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Abstract. A new class of digital halftoning algorithms is introduced. Anti-correlation digital

halftoning (ACDH) combines the idea of a well-known game, Russian roulette, with the statistical

approach to bilevel quantization of digital images. A representative of the class, serpentine anti-

correlation digital halftoning, is described and compared to error di�usion, ordered dither, and

other important digital halftoning techniques. Serpentine ACDH causes fewer unpleasant corre-

lated artifacts and less contouring than the benchmark algorithms. The quantization noise spectra

associated with serpentine ACDH possess bene�cial characteristics related to properties of the vi-

sion system. The term \violet noise" is proposed to describe quantization noise with stronger bias

in favor of high-frequency components than that of blue noise. Novel techniques for color visual-

ization of the noise spectra and the corresponding phase spectra are introduced, and the relative

signi�cance of the magnitudes and phases of the discrete Fourier transform of the quantization

noise is studied. Unlike popular algorithms based on error di�usion, serpentine ACDH does not

enhance edges. This is good for applications to digital holography and medical imaging. A simple

input preprocessing technique allows one to introduce edge enhancement if desired, while keeping

it more isotropic than that of error di�usion. The relation between unwanted transient boundary

e�ects and edge enhancement accompanying error di�usion is examined, and approaches to reduc-

tion of boundary e�ects are considered. Serpentine ACDH does not cause signi�cant boundary

e�ects. The average intensity representation by di�erent algorithms is studied for constant input

levels (serpentine ACDH does remarkably well). Prospects for ACDH research are discussed.
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1. Introduction

Inherent limitations of devices for image visualization and printing (displays, printers) often
require quantization of two-dimensional digital images to a limited number of grayscale levels. The
case of bilevel quantization is of particular interest when an image is to be printed on a printer
that can only produce black-and-white pictures. Digital halftoning [218] means image quantization
by algorithms that exploit properties of the vision system to create the illusion of continuous
tone. Many related neurobiological aspects of vision are discussed in [91]. Digital halftoning has
been applied in such areas as digital holography [191], desktop publishing [202], medical imaging
[164, 184], image compression/restoration [87], non-uniform sampling [144], video rendering [222],
pattern recognition [80], veri�cation of monochrome vision models [78, 128], and three-dimensional
computer graphics [206].

This paper will be dealing with rectangular input and output digital images consisting of pixels
(dots) on a common square grid. Other cases are considered elsewhere [203, 218, 247].

Section 2 will provide an overview of existing digital halftoning techniques | ordered dither,
error di�usion, etc.

Section 3 will cover di�erent approaches to halftone image quality evaluation. The term \violet
noise" will be introduced to describe quantization noise with stronger bias in favor of high-frequency
components than that of blue noise as it is de�ned by Ulichney [218].

A new class of digital halftoning algorithms, anti-correlation digital halftoning (ACDH), will
be introduced in Section 4. A representative of the new class, serpentine anti-correlation digital
halftoning, will be de�ned. We will also discuss some aspects of texture perception that a�ect
asymmetric anti-correlation �lter design.

Section 5 will report results of visual examination of test image representations produced by
di�erent digital halftoning algorithms. Comparison of quantization noise spectra associated with
the corresponding image-algorithm pairs will be discussed in parallel. It will be shown that serpen-
tine ACDH causes fewer unpleasant correlated artifacts and less contouring than the benchmark
algorithms, and that quantization noise spectra associated with the new method possess bene�cial
characteristics related to properties of the vision system. Novel techniques for color visualization
of the noise spectra and the corresponding phase spectra will be introduced.

Section 6 will be devoted to the study of the relative signi�cance of the magnitudes and phases
of the discrete Fourier transform of the quantization noise.

Unlike popular algorithms based on error di�usion, serpentine ACDH does not enhance edges,
nor does it cause signi�cant transient boundary e�ects. In addition to that, it is preserves average
intensities very well. Corresponding measurement results will be presented in Section 7, which will
also establish a relation between the unpleasant boundary e�ects and edge enhancement accompa-
nying error di�usion, and discuss approaches to reduction of boundary e�ects. While edge enhance-
ment generally means extra distortion of the input image, it is sometimes considered pleasant, so
we will describe a simple input preprocessing technique allowing one to add relatively isotropic
edge enhancement to any digital halftoning algorithm.

Extension of ACDH to multilevel halftoning and color quantization will be discussed in Sec-
tion 8.

Section 9 will present conclusions and outline prospective directions of research.

2. Overview of Digital Halftoning Techniques

For the purposes of our discourse, we de�ne the input of a digital halftoning algorithm to
be a two-dimensional digital grayscale image G represented by an N1 � N2 matrix of real values
gi;j 2 [0; 1]. Most of the paper is devoted to the case of bilevel quantization where a binary image
B represented by an N1�N2 matrix of bi;j 2 f0; 1g serves as output of the algorithm. The symbols
gi;j and bi;j stand for intensities of pixels on a common square grid, where i = 0; 1; : : : ; N1 � 1 and
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j = 0; 1; : : : ; N2 � 1 indicate line and column of a pixel respectively, thus describing its location in
terms of the grid coordinates. An intensity value 0 means \black", and 1 means \white". It may
be di�cult to translate the intermediate intensity values into physically measurable quantities. We
will return to this problem later in this paper. Other sources may assign other meanings to the
word \intensity" [66, 100].

In many algorithms, the values bi;j are computed as outputs of an internal nearest-level binary
quantizer. Whenever such a quantizer is present, the values of its inputs will be denoted ai;j . Then

bi;j =

�
1 if ai;j � 1=2,
0 if ai;j < 1=2.

(1)

The di�erences between the binary quantizer inputs and the corresponding input intensities will
be referred to as

si;j = ai;j � gi;j : (2)

The case when si;j = s is simply a constant corresponds to ordinary bilevel quantization with
a �xed threshold, which is well-known not to be a good halftoning algorithm ([218], Chapter 1).
Figures 1 (a) and (c) feature two test image representations obtained by quantization with a �xed
threshold equal to 1=2, s = 0: Both 256� 256 images are printed at the resolution of 100 dots per
inch (dpi).

If si;j are uncorrelated random numbers uniformly distributed on [�1=2; 1=2], then we get
dithering with white noise ([218], Chapter 4). Figures 2 (a) and (c) show output images of dithering
with white noise.

Ordered dither [16, 127, 133] is a popular digital halftoning technique that can be de�ned by
setting

si;j = 1=2� (�(i mod `1);(j mod `2) + 1=2)=`1`2; (3)

where �(i mod `1);(j mod `2) are elements of an `1 � `2 dither matrix �.
Figures 3 (a) and (c) feature two test image representations obtained by ordered dither with

an 8� 8 matrix from [111]:

� =

0
BBBBBBBBB@

0 32 8 40 2 34 10 42
48 16 56 24 50 18 58 26
12 44 4 36 14 46 6 38
60 28 52 20 62 30 54 22
3 35 11 43 1 33 9 41
51 19 59 27 49 17 57 25
15 47 7 39 13 45 5 37
63 31 55 23 61 29 53 21

1
CCCCCCCCCA
: (4)

Such dither matrices were popularized by Bayer [16] and subsequently found to be a subset of
those produced by the method of recursive tesselation [219].

Mitsa and Parker [147] used Ulichney's concept of blue noise [218], which is going to be
discussed in detail in the next section, to design dither matrices they called blue noise masks (these
matrices are also known as stochastic screens [37]). Other approaches to blue noise mask generation
were proposed by Ulichney [221] (the popular void-and-cluster method) and other researchers [129,
130, 199, 243]. Images in Figures 4 (a) and (c) were obtained by ordered dither with a 128� 128
blue noise mask generated using the void-and-cluster method. The method's internal parameter
� = 1:5, as recommended by Ulichney.

An interesting generalization of ordered dither is called look-up-table (LUT) based halfton-
ing [125, 209, 229]. In LUT based halftoning, the interval [0; 1] is divided into non-intersecting
subintervals, each of which is associated with an `1 � `2 matrix of zeros and ones called a binary
pattern, or a dot pro�le. Whenever gi;j is within a certain subinterval, bi;j is the element in position
((i mod `1); (j mod `2)) in the corresponding binary pattern. Suppose that gi;j < gi0;j0 for some
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a) b)

c) d)

Fig. 1. Quantization with a �xed threshold (s = 0):
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:17, max = 8:5)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0, max = 9:2)

(i; j), (i0; j0), such that (i mod `1) = (i0 mod `1) and (j mod `2) = (j0 mod `2). In LUT based
halftoning, bi;j = 1 does not have to imply bi0;j0 = 1, and, similarly, bi0;j0 = 0 does not have to
imply bi;j = 0. In other words, the stacking constraint inherent to ordered dither can be relaxed,
and this is what makes LUT based halftoning more general. (Wash and Hamilton [226] showed
that ordered dither can be performed using look-up tables, but they did not violate the stacking
constraint.)

The di�erence

�i;j = ai;j � bi;j (5)

is commonly called the quantization error [57], binary quantizer error [77], or simply error [20, 111,
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a) b)

c) d)

Fig. 2. Dithering with white noise:
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:56, max = 5:7)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:42, max = 5:8)

218]. Knox [108] introduced the term error image meaning a visual representation of an N1 �N2

matrix with elements equal to ��i;j , i = 0; 1; : : : ; N1 � 1, j = 0; 1; : : : ; N2 � 1. (He de�ned the
\error" as bi;j � ai;j , which makes sense but contradicts the established tradition.) Following [20,
57], we shall call

ei;j = bi;j � gi;j (6)

the quantization noise, or just the noise. The visual representation of an N1 � N2 matrix of ei;j
would then become a noise image (Dalton [37] used this term with a di�erent meaning). The
reader should beware of cases when other meanings are assigned to \quantization error" and/or
\quantization noise" [68, 77, 185, 58, 56].
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a) b)

c) d)

Fig. 3. Ordered dither with a recursive tesselation matrix (Eq. (4)):
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:16, max = 9:5)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0, max = 9:7)

Floyd and Steinberg [64, 65] proposed a digital halftoning technique called error di�usion (ED)
(a similar but more complex method had been previously published by Schroeder [190]). In error
di�usion, si;j is a sum of weighted errors,

si;j =
`�1X
�1=0

2(`�1)�`�`�1;�1X
�2=0

w�1;�2�i�(`�1)+�1;j�(`�1)+�2 : (7)

In the de�nition above,

�i;j =

�
0 if i 6= j,
1 if i = j,

(8)
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a) b)

c) d)

Fig. 4. Ordered dither with a blue noise mask (void-and-cluster):
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:14, max = 6:2)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0, max = 6:4)

is the Kronecker delta function, and w�1;�2 are weights, or error di�usion coe�cients, elements
of a wedge-shaped ` � (2` � 1) matrix W , which is occasionally called the error di�usion kernel
[233]. By W being \wedge-shaped" we mean that w`�1;�2 = 0 for �2 = ` � 1; `; ` + 1; : : : ; 2(` � 1)
(error di�usion algorithms are sometimes classi�ed by the number of non-zero weights [218]). The
outputs bi;j are computed line-by-line, from left to right, and the values of �i;j outside the image
are assumed to be zeros. Figures 5 (a) and (c) show images produced by the classical (four-weight)
Floyd{Steinberg error di�usion algorithm [65]: ` = 2 and

W =

�
1=16 5=16 3=16
7=16 �

�
; (9)
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a) b)

c) d)

Fig. 5. Classical Floyd{Steinberg error di�usion (Eq. (9)):
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:12, max = 6:0)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:15, max = 7:2)

where the symbol � indicates position of w`�1;`�1.

Subsequent modi�cations of ED employed the following main approaches: design a di�erent
kernel W [56, 96, 218]; change the order in which the pixels are processed [34, 218, 224, 232,
253] (this usually involves a change of W as well; sometimes, features of other digital halftoning
techniques are also incorporated [34, 253]); randomizeW [113, 218]; make W input-dependent [48,
233, 234]; substitute a binary quantizer with a modulated and/or randomized threshold for the
nearest-level one [18, 49, 51, 109, 184, 218]; combine error di�usion with another digital halftoning
technique [18, 47, 53, 74, 111, 118, 184, 202]; add optimization based on a vision system model
[113, 160, 163, 208]; design an iterative (multi-pass) technique based on error di�usion [162, 163].
Several important algorithms emerged.
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Ulichney [218] (Chapter 8) studied error di�usion on a serpentine raster, also known as ser-
pentine error di�usion (SED). In this algorithm, the ouput image is also computed line-by-line,
but pixels in the lines with odd numbers are processed right-to-left (pixels in the even-numbered
lines are processed left-to-right, as usual). In SED,

si;j =
`�1X
�1=0

2(`�1)�`�`�1;�1X
�2=0

w�1;�2�i�(`�1)+�1;j�(1�2(i mod 2))((`�1)��2): (10)

Images produced by four-weight SED with

W =

�
3=16 5=16 1=16
7=16 �

�
; (11)

recommended by Ulichney, can be seen in Figures 6 (a) and (c).
Sandler et al. [184] explained the advantage of SED (unlike ordinary error di�usion, it allows

each output pixel to depend on results of computations performed on all previously processed
pixels without ` having to reach N2) and considered SED with three deterministic non-zero weights
instead of four. Figures 7 (a) and (c) display binary images produced using their

W =

�
10=38 14=38 0
14=38 �

�
: (12)

Ulichney [218] recommended SED with 50% random weights,

W (i; j) =

�
3=16 + r0(i; j) 5=16 + r1(i; j) 1=16� r0(i; j)
7=16� r1(i; j) �

�
; (13)

where r0(i; j) and r1(i; j) are values of independent random variables uniformly distributed on
[�1=64; 1=64] and [�5=64; 5=64] respectively. For brevity, we will refer to this technique as ran-
domized SED (RSED). Figures 8 (a) and (c) contain binary images produced by RSED.

Eschbach [47] combined error di�usion with another digital halftoning technique, pulse-density
modulation (PDM), �rst proposed in [50]. Halftone images produced by the resulting hybrid
algorithm can be seen in Figures 9 (a) and (c). The areas where 1=4 < gi;j < 3=4 were treated by
ED with W from Eq. (9), and the rest of the image was processed by PDM as follows. Summation
of gi;j (dark areas) or (1� gi;j) (light areas) over diamond-shaped regions of the image was being
performed; once the sum reached or exceeded 1, a pulse (1 or 0, respectively) was placed in the
center of gravity of the current region. The error was then computed and di�used. Eschbach
recommended use of ED to process regions touching the areas with 1=4 < gi;j < 3=4 as well, in
order to break up the seams you can see at the switching points, Fig. 9 (c). However, this causes
highly visible patches to appear in very light and very dark areas adjoining the switching points.

Eschbach [48] then tried error di�usion with

W =

8>>>><
>>>>:

�
1=16 5=16 3=16
7=16 �

�
if 40

255
+ r2(i; j) � gi;j � 215

255
+ r3(i; j),0

@ 0 1=48 1=12 1=24 1=24
1=48 1=24 5=24 3=24 1=24
1=12 7=24 �

1
A otherwise,

(14)

where r2(i; j) and r3(i; j) are values of independent random variables uniformly distributed on
[�2=255; 2=255]. Images produced by this algorithm are shown in Figures 10 (a) and (c).

Eschbach [49] proposed a more complex algorithm, error di�usion with threshold modulation
based on a dynamic threshold imprint function. Figures 11 (a) and (c) feature images obtained by
this technique (internal parameter C = 40).
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a) b)

c) d)

Fig. 6. Four-weight serpentine error di�usion, deterministic weights (Eq. (11)):
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:27, max = 6:0)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:041, max = 7:5)

German physicists from the University of Essen have designed a number of interesting so-called
iterative algorithms for digital halftoning | the iterative Fourier transform algorithm [22], thresh-
old accepting [187], the iterative convolution algorithm (ICA) [248], gradient-controlled iterative
convolution [249], and iterative wavelet transform algorithms [59, 60]. Figures 12 (a) and (c) rep-
resent test images halftoned by the iterative convolution algorithm of Zeggel and Bryngdahl (30
iterations; internal parameters � = 0:29, � = 0:005, and a = 0:4).

