂1 + (a� b)y T̂2 + (a� b)z N̂

i
; (39)

where we use the quaternion forms in Eq. (31) with the addition of the quaternion identity element
Î = (1; 0) = q�(1; 0)�q�1 for the frame vectors. We see that the projection to the normal direction
gives precisely the determinant(a � b)z = K identified in Eq. (26) as the scalar curvature. The
mean curvature follows from an expression similar to Eq. (23),

q � (0; x̂) � q�1
u + q � (0; ŷ) � q�1

v = �
1

2
q � (�x̂ � a� ŷ � b; x̂� a+ ŷ � b) � q�1

= �
1

2

h
�(ax + by)Î+ bzT̂1 � azT̂2 + (ay � bx)N̂

i
;(40)

where again the coefficient of the normal,(ay�bx) = tr [K] = 2H, is the desired expression. Sim-
ilar equations can be phrased directly in the 4D quaternion manifold using the forms of Eq. (36).

3.1 Visualizing Quaternion Frames

Seeing the parameters of a single quaternion. Any (unit) quaternion is a point on S3 and there-
fore is described by three parameters incorporated in the standard parameterization

q(�; n̂) = (cos
�

2
; n̂ sin

�

2
) ; (41)

where0 � � < 4�, and the eigenvector of the rotation matrix (unchanged by the rotation), is a
point on the two-sphere S2 representable aŝn = (cos� cos �; sin� cos �; sin�) with 0 � � < 2�
and��=2 � � � �=2.
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Figure 11: Illustration of how theq0 part of a quaternion is “known” if we have a 3D image of the
vector partq = n̂ sin �

2
of the quaternion. (b) Schematic representation of the concentric-sphere

uniform distance scales needed to form a mental model of the metric distances in quaternion
space between two points in the parallel 3D projection. Distances are roughly Euclidean near
the origin (q � 0 in (a)) and equal-length lines appear increasingly compressed as the radius
approaches unity.

An informative visualization of quaternions can be constructed by examining their properties
carefully. If we simply make a 3D display of the vector part of the quaternion,n̂ sin �

2
, we see that

the scalar element of the quaternion is redundant, since, for each�,

q0 = cos
�

2
= �

0
@1�

�����n̂ sin
�

2

�����
2
1
A

1=2

: (42)

That is,q0 is just the implicitly known height of the 4D unit vector in the unseen projection di-
rection, as illustrated in Figure 11(a). In Figure 11(b), we schematize the mental model of metric
distance required to complete the interpretation of the visualization. If we imagine dividing the
arc of the semi-circle in Figure 11(a) into equal angular segments, the arc lengths are all the same
distance apart in spherical coordinates. Projected onto theq plane, however, the projected spacing
is non-uniformly scaled by a a factor ofsin �. Thus to keep our vision of distance consistent, we
imagine the space to be like 3D graph paper with concentric spheres drawn at equal distances in the
special scale space; such 3D graph paper would look like Figure 11(b). Distances are essentially
Euclidean near the 3D origin, for small 3D radii, and are magnified as the radius approaches unity
to make the marked spheres equidistant in conceptual space.

If we assume the positive root is always taken forq0, then we effectively restrict ourselves to
a single hemisphere of S3 and eliminate the two-fold redundancy in the correspondence between
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Figure 12: (a) This image represents the 3D vector part of the quaternionq = (cos �
2
; t̂ sin �

2
)

representing a single instance of the one-parameter family of possible rotations leaving in-
variant the tangent vector̂t at one point of a space curve. (b) A representation of the entire
one-parameter space of possible frames having the same tangent vectort̂. The vector part of
the quaternion must lie on the diameter of the two-sphere in 3D depicted here. We depict the
diameter as a very skinny ellipse, because it is in fact a degenerate projection of a circle in 4D,
which could be exposed as shown by making a small 4D rotation before projecting to 3D. (c)
A polar projection of the same object removes the doubling by projecting the circle to a line
through infinity inR3.

quaternions and the rotation group. Alternatively, despite the fact that quaternions with both signs
of q0 map to the same point in this projection, we can indicate the simultaneous presence of both
hemispheres using graphical cues; one possible method is to use saturated colors in the “front”
hemisphere, and faded colors (suggesting distance) for objects in the “back” hemisphere.

Hemispheres inS3. To clarify the terminology, we note that a projected hemisphere for S2 is a
filled disk (a “two-ball”) in the plane, and the full surface of the sphere consists of two such disks
joined at the outer circular boundary curve; for S3, we use the word hemisphere to indicate a filled
solid two-sphere (technically a “three-ball”), and imagine the full volume of the three-sphere to
consist oftwosuch spherical solids joined on the skin (a two-sphere) of the surface enclosing both.

The family of possible values of Eq. (41) projects to a double-valued line (actually an “edge-
on” projection of a circle) which is a directed diameter of the unit two-sphere, in the direction ofn̂;
in a polar projection, this circle becomes a line to infinity through the origin. These representations
of a unit quaternion as a vector from the origin to a point inside the solid two-sphere (the three-ball)
are illustrated schematically in Figure 12.

Any particular 3D rotation is represented twice, since the quaternion circle is parameterized by
0 � � < 4�. A simple parallel projection thus produces two solid balls on top of each other in the
3D projection, one the analog of the “North pole disk” of a two-sphere parallel projected from 3D
to a screen, the other the analog of the “South pole disk” of a two-sphere. The analog of a polar
projection, which for a two-sphere sends the North pole to infinity of R2, flattens the three-sphere
out to fill R3, as shown in Figure 12(c), and eliminates the double-valued properties of the parallel
projection.
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CURVE LENGTHS (2,3) Torus Knot Helix

Frenet Frame 14.3168 6.18501
Geodesic Reference Frame 14.6468 7.82897
Parallel Transport Frame 10.1865 6.06301

Table 1: Relative lengths (in radians) of the quaternion frame maps for various frame choices
describing the (2,3) torus knot and the helix. The Parallel Transport frame is the shortest possible
frame map.

3.2 Quaternion Frames for Curves

We now can produce quaternion frames for space curves directly by several techniques.

Quaternions from Local 3D Frames. In the case of the Frenet frame, we have no choice but to
consider each frame as totally independent of the others. Each is locally computable, and there is
in principle no relation between them, since the curvature could vanish at any point. In this case,
we compute the frames directly from Eq. (16), thus deriving a3 � 3 orthogonal matrixR(t) at
each point of the curve. We then apply standard inversion algorithms [37, 35, 31] to obtain the
corresponding quaternion up to a sign. Finally, we apply a simple operator that checks the local
continuity of the corresponding frames. If two quaternion vectors representing neighboring frames
have a dot product near negative one, we change the sign of one to keep it near its neighbors. If
two neighbors are excessively far apart in terms of the 4D angle between them, and are not simply
near-negatives of one another, then the Frenet frame probably is poorly defined and should be
tagged as such until continuity resumes. Figure 13 shows the Frenet frame tubing of a torus knot
and the corresponding trajectory of these frames in the vector subspace of quaternion space.

Note: Forcing close quaternion Frenet frames on closed curves such as torus knots results in
a very interesting phenomenon. Depending on the parameters of the curve, the path in quaternion
space may close after a single traversal of the curve, or it may require two or more traversals, as
in the case shown in Figure 13. We have checked this feature on a wide range of torus knots,
and found that there are generally “jumps” between needing different numbers of circuits at those
parameter values that imply inflection points (zero curvature) in the curve.

Direct Quaternion Frames. The Geodesic Reference frame and the Parallel Transport frame, in
contrast to the Frenet frame, can be defined directly in terms of quaternions if desired, as indicated
in Section 2.2; all that is needed is an initial quaternion reference frame, and then the geometry of
the curve specifies enough at each point to express the needed rotation in quaternion form.