Other digital halftoning algorithms employed patterning [82, 106, 169, 178] (this technique is
also known as pulse-surface-area modulation, or PSAM [218]), neural networks [4, 7, 36, 70, 112,
196, 216, 217], direct binary search [3, 5, 126], least-squares model-based halftoning [160, 162,
163], simulated annealing [28], blockwise optimization [245], nonlinear programming [193], fractal

10



a) b)

c) d)

Fig. 7. Three-weight serpentine error di�usion, deterministic weights (Eq. (12)):
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:39, max = 6:0)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:12, max = 6:6)

analysis [146], evolutionary computation (genetic algorithms) [121, 181], and fuzzy logic [90].

3. Halftone Image Quality Evaluation

No single technique of image quality evaluation has gained universal acceptance [35]. In this
section, we will introduce some essential de�nitions and then consider di�erent approaches to
measurement of halftone image quality.

The two-dimensional discrete Fourier transform (DFT) F applied to an N1 �N2 matrix X of
elements xj;k, j = 0; 1; : : : ; N1 � 1, k = 0; 1; : : : ; N2 � 1, produces an N1 � N2 matrix F = F(X)
consisting of elements
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a) b)

c) d)

Fig. 8. Four-weight serpentine error di�usion, 50% random weights (Eq. (13)):
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:26, max = 6:1)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:29, max = 6:8)

fu;v = fX(u; v) =
N1�1X
j=0

N2�1X
k=0

xj;k exp(�i2�(uj=N1 + vk=N2)); (15)

where i denotes the square root of �1; u and v are called spatial frequencies. F = F(X) is
sometimes called the discrete Fourier spectrum of X [20, 158].

The following paragraph is a quote from [172], p. 237.
\The two-dimensional Fourier transform of an image essentially is a Fourier series representa-

tion of a two-dimensional �eld. For the Fourier series representation to be valid, the �eld must be
periodic. Thus... the original image must be considered to be periodic horizontally and vertically.
The right side of the image therefore abuts the left side, and the top and bottom of the image are
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a) b)

c) d)

Fig. 9. Error di�usion combined with pulse-density modulation:
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:35, max = 6:3)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:24, max = 7:2)

adjacent. Spatial frequencies along the coordinate axes of the transform plane arise from these
transitions."

The two-dimensional inverse discrete Fourier transform F�1 yields X = F�1(F(X)),

xj;k = f�1F (j; k) =
1

N1N2

N1�1X
u=0

N2�1X
v=0

fu;v exp(i2�(uj=N1 + vk=N2)): (16)

We will call the matrix jF(X)j consisting of

jfX(u; v)j =
q
(Re(fu;v))2 + (Im(fu;v))2 (17)
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a) b)

c) d)

Fig. 10. Error di�usion with intensity-dependent weights (Eq. (14)):
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:27, max = 6:1)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:27, max = 7:0)

the two-dimensional discrete magnitude spectrum of X. Re(x) is the real part of x, Im(x) is the
imaginary part of x. (Gonzalez and Wintz [76] called jF(X)j the \discrete Fourier spectrum".
The name \magnitude spectrum" is more common [158]. The name \amplitude spectrum" is
occasionally used as a synonym of \magnitude spectrum" [158], but some authors assign a di�erent
meaning to it [69].) Components jfX(u; v)j of the discrete magnitude spectrum will be referred to
as magnitudes [158, 172] of the corresponding Fourier transform coe�cients fu;v (some authors call
jfX(u; v)j amplitudes, Scheermesser and Bryngdahl [187] preferred the word moduli).
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a) b)

c) d)

Fig. 11. Error di�usion with threshold modulation using threshold imprints:
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:31, max = 6:3)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:08, max = 7:0)

Let

tp(x) = arctan

�
Im(x)

Re(x)

�
� �

2

�
sign

�
arctan

�
Im(x)

Re(x)

��
�
����sign

�
arctan

�
Im(x)

Re(x)

������+

sign (Im(x))�
����sign(Im(x))

����
�
; (18)

where function arctan is the conventional arctangent function [46] expected to return its value in
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a) b)

c) d)

Fig. 12. The iterative convolution algorithm:
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:27, max = 6:1)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:27, max = 6:3)

the radian measure, arctan(x) 2 (��
2
; �
2
) for any real x, and

sign(x) =

8<
:
1 if x > 0,
0 if x = 0,
�1 if x < 0,

(19)

is the signum function.
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�X(u; v) =

8>>>><
>>>>:

0 if Re(fu;v) � 0 and Im(fu;v) = 0,
�
2

if Re(fu;v) = 0 and Im(fu;v) > 0,
� if Re(fu;v) < 0 and Im(fu;v) = 0,
3�
2

if Re(fu;v) = 0 and Im(fu;v) < 0,
tp(fu;v) otherwise,

(20)

are phases [76] of fu;v. The phases lie in the interval [0; 2� ). The matrix of phases will be denoted
�(X) and referred to as the two-dimensional discrete phase spectrum [158].

P(X) = jF(X)j � jF(X)j; (21)

where � stands for direct (element-by-element) product of matrices, is the two-dimensional discrete
power spectrum [158] of X. (Marple [137] prefers the term \periodogram". This choice has to do
with the periodogram averaging technique often used to estimate power spectra of analog signals
and images subjected to digital processing.)

Broja and Bryngdahl [20] called discrete Fourier spectra F(B � G) of the noise images the
quantization noise spectra, or simply the noise spectra. However, they visualized only the corre-
sponding magnitude spectra. Section 5 of this paper will cover color visualization of the noise
spectra and the corresponding phase spectra.

We visualize the magnitude spectra of the noise images by representing

lu;v = ln(1 + jfB�G(u; v)j) (22)

as grayscale values [76, 172] ranging from \black" (min
u;v

lu;v) to \white" (max
u;v

lu;v). Here ln stands

for the natural logarithm. Other researchers [56, 246] used more general transformations of the
type

lu;v = ln(1 + �N (jfB�G(u; v)j))=ln(1 + �); (23)

where N is a linear normalization function such that its output is always in [0; 1], and � is a
constant between 4 and 70. The exact value of � is given by the user and depends on the spectrum
that has to be visualized.

For the visualization purposes, the quadrants of the Fourier transform are rearranged to move
the origin ((0; 0), the dc component) to the center of the image in compliance with the standard
practice [76, 172]. (In the previous sentence and the rest of the paper, the popular abbreviation
dc stands for \direct current".) The origin shift is performed as follows. Whenever we are about
to calculate F(X) (X is an N1 �N2 matrix, as before), F

0 = F0(X) consisting of elements

f 0u;v = f 0X(u; v) =
N1�1X
j=0

N2�1X
k=0

(�1)j+kxj;k exp(�i2�(uj=N1 + vk=N2)); (24)

is computed instead. As a result, the low-frequency components are gathered near the center of
the spectrum, and the high-frequency ones are moved away from the center. Then

xj;k = f�1F (j; k) =
(�1)j+k
N1N2

N1�1X
u=0

N2�1X
v=0

f 0u;v exp(i2�(uj=N1 + vk=N2)): (25)

Several authors [94, 157, 170, 210] have reported that the organization of image phase infor-
mation appears far more critical to visual perception than the image properties measured by the
power spectrum. In particular, if the phases of fX(u; v) are randomized while the magnitudes stay
the same, then the inverse Fourier transform may yield an image having little resemblance to X.
Although the use of the magnitude spectra as means of image quality evaluation may appear to be
limited due to these results (important information contained in the phases is being disregarded),
one might argue that

B0 = G+ F�1(C(F(B �G))); (26)
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where C denotes a phase change operation, is not very likely to be binary.
Visual textures are de�ned as aggregates of image pixels or simple patterns [102], also known

as texels [188]. Texels are not to be confused with textons [102], elongated blobs (e.g., rectan-
gles, ellipses, or line segments) with a number of speci�c properties. Yellott [244] discovered very
distinct binary textures that have identical Fourier power spectra and very similar statistical prop-
erties. Section 6 will provide new data on how relatively signi�cant magnitudes and phases of the
quantization noise images are.

Figures 1{12 (b) and (d) show grayscale representations of the magnitude spectra of the noise
images for the image-algorithm combinations covered in Section 2. Color visualization of the noise
spectra and the corresponding phase spectra will be covered in Section 5.

Allebach [2] pioneered evaluation and design of digital halftoning algorithms on the basis
of vision system models in 1981. By then, important results had been obtained in a number
of psychophysical experiments concerned with visual detectability of gratings. So-called simple
gratings are two-dimensional patterns with the intensity function described by the expression

I(x; y) = I0 + P(2�f0 � (x cos � � y sin �)); (27)

where I0 is some constant intensity, P is a periodic function with period 1, f0 is the fundamental
frequency, and the bars of the grating are oriented at angle � to the vertical y-axis. Note that
sinusoidal gratings have very simple magnitude spectra, each consisting of two non-zero compo-
nents symmetric with regard to the origin, once the quadrants are properly rearranged. The main
parameters measured in the psychophysical detection experiments are known as two types of con-
trast sensitivity [183]. The physical contrast of simple images such as sinusoidal gratings or single
patches of light on a uniform background is well de�ned and agrees with the perceived contrast,
but this is not so for complex images [167]. Contrast metrics are extensively studied [72, 168, 214].

We are interested in numerical distortion measures dV(G;B) for halftone image quality assess-
ment (V in the subscript means that a measure may depend on the image viewing conditions; in the
rest of the paper, this subscript will be dropped). The rest of the section is devoted to examination
of di�erent approaches to development of more or less meaningful distortion measures.

Campbell et al. [25, 26] showed that the contrast sensitivity depends on �. The sensitivity is
greatest and nearly equal for � = 0� or 90� (vertical or horizontal gratings) and decreases mono-
tonically to a minimum at � = 45� where the sensitivity is about 3 dB less. Halftoning algorithms
are known to take advantage of this fact by favoring diagonal correlated artifacts over horizontal
and vertical ones. For this reason, we will be primarily interested in distortion measures that
take this anisotropy into account, directly (by relying upon appropriate vision system models) or
indirectly (by su�ciently asymmetric windows being involved in the process of their computation).
(Numerous techniques of image quality evaluation assuming radial symmetry of the vision system
have been proposed and studied [17, 70, 81, 128, 135, 150, 153, 154, 212, 218, 227, 252].)

Let X be the input of a linear shift-invariant operator [94] representing a channel of the vision
system, and let Y be this channel's output. Then the corresponding modulation transfer function
(MTF) H can be de�ned [172] to be an N1 �N2 matrix such that

jF(Y )j = H � jF(X)j: (28)

Components of H will be denoted by h(u; v). (Jain [95] gave a di�erent de�nition of the MTF |
he normalized it with regard to h(0; 0).)

Sakrison [183] proposed a multi-channel vision system model that would help to determine
transmission rates (in bits/pixel) for visually lossless coding of images. In our case, however, the
rate is �xed, so we would like to modify this model in order to obtain a meaningful distortion
measure d(G;B) based upon known properties of human vision. The results of this measure's
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application must strongly correlate with those of subjective evaluation tests. (Techniques of sub-
jective testing are discussed in [35, 123, 135, 147, 172, 183].)

First, let's compute zj;k = '(G;B; j; k) for j = 0; 1; : : : ; N1� 1, k = 0; 1; : : : ; N2 � 1 to account
for ganglion cell adaptation to changing levels of background illumination, and let Z be the matrix
of zj;k. Sakrison [183] recommended

'(G;B; j; k) = '(gj;k; bj;k) = lg(L(bj;k))� lg(L(gj;k)); (29)

where lg stands for the logarithm base 10, and L is a transformation needed to express intensity in
terms of luminance, i.e., luminous 
ux emitted per unit solid angle (steradian) and unit projected
area of source [100], measured in candelas per m2, cd=m2), thus accounting for the lighting con-
ditions. Sakrison warned that the logarithmic approximation of the nonlinear part of the vision
system is valid only if the values of jL(bj;k) � L(gj;k)j are small compared to jL(gj;k)j. In other
words, the vision system is assumed to be working in its photopic region, i.e., the image has to
be well-lit for the model to work. There may be a need to modify the function '(G;B; j; k) in
order to incorporate the in
uence of gamma correction [66] or its analog for printers, tone scale
adjustment (TSA) [218], also known as dot gain compensation [41]. Roetling and Holladay [177]
proposed the popular dot-overlap model as means of accounting for device distortions. It was
then studied and modi�ed by a number of researchers [203, 205]. Pappas et al. [163] showed that
the dot overlap model can be inadequate for some printers and recommended direct photometric
measurement. For laser printers, the output is known to depend on the toner level [184], which
further complicates the process of tone scale adjustment. Generally, for devices unable to display
G without resorting to halftoning, adjustment and veri�cation of any vision system model remain
complex tasks. We will discuss TSA some more in the next section. When no modi�cation of
'(G;B; j; k) can successfully compensate for the device distortions, other means of adding a device
model should be considered.

Z becomes input to multiple channels with narrow-band modulation transfer functions H0
�;�

de�ned by their elements

h0�;�(u; v) =
expf�2[(~�(u; v)���)=�1]

2g+ expf�2[(� � j~�(u; v)���j)=�1]
2gp

1 + [1:8(~!r(u; v)� 
�)=
�]2
; (30)

where 
� (expressed in cycles/degree) are the radial center frequencies of the channels,


� = 4:5 � (3:5)�; � = 0;�1;�2; : : : ; (31)

and �� are their angular center frequencies

�� = ��=9; � = 0; 1; : : : ; 8: (32)

The angular bandwidth of each channel is ��1=2. The radial bandwidths are equal to �
�=1:8,
� = 0;�1;�2; : : :. Note that we allow h0�;�(u; v) to be non-zero outside the band, i.e., the channels
overlap. Other researchers studied multi-channel models with non-overlapping (orthogonal) chan-
nels [150, 212]. Such models allow successful resolution of in�nitely close frequencies near the band
edges, contradicting the classical experimental results that led to development of the multi-channel
concept in the �rst place [180].

In Eq. (30),
~�(u; v) = �(u; v)� �

2
(sign(�(u; v))� jsign(�(u; v))j); (33)

where
�(u; v) = arctan(!y(v)=!x(u)); (34)

!x(u) and !y(v) being spatial frequencies expressed in cycles/degree.
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In Eq. (30),

~!r(u; v) =
!r(u; v)

s(�(u; v))
; (35)

where
!r(u; v) =

q
([!x(u)]2 + [!y(v)]2); (36)

and

s(�(u; v)) =
1� w
2

cos(4�(u; v)) +
1 + w

2
: (37)

In Eq. (37), w = 0:7 is a symmetry parameter. It was Daly [38], who �rst suggested that ~!r(u; v)
is used (instead of !r(u; v)), in order to account for the radial asymmetry of the system. He
modi�ed the earlier, simpler model of Mannos and Sakrison [135]. That model had a single linear
shift-invariant channel. Daly excluded the nonlinear part that required computation of the cube
root of luminance and made the MTF 
at at low frequencies. Daly's approach was applied to
introduce orientational dependency into other models. Kolpatzik and Bouman [113] used it to
modify N�as�anen's contrast sensitivity function [153] they took to be theMTF. Analoui and Allebach
[5] did the same thing to an MTF derived from the data of Campbell, Carpenter, and Levinson
[24].

For images subtending small angles,

!x(u) � ��(u�N1=2)

180N1 arctan(1=D)
; (38)

!y(v) � ��(v �N2=2)

180N2 arctan(1=D)
; (39)

where D is the viewing distance, expressed in inches (the normal viewing distance is usually taken
to be 10 inches [209]), and � dpi is the resolution of the image.

From
max
u;v

!r(u; v) = !r(0; 0) � ��

180
p
2 arctan(1=D)

(40)

and
min
u+v>0

!r(u; v) � ��

180max(N1; N2) arctan(1=D)
(41)

we can determine that the channels that really matter are those with�
1 + log3:5

�
��

180max(N1; N2) arctan(1=D)

��
� � �

&
log3:5

 
��

360
p
2 arctan(1=D)

!'
: (42)

For a 256�256 image printed at 100 dpi and viewed at the normal viewing distance, Inequality
(42) becomes �2 � � � 2, so 45 channels are involved. Figure 13 illustrates the shape of their
MTFs (intensity is proportional to h0�;�(u; v)).

For each channel,
F 00
�;� = H0

�;� � F0(Z) (43)

is calculated. Note that we could �nd jf 0Z(u; v)j and �0Z(u; v) by substituting f 0u;v for fu;v in Eqs.
(17) and (20), respectively. Then, from

Z 0
�;� = (z0�;�(u; v)) = H0

�;� � jF0(Z)j (44)

elements of F 00
�;� could be obtained by the equation

f 00�;�(u; v) = z0�;�(u; v) cos(�
0
Z(u; v)) + iz0�;�(u; v) sin(�

0
Z(u; v)): (45)
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a)

b)

Fig. 13. MTFs of linear shift-invariant channels in the modi�ed Sakrison model:
a) Coordinate system with the axes u+ 1, v + 1, �+ 1 (� = 0);
b) Coordinate system with the axes u+ 1, v + 1, � + 3 (� = 8).

Let Z 00
�;� be matrices consisting of

z00�;�(j; k) = (�1)j+kf�1F 00

�;�
(j; k): (46)

The responses of the channels are

t�;� =
N1�1X
j=0

N2�1X
k=0

"
z00�;�(j; k)

s(j; k)

#6
; (47)

where s(j; k) are elements of S(X), a matrix that describes how the decrease in noise stimulus
sensitivity depends on the distance between the stimulus and a background patch with substantial
gradient. One option o�ered by Sakrison is let
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s(j; k) =

vuut 1

N1N2

N1�1X
x=0

N2�1X
y=0

�
 (x; y) exp

�
4320(ln0:35) arctan(1=D)

��

q
(j � x)2 + (k � y)2

��2
;

(48)
where  (x; y) form a �ltered version of G, the �lter having a broad isotropic pass band through the
midrange of spatial frequencies (say, 2:0 � 20 cycles/degree), with the absolute values of elements
of its MTF increasing for a while with radial frequency to make  (x; y) approximate the magnitude
of the gradient of G. The other option is, set s(j; k) = 1 for all j, k, thus ignoring the background
gradient problem altogether.

The Sakrison model involves thresholding t�;� and computing the logical OR of the outputs to
determine if noise is detected. I have yet to �nd a function of t�;� that would be a good distortion
measure d(G;B), i.e. match results of subjective evaluation of halftone images. However, the
Sakrison model is based on large volume of data gathered in multiple psychophysical experiments
(see references in [183]), which makes it important, in my opinion. Hall and Hall [81] cited evidence
in favor of placing a low-pass �lter in front of the logarithmic part, which, in its turn, would be
followed by a high-pass �lter. Once orientational dependency is added to their model, an interesting
alternative to the Sakrison model may emerge. More psychophysical data raising questions as to
the site(s) and nature of the vision system nonlinearity have been published [42, 43, 152]. Given
that the issue is closely related to the aforementioned studies of contrast in complex images, one
should expect models of pattern masking like the one by Watson and Solomon [228], based on
contrast gain control, to be incorporated into distortion measures in the future.

Bock et al. [19] proposed the so-called distortion measure adapted to human perception (DMHP)
involving weighted multiplication of separate error assessments for edges, textures, and 
at regions.
Alas, this measure does not depend on the viewing conditions (lighting, resolution, viewing dis-
tance, etc.) | in particular, sizes of �lters used to separate images into regions are expressed in
pixels and �xed. Hosaka [88] and Eskicioglu [52] developed multidimensional measures of image
quality based on quadtree decomposition of the original image into certain activity regions. Eski-
cioglu reported that his dc-shift-invariant measure captures notions like \blockiness" and \blurri-
ness". Daly proposed an interesting technique for computation of so-called di�erence maps [39],
which was later modi�ed by Taylor et al. [211].

Ulichney [218] considered radially averaged power spectra of constant level representations.
He de�ned blue noise as high-frequency noise with a 
at radially averaged power spectrum, and
postulated that \blue noise is pleasant". Ulichney's de�nition seemed too narrow to be adequate,
so other researchers attempted to change it, adding more bias in favor of high frequencies [70,
113] and introducing orientational dependency otherwise ignored in the process of radial averaging
[113]. Adding to the confusion, FS-1037C [223] de�ned blue noise as follows: \In a spectrum of
frequencies, a region in which the spectral density, i.e., power per hertz, is proportional to the
frequency". This means power density increase at the rate of 3dB per octave with increasing
frequency. Risch [176] characterized purple noise by power density increasing 6dB per octave with
increasing frequency (density proportional to the square of frequency). Lau, Arce, and Gallagher
[122] de�ned green noise to be \the mid-frequency component of white noise" and studied green
noise digital halftoning. An earlier alternative de�nition of green noise [231] describes \supposedly
the background noise of the world" with the power spectrum averaged over several outdoor sites.
This version of green noise is similar to pink noise, power density of which decreases 3dB per octave
with increasing frequency (density proportional to 1/f) over a �nite frequency range which does
not include the dc component, but an extra hump is added around 500Hz. I propose that the name
violet noise is given to a spectral region where the spectral density increases with increasing (radial)
frequency. This would give us a convenient general de�nition incorporating purple noise, blue noise
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of FS-1037C, modi�ed blue noise from [113], parts of modi�ed blue noise from [70], but not blue
noise as de�ned by Ulichney, or green noise. Ample experimental evidence suggests that good
halftoning algorithms produce radially asymmetric violet noise, possibly with 
at spectrum parts
included. The reverse is not necessarily true (some violet noise algorithms may produce pictures
that aren't even binary, and others may render images poorly because of bad phase properties).

Perhaps, the most famous distortion measure used in image quality evaluation is the mean-
square error (MSE), often estimated by the formula

E = 1

N1N2

N1�1X
j=0

N2�1X
k=0

e2j;k: (49)

One can estimate the normalized mean-square error (NMSE) by computing

EN =

PN1�1
j=0

PN2�1
k=0 e2j;kPN1�1

j=0

PN2�1
k=0 g2j;k

: (50)

In many applications the MSE is expressed in terms of a signal-to-noise ratio (SNR), several
di�erent de�nitions of which are known [35, 76, 95, 172]. The MSE is well-known to be incompatible
with human sensory perception [6, 103, 135, 136], and explanations of this fact exist [172, 185].
Still, the MSE (SNR) is often used because of its simplicity, and because it is possible to calculate
the rate-distortion function and simulate the optimum encoding scheme for it [135].

The point-transformed mean-square error (PMSE) [172] is

ET =

PN1�1
j=0

PN2�1
k=0 [T (bj;k)� T (gj;k)]2PN1�1

j=0

PN2�1
k=0 [T (gj;k)]2

; (51)

where T may stand for a power law transformation of the type T (x) = xc0 , or a logarithmic
transformation of the type T (x) = c1 logb(c2 + c3x), where b is the base of the logarithm, and ci
are constants, i = 0; 1; 2; 3.

The Laplacian mean-square error (LMSE) [172] is

ET 0 =

PN1�2
j=1

PN2�2
k=1 [T 0(bj;k)� T 0(gj;k)]2PN1�2

j=1

PN2�2
k=1 [T 0(gj;k)]2

; (52)

where

T 0(xj;k) = xj+1;k + xj�1;k + xj;k+1 + xj;k�1 � 4xj;k (53)

is the Laplacian edge-sharpening operator.
The convolution mean-square error (CMSE) [172] is a generalization of the LMSE where T 0

stands for taking elements of the matrix obtained by convolution of an image and some linear
shift-invariant �lter, and the ranges of summation depend on the �lter dimensions as well as the
image ones. Mannos and Sakrison [135] tried the frequency-weighted PMSE (their single-channel
model used to introduce pixelwise nonlinearity and perform frequency weighting has already been
mentioned above).

Marmolin [136] tried several measures of the form

ET 00 =

2
4 1

N1N2

N1�1X
j=0

N2�1X
k=0

jcj;kT 00(ej;k)jc
3
5
1=c

; (54)

with limited success.
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Katsavounidis and Kuo [103] proposed to compute the generalized MSE (GMSE) as a weighted
sum of elements of the MSE vector. For the case of N1 = N2 = N = 2r, where r is a non-negative
integer, they de�ned these elements to be

Ei =
2i�1X
j=0

2i�1X
k=0

2
42r�i�1X

x=0

2r�i�1X
y=0

bj�2r�i+x;k�2r�i+y �
2r�i�1X
x=0

2r�i�1X
y=0

gj�2r�i+x;k�2r�i+y

3
5
2

; (55)

for i = 0; : : : ; r. Note that Er = N 2E . No suggestion as to the exact values of weights has been
made.

Matsumoto and Liu [138] proposed a metric they called edge correlation,

�̂e =
1

N1(N2 � 1)

N1�1X
j=0

N2�2X
k=0

(gj;k+1 � gj;k)(bj;k+1 � bj;k)+

1

(N1 � 1)N2

N1�2X
j=0

N2�1X
k=0

(gj+1;k � gj;k)(bj+1;k � bj;k): (56)

(Larger values of �̂e are supposed to indicate better rendition of edges!)
Mitsa [145] studied maximum local error. For the case of N1 = 5n1, N2 = 5n2, where n1 and

n2 are some positive integers, this distortion measure can be computed by the formula

�A = max
j=0;:::;n1�1
k=0;:::;n2�1

vuut 1

25

4X
x=0

4X
y=0

�
e5j+x;5k+y

exp(0:025A(5j + x; 5k + y))

�2
; (57)

where

A(j; k) =
1+�j;0��j;N1�1X

x=�1+�j;0��j;N1�1

1+�k;0��k;N2�1X
y=�1+�k;0��k;N2�1

�����gj+x;k+y�
1

9

1+�j+x;0��j+x;N1�1X
x0=�1+�j+x;0��j+x;N1�1

1+�k+y;0��k+y;N2�1X
y0=�1+�k+y;0��k+y;N2�1

gj+x+x0;k+y+y0

����� (58)

is a local activity measure.
Thurnhofer and Mitra [213] recommended the weighted MSE (WMSE)

EA =
1

N1N2

N1�1X
j=0

N2�1X
k=0

�
ei;j

exp(0:025A(j; k))
�2

(59)

and the well-known statistical estimate of the correlation coe�cient,

�̂G;B =

PN1�1
j=0

PN2�1
k=0 (gj;k � �g)(bj;k � �b)qPN1�1

j=0

PN2�1
k=0 (gj;k � �g)2

PN1�1
j=0

PN2�1
k=0 (bj;k � �b)2

; (60)

where

�g =
1

N1N2

N1�1X
j=0

N2�1X
k=0

gj;k (61)

and

�b =
1

N1N2

N1�1X
j=0

N2�1X
k=0

bj;k (62)

are the sample means of G and B, respectively. (Higher �̂G;B is expected to mean better halfton-
ing!)
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None of the distortion measures d(G;B) given by Eqs. (49{52, 57, 59) or derived from Eqs. (56,
60), say, by inverting the signs of the metrics, or in a similar fashion, depends on the image viewing
conditions, so one should not expect these metrics to correlate with the subjective evaluation results
consistently. Comparative study of distortion measures is beyond the scope of this paper.

Sandler et al. [184, 186] proposed to interpret outputs bj;k of a digital halftoning algorithm as
values of random variables �j;k (Ulichney [218] (Section 3.2) did it earlier for the case of constant
level input). Using this interpretation, Sandler et al. [184] developed the following local quasi-
optimality criterion. Let S be an area of the image, consisting of pixels that are close together (no
exact measure of \closeness" speci�ed), and let T (S) be the set of all possible two-element subsets
f(j1; k1); (j2; k2)g of S. Let the covariance of �j1;k1 and �j2;k2 be denoted by cov(�j1;k1 ; �j2;k2). Sandler
et al. postulated that it is desirable to construct �j;k so that the variance

V (
X
S

�j;k) =
X
S

V (�j;k) + 2
X
T (S)

cov(�j1;k1 ; �j2;k2) (63)

is minimum on the condition that the expected values

E(�j;k) = gj;k (64)

for all (j; k) in S.
Ulichney claimed that Eq. (64) (Eq. (3.27) in [218]) is always true in the case of constant level

input for halftone processes which do not produce output by thresholding with a deterministic,
periodic threshold array. However, it is straightforward to design a counterexample algorithm that
cannot be described in terms of ordered dither. Moreover, statistical measurements discussed in
Section 6 will show that error di�usion can be considered a counterexample, due to boundary
e�ects.

The authors of the local quasi-optimality criterion pointed out that the underlying assumption
that the vision system averages intensity levels of pixels in S with equal weights is just an approx-
imation. For the purposes of digital halftoning algorithm design, they suggested that, \the closer
together any two pixels are, the less correlated the corresponding random variables should be (on
the condition that their expected values coincide with the inputs)." Radial anisotropy of the vision
system can be accounted for by picking a measure of closeness based on non-Euclidean distance.
For any given pair of pixels, signi�cance of correlation between the random variables depends on
the viewing conditions.

The approach of Sandler et al. �ts the results of psychovisual experiments conducted by Burgess
et al. [23] and Myers et al. [151]. According to these results, the human observer is strongly in-

uenced by correlated noise, and the detection performance for even a simple task is degraded
substantially in its presence. As Myers and Barrett [150] put it, \the human observer acts approx-
imately as an ideal observer who does not have the ability to prewhiten the noise" (the notion of
blue noise was not known to them).

A new class of digital halftoning algorithms based on the anti-correlation approach is intro-
duced in the next section.

4. Digital Halftoning by Generalized Russian Roulette

Russian roulette is a well-known game consisting of spinning the cylinder of a revolver loaded
with one cartridge, pointing the muzzle at one's own head, and pulling the trigger [140]. Lermontov
[124] (Part II, Chapter 3, \The Fatalist") described an experimental study of a primitive version of
Russian roulette in 1839. Due to unavailability of actual revolvers (the device was invented around
1835), the number of cylinder chambers n was reduced to one, but the probability } that a shot is
�red successfully if a cartridge is aligned with the barrel when the trigger is pulled was less than
one. In our model, } is taken to be one, and the number of loaded cartridges ~g is allowed to range
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between 0 and n. Further generalization is achieved by considering the case of multiple players.
We then assign numbers 0; 1; : : : ; n� 1 to the chambers of each revolver cylinder counterclockwise
(looking at the muzzle).

We will concentrate on the case of white-blooded players on an N1�N2 square grid. The grid
is superimposed over a rectangular part of a geometric plane covered with black snow. Whenever
a shot is �red, the corresponding player's blood produces a white pixel. Lines and columns of
the grid are enumerated as described in the beginning of Section 2. Let Ci;j indicate the revolver
cylinder of a player at the position (i; j), and let

Ci;j [k] =

�
1 if the kth chamber of Ci;j contains a cartridge,
0 otherwise,

(65)

for k = 0; 1; : : : ; n � 1. Let rand(n1::n2) denote a function returning a random integer uniformly
distributed on fn1; n1 + 1; : : : ; n2g, where n1 � n2, and let int(x) be a function that takes a real
number x, and returns an integer obtained by some rounding operation. The line-by-line version of
one-dimensional anti-correlation Russian roulette can now be described algorithmically as follows.

s0;0  0; r  rand(0::n� 1);
for i from 0 to N1 � 1 do
for j from 0 to N2 � 1 do
f
for k from 0 to n� 1 do
Ci;j [k] 0;

~gi;j  int(gi;jn);
=� load revolver (i; j) : �=
for k from 0 to ~gi;j � 1 do
f
k0  (si;j + k) mod n;
Ci;j [k

0] 1;
g

=� ensure reduced correlation in 1D: �=
k  ((k0 + 1) mod n);
if j < N2 � 1 then si;j+1  k;
else

if i < N1 � 1 then si+1;0  k;
=� player (i; j) may now pull the trigger: �=
bi;j  Ci;j [r];

g

The outputs bi;j can be interpreted as values of the corresponding random variables �i;j with
the expected values

E(�i;j) =
~gi;j
n
� gi;j : (66)

Denoting (i+�j;N2�1) and (j+1)(1��j;N2�1) by i
0 and j0 respectively, we can write the covariances

cov(�i;j; �i0;j0) =
1

n

n�1X
k=0

Ci;j [k]Ci0;j0 [k]� ~gi;j~gi0;j0

n2
(67)

for all integer i; j such that i � 0, j � 0, and ij < (N1 � 1)(N2 � 1). Our manipulations with k
and k0 minimize the sums

Pn�1
k=0 Ci;j [k]Ci0;j0 [k].
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Delta-sigma (or sigma-delta) modulation [27, 155, 201] is a popular data transformation tech-
nique applied in digital signal processing and communication systems. Single-loop delta-sigma
modulation (more sophisticated con�gurations are known [33, 84]) over the range [0; 1] (linear trans-
formations cover arbitrary ranges [�1; �2], �1 < �2) of the input values gi 2 [0; 1], i = 1; 2; : : : ; N ,
can be described by the formula from [185] that determines the outputs of the procedure,

bi =

�
1 if gi +

Pi�1
k=1(gk � bk) � 1=2,

0 if gi +
Pi�1

k=1(gk � bk) < 1=2,
(68)

for i = 1; 2; : : : ; N .
Anastassiou [6] showed that delta-sigma modulation can be interpreted as one-dimensional

error-di�usion, and, conversely, that one-weight error di�usion with

W =

�
0 0 0
1 �

�
(69)

can easily be modi�ed to coincide with line-by-line delta-sigma modulation (the error accumu-
lated at the end of one line should be transferred to the beginning of the next line). Figure 14
shows images produced by line-by-line delta-sigma modulation and the magnitude spectra of the
corresponding noise images.