Comparison of Tubings and Quaternion Frames. Previously, in Figure 8, we compared the
tubings for the (2,3) torus knot and for the helix based on the Frenet, Geodesic Reference, and
Parallel Transport frames. The corresponding quaternion paths are illustrated together in Figure
14. The Parallel Transport frame shown uses the initial Frenet frame as a starting point; we could
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Figure 13: (a) A trefoil torus knot. (b) Its quaternion Frenet frame projected to 3D. For this
trefoil knot, the frame does not close on itself in quaternion space unless the curve is traversed
twice, corresponding to the double-valued “mirror” image of the rotation space that can occur in
the quaternion representation. Observe the longer segments in (b): these correspond to the three
high-torsion segments observable in (a).
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(a) (b)

Figure 14: (a) Quaternion frames in “standard” 3D vector visualization projection for the (2,3)
torus knot: Red—Geodesic Reference: this is planar by construction, since all 3D points must
lie in the plane perpendicular to the reference axis; the 3D origin is at the centroid of the red
curve. Green—Frenet: the Frenet frame is actually cyclic, but to see this easily for this 2,3
torus knot, the mirror image of the current frame must be added, giving effectively a double
traversal of the curve as shown in Figure 13. Cyan—Parallel Transport: the PT frame must
be given a starting value, which here is seen at the top center of the image to coincide with
the (green) Frenet frame. The PT frame is not cyclic, but is the shortest path, with three very
noticeable tight loops. (b) The same selection of quaternion frames for the helix. Again, the red
Geodesic Reference curve is planar (and cycles back on itself twice for this helix); the green
Frenet frame takes a longer path that will return to its original orientation, and the cyan Parallel
Transport frame, seen starting at the same orientation as the Frenet, will not ordinarily return
to the same orientation, but will have the shortest 4D path length. (The hidden double circuit
of the Geodesic Reference frame for this helix in fact makes it longer.)
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use any starting quaternion with the correct tangent vector. The relative path lengths of the curves
in Figure 14 are summarized in Table 1.

We note the following properties:

� Frenet. Periodic for periodic non-singular curves, has a tendency to twist a bit too much
(where the torsion is high), leaving long jumps between neighboring samples in quaternion
space; undefined at inflection points and zero curvature segments.

� Geodesic Reference.Also guaranteed to be periodic for periodic curves, but has the odd
property that it always lies in a plane perpendicular to the reference axis in our preferred 3D
quaternion projection. Ambiguous and therefore potentially not smooth for frames opposing
the reference frame direction.

� Parallel Transport. This is the quaternion frame with minimal 4D length, though it may
be difficult to see this feature immediately in our standard projection. It is not in general a
periodic path. Different choices of starting frame produce curves of identical length differing
by rigid (possibly reflecting) 4D motions (see Eq. (56)).

3.3 Quaternion Gauss Map for Surfaces

The quaternion Gauss map extends the Gauss map to include a representation of the entire co-
ordinate frame at each surface point, introducing a number of new issues. In particular there is
a useful, but mathematically suspect, approach that we might call an “engineering” approach to
the quaternion Gauss map that lets us quickly get informative visualizations for those special cases
where we are given a locally orthogonal parameterization of the surface except perhaps for isolated
singularities of the coordinate system.

For these cases, we may construct the precise quaternion analog of the Gauss map by lifting
the surface’s coordinate mesh into the space of quaternions at each value of the orthonormal co-
ordinatization(u; v) of the surface or surface patch. The correspondence of this map to the Gauss
map isnot directly visible, since (see Eq. (32)) the normal directions of the Gauss map are non-
trivial quadratic forms constructed from all the quaternion components; however, a projection to a
subspace of the quaternion space based on the bilinear action of quaternions on pure vectors may
be constructed by imitating the projection of the Hopf fibration of S3 (see, e.g., Shoemake [39, 3]).
In Figure 15, we show two such cases, an ellipsoid with orthonormal polar coordinates singular
at the poles and a torus with global, nonsingular, coordinates, using our now-standard projections
of the quaternion Gauss map to 3D. In each of these cases, a single circuit of the surface gener-
ates only one-half of the quaternion surface shown; the symmetric quaternion figure results from
traversing the surface twice to adjoin the reflected image of the single-circuit quaternion surface.
That is, each point on the 3D surfaces appears twice, once atq, and once at�q, in these periodic
quaternion Gauss maps.

We see that the singular coordinate system typically used for the ellipsoid is topologically a
cylinder; the circles corresponding to the singularities of the coordinate system (circles of normal
directions) at the North and South poles correspond toboundariesof the quaternion Gauss map.
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(a) (b)

Figure 15: Examples of quaternion Gauss maps for surfaces. (a) The ellipsoid and (b) the torus.
(c,d) The corresponding Quaternion Gauss maps, projected from the three-sphere in 4D. The
equatorial direction has been traversed twice in order to get a closed path in the map; the singular
poles in the ellipsoid coordinate system correspond to the edges or boundaries of the quaternion-
space ribbon.
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(a) (b) (c)

Figure 16: Examples of quaternion Gauss maps for the frame choices for the upper portion of an
ordinary sphere given originally in Figure 10. (a) Frames derived from standard polar coordinates
on sphere. (b) Geodesic reference frame for the sphere; each frame is as close as possible to the
canonical coordinate axes at the North pole. (c) Frames derived from projective coordinates on
the sphere.

PATCH AREAS Hemispherical patch

Polar Coordinates 2.1546
Geodesic Reference Frame 1.9548

Table 2: Areas (in steradians) of the quaternion frame maps for the polar coordinate and Geodesic
Reference frame choices on the hemispherical patches of Figure 16.

The torus, which has the extremely unusual feature that it possesses a global regular coordinate
system, has a (reflection doubled) quaternion Gauss map which is another, four-dimensional, torus
embedded in the quaternion S3 space.

Quaternion Maps of Alternative Sphere Frames. In Figure 10, we showed three alternate sets
of frames for the upper half of an ordinary sphere. The assigned coordinate systems may be
converted directly into quaternion frames and coerced into consistency in the usual manner. In
Figure 16, we show the results. The Geodesic Reference frames and the projective coordinates are
in fact the same space of frames computed in different ways: both are planes perpendicular to the
ẑ axis. The coordinate systems used to compute the quaternion Gauss maps in parts (a) and (b)
of the figure are commensurate, so we may compare the areas, computed using solid angle on the
three-sphere in units of steradians; the results are shown in Table 2.

Covering the Sphere and the Geodesic Reference Frame South Pole Singularity.The Geodesic
Reference frame for a surface patch has the peculiarity that it has an ambiguity whenever the vector
to be assigned is exactly opposite the reference frame. As we show in Figure 17, the tilting from the
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Figure 17: The Geodesic reference frame tilts to an ambiguous result as the tilt angle approaches
�, the inverted direction of the chosen reference frame. We see two different 3D projections
of the quaternion surface, (a) giving the vector coordinates(q1; q2; q3), and (b) the coordinates
(q0; q1; q2). The center is the North pole, the middle ring is the equator, and outer circle is in
fact the space of possible frames at the South pole of the sphere: there is no unique way to tilt
the North pole to the orientation of the South pole, as there is a full circle of arbitrariness in the
choice.
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reference frame in quaternion space (easily seen in ordinary 3D space as well) eventually reaches
a quaternion circle representing the ambiguous orientation of the frame with reference direction
along the�ẑ axis. This phenomenon is a practical consequence of the fact that the two-sphere
does not admit a global vector field: according to classical manifold theory (see, e.g., Milnor or
Grimm and Hughes [29, 13]), one needs at least two separate patches, one for the North pole and
one for the South pole, to place a complete set of coordinates (or equivalently, for our problem, a
set of frames) on a sphere.