Sandler et al. [185] established a relation between delta-sigma modulation and a well-known
statistical model, Poincar�e's roulette [55] (pp. 62{63). This allowed them to prove that the (unbi-
ased) sample mean estimates of averages of consecutive input elements are most e�cient in their
class (that is, variances of sample means computed from consecutive outputs bi are minimum among
variances of such sample means computed from random binary sequences xi, i = 1; 2; : : : ; N , such
that E(xi) = gi for all i) for a wide variety of inputs allowing randomization of the encoding
procedure. The result followed from the correlation coe�cients �(�i; �i+1) being minimum in their
class for i = 1; 2; : : : ; N � 1, where �i is the random variable which bi is considered to be a value of
after randomization.

One-dimensional anti-correlation Russian roulette can simulate single-loop delta-sigma modu-
lation in�nitely well if b(n�1)=2c is substituted for r in the algorithmic description above, and the
cylinder capacity n goes to in�nity. Indeed, the di�erence between the two algorithms is then due
solely to the distortions caused by the function int, and the rounding errors ((~gi;j=n)� gi;j) all go
to 0 when n!1. If the substitution of b(n� 1)=2c for r is not performed, then one-dimensional
anti-correlation Russian roulette becomes in�nitely close to randomized delta-sigma modulation of
Sandler et al. as n approaches in�nity. If instead r is computed many times independently, inside
the loop over j, just before a trigger is pulled, then we end up performing dithering with white
noise.

Randomized discrete error di�usion by generalized Russian roulette is described by

r  rand(0::n� 1);
for i from 0 to N1 � 1 do
for j from 0 to N2 � 1 do
f =� remember: �i;j = 0 if i < 0, j < 0, or j � N2 �=
si;j  int

�P`�1
�1=0

P2(`�1)�`�`�1;�1
�2=0 w�1;�2�i�(`�1)+�1;j�(`�1)+�2

�
;

for k from 0 to n� 1 do
Ci;j [k] 0;

~gi;j  int(gi;jn);
=� load revolver (i; j) : �=
for k from 0 to ~gi;j � 1 do
f
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a) b)

c) d)

Fig. 14. Line-by-line delta-sigma modulation:
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:25, max = 5:9)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:0, max = 6:3)

k0  si;j + k;
if k0 < 0 then k0  k0 + n;
Ci;j [k

0] 1;
g

=� compute error: �=
k  k0 + 1;
if k > r then �i;j  k � n; else �i;j  k;
=� player (i; j) may now pull the trigger: �=
bi;j  Ci;j [r];

g
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When n ! 1, this algorithm reduces to ordinary ED once r is replaced with b(n � 1)=2c. It
can be easily modi�ed to add processing on a serpentine raster. The name of the algorithm does
not say \anti-correlation", because the error di�usion coe�cients w�1;�2 only approximately tell us
how strongly anti-correlated �i;j and �i�(`�1)+�1;j�(`�1)+�2 should be. Moreover, both generalized
Russian roulette algorithms we have considered so far involve loading cartridges so that at most one
\gap" consisting of empty chambers is allowed to remain in each loaded revolver cylinder. Results
of Sandler et al. [185] suggested that this restriction would not hurt a viewer, whose vision system
perceives an image as a single line and averages over consecutive outputs in order to reconstruct
averages of consecutive inputs. I am about to show that removal of the restriction facilitates design
of better digital halftoning algorithms.

Anti-correlation digital halftoning (ACDH) is a new class of digital halftoning algorithms. It is
based on generalized Russian roulette, and multiple gaps are allowed in the revolver cylinders. More
control over correlation properties of (unordered) random variable pairs f�i;j ; �i�(`�1)+�1;j�(`�1)+�2g
is achieved by using input-dependent anti-correlation �lters K = (k�1;�2). Other techniques incor-
porated in ACDH are boundary randomization (BR) and the average intensity control (AIC). To
describe sequential and parallel versions of ACDH in detail, we need more de�nitions �rst.

By average intensity of an area of a digital image we mean the ratio of the sum of pixel
intensities for this area and the overall number of pixels in it. The average intensity control
mechanism helps to keep the average intensity of the part of the halftone image already computed
closer to the average intensity of the corresponding part of the input image. This is achieved by
using the global histogram of the cartridge distribution H, an array of

Hk =
X
i;j

Ci;j [k]; (70)

k = 0; 1; : : : ; n� 1.
Local weighted histograms of the cartridge distribution H(i; j) are arrays of

Hk(i; j) =
X
�1�0;
�2�0

k�1;�2Ci�(`K�1)+�1;j�(`K�1)+�2 [k]; (71)

where `K > 0 is a constant integer associated with the local anti-correlation �lter K.
Let S(H(i; j)) be a permutation of f0; 1; : : : ; n� 1g such that

HS0(H(i;j))(i; j) � HS1(H(i;j))(i; j) � � � � � HSn�1(H(i;j))(i; j); (72)

and

HSx(H(i;j))(i; j) � HSy(H(i;j))(i; j) (73)

whenever x < y andHSx(H(i;j)) = HSy(H(i;j)). If more than one permutation sati�es these conditions,
S(H(i; j)) is selected among the eligible permutations at random. Condition (73) is responsible
for the AIC.

Let ~S(H(i; j); ~gi;j), an equivalent of S(H(i; j)) with respect to ~gi;j ; be de�ned as a permutation
of S(H(i; j)) such that the elements of subsets fS0(H(i; j));S1(H(i; j)); : : : ;S~gi;j�1(H(i; j))g and
fS~gi;j (H(i; j));S~gi;j+1(H(i; j)); : : : ;Sn�1(H(i; j))g are permuted independently. In other words, all

elements that are to the left of S~gi;j (H(i; j)) in S(H(i; j)) stay to the left of it in ~S(H(i; j); ~gi;j),

and all elements to the right of S~gi;j (H(i; j)) in S(H(i; j)) stay to the right of it in ~S(H(i; j); ~gi;j).
~S(H(i; j); ~gi;j) can often be computed faster than S(H(i; j)).

Let C(m) be the con�guration (state of the revolver cylinders) after the mth iteration, and let
C(0) be some starting con�guration. Each iteration involves processing of all pixels in some order,
which may depend on m and G.
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Sequential iterative anti-correlation digital halftoning (SIACDH) is a subclass of ACDH de�ned
algorithmically as follows.

r  rand(0::n� 1); m 1; set C(0); initialize H;
while the last iteration is not over
f =� remember: all pixels have to be processed �=
for i0 from 0 to N1N2 � 1 do
f
compute pixel coordinates (i; j) depending on i0, m and G;
~gi;j  int(gi;jn);
select K (it may depend on i; j;m; and G);
compute H(i; j); =� BR: values of Ci;j [k] outside the image are random �=
compute ~S(H(i; j); ~gi;j);
=� change the state of cylinder Ci;j : �=
for k from 0 to n� 1 do
f
k0  ~Sk(H(i; j); ~gi;j);
if k < ~gi;j then Ci;j [k

0] 1; else Ci;j [k
0] 0;

update Hk0 ;
g

g
m m+ 1; =� current Ci;j for all (i; j) form configuration C(m) �=

g
=� players may now pull the triggers: �=
for i from 0 to N1 � 1 do
for j from 0 to N2 � 1 do
bi;j  Ci;j [r];

The case of one iteration can be reduced to an equivalent of one-dimensional anti-correlation
Russian roulette on a space-�lling curve by setting K = (0), `K = 1 for all pixels. Removal of
Condition (73) from the de�nition of S(H(i; j)) would then disable the AIC, the resulting algorithm
getting closer and closer to dithering with white noise as n!1.

Parallel iterative anti-correlation digital halftoning (PIACDH) can be explained in terms of
each player holding two revolvers, one in each hand (more memory is required). The initial con�g-
uration C(0) now describes the original states of revolvers held in the left hands. The �rst iteration
changes the states of revolvers held in the right hands. These states form the next con�guration,
C(1). Based on C(1), the states of revolvers held in the left hands are modi�ed on the second iter-
ation, and so on. The AIC is o�, so Condition (73) is dropped from the de�nition of S(H(i; j)). If
the overall number of iterations is odd, then the players attempt to �re revolvers they are holding
in their right hands, otherwise the triggers of revolvers held in their left hands are pulled. Once the
cylinders of revolvers currently being loaded are marked ~Ci;j , the algorithmic description becomes

r  rand(0::n� 1); m 1; set C(0); initialize H;
while the last iteration is not over
f =� remember: all pixels have to be processed �=
for i0 from 0 to N1N2 � 1 do
f
compute pixel coordinates (i; j) depending on i0, m and G;
~gi;j  int(gi;jn);
select K (it may depend on i; j;m; and G);

30



compute H(i; j); =� BR: values of Ci;j [k] outside the image are random �=
compute ~S(H(i; j); ~gi;j);

=� change the state of cylinder ~Ci;j : �=
for k from 0 to n� 1 do
f
k0  ~Sk(H(i; j); ~gi;j);

if k < ~gi;j then ~Ci;j [k
0] 1; else ~Ci;j [k

0] 0;
g

g
m m+ 1;
swap Ci;j and ~Ci;j for all (i; j); =� current Ci;j for all (i; j) form C(m) �=

g
=� players may now pull the triggers: �=
for i from 0 to N1 � 1 do
for j from 0 to N2 � 1 do
bi;j  Ci;j [r];

E�cient implementation of the swaps is straightforward.
Serpentine anti-correlation digital halftoning (SACDH) processes pixels on a serpentine raster,

using wedge-shaped input-dependent anti-correlation �lters. The starting con�guration C(0) cor-
responds to all revolver cylinders being empty. SACDH is a representative of SIACDH, but only
one iteration is performed. In the versions of SACDH I implemented (n = 255 and n = 192 were
tried), BR is performed by taking the values Ci;j [k] for (i; j) outside the image to be

Ci;j [k] =

�
1 if rBR < n�,
0 otherwise,

(74)

where
� = j~gi;j � n=2j=n; (75)

and rBR is a value of a random variable uniformly distributed on f0; 1; : : : ; dn=2eg and computed
independently whenever an attempt is made to look up the value of Ci;j [k] for (i; j) outside the
image. The process of �lter selection for my versions of SACDH is described in Appendix A. The
asymmetry of the chosen �lters is seemingly needed to compensate for the asymmetry of sequential
processing. Figure 15 shows halftone images produced by SACDH (n = 255) and the magnitude
spectra of the corresponding noise images.

When examined visually, the gray scale ramps for the case n = 192 did not di�er signi�cantly
from those for n = 255. Section 7 will explain why the version with n = 192 was used to test
SACDH for presence of transient boundary e�ects and inherent edge enhancement.

No tone scale adjustment was performed in order to produce 100 dpi halfone representations
of the gray scale ramp. Appendix B describes photometric measurements and other research con-
ducted by the author to determine how much tone scale adjustment was needed for printing of
the halftone images at di�erent resolutions on HP LaserJet IVsi printers. Figure 16 shows repre-
sentations of the portrait of Anya Pogosyants created using di�erent digital halftoning algorithms
and printed at 300 dpi. Tone scale adjustment function \c1" from Appendix B was applied. Yet
another tone scale adjustment function had been applied to the 256� 256 version of the portrait
of Anya Pogosyants before its 100 dpi halftone representations were generated.

Figure 17 contains halftone representations of the gray scale ramp printed at 300 dpi. Again,
TSA function \c1" was applied.

When the pixel at the position (i; j) is being processed by SACDH, the values of the coe�cients
k�1;�2 of the local anti-correlation �lter K signify how strongly we want �i;j and
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a) b)

c) d)

Fig. 15. Serpentine anti-correlation digital halftoning:
Halftone representations of test images (left);
the magnitude spectra of the corresponding noise images (right).
a) Portrait of Anya Pogosyants
b) Magnitude spectrum of the noise image (min = 0:15, max = 6:1)
c) Gray scale ramp
d) Magnitude spectrum of the noise image (min = 0:16, max = 6:3)

�i�(`K�1)+�1;j�(1�2(i mod 2))((`K�1)��2) to be anti-correlated. Note that, while rather strict conditions
have to be imposed on error di�usion coe�cients w�1;�2 to ensure numerical stability [6, 54, 230],
making sure that the computation of sums from Eq. (71) never causes an over
ow is enough to
achieve stability when designing anti-correlation �lters. As a result, it is relatively simple to break
up any unwanted regular binary pattern or correlated artifact by adjusting K. But which periodic
patterns are \bad"? This is not an easy question to answer, and more de�nitions are needed before
we can tackle the problem.

In halftone images, arti�cial contours may sometimes appear in the areas with slowly varying
[218] or constant [188] input intensity. This e�ect is called contouring [218].

Presence of correlated artifacts [218], which are sometimes called \worms" or \zebra stripes" is
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a) b) c)

d) e) f)

Fig. 16 (Part I). Portrait of Anya Pogosyants, 300 dpi
a) Dithering with white noise
b) Ordered dither with a recursive tesselation matrix (Eq. (4))
c) Ordered dither with a blue noise mask (void-and-cluster)
d) Classical Floyd{Steinberg error di�usion (Eq. (9))
e) Four-weight serpentine error di�usion, deterministic weights (Eq. (11))
f) Three-weight serpentine error di�usion, deterministic weights (Eq. (12))

another problem. It is common for the algorithms that do not generate regular periodic patterns.

In Section 2, we have already mentioned studies on binary textures. Regular periodic patterns
generated by halftoning algorithms are called halftone dot textures [153]. Texture visibility and
texture segregation are extensively studied [102, 153, 156, 188, 189, 244]. Presence of highly visible
textures usually means poor rendition of small details of the image.

Figure 18 illustrates a \texture paradox" that a�ected the design of the SACDH algorithm.
While simple periodic patterns often provide visually pleasing representations of constant intensity
levels, many of them tend to have very visible borders. This leads to contouring. Figures 3 (a)
and (c), 16 (b), and 17 (b) provide numerous examples of that. Not surprisingly, visibility of the
texture borders depends on the image resolution and the viewing distance. This is easy to notice,
say, by looking at the center of Fig. 18 from di�erent distances and by comparing Fig. 3 (a) and
(c) to Fig. 16 (b) and Fig. 17 (b), respectively.

Zeggel and Bryngdahl [248] opined that \the allowed texture for grayvalues of 0:5 is a checker-
board pattern". Ulichney used to share this opinion [218], but changed his mind [221], and a
comparison of the midsections of Fig. 8 (c) and Fig. 4 (c) clearly shows that. (The halftone images
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g) h) i)

j) k) l)

Fig. 16 (Part II). Portrait of Anya Pogosyants, 300 dpi
g) Four-weight serpentine error di�usion, 50% random weights (Eq. (13))
h) Error di�usion combined with pulse-density modulation
i) Error di�usion with intensity-dependent weights (Eq. (14))
j) Error di�usion with threshold modulation using threshold imprints
k) The iterative convolution algorithm
l) Serpentine anti-correlation digital halftoning

in these pictures were produced using the algorithms designed and liked the most by Ulichney in
1987 and 1993, respectively.)