The more mathematical approach requires that interesting surfaces be defined as a collection of
patches [13, 7], and the spaces of frames for each patch must be matched up and sewn together by
assigning a transition function along the boundaries. There are a variety of ways one can approach
the problem of taking a manifold and associating fiber bundles with it; the most relevant fiber
bundle for the context of the current problem is thespace of moving framesof the space R3 in
which the surface is embedded [7, 40]. We in fact move as usual from the space of frames to
the space of associated quaternions. Then at each pointx of a patch we have frames that are
matrix-valued functions from the patch into the group SU(2) of quaternion frames (which we treat
as the topological space S3). We can express the relationship between the framesq and q0 of
two neighboring patchesU andU 0, represented as quaternions, via quaternion multiplication by a
transition functiont:

q0 = t � q :

We may in fact explicitly construct the transition functions between the two patches as quater-
nion maps, giving a quaternion version of one of the classical procedures of manifold theory. In
Figure 18(a), we show the the projective coordinates on the sphere that produced the set of co-
ordinate frames in Figure 10(c), which are essentially equivalent to those in (b) sampled at polar
coordinate values. Using the polar coordinate sampling, so that we can easily identify the equa-
tor, we show in Figure 18(b) the quaternion maps corresponding to the coordinate frames derived
from this orthonormal coordinate system covering the North pole (disk in center) and the South
pole (smashed side view of a hemisphere in the 3D projection with itsq ! (�q) partner). These
coordinate systems agree at exactlyonepoint on the equator, which is (almost) evident from the
figure; note that we have chosen to display the coordinate systems only up to the equator, unlike
the patches of Figure 17, which cover the entire sphere except for one pole.

In order to establish a mapping covering the complete sphere, we must write down an explicit
correspondence between the quaternion frames for each patch at each shared point on the equator.
In Figure 19(a), we show the geodesic arcs on S3 symbolizing the transition rotation

t(�) = qsouth(�) � q
�1
north(�)

at each point on the equatorial circle parameterized by�. Note carefully the order of quaternion
multiplication; with our conventions a different order will not work. The arcs themselves are
actually segments of the space of possible frames, since the simplest rotation between two frames
with the same normal (at the same point on the equator) is a geodesic rotation about that normal.
Figure 19(b) and (c) shows the transition functionsq(�) sampled at regular intervals in� and
referred to the origin(1; 0; 0; 0) in quaternion space. Each quaternion point at the end of an arc

31



-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1
-1

-0.5
0

0.5
1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

(a) (b)

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

(c)

Figure 18: (a) The North pole projective coordinatization of the sphere; (b) a similar regular patch
for the South pole. Because of the “no-hair” theorem, no single regular patch can cover the entire
sphere. (c) The quaternion mappings of the systems of frames given by the North and South pole
coordinate patches, sampled in polar coordinates. Theq ! (�q) reflected images are included,
though the North pole’s images both have the same projection and are thus indistinguishable here.
The maps in (c) extend only to the equator, unlike the patches given in Figure 17.

represents a rotation to be applied to a point on the North pole patch equator to obtain the coordinate
frame at the corresponding point on the South pole patch equator. One point is in fact the identity,
and there is some degeneracy due to reflection symmetry across the equator.
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(a) (b) (c)

Figure 19: (a) The transition functions from the North pole frame to the South pole frame as arcs
in the three-sphere. These arcs are pieces of the space of possible frames with a given normal
on the equatorial point. (b) A representation of the transition functions as arcs from the origin in
rotation space (the pole(1; 0; 0; 0) in quaternion space) common to all the arcs here. The ends of
the arcs thus represent the actual rotation needed to match the coordinate systems at each point
on the equator. (c) A different projection from 4D to 3D, showing more details of the structure
of the transition function arcs, which have a two-fold degeneracy in the standard projection (b).
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4 The Space of Frames

We at last ready to introduce the key concept of thespace of possible frames.
Suppose at each sample pointx(t) of a curve, we are given a unit tangent vector,T̂(t), com-

puted by whatever method one likes (two-point sampling, five-point sampling, analytic, etc.). Then
one can immediately write down a one-parameter family describing all possible choices of the nor-
mal plane orientation: it is just the set of rotation matricesR(�; T̂(t)) (or quaternionsq(�; T̂(t)))
that leaveT̂(t) fixed.

For surfaces, the analogous construction follows from determining the unit normalN̂(u; v) at
each pointx(u; v) on the surface patch. The needed family of rotationsR(�; N̂(u; v)) (or quater-
nions q(�; N̂(u; v))) now leavesN̂(u; v) fixed and parameterizes the space of possibletangent
directions completing a frame definition at each pointx(u; v).

However, there is one slight complication: the family of framesR(�; v̂) leavingv̂ fixed does
not havêv as one column of the3�3 rotation matrix, and so does not actually describe the desired
family of frames. Therefore we proceed as follows:

We definef(�; v̂) = (f0; f1; f2; f3) to be a quaternion describing the family of frames for
which the direction̂v is a preferred fixed axis of the frame, such as the tangent or normal vectors.
The orthonormal triad of 3-vectors describing the desired frame is

F (�; v̂) =2
64
f 2
0 +f 2

1�f
2
2�f

2
3 2f1f2 � 2f0f3 2f1f3 + 2f0f2

2f1f2 + 2f0f3 f 2
0�f

2
1 +f 2

2�f
2
3 2f2f3 � 2f0f1

2f1f3 � 2f0f2 2f2f3 + 2f0f1 f 2
0�f

2
1�f

2
2 +f 2

3

3
75; (43)

where one column, typically the 3rd column, must bev̂.
The standard rotation matrixR(�; v̂) leavesv̂ fixed but does not havêv as one column of the

3�3 rotation matrix, and so we have more work to do. To computef(�; v̂), we need the following:

� A base reference frameb(v̂) that is guaranteed to have, say, the 3rd column exactly aligned
with a chosen vector̂v, which is either the tangent to a curve or the normal to a surface.

� A one-parameter family of rotations that leaves a fixed directionv̂ invariant.

The latter family of rotations is given simply by the standard quaternion

q(�; v̂) = (cos
�

2
; v̂ sin

�

2
) ; (44)

for 0 � � < 4�, while the base frame can be chosen as

b(v̂) = q(arccos(ẑ � v̂); (ẑ� v̂)=kẑ� v̂k) : (45)

We refer hereafter to the frameb(v̂) as theGeodesic Reference Framebecause it tilts the reference
vector ẑ along a geodesic arc until it is aligned witĥv; see Figure 20. If̂v = ẑ, there is no
problem, since we just takeb(v̂) to be the quaternion(1; 0); if v̂ = �ẑ, we may choose any
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Figure 20: Example of the Geodesic Reference Frame: on the northern hemisphere of a 2-sphere,
the Geodesic Reference Frame tilts theẑ axis of the north pole’s identity frame along the shortest
arc to align with a specified reference direction.

compatible quaternion such as(0; 1; 0; 0). We escape the classic difficulty of being unable to
assign a global frame to all of S2 because we need a parameterization ofall possibleframes, not
any one particular global frame. If one wants to use a reference frame that is not the identity frame,
one must premultiplyb(v̂) on the right by a quaternion rotating from the identity into that reference
frame; this is important when constructing a nonstandard Geodesic Reference Frame such as that
required to smoothly describe a neighborhood of the southern hemisphere of S2.

We can thus write the full family of possible quaternion frames keepingv̂ as a fixed element
of the frame triad to be the quaternion product

f(�; v̂) = q(�; v̂) � b(v̂) ; (46)

where� denotes quaternion multiplication and all possible frames are described twice since0 �
� < 4�. To summarize, if we specify a frame axisv̂ to be fixed, then the variable� in f(�; v̂)
serves to parameterize aring in quaternion space, each point of which corresponds to a particular
3D frame, and each frame has a diametrically opposite twin.