Let's denote constant grayscale intensity levels by g. I tried to eliminate all periodic patterns
that either seemed obnoxious by themselves, or caused contouring at 72 dpi, 100 dpi, or 300 dpi.
The checkerboard pattern, the pattern for g = 3=4 that can be seen next to the left bottom corner
of Fig. 18, and its counterpart for g = 1=4 were among such patterns. Note that the problem
with the checkerboard pattern at 300 dpi is largely due to the printer distortions [110], and not
the \texture paradox" itself. While it proved straightforward to eliminate any given periodic
pattern by changing the coe�cients of anti-correlation �lters, other unwanted textures would often
emerge instead, so I had to perform multiple \trial-and-error" cycles similar to those described in
[2]. In addition to that, it turned out that some patterns suppressed in the halftone ramp may
occasionally surface in test images with more gradient. For the diehard fans of the checkerboard
pattern, I recommend using
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a) b) c)

d) e) f)

Fig. 17 (Part I). Gray scale ramp, 300 dpi
a) Dithering with white noise
b) Ordered dither with a recursive tesselation matrix (Eq. (4))
c) Ordered dither with a blue noise mask (void-and-cluster)
d) Classical Floyd{Steinberg error di�usion (Eq. (9))
e) Four-weight serpentine error di�usion, deterministic weights (Eq. (11))
f) Three-weight serpentine error di�usion, deterministic weights (Eq. (12))
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g) h) i)

j) k) l)

Fig. 17 (Part II). Gray scale ramp, 300 dpi
g) Four-weight serpentine error di�usion, 50% random weights (Eq. (13))
h) Error di�usion combined with pulse-density modulation
i) Error di�usion with intensity-dependent weights (Eq. (14))
j) Error di�usion with threshold modulation using threshold imprints
k) The iterative convolution algorithm
l) Serpentine anti-correlation digital halftoning
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Fig. 18. The \texture paradox": Periodic and aperiodic patterns

K =

14 16 23 7 3

15 46 65 23 4

15 62 �
(76)

when � < 13=255, in place of the corresponding �lter from Appendix A. My versions of SACDH
suppress contouring, worm-like artifacts like those in Figures 8 (c) and 12 (c), and similar �shbone-
like artifacts (Fig. 8 (c)) near g = 1=2 at the cost of increased granularity in that area.

In the next section, we will discuss what else visual examination of the halftone images can
tell us about SACDH and other digital halftoning techniques in connection with the properties of
the corresponding noise spectra.

5. The Noise Spectra, the Corresponding Phase Spectra, and Halftone Image Quality

We visualize the phase spectra of the noise images in the HSV color model [66]. Saturation S
and value V are both set to 1, and hue is

Hu;v = 360�0B�G(u; v)=2� (77)

for u = 0; 1; : : : ; N1 � 1, v = 0; 1; : : : ; N2 � 1. Let hxi denote the fractional part of x. Then the
coordinates in the RGB color space (each of them in [0; 1]) can be computed as follows.

Ru;v = �0;bHu;v=60c + �5;bHu;v=60c + hHu;v=60i�4;bHu;v=60c + (1� hHu;v=60i)�1;bHu;v=60c; (78)

Gu;v = �1;bHu;v=60c + �2;bHu;v=60c + hHu;v=60i�0;bHu;v=60c + (1� hHu;v=60i)�3;bHu;v=60c; (79)

Bu;v = �3;bHu;v=60c + �4;bHu;v=60c + hHu;v=60i�2;bHu;v=60c + (1� hHu;v=60i)�5;bHu;v=60c: (80)

Note that the luminance of (Ru;v; Gu;v; Bu;v) may di�er for di�erent �0B�G(u; v). This allows it to
play a supplementary role in visualization, because the human vision system is more sensitive to
changes in luminance than to those in chromaticities [172].

Our approach to color visualization of the discrete Fourier spectra of the noise images is as
follows. Let

l0u;v = ln(1 + jf 0B�G(u; v)j) (81)
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for u = 0; 1; : : : ; N1 � 1, v = 0; 1; : : : ; N2 � 1.

Yu;v = 0:3 +
0:6l0u;v
9:7

(82)

will be interpreted as values of luminance in the YIQ color coordinate system [172]. In this system,

Yu;v = 0:299Ru;v + 0:587Gu;v + 0:114Bu;v: (83)

In Eq. (82), 0:3 and 0:6 are constants empirically selected so that 0 < Yu;v < 1. (9:7 happens
to be the largest value of l0u;v I have encountered so far in the course of my study of the noise

spectra.) Let ~Sk(u; v), k = 0; 1; : : : ; 5, be the Euclidean distances (in the RGB color space) from
(Yu;v; Yu;v; Yu;v) to the lines of intersection of the faces of the RGB cube and the plane �u;v perpen-
dicular to the vector [0:299; 0:587; 0:144]> and containing (Yu;v; Yu;v; Yu;v). (The symbol > denotes
the matrix transpose; we preserve a slight notational distinction between the vectors and the triples
describing coordinates of points.)

~Su;v = min
k

~Sk(u; v) (84)

play the role of saturation. ~Su;v depend on Yu;v. My experiments showed that if some constant

saturation, say, min
0:3�Yu;v�0:9

(~Su;v), is maintained, then the chromaticity changes are too di�cult to

notice, while, as the next section will demonstrate, the importance of the phase information is
high. We compute coordinates (Ru;v; Gu;v; Bu;v) of a point in �u;v such thatq

[Ru;v � Yu;v]2 + [Gu;v � Yu;v]2 + [Bu;v � Yu;v]2 = ~Su;v; (85)

and the angle between vectors [(Yu;v=0:299)�Yu;v;�Yu;v;�Yu;v]> and [Ru;v�Yu;v; Gu;v�Yu;v; Bu;v�
Yu;v]

> is equal to �0B�G(u; v). This is achieved by using the formula

2
4Ru;v

Gu;v

Bu;v

3
5 = R(u; v)

2
666664

((Yu;v=0:299)�Yu;v) ~Su;vp
((Yu;v=0:299)�Yu;v)2+2Y 2

u;v

�Yu;v ~Su;vp
((Yu;v=0:299)�Yu;v)2+2Y 2

u;v

�Yu;v ~Su;vp
((Yu;v=0:299)�Yu;v)2+2Y 2

u;v

3
777775+

2
4 Yu;vYu;v
Yu;v

3
5 ; (86)

where

R(u; v) =

2
4 cos�+ n2r(1� cos�) nrng(1� cos�)� nb sin� nrnb(1� cos�) + ng sin�
ngnr(1� cos�) + nb sin� cos�+ n2g(1� cos�) ngnb(1� cos�)� nr sin�
nbnr(1� cos�)� ng sin� nbng(1� cos�) + nr sin� cos�+ n2b(1� cos�)

3
5
(87)

is a matrix representing three-dimensional rotation about the axis [0:299; 0:587; 0:144]>. In Eq.
(87),

nr =
0:299p

0:2992 + 0:5872 + 0:1442
; (88)

ng =
0:587p

0:2992 + 0:5872 + 0:1442
; (89)

nb =
0:144p

0:2992 + 0:5872 + 0:1442
; (90)

and
� = �0B�G(u; v): (91)

A test 256� 256 two-dimensional discrete phase spectrum with � = �0(u; v) computed from
Re(f 0u;v) = (v�128) and Im(f 0u;v) = (128�u) using the appropriate modi�cations of Eqs. (18) and
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a) b)

Fig. 19. Visualizations of the test spectra:
a) Phase spectrum
b) Discrete Fourier spectrum

(20) is shown in Figure 19 (a). A test 256� 256 discrete Fourier spectrum with the same �0(u; v)
and

l0u;v =
9:7
p
(u� 128)2 + (v � 128)2

128
p
2

(92)

is visualized in Figure 19 (b).

Figures 20{33 visualize the phase spectra and the discrete Fourier spectra of the noise images
corresponding to the image-algorithm pairs studied in Sections 2 and 4.

Quantization with a �xed threshold can be interpreted as ordered dither with a 1 � 1 dither
matrix. Interestingly enough, considering Figures 1 (d), 3 (d), and 4 (d), we observe that dithering
of a 256� 256 gray scale ramp with a 1� 1 dither matrix causes the noise spectrum to have 1 strip
of nonzero values, application of an 8 � 8 matrix forces 8 strips of nonzero values to appear, and
dithering with a 128�128 matrix produces 128 parallel strips of nonzero DFT coe�cients. Figures
1 (a) and (c) are the extreme cases of contouring, less contouring is seen in Fig. 3 (a) and (c), and
virtually no contouring can be seen in Fig. 4 (a) and (c). This improvement is due both to the
increase in size of the dither matrix and advances in the matrix design. Figures 1 (b), 3 (b) and 4
(b) illustrate how peaks in the magnitude spectrum of the quanization noise image are �rst shifted
to the higher frequencies and then reduced in size and scattered over the high-frequency region, as
the dither technique improves. Figures 20 (a), 22 (a), and 23 (a) form a sequence showing reduction
of wavy correlated phase patterns, which are, perhaps, \relatives" of the strips from Figures 20
(c), 22 (c), and 23 (c).

Figures 2 and 21 show that dithering with white noise results in poor rendition of images
while leading to almost 
at magnitude spectra and clustery phase spectra of the noise images.
The noise spectra for the portrait and the ramp show more apparent similarity than those for the
same pair of grayscale images subjected to ordered dither. It even seems that a little bit more
e�ort is needed to distinguish between the two halftone images from Fig. 2 than is required for
the other portrait-ramp pairs of halftone images in this paper. Note that the quantization noise
characteristic for dithering with white noise is not exactly white. This is due to presence of the
binary quantizer.
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a) b)

c) d)

Fig. 20. Quantization with a �xed threshold (s = 0):
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

The versions of the void-and-cluster dither and the iterative convolution algorithm used to make
Fig. 4 (a) and (c), Fig. 12 (a) and (c), and Fig. 16 (c) and (k) were designed so that the magnitude
spectra are close to being radially symmetric. (These spectra are shown in Fig. 4 (b) and (d), Fig.
12 (b) and (d).) Vertical and horizontal harmonics not being suppressed better than diagonal ones,
characteristic worm-like artifacts emerge in both cases. Problems with representation of very dark
and very light tones are due to a phenomenon known as the low-frequency leakage [147].

Radial asymmetry of the kind seen in the spectra associated with the algorithms based on
error di�usion on an ordinary raster (Figures 5, 10, 11, 24, 29, 30) can be linked to presence of
diagonal correlated artifacts similar to zebra stripes in the regions of very high and very low average
intensity. The problem can be alleviated somewhat by using serpentine raster (Figures 6{8, 25{27)
or larger �lters (Figures 10 and 29). Sometimes, other problems emerge, the vertical \worms" near
g = 3=4 (the middle of Fig. 17 (e)) being a good example.
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a) b)

c) d)

Fig. 21. Dithering with white noise:
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

Strips of high-amplitude low-frequency components with the same phases visible in Figures
24{27, 29, and 30, appear to mark presence of upleasant transient boundary e�ects. We will talk
more about them in Section 7. The light strip in Fig. 9 (d) is related to the texture seams in Fig.
9 (c).

As you can see in Fig. 15, my version of SACDH (n = 255) supresses vertical and horizontal
harmonics of the magnitude spectra of noise images, so the less visible diagonal correlated artifacts
are favored over those oriented vertically or horizontally, and the magnitude spectra are close to
being cross-shaped. The noise generated is pretty close to being violet. The images in Figures 15
(a) and (c), 16 (l), and 17 (l) show very little or no contouring. Very dark and very light areas
look nice.
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a) b)

c) d)

Fig. 22. Ordered dither with a recursive tesselation matrix (Eq. (4)):
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

6. Relative Importance of the Magnitudes and the Phases

Figure 34 features hybrid images obtained by replacing magnitudes (phases) of the DFT of
one noise image by magnitudes (phases) of another noise image, performing the two-dimensional
inverse discrete Fourier transform, adding the result to the original grayscale image, and clipping
the output values so that none of them stays below that assigned to \black" or above that assigned
to \white".

It appears that the algorithms that produce \good" halftone representations generate quanti-
zation noise with \good" magnitudes and \good" phases, while the noise of quantization with a
�xed threshold has a discrete Fourier spectrum with \bad" magnitudes and \bad" phases.

Now, suppose that we start with two distinct grayscale digital images and compute the quan-
tization noise matrix as the di�erence between the binary output produced by a high-quality
halftoning algorithm when given one of them as input, and the grayscale data for the other image.
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a) b)

c) d)

Fig. 23. Ordered dither with a blue noise mask (void-and-cluster):
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

Fig. 35 shows the noise spectrum that emerges when one pretends that the halftone ramp produced
by SACDH (n = 255) and shown in Fig. 15 (c) is representing the portrait of Anya Pogosyants.
Notice the similarity between Fig. 35 and Fig. 20 (b).

7. Average Intensity Representation, Boundary E�ects, and Edge Enhancement

To get an idea of how well average intensities are preserved by di�erent digital halftoning
algorithms, I decided to compute global intensity distortion

M =
N�1X
i=0

N�1X
j=0

ei;j (93)

for N �N halftone images representing the input images such that gi;j = g for all i = 0; 1; : : : ; N �
1, j = 0; 1; : : : ; N � 1. Computations were performed for N = 16; 32; 48; : : : ; 464, g = 1=64;
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a) b)

c) d)

Fig. 24. Classical Floyd{Steinberg error di�usion (Eq. (9)):
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

2=64; : : : ; 63=64. (Zeremba [251] and Shirley [195] developed similar criteria in order to evaluate
how well the sampling points are distributed on the image plane.) The results are plotted in Figure
36. The special boundary randomization technique applied to obtain the data for Fig. 36 (e) will be
discussed later in this section. This technique is not to be confused with the BR method described
earlier, in Section 4.

Intensity distortion for an area of a halftone image is, in essense, the di�erence between the
actual number of white pixels in the area and the number of white pixels needed to preserve the
average intensity. The latter may be non-integer. For my computation, I chose the sets of possible
values g and N so that this was never the case for the whole image. For SACDH, the number of
cylinder chambers n was set to 192 to avoid rounding.

Intensity distortion per pixel
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a) b)

c) d)

Fig. 25. Four-weight serpentine error di�usion, deterministic weights (Eq. (11)):
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

d =
M

N 2
(94)

was also computed and plotted for some of the algorithms, see Figure 37.
Figures 36 (a) and (b) demonstrate that the absolute value of global intensity distortion for

two popular error di�usion algorithms grows approximately linearly in N and jg � 1=2j, and the
sign of distortion tends to be that of (g � 1=2) most of the time, i.e., the light squares often have
too many white pixels in them, and the dark squares tend to contain too few white pixels. I
am about to show that this phenomenon is due to the transient boundary e�ects like the ones
seen near the tops of Fig. 5 (c) and Fig. 6 (c). These boundary e�ects are characteristic of error
di�usion [49, 218]. Periodicity seen in Fig. 36 (c) is due to the use of a dither matrix containing
each of the values 0; 1; : : : ; `1`2 � 1. For this particular version of the void-and-cluster algorithm,
`1 = `2 = 128, so M is zero whenever N is a multiple of 128. The same kind of periodicity causes
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a) b)

c) d)

Fig. 26. Three-weight serpentine error di�usion, deterministic weights (Eq. (12)):
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

our method to indicate absence of intensity distortion when an 8 � 8 dither matrix from Eq. (4)
is used, see Fig. 36 (f). This shows that our primitive measurement technique is not infallible.
While the data for SACDH looks good, one should keep in mind that the rounding operation int
may cause additional intensity distortion with the absolute value of N 2=2n or more when gn is not
an integer. For N = 464, n = 192, N 2=2n = 1682=3 � 560:67, and this value is well above those
plotted in Fig. 36. The reason of why this is not much of a problem is that this distortion gets
spread over the whole image, so the additional intensity distortion per pixel is small everywhere,
and, in particular, no extra boundary e�ects are caused.

Edge enhancement in digital halftoning means distortion of average intensity near the borders
separating image areas with di�erent input intensities, such that the average intensity is below the
input intensity on the dark side of the edge and above it on the light side of the edge. Presence of
quantization noise decreases contrast sensitivity [45], and edge enhancement is widely believed to
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a) b)

c) d)

Fig. 27. Four-weight serpentine error di�usion, 50% random weights (Eq. (13)):
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

be needed to compensate for that [51]. On the other hand, edge enhancement is unwanted when
a digital halftoning algorithm is applied in digital holography [57], because, in this case, one is
binarizing the Fourier spectrum of the image [191]. Enhancing 
uctuations in the Fourier spectrum
would thus have the e�ect of brightening the outer regions of the reconstructed image. In ordinary
image visualization and printing, edge enhancement may cause some of the undesirable optical
illusions discussed in [79]. This suggests that inherent edge enhancement may also be unwanted
in digital halftoning algorithms for medical imaging. In the meanwhile, presence of quantization
noise may compensate (undercompensate, overcompensate) for the so-calledMach-band e�ect [175]
(when two regions with di�erent gray levels meet at an edge, the eye perceives a light band on the
light side of the edge and a dark band on the dark side of the edge; in other words, edges appear to
be enhanced even if they aren't). Pappas and Neuho� [162] opined that \the halftoning algorithm
should not compensate for the Mach-band e�ect".
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a) b)

c) d)

Fig. 28. Error di�usion combined with pulse-density modulation:
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

Knox [107] showed by measurement that an inherent mechanism for asymmetric edge enhance-
ment was built into the classical Floyd-Steinberg error di�usion algorithm. In a later paper [108],
he demonstrated that the edge enhancement was even stronger in the 12-weight error di�usion
algorithm by Jarvis, Judice, and Ninke [96], but could not be detected in the halftone images
produced using line-by-line delta-sigma modulation. Knox [108] gave a partial explanation of the
phenomenon, linking it to a component linear in the input image G being present in the error
image. This component is subjected to high-pass �ltering. The output of the high-pass �lter �nds
its way into the quantization noise, causing edge enhancement. The mechanisms causing the linear
component to appear remained unknown.

Fetthauer and Bryngdahl [57] estimated strength of the linear component for error di�usion
on an ordinary raster and used the estimates to modify the original image so that the discrete
Fourier spectrum of the noise accompanying error di�usion of the modi�ed image was close to not
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a) b)

c) d)

Fig. 29. Error di�usion with intensity-dependent weights (Eq. (14)):
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

containing a spectral component proportional to the DFT of the high-pass �ltered original image.
While the apparent reduction in edge enhancement was achieved, no results of measurements
similar to those conducted by Knox [107] for step functions were reported, so it remained unclear
just how well their pre-blurring technique worked. The intensity values of the modi�ed image can
sometimes wander outside the range [0; 1], causing problems with stability of the error di�usion
algorithm.

Subsequent attempts were made [56, 58] to link edge enhancement to a quantization noise
component somewhat di�erent from the aforementioned high-pass �ltered component of the error
image linear in the input image, expose one of the mechanisms causing this quantization noise
component to appear, and predict its strength for a particular set of weights for error di�usion
on an ordinary raster. These attempts were only partly successful. In particular, it turned out
that the strength of the noise component supposedly responsible for edge enhancement is hard to
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a) b)

c) d)

Fig. 30. Error di�usion with threshold modulation using threshold imprints:
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

predict.

From the results of Sandler et al. [185], it follows that, in line-by-line delta-sigma modulation,
the sums si;j of weighted errors are uniformly distributed on [�1=2; 1=2) for a wide variety of
inputs. As a result, the expected values E(�i;j) remain close to gi;j for all (i; j). This explains why
line-by-line delta-sigma modulation causes no detectable edge enhancement.

I studied how the sums si;j and errors �i;j are distributed for N�N constant intensity level rep-
resentations produced by the classical Floyd{Steinberg error di�usion algorithm with the weights
from Eq. (9), and Ulichney's four-weight serpentine error di�usion with the deterministic weights
given by Eq. (11). The resulting histograms of the sums and the errors are plotted in Figure 38.
The histograms were computed for g = 1=64; 2=64; : : : ; 63=64. In Fig. 38, h0 stands for \histogram",
and the plotted values of h0 approximate the corresponding probability densities.

Comparison of Fig. 38 (a) (four-weight SED, N = 16) and Fig. 38 (b) (four-weight SED,
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a) b)

c) d)

Fig. 31. The iterative convolution algorithm:
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

N = 464) shows that the distributions of si;j do not become uniform for large N . Instead, highly
visible peaks emerge in the distributions for g = 1=4, g = 1=2, and g = 3=4. In the meanwhile,
Fig. 37 (a) suggests convergence to other (non-uniform) distributions such that E(�i;j) = g. For
the case of the constant input g 2 [0; 1], Eqs. (1,2,5) yield

�i;j = g + si;j � bg + si;j + 1=2c; (95)

i.e., �i;j are linked to si;j so that the distributions of errors are uniquely determined by the distri-
butions of the sums of weighted errors. Comparison of Figures 38 (b) and (c) con�rms that.

Near the borders of areas with di�erent input intensities, transitions between di�erent non-
uniform distributions of si;j and �i;j occur. In particular, whenever the binary quantizer errors are
di�used from the pixels with the input intensity g1 to a pixel at some �xed position (i

0; j0) with the
input intensity gi0;j0 = g2 6= g1, E(�i0;j0) may di�er signi�cantly from g2, so the average intensity
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a) b)

c) d)

Fig. 32. Line-by-line delta-sigma modulation:
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

distortion may occur. Indeed, even if the 
ow of error di�usion went through a large area with
the input intensity g1 before it reached the neighborhood of (i0; j0), all it would mean is that si0;j0
is distributed so that E(�i0;j0) would be close to g1 if gi0;j0 were equal to g1. But we assumed that
gi0;j0 = g2 is not equal to g1, so E(�i0;j0) does not have to be close to g2.

The intensity distortion data plotted in Fig. 36 (e) was obtained by using boundary random-
ization as follows. Instead of setting the errors outside the image to zero, I computed them as
uncorrelated random numbers with the distribution depending on g according to the histogram in
Fig. 38 (c). The linearity in g disappeared, and the absolute values of intensity distortion were
reduced up to three times. The reduction was especially drastic for the values of g close to zero
and one. Alas, the transient boundary e�ects were not completely eliminated, apparently because
the errors generated by error di�usion would not be uncorrelated.

Extending the approach of Knox [107], I measured edge enhancement in N � N halftone
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a) b)

c) d)

Fig. 33. Serpentine anti-correlation digital halftoning:
The phase spectra of the noise images (left);
the discrete Fourier spectra of the noise images (right).
a), b) For the portrait of Anya Pogosyants
c), d) For the gray scale ramp

images obtained from the digital images of vertical and horizontal grayscale steps using di�erent
halftoning algorithms. The input intensity values for the vertical steps were computed according
to the formula

gi;j =

(
1�h
2

if j < N=2,
1+h
2

otherwise,
(96)

and the input intensity values for the horizontal steps were computed as

gi;j =

(
1�h
2

if i < N=2,
1+h
2

otherwise,
(97)

for h = �1;�31=32; : : : ; 0; : : : ; 31=32; 1. N was set to 256. Intensity distortion per pixel was
computed for the columns of the halftone vertical step images and for the lines of the halftone
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a) b)

c) d)

Fig. 34. Hybrid images generated starting with the portrait of Anya Pogosyants:
a) Noise magnitudes: Quantization with a �xed threshold (s = 0);

Noise phases: Three-weight serpentine ED, deterministic weights
b) Noise magnitudes: Three-weight serpentine ED, deterministic weights;

Noise phases: Quantization with a �xed threshold (s = 0)
c) Noise magnitudes: SACDH;

Noise phases: Three-weight serpentine ED, deterministic weights
d) Noise magnitudes: Three-weight serpentine ED, deterministic weights;

Noise phases: SACDH

horizontal step images. The results are plotted in Figures 39{44. \Black" means intensity distortion
per pixel of �0:25 or less, \white" means intensity distortion per pixel of 0:25 or higher. The plots
are made using Maple, which performs bilinear interpolation between the data points. Note that
I studied edge enhancement only for the steps with the intensity values symmetric with respect to
1=2.

As you can see in Figures 39 and 43, error di�usion on an ordinary raster is accompanied by
asymmetric edge enhancement of both vertical and horizontal grayscale steps. The edge enhance-
ment seen on the left side of the vertical steps in Fig. 39 is due solely to w0;2 = 3=16 being nonzero.
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Fig. 35. The noise spectrum for the case of the portrait of Anya Pogosyants
represented by a halftone ramp (SACDH)

The coe�cients to the right of column (`�1) allow such algorithms to \see" the approaching edge.

The serpentine raster ensures symmetric edge enhancement of the vertical steps, see Figures
40 (a), 41 (a), and 42 (a). However, the resulting one-pass error di�usion algorithms with wedge-
shaped kernels cannot \anticipate" horizontal steps. This is illustrated by Figures 40 (b), 41 (b),
and 42 (b). Note that the edge enhancement is not signi�cantly stronger for the three-weight
SED algorithm (Fig. 41) than for the four-weight one (Fig. 40). It appears that the three-weight
algorithm enhances the horizontal steps more, and the vertical ones less than the four-weight
algorithm does.

Fig. 44 shows that serpentine ACDH does not lead to enhancement of symmetric grayscale
steps. In addition to that, the stripes of alternating dark and light dots marking the cases of
strong correlation in the columns (rows) are not present in Fig. 44, while being easy to spot in
Figures 39{43. This con�rms that SACDH is good at suppressing vertical and horizontal correlated
artifacts.

In Figures 39{44, intensity distortion per pixel for the rows and columns close to the image
boundaries was not plotted. This trick allowed us to zoom in on the edges and ignore intensity
distortion near the boundaries. Figure 45 shows how intensity distortion linked to the transient
boundary e�ects can sometimes divert attention from, or even completely hide edge enhancement.
Figure 46 demonstrates that this is not a problem in the case of SACDH for two obvious reasons.
There is no edge enhancement to hide, and no signi�cant intensity distortion occurs near the
boundaries.

Whenever edge enhancement is needed to compensate for reduction in contrast sensitivity
caused by presence of quantization noise, it can be added to any digital halftoning algorithm, and
this extra edge enhancement does not have to be as anisotropic as that embedded in the popular
error di�usion algorithms. The rest of this section describes how this is accomplished.

Knuth [111] reformulated the so-called \constrained average" method of Jarvis and Roberts
[97] to obtain the following edge enhancement technique.

For i = 0; 1; : : : ; N1 � 1, j = 0; 1; : : : ; N2 � 1, let
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Fig. 36 (Part I). Intensity distortion (Eq. (93)):
a) Classical Floyd{Steinberg error di�usion (Eq. (9))
b) Four-weight serpentine error di�usion, deterministic weights (Eq. (11))
c) Ordered dither with a blue noise mask (void-and-cluster)
d) SACDH (n = 192)

�gi;j(`1; `2) =

8>>>>>>><
>>>>>>>:

1
`1`2

b
`1�1

2
cX

�1=�b
`1
2
c

b
`2�1

2
cX

�2=�b
`2
2
c

gi+�1;j+�2 if b `1
2
c � i < N1 � b `1�12

c and

b `2
2
c � j < N2 � b `2�12

c,

gi;j otherwise.

(98)

Note that

�gbN1=2c;bN2=2c(N1; N2) = �g (99)

is the (global) sample mean of the input image (Eq. (61)). Generally, �gi;j(`1; `2) are local sample
means computed over rectangular areas of the image.

56



100
200

300
400

N

0
0.2

0.4
0.6

0.8
1

g

-60

-40

-20

0

20

40

60

M

M white pixels too many, SED, BR

e)

0
100

200
300

400

N

0
0.2

0.4
0.6

0.8
1

g

-10

-5

0

5

10

M

M white pixels too many, Bayer dither

f)

Fig. 36 (Part II). Intensity distortion (Eq. (93)):
e) Four-weight serpentine error di�usion, deterministic weights, special BR
f) Ordered dither with a recursive tesselation matrix (Eq. (4))

Knuth, in essence, proposed to replace each input value gi;j with

g0i;j =
gi;j � �1�g(3; 3)

1� �1

(100)

before a digital halftoning algorithm is run. In Eq. (100), �1 is a constant parameter. Knuth
had it set to 0:9. (His actual formulas did not specify how the processing is done near the image
boundaries. Eq. (98) incorporates one way to take care of the boundaries. Another simple approach
was used to obtain Eq. (58). Eq. (98) also allows `1 and/or `2 to be even.)

Let

�2 =
�1

1� �1

: (101)

For �1 6= 1, Eq. (100) can be rewritten as follows.

g0i;j =
gi;j(1� �1) + �1(gi;j � �gi;j(3; 3))

1� �1

= gi;j + �2(gi;j � �gi;j(3; 3)): (102)

From Eq. (102), it is obvious that g0i;j are not guaranteed to stay within the interval [0; 1]. Many
digital halftoning techniques are capable of handling such input, ordered dither and error di�usion
among them. However, no ACDH algorithm can process input values outside [0; 1], where the
meanings of the input intensity values 0 and 1 are as de�ned in Section 2. Luckily, a simple
modi�cation takes care of the problem. The new inputs become

g00i;j(`1; `2) = maxf0;minf1; gi;j + �2(gi;j � �gi;j(`1; `2))gg: (103)

Note that the outputs of error di�usion performed on the N1 � N2 input images composed of g0i;j
and g00i;j(3; 3) respectively, for i = 0; 1; : : : ; N1 � 1, j = 0; 1; : : : ; N2 � 1, may be di�erent for the
same G and �2. The corresponding outputs of ordered dither are guaranteed to match.

Figure 47 illustrates how the preprocessing technique described by Eq. (103) can a�ect the
output of SACDH printed at 100 dpi. Only positive values of �2 lead to edge enhancement,
as shown in Figures 47 (d), (e), and (f). �2 = 0 means no preprocessing (see Fig. 15 (a)). If
(�1) � �2 < 0, the input image is blurred (Figures 47 (b) and (c)). In particular, �2 = �1 means,
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c)

Fig. 37. Intensity distortion per pixel (Eq. (94)):
a) Four-weight serpentine error di�usion, deterministic weights (Eq. (11))
b) Ordered dither with a blue noise mask (void-and-cluster)
c) SACDH (n = 192)

in essence, averaging over `1 � `2 windows (Fig. 47 (b)). Finally, setting �2 to negative values less
than (�1) causes amusing \edge anti-enhancement" (Fig. 47 (a)).

Optimum selection of �2, `1, and `2 may present a formidable challenge, the outcome likely
depending on the input image G, the output resolution, other viewing conditions and device prop-
erties, etc. Other edge enhancement techniques are known ([172], Section 12.4).

8. Extension to Multilevel Halftoning and Color Quantization

For devices capable of displaying more than two di�erent levels of gray (displays, thermo
printers, etc.), multilevel halftoning algorithms are designed [10, 11, 21, 114, 117, 141, 143, 171,
190, 199, 207, 218, 250]. Some bilevel halftoning algorithms, such as patterned serpentine di�usion
[184], can be interpreted as multilevel halftoning with subsequent representation of the pixels by
apropriate binary patterns. (An implied scale change occurs.)

It is straightforward to extend ACDH to the multilevel case if the quantization levels are
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Fig. 38. Histograms of the sums si;j and the errors �i;j :
a) Histogram of the sums si;j , four-weight SED (Eq. (11)), N = 16
b) Histogram of the sums si;j , four-weight SED, N = 464
c) Histogram of the errors �i;j , four-weight SED, N = 464
d) Histogram of the errors �i;j , four-weight ED (Eq. (9)), N = 464

equidistant, 0 (\black") and 1 (\white") being among them. Let q > 1 be an integer, and let
0; 1=q; : : : ; (q � 1)=q; 1 be the equidistant quantization levels. The matrix of hqgi;ji becomes the
input of a bilevel ACDH algorithm. Then, for i = 0; 1; : : : ; N1�1, j = 0; 1; : : : ; N2�1, the element
of the resulting matrix in the position (i; j) is added to bqgi;jc. The sums divided by q are the
quantization levels we assign to the appropriate pixels of the output image.