We argue that, since optimization will typically be done in the full quaternion space, the fact
that two opposite-sign quaternions map to the same physical three-space rotation is not a detriment;
in fact, it potentially permits an additional stability in the variational process since rotations by+�
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and�� are not close to each other in quaternion space as they are in ordinary rotation matrices. In
principle, any quaternion Gauss map can be replaced by its exact negative, and the variational pro-
cess could converge from an ambiguous starting point to either one; the frames would be the same.
In our standard projection, the two reflection-equivalent maps are inversions of one another about
the 3D origin; their unseen oppositeq0 values can of course cause an additional large separation of
the maps in 4D space.

4.1 Full Space of Curve Frames

We can now construct the space of frames step by step using the method above. In Figure 21, we
illustrate various views of the construction of the space of frames for the trefoil knot, beginning
with a few tangent vectors and the quaternion basis frames corresponding to quaternions that tilt
the reference axis into this tangent direction. The circular curve of quaternions representing the
space of normal frames is drawn for each tangent; each basis frame touches this curve once. Then
the family of these circular curves sweeps out a cylindrical two-manifold, the full space of invariant
frames for a 3D curve.

This space has several nontrivial properties. One is that, given one circular ring of frames,
a neighboring ring that is a parallel-transported version of the first ring is a so-called “Clifford
parallel” of the first ring: the distance from any point on one ring to the nearest point on the second
ring is the same. This is nontrivial to visualize and is a feature of the 4D space we are working
in. Another property is that the intervals between rings in the quaternion space directly indicate
the curvature. This comes about because the magnitude ofT̂0 is related to the parallel transport
transition between any two sample points, given by Eq. (17); since the parallel transport frames
are legal frames, and since the starting frame is arbitrary, each full ring is a parallel transport of
its predecessor, with the angular distance of the transition rotation providing a measure of the
curvature relative to the sampling interval.

4.2 Full Space of Surface Maps

The full space of frames for a surface patch is even more complex to visualize, since it is a “hyper-
cylindrical” 3-manifold, formed by the direct product of patches of surface area with the rings of
possible frames through each surface point.

As a very simple case of a surface, consider the patch introduced at the beginning of the paper
in Figure 2(a). The coordinate system used does not provide a unique tangent frame, and so one
cannot immediately determine a logical frame choice.

In Figure 22, we show spaces of possible frames for the four corners as four rings of quaternion
values compatible with the normals at the patch corners. Parallel transporting the initial frame
along the two different routes in Figure 2(b,c) produces incompatible frames at the final corner; we
represent this situation in Figure 22 by drawing the routes in quaternion space between the initial
frame (the degenerate circle appearing as a central vertical line) and the final frame; the mismatch
between the two final frames is illustrated by the fact that the two paths meet at different points on
the final ring specifying the frame freedom for the bottom corner’s frame.
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Figure 21: (a) The first several pieces of the construction of the invariant quaternion space for the
frames of the trefoil knot. The red fan of vectors shows the first several elements of the tangent
map, represented as vectors from the origin to the surface of the two-sphere and connected by a line.
Each green vector points from the origin to the Geodesic Reference element of the quaternion space
q(arccos(t̂ � ẑ); t̂� ẑ=kt̂� ẑk) guaranteed to produce a frame with the tangentt̂. The black curves are
the first several elements of the one-parameter space of quaternions representingall possiblequaternion
frames with the tangent̂t. (b) This piece of the space of possible frames represented as a continuous
surface, where a circle on the surface corresponds to the space of frames for one point on the curve. (c)
The rest of the full constraint space for the trefoil knot. All quaternions are projected to 3D using only
the vector part.
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Figure 22: A different viewpoint of the mismatch problem of Figure 2. (a) Choosing different
routes to determine the frame at the bottom point results in the incompatible frames shown here in
3D space. (b) The same information is presented here in the quaternion space-of-frames picture.
We use throughout a quaternion projection that shows only the 3-vector part of the quaternion,
droppingq0; this is much like projecting awayz in a polar projection of the 2-sphere. Each heavy
black curve is a ring of possible frame choices that keep fixed the normals in (a); the labels mark
the point in quaternion space corresponding to the frames at the corners in (a), so the gap between
the labelsC andC ’ represents the frame mismatch in quaternion space on the same constraint
ring. (The apparent vertical line is the result of drawing a squashed circle of frames at vertexA in
this projection.) (c) The method proposed in this paper to resolve this conflict is to fix one point,
sayA, divide the polygonABCB0 into triangles, and slideB, C, andB0 along the constraint
rings until the total triangle areas are minimized, and some compromise withC = C 0 is reached.
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Figure 23: (a) A more complete picture of the space of frames for this surface patch; the surface
shown is a sparse quaternion frame choice for the surface, and we show a subset of the rings of
constraints. Each ring passes through one quaternion point on the frame map, the point specifying
the current frame choice. Variations must keep each vertex on its ring. (b) An equivalent set of
frames is formed by applying a rotation to the entire set of frames. All points follow their own ring
of constraints to keep the same normal, These pictures represent thethree-manifoldin quaternion
space swept out by the possible variations.
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Sliding and Overall Rotational Freedom. In Figure 23(a), We go one step further, and first
show how the quaternion Gauss map of an entire patch is situated relative to the ring space; keeping
one corner fixed and sliding the rest of the frames around the circular rings takes us to distinct
families of frames, which obviously have different areas in the quaternion space. Finally, in Figure
23(b), we keep the fundamental space of frames the same, but exercise the freedom to choose
the single parameter describing the basis for the overall orientation; rotating the basis sweeps out
both the three-manifold describing the space of frames for this patch, and the family of equivalent
frames differing by an insignificant orientation change in the basis vector.

In order to resolve the frame choice ambiguity, one needs a systematic approach; we propose
in the next section to accomplish this by optimizing appropriate quantities, e.g., by minimizing the
area of the quaternion Gauss map in quaternion space.

We remark that the general features of the surface curvature can in principle be noted from the
space of possible frames in a similar manner to that for curves. The family of curves through any
point spanning the surfaces tangent space at that point possesses a family of rings parallel to the
space of frames at the point, allowing estimates of the rates of change in different directions; the
principal curvatures then correspond to the maxima and minima.

5 Choosing Paths in Quaternion Space

We have now seen that the space of possible frames at any point of a curve or surface thus takes the
form of a great circle on the unit three-sphere representing the unit quaternions in 4D Euclidean
space. While diametrically opposite points on this circle represent the same frame in 3D space,
the two-fold redundancy can actually be an advantage, since it helps avoid certain types of wrap-
around problems encountered when trying to find paths in the space. Our task then is to select a
set of values of the parameter on each of these great circles.

The advantage of looking at this entire problem in the space of quaternions is that one can
clearly compare the intrinsic properties of the various choices by examining such properties as
length and smoothness in the three-sphere. We note the following issues:

� Frame-frame distance.Suppose we are given two neighboring tangents,t̂1 andt̂2, and two
corresponding candidate frame choices parameterized by�1 and�2. What is the “distance”
in frame space between these? The simplest way to see how we should define the distance is
by observing that, by Euler’s fundamental theorem, there is a single rotation matrixR(�; n̂)
That takes one frame to the other; ifR1(�1; t̂1) andR2(�2; t̂2) are the two frames, then one
can writeR = (R2 � (R1)

�1) and solve for� andn̂. Clearly the value of� gives a sensible
measure of the closeness of the two frames.

� Quaternion distance. We remark that essentially the same procedure is required to obtain
the parameters ofR directly or to find the value of the equivalent quaternion. If we work in
quaternion space, we computeq1(�1; t̂1) andq2(�2; t̂2), and then find rather more straightfor-
wardly an equivalent result by noting that the zeroth component ofq = q2�(q1)

�1 is identical
to the rotation-invariant scalar product of the two quaternions,q1 � q2, and thus provides the
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needed angle at once:
� = 2 arccos(q1 � q2) :

� Approximation by Euclidean distance.One can in principle compute quaternions in polar
coordinates and use the induced metric on the sphere to compute precise arc-length dis-
tance integrals. However, one generally can expect to be dealing with fine tessellations of
smoothly varying geometric objects; in this case, it may be sufficient for numerical purposes
to estimate frame-to-frame distances using the Euclidean distance inR4, since the chord of
an arc approximates the arc length well for small angles.

Optimal Path Choice Strategies. Why would one want to choose one particular set of values of
the frame parameters over another? The most obvious is to keep a tubing from making wild twists
such as those that occur for the Frenet frame of a curve with inflection points. In general, one can
imagine wanting to minimize the total twisting, the aggregate angular acceleration, etc., subject to
a variety of boundary conditions. A bewildering variety of energy functions to minimize can be
found in the literature (see, e.g., [6]). We summarize a selection of such criteria for choosing a
space of frames below, with the caveat that one certainly may think of others!

� Minimal Length and Area. The most obvious criterion is to minimize the total turning an-
gle experienced by the curve frames. Fixing the frames at the ends of a curve may be required
by periodicity or external conditions, so one good solution would be one that minimizes the
sum total of the turning angles needed to get from the starting to the ending frame. The
length to minimize is just the sum of the angles rotated between successive frame choices, as
noted above, either exact or approximate. Similar arguments apply to the area of a surface’s
quaternion Gauss map.

� Parallel Transport along Geodesics.Given a particular initial frame, and no further bound-
ary constraints, one may also choose the frame that uses the minimumlocal distance to get
between each neighboring frame. Since the parallel transport algorithm corresponding to the
Bishop frame uses precisely the smallest possible rotation to get from one frame to the next,
this gives the minimal free path that could be computed frame-by-frame. On a surface, the
resulting paths are essentially geodesics, but, as noted in Figure 2, there is no obvious analog
of a global parallel transport approach to surface framing.

� Minimal Acceleration. Barr, Currin, Gabriel, and Hughes [2] proposed a direct general-
ization of the “no-acceleration” criterion of cubic Euclidean splines for quaternion curves
constrained to the three-sphere; the basic concept was to globally minimize the squared tan-
gential acceleration experienced by a curve of unit quaternions. Though the main application
of that paper was animation, the principles are entirely valid for numerically computing op-
timal frames for curves and surfaces in our context.

� Keyframe splines and constraints.If for some reason one must pass through or near certain
specified frames with possible derivative constraints, then a direct spline construction in the
quaternion space may actually be preferred; see, e.g., [37, 35, 31, 39, 23]. Most splines can
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be viewed in some sense as solving an optimization problem with various constraints and
conditions, and so the keyframe problem essentially reverts again to an optimization.

General Remarks. For both curves and surfaces, there is a single degree of freedom in the
frame choice at each point where we have sampled the tangent or normal direction, respectively.
This degree of freedom corresponds to a relatively common “sliding ring” constraint that occurs
frequently in minimization problems. General packages for solving constraints are mentioned in
Barr, et al. [2], who chose MINOS [30]. For our own experiments, we have chosen Brakke’s
Surface Evolver package [6], which has a very simple interface for handling parametric constraints
as “boundary” conditions, and can be used for a wide variety of general optimization problems.
Two enhancements to the Evolver have recently been added to handle the specific issues related to
quaternion optimization; a new symmetry “symmetry_group "central_symmetry" ”
identifies the quaternionq with�q if desired during the variation to prevent reflected double traver-
sals like that in Figure 13 from varying independently, and the system is now able to use the pull-
back metric on the sphere

ds2 =
X
i;j

dxi dxj r
�4 (r2 �i;j � xi xj)

to compute distances directly on the three-sphere. Computation using the metric, however, is very
slow, and so in practice we have used the Euclidean R4 chord approximation, which works quite
well for closely spaced samples and is much faster. Yet another alternative proposed by Brakke
(private communication) is to use periodic coordinates on S3 of the form

(x1 = sin r cos s; x2 = sin r sin s; x3 = cos r cos t; x4 = cos r sin t) ;

and to vary directly on an R3 space with(x = r; y = s; z = t) and the metric2
64

1 0 0
0 sin2 x 0
0 0 cos2 x

3
75 :

Our own use of the Evolver required only changing the parameter “#define BDRYMAX 20 ”
in skeleton.h to the desired (large) value and recompiling. Then, remembering to set
“space_dimension 4 ” when working in R4, one needs in addition a piece of code similar
to the following MATHEMATICA fragment to define the boundary constraints for each fixed vector
(tangent or normal) and the chosen initial quaternion frame:

Do[ringeqn = Qprod[makeQfromVec[veclist[[i]],P1],
q0list[[i]]]//Chop;

Write[file, " boundary ",i," parameters 1"];
Write[file, "x1: ", CForm[ ringeqn[[2]]]];
Write[file, "x2: ", CForm[ ringeqn[[3]]]];
Write[file, "x3: ", CForm[ ringeqn[[4]]]];
Write[file, "x4: ", CForm[ ringeqn[[1]]]],
{i,1,Length[veclist]}]
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Note that, since Evolver displays only the first three coordinates, we have moved the scalar quater-
nion to the end; then the Evolver will display our preferred projection automatically.

General Remarks on Optimization in Quaternion Space. Numerical optimization remains a
bit of an art, requiring patience and resourcefulness on the part of the investigator. We found,
for example, that curve optimization was relatively more stable than surface optimization because
single curve outliers add huge amounts to the length, whereas single surface points stuck in a
far away crevice may contribute only a tiny amount to the area of a large surface. Although
the Evolver in principle handles spherical distances, we used the default 4D Euclidean distance
measure as an approximation; this generally corresponded well to explicit area calculations using
solid angle performed on the same data sets. However, we did find that extremely random initial
conditions (unrealistic for most applications), could produce isolated points stuck in local minima
diametrically across quaternion space, atq ! �q, from where they should be. This type of
problem can be largely avoided simply by running a consistency preprocessor to force nearby
neighbors to be on the same side of the three-sphere. Another useful technique is to organize the
data into hierarchies and optimize from the coarse scale down to the fine scale. In other cases when
things seem unreasonably stuck, a manual “simulated annealing” procedure like that afforded by
the Evolver’sjiggle option often helps.

6 Examples

We now present some examples of frame choices computed using the Evolver to minimize the
length of the total path among sliding ring constraints for selected curves, and the total area spanned
by analogous sliding rings for surfaces. One interesting result is that there appear to be families of
distinct minima: if the initial data for a periodic surface, for example, are set up to return directly
to the same point in quaternion space after one period, one has two disjoint surfaces, one the
q ! (�q) image of the other; if the data do not naturally repeat after one cycle, they must after
two, since there are only two quaternion values that map to the same frame. The family of frame
surfaces containing their own reflected images have a minimum distinct from the disjoint family.

Minimal Quaternion Frames for Space Curves. The helix provides a good initial example of
the procedure we have formulated. We know that we can always find an initial framing of a curve
based on the Geodesic Reference algorithm; however, suppose we wish to impose minimal length
in quaternion space on the framing we select, and we do not know whether this frame is optimal
with respect to that measure. Then, as illustrated in Figure 24, we can send the ring constraints on
the possible quaternion frames at each sample point to the Surface Evolver and let it automatically
find the optimal framing. The results and energies for several stages of this evolution are shown in
the figure; the final configuration is indistinguishable from the Parallel Transport frame, confirming
experimentally our theoretical expectation that parallel transport produces the minimal possible
twisting.
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Figure 24: Starting from the Geodesic Reference quaternion frame for a single turn of the helix,
the very dark gray circle, the Evolver produces these intermediate steps while minimizing the
total quaternion curve length subject to the constraints in the space of frames. The final result is
the white curve, which is identical to several decimal points with the Parallel Transport quaternion
frame for the same helix. The numerical energies of the curves, from dark to light in color, are
3.03, 2.91, 2.82, and 2.66 for the Parallel Transport frame. The individual tubings used to display
these curves are in fact created using the Parallel Transport frame for each individual curve.