If the quantization levels are not equidistant solely becauseWeber quantization [105] is used as
means for having coarser quantization in the areas of low contrast sensitivity than in the areas of
high contrast sensitivity, then we should translate gi;j to a coordinate system, in which the Weber
quantization scale becomes equidistant. Among such coordinate systems, the one, in which all
Weber quantization scales are equidistant, is preferred. (A more extensive discussion of the Weber
quantization can be found in Appendix B.) The technique described in the previous paragraph is
then applied to the transformed input. Alas, this modi�cation cannot be applied when the Lloyd{
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Fig. 39. Edge enhancement: The classical Floyd{Steinberg ED (Eq. (9)), N = 256
a) Symmetric vertical grayscale steps
b) Symmetric horizontal grayscale steps
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Fig. 40. Edge enhancement: Four-weight SED (Eq. (11)), N = 256
a) Symmetric vertical grayscale steps
b) Symmetric horizontal grayscale steps

Max quantization [134, 139] is used, i.e., when the quantization levels are spaced more closely near
the peaks of the histogram of gi;j . Ideally, these levels for monochrome image quantization should
be computed in the system, in which all Weber scales are equidistant. Multilevel error di�usion
can work when the quantization levels are selected according to the Lloyd{Max criterion [143].
More research is needed to determine if ACDH can be successfully modi�ed to work in this case.

Techniques used in digital halftoning are often extended to color quantization [192, 218], and
such terms as color dithering [149, 198] and color halftoning [104, 142, 194] are sometimes used
to describe the resulting algorithms. Color quantization is a separate �eld of study with its own
extensive literature [1, 9, 13, 14, 29, 31, 32, 40, 44, 61, 62, 63, 71, 73, 75, 83, 86, 89, 98, 99, 104,
114, 119, 131, 132, 142, 149, 159, 161, 165, 173, 194, 198, 200, 204, 225, 226, 236, 237, 238, 239,
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Fig. 41. Edge enhancement: Three-weight SED (Eq. (12)), N = 256
a) Symmetric vertical grayscale steps
b) Symmetric horizontal grayscale steps
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Fig. 42. Edge enhancement: RSED (Eq. (13)), N = 256
a) Symmetric vertical grayscale steps
b) Symmetric horizontal grayscale steps

240, 241, 242]. In the recent years, a lot of interest was paid to color image sequence quantization
[8, 67, 179]. Studies of color image quality [30, 92, 116, 148, 197, 215] are often closely related to
the color quantization problem.

Two essential steps in color quantization are color palette design [12, 93, 115] and mapping
the available color gamut to the color palette. ACDH is easily extendable to the case when the
color space is a cube (say, the RGB cube), and the color palette consists of all triples of the form
(k1=q1; k2=q2; k3=q3), where q1, q2, and q3 are positive integers, each color coordinate is normalized
to �t in [0; 1], k1 = 0; 1; : : : ; q1, k2 = 0; 1; : : : ; q2, and k3 = 0; 1; : : : ; q3. Namely, we can apply
multilevel ACDH algorithms from the class described in this section to the color component arrays.
For each pixel, the three independently computed levels are interpreted as the coordinates of a
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Fig. 43. Edge enhancement: ED with intensity-dependent weights (Eq. (14)), N = 256
a) Symmetric vertical grayscale steps
b) Symmetric horizontal grayscale steps
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Fig. 44. Edge enhancement: SACDH, N = 256
a) Symmetric vertical grayscale steps
b) Symmetric horizontal grayscale steps

palette color. For four-color printing (CMYK), one needs to perform color separation before doing
halftoning [226], so the same approach may su�ce. One should beware the possible moir�e e�ect
due to the interference of overprinted patterns, though. It is not clear if ACDH can be modi�ed
to work in the case of an arbitrary palette. (Error di�usion was extended to this case long ago by
Heckbert [86].)

9. Conclusions and Future Research

We introduced a new class of digital halftoning algorithms, anti-correlation digital halftoning
(ACDH), and studied a representative of the class, serpentine ACDH. Visual comparison of test
images produced by our version of serpentine ACDH and numerous popular benchmark algorithms
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Fig. 45. Intensity distortion per pixel: Four-weight SED (Eq. (11)), N = 256
a) Columns of symmetric vertical grayscale steps
b) Rows of symmetric horizontal grayscale steps
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Fig. 46. Intensity distortion per pixel: SACDH, N = 256
a) Columns of symmetric vertical grayscale steps
b) Rows of symmetric horizontal grayscale steps

shows that serpentine ACDH causes fewer unpleasant correlated artifacts and less contouring than
the benchmark algorithms. The quantization noise spectra associated with serpentine ACDH
possess bene�cial characteristics related to properties of the vision system. In particular, the in-
spection of the magnitude spectra showed that the quantization noise associated with serpentine
ACDH tends to come close to meeting the requirements of the newly introduced de�nition of \vio-
let noise". New techniques for color visualization of the noise spectra and the corresponding phase
spectra were introduced, and the relative signi�cance of the magnitudes and phases of the discrete
Fourier transform of the quantization noise was studied. Unlike some of the benchmark algorithms,
serpentine ACDH does not cause signi�cant transient boundary e�ects. Our measurements indi-
cated that serpentine ACDH does not possess an inherent edge ehancement property, either. They
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a) b)

c) d)

Fig. 47 (Part I). The preprocessed portrait of Anya Pogosyants, SACDH,
100 dpi, `1 = `2 = 3: a) �2 = �9; b) �2 = �1; c) �2 = �0:5; d) �2 = 1

also demonstrated that serpentine ACDH is good at reproducing average intensities correctly. We
showed that relatively isotropic edge enhancement can be easily added to any digital halftoning
algorithm if desired. Other related issues, such as tone scale adjustment, the impact of texture
perception on the anti-correlation �lter design, and extension of ACDH to multilevel halftoning
and color quantization, were discussed.

The prospective directions of the future research are as follows:
1. I am planning to study sequential and parallel iterative (multi-pass) ACDH algorithms. The

parallel algorithms using SACDH to determine the initial state of the revolver cylinders and
applying cross-shaped anti-correlation �lters symmetric with respect to the vertical and hor-
izontal axes and the diagonals are likely to be of special interest, due to the vision system
anisotropy.

2. Sequential ACDH algorithms (both one-pass and multi-pass) with the order of pixel processing
determined by one or more space-�lling curves should be studied.

3. Comprehensive subjective and objective testing of halftone image quality is needed to both
evaluate the existing digital halftoning techniques and compare di�erent monochrome vision
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e) f)

Fig. 47 (Part II). The preprocessed portrait of Anya Pogosyants, SACDH,
100 dpi, `1 = `2 = 3: e) �2 = 3; f) �2 = 9

models. Once a reliable and relatively easy-to-compute distortion measure emerges, model-
based digital halftoning techniques using halftone images produced by the ACDH algorithms as
starting con�gurations will be developed. These \re�nement" techniques are likely to employ
hill climbing and/or simulated annealing and perform very high quality halftoning.

4. ACDH algorithms are computationally intensive. I am planning to modify ACDH for de-
signing rectangular binary patterns for look-up-table based halftoning, which is fast. Three-
dimensional anti-correlation �lters will be used to look at the con�gurations corresponding to
di�erent grayscale levels, for which the binary patterns are about to be generated, so that
the correlation between the binary patterns is high for the levels that are close together, and
yet the stacking constraint is relaxed. The rectangular constant grayscale input images, from
which the binary patterns are going to be generated, will be considered periodic horizontally
and vertically as described in Section 3, so no boundary randomization will be involved. The
resulting binary patterns will possess the so-called two-dimensional wrap-around property [220].
The average intensity distortion measurements discussed in Section 7 show that the ratio of
the number of white pixels and the overall number of pixels in a binary pattern may deviate
from what the grayscale intensity level prescribes. One way to correct the ratio is to employ a
modi�cation of Ulichney's algorithm [221] that removes minority pixels (white pixels are the
minority pixels if g < 1=2, black pixels are the minority pixels otherwise) from the tightest
clusters and inserts them into the largest \voids".

5. Visualization of the covariances from Eq. (67) and/or the sums from the right-hand side of
this equation may improve our understanding of ACDH. The problem is nontrivial due to the
high dimensionality.

6. A comprehensive study of edge enhancement is needed.

7. It would be interesting to establish a �rm link between digital halftoning and the information
theory. Here's a reference to a related article [182].

Appendix A. Filter selection in SACDH

Anti-correlation �lters used in my versions of SACDH are obtained from six similar wedge-
shaped basic �lters,
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K1 =

4 4 5 5 5 5 5 5 6 6 6 6 1 1 0 0 0 0 0 0 0 0 0

4 5 5 5 5 5 6 6 6 6 6 6 1 1 1 1 1 0 0 0 0 0 0

5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 0 0 0 0 0

5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 6 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 7 8 8 9 10 10 11 11 2 2 1 1 1 1 1 1 1 0 0

5 6 6 7 7 8 9 10 11 12 13 13 2 2 2 2 1 1 1 1 1 1 0

5 6 6 7 8 9 10 11 13 14 16 20 4 3 3 2 2 1 1 1 1 1 0

6 6 7 7 8 10 11 13 15 18 21 21 5 5 4 3 2 1 1 1 1 1 0

6 6 7 8 9 10 12 14 18 28 34 45 16 6 5 3 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 21 34 46 64 34 13 5 4 2 2 1 1 1 1 1

6 6 7 8 9 11 13 20 21 45 50 �

; (104)

K2 =

4 4 5 5 5 5 5 5 6 6 6 6 1 1 0 0 0 0 0 0 0 0 0

4 5 5 5 5 5 6 6 6 6 6 6 1 1 1 1 1 0 0 0 0 0 0

5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 0 0 0 0 0

5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 6 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 7 8 8 9 10 10 11 11 2 2 1 1 1 1 1 1 1 0 0

5 6 6 7 7 8 9 10 11 12 13 13 2 2 2 2 1 1 1 1 1 1 0

5 6 6 7 8 9 10 11 13 14 16 16 4 3 3 2 2 1 1 1 1 1 0

6 6 7 7 8 10 11 13 15 18 20 21 6 5 4 3 2 1 1 1 1 1 0

6 6 7 8 9 10 12 14 18 28 34 44 16 7 5 3 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 20 34 46 64 34 13 6 4 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 21 44 50 �

; (105)

K3 =

4 4 5 5 5 5 5 5 6 6 6 6 1 1 0 0 0 0 0 0 0 0 0

4 5 5 5 5 5 6 6 6 6 6 6 1 1 1 1 1 0 0 0 0 0 0

5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 0 0 0 0 0

5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 6 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 7 8 8 9 10 10 11 11 2 2 1 1 1 1 1 1 1 0 0

5 6 6 7 7 8 9 10 11 12 13 13 2 2 2 2 1 1 1 1 1 1 0

5 6 6 7 8 9 10 11 13 14 16 16 4 3 3 2 2 1 1 1 1 1 0

6 6 7 7 8 10 11 13 15 18 20 21 6 5 4 3 2 1 1 1 1 1 0

6 6 7 8 9 10 12 14 18 23 29 32 13 8 5 3 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 20 29 45 64 32 13 6 4 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 21 32 64 �

; (106)
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K4 =

4 4 5 5 5 5 5 5 6 6 6 6 1 1 0 0 0 0 0 0 0 0 0

4 5 5 5 5 5 6 6 6 6 6 6 1 1 1 1 1 0 0 0 0 0 0

5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 0 0 0 0 0

5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 6 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 7 8 8 9 10 10 11 11 2 2 1 1 1 1 1 1 1 0 0

5 6 6 7 7 8 9 10 11 12 13 13 2 2 2 2 1 1 1 1 1 1 0

5 6 6 7 8 9 10 11 13 20 16 16 4 3 3 2 2 1 1 1 1 1 0

6 6 7 7 8 10 11 13 15 18 20 21 6 5 4 3 2 1 1 1 1 1 0

6 6 7 8 9 10 12 20 18 23 32 32 13 8 5 3 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 20 32 45 64 32 13 6 4 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 21 32 64 �

; (107)

K5 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 2 5 7 8 2 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 2 5 17 26 26 6 3 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 7 26 45 64 24 5 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 8 26 64 �

; (108)

K6 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 2 5 7 6 2 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 2 6 17 26 26 6 3 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 7 26 45 64 24 5 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 5 26 64 �

; (109)

by the operator R( ~K; `K ; "(`K)). This operator is de�ned only for `K � ` ~K , where
~K is an

` ~K � (2` ~K � 1) basic �lter. R( ~K; `K ; "(`K)) returns an `K � (2`K � 1) wedge-shaped �lter K such
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that its columns with numbers less than (`K � "(`K)) are formed of elements of ~K located in the

appropriate positions with respect to �. The other columns of R( ~K; `K ; "(`K)) are �lled with
zeros. For example,

R(K6; 4;�1) =
2 5 7 6 2 0 0

6 17 26 26 6 0 0

7 26 45 64 24 0 0

5 26 64 �
: (110)

Table A.1 explains how K is computed, depending on � from Eq. (75).

Table A.1

� K(�)

� 2
�
0;

13

255

�
R(K1; 6;�5)

� 2
�
13

255
;
28

255

�
R(K2; 6;�5)

� 2
�
28

255
;
31

255

�
R(K3; 3 + rand(0::1);�`K + 1)

� 2
�
31

255
;
45

255

�
R(K3; 5 + 2 � rand(0::1);�`K + 1)

� 2
�
45

255
;
49

255

�
R(K3; 5 + rand(0::2);�`K + 1)

� 2
�
49

255
;
88

255

�
R(K3; 5 + rand(0::2);�1)

� 2
�
88

255
;
94

255

�
R(K4; 5;�1)

� 2
�
94

255
;
95

255

�
R(K4; 5 + rand(0::1);�1)

� 2
�
95

255
;
100

255

�
R(K5; 7;�2)

� 2
�
100

255
;
106

255

�
R(K6; 7;�2)

� 2
�
106

255
;
111

255

�
R(K6; 7;�2� rand(0::1))

� 2
�
111

255
;
120

255

�
R(K6; 5;�3)

� 2
�
120

255
;
121

255

�
R(K4; 6;�5)

� 2
�
121

255
;
122

255

�
R(K4; 6 + rand(0::1);�`K + 1)

� 2
�
122

255
; 1

�
R(K4; d255�e � 116;�`K + 1)
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Each random value of the form rand(n1::n2) has to be computed independently for di�erent (i; j),
whenever its computation is necessary.

Appendix B. Photometric Measurements and Tone Scale Adjustment

Tone scale adjustment (TSA) ([218], Subsection 1.3.1) means image preprocessing intended to
compensate for device distortion of the perceived brightness. It is usually performed by replacing
the N1 �N2 matrix G of the input intensity values gi;j (i = 0; 1; : : : ; N1 � 1, j = 0; 1; : : : ; N2 � 1)
with the N1 �N2 matrix G

0 of
g0i;j = f(gi;j); (111)

where f is a function such that the values g0i;j always lie between 0 and 1. The tone scale adjustment
function f(g) should not be confused with f and fu;v found in the main text of this paper. We will
call the graphs of the TSA functions the tone scale adjustment curves, because of their shape.

Some authors draw distinctions between brightness and lightness [15, 100, 166], Pratt mixes
the two notions ([172], Subsection 7.3.1). The perceived brightness (lightness) of an image area is
hard to compute exactly even if the values of such parameters as the area's own luminance, the
luminance of background/surround, the luminances of \white" and \black", etc. are known. This
is due, in part, to a number of optical illusions [79, 172]. However, we are still interested in the
approximations proposed by di�erent researchers, for the following reason.