In Figure 1, we introduced the question of finding an optimal framing of a particular (3,5)
torus knot whose almost-optimal Parallel Transport framing was not periodic. In Figure 25, we
show the solution to this problem achieved by clamping the initial and final quaternion frames
to coincide, then letting the Evolver pick the shortest quaternion path for all the other frames.
It would be possible, as in the case of the (2,3) torus knot framing shown in Figure 13, to have
different conditions produce a framing solution containing its own reflected image rather than
having a distinct reflected image as is the case for Figure 25.

The types of solutions we find are remarkable in that they should be essentially the same for
all reparameterizations of the curve; regardless of the spacing of the sampling, the continuous
surface of possible frames is geometrically the same in quaternion space, so paths that are minimal
for one sampling should be approximately identical to paths for any reasonable sampling. On
the other hand, if wewant special conditions for certain parameter values, it is easy to fix any
number of particular orientations at other points on the curve, just as we fixed the starting points
above; derivative values and smoothness constraints leading to generalized splines can be similarly
specified (see [2]).

Surface Patch Framings. A classic simple example of a surface patch framing problem was
presented in the discussion of Figures 2 and 22. This problem can also be handled by the Evolver:
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Figure 25: Optimization of the non-periodic parallel transport frame of the (3,5) torus knot in-
troduced in Figure 1 to produce a nearby periodic framing. (a) The original quaternion parallel
transport frame used to produce the tubing in Figure 1(b,c). (b) The frame mismatch, repeated for
completeness. (c) The result of fixing the final frame to coincide with the initial frame, leaving
the other frames free to move on the constraint rings, and minimizing the resulting total length in
quaternion space. The length of the original curve was 13.777 and that of the final was 13.700, not
a large difference, but noticeable enough in the tube and the quaternion space plot. (d) Closeup of
the corresponding framing of the knot in ordinary 3D space, showing that the mismatch problem
has been successfully resolved. This tube cannowbe textured, since the frames match exactly.
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we choose an initial quaternion frame for the mesh corresponding to one of the arbitrary choices
noted, and minimize the area in quaternion space subject to the constraints that the normals remain
unchanged, and hence the frame choices may only slide around the rings depicted in Figure 22(b).
The results are shown in Figures 26, and 27. As a test, we started one case with a random initial
state with a range of2� in the starting values. All converged to the same optimal final framing.
A basic observation is that while none of the standard guesses appeared optimal, the Geodesic
Reference frame is very close to optimal for patches that do not bend too much.

Minimal Surfaces. Minimal surfaces possess many special properties following from the fact
that the mean curvature is everywhere the vanishing sum of two canceling local principal curvatures
[12]. We present a family of classic examples here that is remarkable for the fact that the usual
framings are already very close or exactly optimal; thus we do not have much work to do except to
admire the results, though there may be some interesting theorems implicit that would be beyond
the scope of this paper to pursue.

In Figure 28(a,b,c), we present the following classical minimal surfaces:

xcatenoid(u; v) = cos u cosh v x̂ + sinu cosh v ŷ + v ẑ (47)

xhelicoid(u; v) = v cos u x̂+ v sinu ŷ + u ẑ (48)

xenneper(u; v) = (u� u3=3 + uv2) x̂+ (v � v3=3 + vu2) ŷ + (u2 � v2) ẑ (49)

The quaternion Gauss map choices determined by these parameterizations and by the Geodesic
Reference algorithm are shown in Figure 29. The coordinate-based catenoid map and helicoid
map are4� double coverings, while Enneper’s surface curiously has a coordinate system map that
is exactly identical to the Geodesic Reference framing. For the periodic framings of the catenoid
and helicoid, we find the noteworthy result that the Geodesic Reference frame, which has a disjoint
quaternion reflected image, is a minimum under variations of the surface that is distinct from the
quaternion frames derived from the coordinate systems which arealsominima, but contain their
own q ! (�q) reflected images. The Enneper surface quaternion frames, which are the same,
appear to move very slightly around the borders under minimization, but it is not clear to what
extent this is significant as opposed to a numerical border effect in the variation. The resulting
3D frame triads are shown in Figure 30 for comparison. A theoretical analysis of the general
properties of quaternion Gauss maps for minimal surfaces is beyond the scope of this paper, but
experimentally we see that there could be very interesting general properties.

Manifolds. For general manifolds, one must treat patches one at a time in any event, since global
frames may not exist at all. Although the locally optimal patches cannot be globally joined to one
another, we conjecture that some applications might benefit from the next best thing: matching
boundary frames of neighboring patches using transitional rotations (see, e.g., [29, 13]). We have
carried this out explicitly for simple cases, but omit it here for brevity.

Extensions to Other Domains. We have focussed for expository purposes in this paper on
frames with intrinsic natural constraints imposed by the tangents to curves and normals to sur-
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Figure 26: (a) The initial Geodesic Reference quaternions for the small patch shown in Figure
2. (b) Initial quaternions from parallel transporting the vertex frame down one edge, and then
across line by line. (c) A random starting configuration with the single same fixed corner point
as (a) and (b) and a range of�� to +� relative to the Geodesic Reference frame. (d) The result
of minimization of the quaternion area is the same for all starting points. The relative areas
are: 0.147, 0.154, 0.296, and 0.141, respectively. Thus the Geodesic Reference is very close to
optimal.
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(a) (b)

(c) (d)

Figure 27: The 3D frame configurations corresponding to the quaternion fields in Figure 26. (a)
The Geodesic Reference frame. (b) Two-step parallel transport frame. (c) Random frames. (d)
The frame configuration resulting from minimizing area in quaternion space.
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faces. However, the method extends almost trivially to applications involving externally specified
constraints on frames. Geometric construction algorithms based on extrusions reduce to the tubing
problem. For ordinary camera control interpolation, one could constrain any direction of the cam-
era frame to be fixed by calculating its appropriate constraint ring in the quaternion Gauss map,
and then extend a method like that of Barr et al. [2, 34]) to smoothly compute intermediate frames
subject to the constraints. For more general constrained navigation methods like those described
by Hanson and Wernert [20]), the camera vertical direction could be fixed at chosen points over the
entire constraint manifold, and the remaining frame parameters determined by optimization within
the manifold of ring constraints, possibly subject to fixing entire key-frames at selected locations
or boundaries.

7 Conclusion and Future Directions

We have introduced a general framework derived from the quaternion Gauss map for studying and
selecting appropriate families of coordinate frames for curves and surface patches in 3D space.
Minimizing length for quaternion curve maps and area for surfaces is proposed as the appropriate
generalization of parallel transport for the selection of optimal frame fields. These smooth frames
can be used to generate tubular surfaces based on the space curves, thus allowing their effective
display on polygon-based graphics engines. The analogous results for surface patches allow the
selection of optimal local coordinate systems that may be adapted for display purposes and related
applications such as oriented particle systems. Our principal new tool is the space of all possible
frames, a manifold of constraints immersed in the space of quaternion frames. By defining energies
and boundary conditions in this space one can produce a rich variety of application-adapted criteria
for specifying optimal families of frames.

Topics for future investigation include the treatment of manifolds in higher dimensional spaces,
improved interfaces for visualizing the quaternion optimization process and its results, and further
analysis of the pure mathematics implied by the general framework.N -dimensional generaliza-
tions of the Frenet frame equations have been studied in the literature (see, e.g., Forsyth [10]),
but the analogs of quaternions in higher dimensions are much more complex and involve Clif-
ford algebras and the corresponding Spin groups (see, e.g., Lawson and Michelson [26]). Special
simplifications do occur for the 4D case, however, allowing a treatment in terms of pairs of unit
quaternions (see, e.g., [15]); this case must in fact be investigated to produce a more rigorous
formulation of the 4D surface tubings proposed in [17]. Among other applications that may be ap-
proached by the quaternion formulation of coordinate frames we note the description of anisotropic
surfaces (see, e.g., Kajiya [22]), the quaternion generalization of bump-mapping, and the dynamics
of anisotropic particle systems. Another possible application could be the determination of optimal
configurations for long-chain molecules and similar 1D and 2D structures. There are thus ample
challenges for future work.
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(a) (b) (c)

Figure 28: (a) The catenoid, a classic minimal surface in 3D space with a natural orthonormal
parameterization. (b) The helicoid. (c) Enneper’s surface.
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Figure 29: The Geodesic Reference quaternion frames of (a) the catenoid, (b) the helicoid, and (c)
Enneper’s surface. (d, e, f) The corresponding quaternion Gauss maps determined directly from
the parameterization. Both the catenoid and the helicoid fail to be cyclic in quaternion space
without a 4� turn around the repeating direction, so these are doubled maps. The Enneper’s
surface framing turns out to be identical to its Geodesic Reference frame.
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(d) (e) (f)

(a) (b) (c)

Figure 30: The 3D Geodesic Reference frames displayed directly on the surfaces of (a) the
catenoid, (b) the helicoid, and (c) Enneper’s surface. (d,e,f) The 3D frames computed directly
from the standard parameterizations; since Enneper’s surface is the same, we show in (f) a differ-
ent viewpoint of the same frames.
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Appendix: Quaternion Frames

2D “Quaternion” Frames

We provide below an exercise that may give some insight into the quaternion world. We show that
we may express the 2D frame equations in terms of a new set of variables exactly analogous to
quaternions in 3D. We begin by guessing a double-valued quadratic form for the frame:

h
N̂ T̂

i
=

"
cos � � sin �
sin � cos �

#
=

"
a2 � b2 �2ab
2ab a2 � b2

#
: (50)

We can easily verify that ifa2 + b2 = 1, this is an orthonormal parameterization of the frame, and
that� is related to(a; b) by the half-angle formulas:

a = cos(�=2); b = sin(�=2) :

If desired, the redundant parameter can be eliminated locally by using projective coordinates such
asc = b=a = tan(�=2) to get the form (compare Eq. (30))

h
N̂ T̂

i
=

1

1 + c2

"
1� c2 �2c
2c 1� c2

#
: (51)

If we now defineW1 =

"
a �b
b a

#
andW2 =

"
�b �a
a �b

#
, then we may write

2W1 �

"
a0

b0

#
= N̂0; 2W2 �

"
a0

b0

#
= T̂0

and we may also express the right-hand side of the 2D frame equations as

W1 �

"
0 ��
+� 0

#
�

"
a
b

#
= +v�T̂ :

The analogous expression forW2 yieldsT̂0 = �v�N̂. Matching terms and multiplying byW T
i =

W�1
i , we find that the equation"

a0

b0

#
=

1

2
v

"
0 ��
+� 0

#
�

"
a
b

#
(52)

containsboththe frame equationŝT0 = ��N̂ andN̂0 = +�T̂, but now in 2D “quaternion” space!
If we take the angular range from0 ! 4� instead of2�, we have a2 : 1 quadratic mapping from
(a; b) to (N̂; T̂) because(a; b) � (�a;�b) in Eq. (50).

Equation (52) is thesquare rootof the frame equations (note the factor of(1=2)). The curvature
matrix is basicallyg�1 dg, an element of the Lie algebra for the 2D rotation “spin group,” and takes
the explicit form, "

a b
�b a

# "
a0 �b0

b0 a0

#
=

"
aa0 + bb0 �ab0 + ba0

ab0 � ba0 aa0 + bb0

#
:
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Hereaa0 + bb0 = 0 due to the constrainta2 + b2 = 1, and

ab0 � ba0 = cos
�

2

"
�0

2
cos

�

2

#
� sin

�

2

"
�
�0

2
sin

�

2

#

=
�0

2
;

giving the identificationv� = �0 when we pull out the factor of1=2 as in Eq. (52). The actual group
properties in(a; b) space follow from the multiplication rule (easily deduced from the formulas for
the trigonometric functions of sums of angles)

(a; b) � (~a; ~b) = (a~a� b~b; a~b + b~a) ;

which is in turn isomorphic to complex multiplication with(a; b) = a + ib. This is no surprise,
since SO(2) and its double covering spin group are subgroups of the corresponding 3D rotation
groups, and complex numbers are a subset of the quaternions.

3D Quaternion Frames

We next outline the basic features of quaternion frames; see, e.g., [1] for a nice textbook treatment
of quaternions and their properties.

A quaternion frame is a four-vectorq = (q0; q1; q2; q3) = (q0; ~q) with the following features:

� Unit Norm. If we define the inner product of two quaternions as

q � p = q0p0 + q1p1 + q2p2 + q3p3 ; (53)

then the components of a quaternion frame obey the constraint

q � q = (q0)
2 + (q1)

2 + (q2)
2 + (q3)

2 = 1 ; (54)

and therefore lie on S3, the three-sphere embedded in four-dimensional Euclidean space R4.

� Multiplication rule. The quaternion product of two quaternionsp andq is defined to give a
positive cross-product in the vector part, and may be written as

p � q = (p0q0 � p � q; p0q+ q0p + p� q) ;

or more explicitly in component form as

p � q =

2
6664
[p � q]0
[p � q]1
[p � q]2
[p � q]3

3
7775 =

2
6664
p0q0 � p1q1 � p2q2 � p3q3
p1q0 + p0q1 + p2q3 � p3q2
p2q0 + p0q2 + p3q1 � p1q3
p3q0 + p0q3 + p1q2 � p2q1

3
7775 : (55)

This rule is isomorphic to left multiplication in the group SU(2), the double covering of the
ordinary 3D rotation group SO(3). What is more useful for our purposes is the fact that it
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is also isomorphic to multiplication by a member of the group of (possibly sign-reversing)
orthogonal transformations in R4:

p � q = [P ] q =

2
6664
p0 �p1 �p2 �p3
p1 p0 �p3 p2
p2 p3 p0 �p1
p3 �p2 p1 p0

3
7775
2
6664
q0
q1
q2
q3

3
7775 ; (56)

where[P ] is an orthogonal matrix,[P ]t�[P ] = I4; since[P ] has only 3 free parameters, it does
not itself include all 4D rotations. However, we may recover the remaining 3 parameters by
considering transformation by right multiplication to be an independent operation, resulting
in a similar matrix but with the signs in the lower right-hand off-diagonal3 � 3 section
reversed. (This corresponds to the well-known decomposition of the 4D rotation group into
two 3D rotations; see, e.g., [14].)

If two quaternionsa andb are transformed by multiplying them by the same quaternionp,
their inner producta � b transforms as

(p � a) � (p � b) = (a � b)(p � p) (57)

and so is invariant ifp is a unit quaternion frame representing a rotation. This also follows
trivially from the fact that[P ] is orthogonal.