In Section 2, meanings were assigned to the numerical intensity values g = 0 (\black") and
g = 1 (\white"). In general, this is not enough to determine how a digital image should be re-
produced. We need to assign meanings to the intensity values in (0; 1), too. Since the number of
di�erent values of g that can be stored in a computer is always �nite, we would like to assign the
meanings so that, for any two ordered pairs of intensity levels (g1; g2) and (g3; g4), if g1�g2 = g3�g4,
then the perceived brightness di�erence between any two output image areas with their respective
digital image intensities equal to g1 and g2 tends to remain close to the perceived brightness dif-
ference between any two output image areas with their respective digital image intensities equal
to g3 and g4. The exact version of the requirement above is stricter than the usual conditions im-
posed in the ordinary Weber quantization, where the multiple quantization levels are selected to be
equidistant in a coordinate system such that the just noticeable di�erences are the same for each g.
Furthermore, the just noticeable di�erences cannot simply be integrated to give information about
the perceived brightness di�erences [166], so the exact version of the requirement is impossible to
meet. (Other phenomena, such as the optical illusions and the in
uence of background/surround,
share the blame for this.) For the image printing purposes, we are interested in �nding an approx-
imate solution that would ensure that the perceived brigntness of the linear-intensity gray scale
ramp appears to change approximately linearly when the printed image is well-lit. The image is
assumed to be printed on white paper.

Note that, if the input digital image was adjusted to be \correctly" displayed on a monitor such
that the linear-intensity gray scale ramp does not seem linear on it when the background/surround
is bright, then a di�erent solution is needed. For example, the display luminances corresponding
to di�erent grayscale levels could be measured, and the behavior of luminance replicated on paper.
In other words, if we want to fully bene�t from Weber printing, we should use Weber display, too.

The choice of a digital halftoning algorithm a�ects the amount of tone scale adjustment needed
[184], as you can see in Fig. 17. I performed a number of photometric measurements on the halftone
ramps of the same size and orientation as those in Fig. 17. The ramps were produced by SACDH
(n = 255) using di�erent TSA functions and printed at 300 dpi or 600 dpi.

I used a precalibrated Minolta LS-100 luminance meter to study how the luminance changes
along the vertical axes of the ramps. Between measurements, the halftone ramp was moved in 5
mm increments under a 150 mm�150 mm square mask made of black matte art paper and a�xed
to an almost horizontal surface of a wooden chair placed in a well-lit (indoor) area in my o�ce. The
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mask had a 20 mm�5 mm rectangular window in the middle of it. The shorter edge of the window
was kept approximately parallel to the vertical axis of the halftone ramp during the measurement.
The luminance meter was mounted on a tripod, approximately three feet above the surface of
the chair, and focused on the window in the black mask. Typically, I performed 190 luminance
measurements per halftone ramp. A round of measurements consisted of measuring luminance of
the round areas corresponding to 18 di�erent positions of the ramp under the mask, one of these
positions causing only white paper to be seen through the window, and a separate measurement
corresponding to an area covered with black toner being seen through the window. The latter was
conducted using a black rectangular image printed on the same printer as the corresponding ramp
shortly before or after the ramp was printed. Up to 10 rounds of measurements (passes) per halftone
ramp were performed. Note that the round area, the average luminance of which was measured
with the luminance meter, included part of the black mask, as well as part of the window, so the
absolute values of luminance were irrelevant, only the behavior of the resulting graphs mattered.
For each new TSA function, the average luminance graph was obtained by averaging over the
data for four halftone ramps printed almost simultaneously on four departmental HP LaserJet
IVsi laser printers. The standard deviations of luminances for separate halftone ramps remained
small compared to the di�erences between the ramps. Each iteration meant a change of the TSA
function. The goal was to make the next graph of the average luminance function as linear as
possible.

Figure 48 shows, among other tone scale adjustment curves, the graphs of two \linear average
luminance" TSA functions for printing the halftone ramps (produced using SACDH) at 300 dpi
and 600 dpi, marked \c6" and \c7", respectively. The empirical \c1" curve, originally developed
by Sandler, Gusev, and Milman in 1992 for printing near-linear average brightness halftone ramps
produced by their three-weight version of SED [184] at 300 dpi on LaserJet II laser printers, served
as the �rst approximation. The �rst iteration of the process described in the previous paragraph
led to a new TSA curve I had marked \c3". This curve is not shown in Fig. 48. It is pretty close
to the curve marked \c6", and Fig. 48 is rather busy as it is. Additional measurements led to two
di�erent curves, \c4" and \c5", for printing at 300 dpi and 600 dpi, respectively. These curves were
very close to \c6" and \c7", respectively, and are not shown in Fig. 48, either. Each of the curves
marked \c6" and \c7" is, therefore, three iterations away from \c1". (The mnemonic \c2" was
used to denote an experimental curve for printing at 600 dpi. I did not �nd that function especially
useful.) I stopped when it became obvious that the in
uence of changes in the printer conditions
occurring between the iterations became comparable to the di�erences between the TSA curves
I was getting. Throughout the process, the luminance di�erences between the 600 dpi halftone
ramps produced using the same TSA functions, but printed on di�erent HP LaserJet IVsi printers,
remained disappointingly large compared to the (still very visible) di�erences between the 300 dpi
halftone ramps, so I decided not to include a 600 dpi halftone ramp in the illustrations.

Figure 49 (a) shows the halftone ramp produced using the linear average luminance TSA
function \c6". This ramp is apparently too light, which is not surprising, given that the human
vision system in the photopic region tends to be more sensitive to the luminance changes in
the darker areas of images [85]. (Luminance was formerly called \photometric brightness" [100].
Apparently, the old name went out of style once it became clear that this measure is not close
enough to being directly proportional to the perceived brightness.)

The halftone ramp in Figure 49 (b) was produced using the \c1" TSA function of Sandler et
al. While the behavior of the perceived brightness of such ramps tends to be close to linear for
300 dpi ramps printed on the laser printers belonging to the HP LaserJet II, III, and IV families,
the primitive method of empirical curve adjustment does not seem to be convenient enough if
one needs the ability to quickly and reliably �nd near-linear average brightness TSA functions for
Weber printing at di�erent resolutions on di�erent printers.
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Fig. 48. Tone scale adjustment curves for SACDH
on the HP LaserJet IVsi laser printers:

\c1" | a curve (by Sandler et al.) for linear average perceived brightness (300 dpi);
\c6" | a curve for linear average luminance (300 dpi);
\c7" | a curve for linear average luminance (600 dpi);
\cd" | the �rst curve for linear average re
ection density (300 dpi);
\cd2" | the second curve for linear average re
ection density (300 dpi);
\cbb" | a curve for linear average perceived Bartleson{Breneman brightness (300 dpi);
\cju" | a curve for linear average perceived Judd \lightness" (300 dpi);
\cpe" | a curve for square-root average luminance (300 dpi);
\clp" | a curve for cube-root average luminance (300 dpi);
\cfo" | a curve computed using recommendations of Foley et al. [66] (300 dpi);
\noa" | no tone scale adjustment.

The halftone ramps produced without tone scale adjustment tend to be too dark (see Figure
49 (j)), because the printer dots are almost round, so the nearby dots on a square grid have to
overlap.

Let �r denote re
ected 
ux (
ux re
ected by sample and used), and let �rs denote reference
re
ected 
ux (
ux re
ected by reference standard and used). Re
ection density ([235], Section
15.2) is

Dr = �lg �r

�rs

: (112)

Re
ection density can be measured with a re
ection densitometer, as described in [235]. According
to Roetling and Holladay [177], \If Weber's law holds, spacing available levels evenly in density
will be the best way to distribute levels for equal visual detectability."
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a) b) c)

d) e) f)

Fig. 49 (Part I). Gray scale ramp, 300 dpi, SACDH
a) Linear average luminance (the \c6" TSA function)
b) The \c1" TSA function (Sandler et al.)
c) Linear average Judd \lightness" (the \cju" TSA function)
d) Linear average Bartleson{Breneman brightness (the \cbb" TSA function)
e) Square-root average luminance (the \cpe" TSA function)
f) The \cfo" TSA function (Foley et al.)
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g) h) i) j)

Fig. 49 (Part II). Gray scale ramp, 300 dpi, SACDH
g) Linear average re
ection density, function 1 (the \cd" TSA function)
h) Linear average re
ection density, function 2 (the \cd2" TSA function)
i) Cube-root average luminance (the \clp" TSA function)
j) No tone scale adjustment

I used a Speedmaster Universal Densitometer with accuracy �0:02 to perform 19 � 5 = 95
measurements on a \c3" halftone ramp image and the corresponding black rectangle, for which the
luminance measurements had been performed before. That particular halftone ramp image was
chosen for its average luminance being very close to linear. Between the measurements done on
the ramp, the densitometer was moved along the vertical axis of the ramp in 5 mm increments.
This allowed me to perform 18 measurements per pass, starting near the top of the ramp. The
nineteenth measurement was performed separately on an area covered with black toner in order
to measure the re
ection density of \black". The densitometer was calibrated once, just before
the series of measurements began. Given the construction of the device, no mask was needed.
Three sheets of high-grade white paper were placed beneath the sheet with the image on which
the measurements were conducted. The results of the �ve passes were averaged, and the estimates
of the standard deviations of the sample means were computed, none of them above 0:02. The
average re
ection densities ranged from 1:40 for \black" to 0:11 for \white". The �rst TSA curve
for near-linear average re
ection density was then computed numerically from the near-linear
average luminance curve \c6". This curve is marked \cd" in Fig. 48, and the corresponding
halftone ramp is shown in Fig. 49 (g). Note that, since the TSA functions were being designed
for SACDH with n = 255, each f(g) was, in fact, a function from f0; 1=n; 2=n; : : : ; (n � 1)=n; 1g
into f0; 1=n; 2=n; : : : ; (n � 1)=n; 1g. Having 19 average re
ection density values and 19 average
luminance values, I used linear interpolation whenever an intermediate value was needed.

Using the \cd" curve, I applied SACDH to compute a new halftone ramp, which I printed on
�ve departmental HP LaserJet IVsi laser printers, along with the corresponding black rectangles.
20�10 = 200 re
ection density measurements were then performed with the same densitometer, 2
20-measurement passes per halftone ramp. This time, two measurements of the re
ection density
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of \white" were performed during each pass (one near the ramp, one away from the ramp), and
the densitometer was recalibrated several times between the passes. The di�erences between the
readings corresponding to the same position in the same ramp proved small compared to the
di�erences between the readings for the same position in the ramps printed on di�erent HP LaserJet
IVsi printers. In particular, the re
ection density readings of \black" were between 1:31 and 1:34
for three of the printers, and between 1:40 and 1:42 for the other two printers. The re
ection
density readings of \white" remained between 0:07 and 0:09, 0:08 being the average. Due largely
to the di�erence between the states of the four printers used several weeks earlier to develop the
\c6" curve, and the �ve printers used in this experiment, the \cd" ramps turned out to be too light
on average in terms of their re
ection density. The second near-linear average re
ection density
TSA curve was computed from the new measurement data. It is marked \cd2" in Fig. 48, and the
corresponding halftone ramp can be seen in Fig. 49 (h). The ramps that measure close to being
linear in re
ection density seem too dark to me, so I doubt that the perceived brightness is linear
in re
ection density. (Note that if it were, the coe�cient of Dr would have to be negative.)

Bartleson and Breneman [15] conducted subjective measurements to determine how the per-
ceived brightness P in complex images (photographic reproductions and transparencies) depends
on luminance L. They came up with the formula

P = 102:037+0:1401�lg(0:3142L)�c1(Lw) exp(c2(Lw)lg(0:3142L)); (113)

where Lw is the luminance of \white", and the values of the constants c1(Lw) and c2(Lw) depend
on whether the surround is bright or dark. 0:3142L is luminance expressed in millilamberts [100].
(L is measured in cd=m2.) The luminance measurements conducted in a well-lit area of my o�ce
estimated the average luminance of \black" Lb at 13 cd=m

2 and the average luminance of \white"
Lw at 169 cd=m2. While no mask was used in these measurements, so the absolute values make
sense, one should keep in mind that luminance varies wildly with the lighting conditions. In
particular, the outdoor luminances may be signi�cantly higher than those measured indoors ([91],
Chapter 3). My measurements conducted outdoors on a sunny afternoon yielded Lb = 512, Lw =
7790. However, the values of c1(Lw) and c2(Lw) do not change all that much within the photopic
range. From a graph in [15], I estimated c1(Lw) = c1(169) = 2 and c2(Lw) = c2(169) = �0:28
for the case of the bright surround. Having these values substituted into Eq. (113), I numerically
computed the \cbb" TSA curve for near-linear average perceived brightness from the \c6" curve.
The \cbb" curve is shown in Fig. 48, and the corresponding halftone ramp can be seen in Fig. 49
(d).

Judd [101] introduced a \lightness" scale that incorporates the background luminance level
LB. According to Judd, \lightness"

P =
(L� Lb)(LB + Lw � 2Lb)

(Lw � Lb)(LB + L� 2Lb)
: (114)

Judd's formula for the bright background (LB = Lw) becomes

P =
2(L� Lb)

L+ Lw � 2Lb
: (115)

We want to �nd a TSA function fJ(k=n), k = 0; 1; : : : ; n, such that the \lightness" of the resulting
halftone ramp is close to linear. Given the \c6" TSA function fL(k=n) approximately ensuring
that the luminance

L(fL(k=n)) = Lb +
k

n
(Lw � Lb); (116)
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we can �nd fJ(k=n) as fL(k
0=n), where k0 2 [0; n] does not have to be an integer, so fL(k

0=n) will
be computed using interpolation. Indeed,

P (fJ(k=n)) =
k

n
=

2(Lb + (k0=n)(Lw � Lb)� Lb)
Lb + (k0=n)(Lw � Lb) + Lw � 2Lb

; (117)

so
k

n
=

2k0

k0 + n
; (118)

k0 =
kn

2n� k ; (119)

and

fJ(k=n) = fL(k
0=n) = fL

�
k

2n� k
�
: (120)

The values of fJ(k=n) form the TSA curve marked \cju" in Fig. 48. The corresponding halftone
ramp is shown in Fig. 49 (c).

Note that the \cbb" curve and the \cju" curve are very close to the independently designed
\c1" curve and to each other, well within the \error range" suggested by the di�erence between
the two near-linear average re
ection density curves, \cd" and \cd2". Naturally, it is not easy to
distinguish between the three corresponding ramps (Fig. 49 (b,c,d)).

Pearson [166] recommended the formula

P =

�
L� Lb
Lw � Lb

�

; (121)

where


 =

�
1=3 if the surround is dark [120],
1=2 if the surround is bright [174].

(122)

A simple derivation analogous to the previous one allows to compute the TSA functions with the
graphs marked \cpe" (square-root average luminance) and \clp" (cube-root average luminance) in
Fig. 48 from the \c6" TSA function fL(k=n) by the formula

f
(k=n) = fL
�
(k=n)1=


�
: (123)

(k0 = n(k=n)1=
.) The resulting halftone ramps are shown in Fig. 49 (e) and (i). Not surprisingly,
the cube-root average luminance ramp is obviously too dark.

Foley et al. ([66], Subsection 13.1.1) wrote that \the intensity levels should be spaced logarith-
mically rather than linearly, to achieve equal steps in brightness." According to their recommen-
dations, we should select a TSA function fF (k=n) such that

L(fF (k=n)) = Lb

�
Lw
Lb

�k=n
: (124)

Substituting fL(k
0=n) for fF (k=n) in the left-hand side of Eq. (124) and applying Eq. (116) to

express L(fL(k
0=n)), we get

Lb +
k0

n
(Lw � Lb) = Lb

�
Lw
Lb

�k=n
: (125)

Then

k0 =
nLb

Lw � Lb

 �
Lw
Lb

�k=n
� 1

!
(126)
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and

fF (k=n) = fL

 
Lb

Lw � Lb

 �
Lw
Lb

�k=n
� 1

!!
: (127)

The resulting \cfo" TSA curve is shown in Fig. 48, and the corresponding halftone ramp can be
seen in Fig. 49 (f).

Some of the TSA curves in Fig. 48, including the curves \c6", \cpe", and \cd2", were actu-
ally smoothed \by hand" a little bit to reduce jaggedness after their prototypes were computed
numerically.
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