Theinverseof a unit quaternion satisfiesq�q�1 = (1; 0) and is easily shown to take the form
q�1 = (q0; �q). The relative quaternion rotationt transforming between two quaternions
may be represented using the product

t = p � q�1 = (p0q0 + p � q; q0p� p0q� p� q) :

This has the convenient property that the zeroth component is the invariant 4D inner product
p � q = cos(�=2), where� is the angle of the rotation in 3D space needed to rotate along
a geodesic from the frame denoted byq to that given byp. In fact, the 4D inner product
reduces to

p � q�1 + q � p�1 = (2q � p; 0) ;

while the 3D dot product and cross product arise from the symmetric and antisymmetric
sums of quaternions containing only a 3-vector part:

p � q � (0; p) � (0; q) = (�p � q; p� q)

p � q + q � p = �2p � q

p � q� q � p = 2p� q

� Mapping to 3D rotations. Every possible 3D rotationR (a 3 � 3 orthogonal matrix)
can be constructed from either of two related quaternions,q = (q0; q1; q2; q3) or �q =

56



(�q0;�q1;�q2;�q3), using the quadratic relationshipRq(V) = q � (0;V) � q�1, written
explicitly as

R =

2
64 q20 + q21 � q22 � q23 2q1q2 � 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q20 � q21 + q22 � q23 2q2q3 � 2q0q1
2q1q3 � 2q0q2 2q2q3 + 2q0q1 q20 � q21 � q22 + q23

3
75 : (58)

The signs here result from choosing the left multiplication conventionRpRq(V) = Rpq(V) =
(p � q) � (0;V) � (p � q)�1. Algorithms for the inverse mapping fromR to q require careful
singularity checking, and are detailed, e.g., in [31, 38].

The analog for Eq. (58) of the projective coordinates for 2D rotations noted in Eq. (51) is
obtained by converting to the projective variablec = q=q0 = tan(�=2) n̂ and factoring out

(q0)
2 =

(q0)
2

(q0)2 + q � q
=

1

1 + q � q=(q0)2
=

1

1 + kck2
:

We then find

R =
1

1 + kck2

2
64

1 + c21 � c22 � c23 2c1c2 � 2c3 2c1c3 + 2c2
2c1c2 + 2c3 1� c21 + c22 � c23 2c2c3 � 2c1
2c1c3 � 2c2 2c2c3 + 2c1 1� c21 � c22 + c23

3
75 : (59)

� Rotation Correspondence. When we substituteq(�; n̂) = (cos �
2
; n̂ sin �

2
) into Eq. (58),

wheren̂ � n̂ = 1 is a unit three-vector lying on the two-sphere S2, R(�; n̂) becomes the
standard matrix for a rotation by� in the plane perpendicular tôn. The quadratic form
ensures that the two distinct unit quaternionsq and�q in S3 correspond to thesameSO(3)
rotation. For reference, the explicit form ofR(�; n̂) is [9]

R(�; n̂) =

2
64 c+ (n1)

2(1� c) n1n2(1� c)� sn3 n3n1(1� c) + sn2
n1n2(1� c) + sn3 c+ (n2)

2(1� c) n3n2(1� c)� sn1
n1n3(1� c)� sn2 n2n3(1� c) + sn1 c + (n3)

2(1� c)

3
75 ; (60)

wherec = cos �, s = sin �, and n̂ � n̂ = 1. For example, choosing the quaternionq =
(cos �

2
; 0; 0; sin �

2
) yields the rotation matrix

R =

2
64 cos � � sin � 0

sin � cos � 0
0 0 1

3
75 ;

producing a right-handed rotation of the basis vectorsx̂ = (1; 0; 0) andŷ = (0; 1; 0) around
the ẑ axis.

� Quaternion Frame Evolution. All 3D coordinate frames can be expressed in the form of
quaternions using Eq. (58). If we assume the columns of Eq. (58) are the vectors(N̂1; N̂2; T̂),
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respectively, one can explicitly express each vector in terms of the following matrices

[W1] =

2
64

q0 q1 �q2 �q3
q3 q2 q1 q0
�q2 q3 �q0 q1

3
75 (61)

[W2] =

2
64
�q3 q2 q1 �q0
q0 �q1 q2 �q3
q1 q0 q3 q2

3
75 (62)

[W3] =

2
64 q2 q3 q0 q1
�q1 �q0 q3 q2
q0 �q1 �q2 q3

3
75 ; (63)

with the result that̂N1 = [W1] � [q], N̂2 = [W2] � [q], andT̂ = [W3] � [q], where[q] is the
column vector with components(q0; q1; q2; q3). Differentiating each of these expressions and
substituting Eq. (9), one finds that factors of the matrices[Wi] can be pulled out and a single
universal equation linear in the quaternions remains:

2
6664
q00
q01
q02
q03

3
7775 =

v

2

2
6664

0 �kx �ky �kz
+kx 0 �kz +ky
+ky +kz 0 �kx
+kz �ky +kx 0

3
7775 �
2
6664
q0
q1
q2
q3

3
7775 : (64)

The first occurrence of this equation that we are aware of is in the works of Tait [41]. Here
v(t) = kx0(t)k is the scalar magnitude of the curve derivative if a unit-speed parameter-
ization is not being used for the curve. One may consider Eq. (64) to be in some sense
the square rootof the 3D frame equations. Alternatively, we can deduce directly from
Rq(V) = q � (0;V) � q�1, dq = q � (q�1 � dq), and(q�1 � dq) = �(dq�1 � q), that the
3D vector equations are equivalent to the quaternion form

q0 =
1

2
v q � (0; kx; ky; kz) =

1

2
v q � (0; k) (65)

(q�1)0 = �
1

2
v (0; k) � q�1 ; (66)

wherek = 2(q0 dq� q dq0 � q� dq), or, explicitly,

k0 = 2(dqxqx + dqyqy + dqzqz + dq0q0) = 0

kx = 2(q0dqx � qxdq0 � qydqz + qzdqy)

ky = 2(q0dqy � qydq0 � qzdqx + qxdqz)

kz = 2(q0dqz � qzdq0 � qxdqy + qydqx) :

Herek0 = 0 is the diagonal value in Eq. (64).

The quaternion approach to the frame equations exemplified by Eq. (64) (or Eq. (65)) has
the following key properties:
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– q(t) � q0(t) = 0 by construction. Thus all unit quaternions remain unit quaternions as
they evolve by this equation.

– The number of equations has been reduced from nine coupled equations with six or-
thonormality constraints to four coupled equations incorporating a single constraint
that keeps the solution vector confined to the three-sphere.

� Quaternion Surface Evolution. The same set of equations can be considered to work on
curves that are paths in a surface, thus permitting a quaternion equivalent to the Weingarten
equations for the classical differential geometry of surfaces as well. Explicit forms permit-
ting the recovery of the classical equations follow from re-expressing Eqs. (22) and (23) in
quaternion form. The curvature equation is essentially the cross-product of two derivatives
of the form of Eqs. (65,66), and thus obtainable by a quaternion multiplication:

qu � q
�1
v = �

1

4
q � (0; a) � (0;b) � q�1

= �
1

4
q � (�a � b; a� b) � q�1

= �
1

4

h
�a � b Î+ (a� b)x T̂1 + (a� b)y T̂2 + (a� b)z N̂

i
: (67)

Here Eq. (31) defines the quaternion frame vectors,N̂ � (0; N̂) = q � (0; ẑ) � q�1, etc., and
we have introduced the identity elementÎ = (1; 0) = q � (1; 0) � q�1 as a fourth quaternion
basis vector. The mean curvature equation has only one derivative and a free vector field; an
expression producing the right combination of terms is

T̂1 � q � q
�1
u + T̂2 � q � q

�1
v = �

1

2
q � (�x̂ � a� ŷ � b; x̂� a+ ŷ � b) � q�1

= �
1

2

h
�(ax + by)Î+ bzT̂1 � azT̂2 + (ay � bx)N̂

i
:(68)

Projecting out thêN component of these equations recovers the scalar and mean curvatures:

K = det

"
+ay(u; v) �ax(u; v)
+by(u; v) �bx(u; v)

#
= axby � aybx

H =
1

2
tr

"
+ay(u; v) �ax(u; v)
+by(u; v) �bx(u; v)

#
=

1

2
(ay � bx) :
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