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Abstract

Incremental computation takes advantage of repeated computations on inputs that

di�er slightly from one another, computing each output e�ciently by exploiting the

previous output. This paper gives an overview of a general and systematic approach

to incrementalization. Given a program f and an operation �, the approach yields
an incremental program that computes f(x� y) e�ciently by using the result of f(x),

the intermediate results of f(x), and auxiliary information about f(x) that can be

inexpensively maintained.

Since every non-trivial computation proceeds by iteration or recursion, the approach

can be used for achieving e�cient computation in general, by computing each itera-

tion incrementally using an appropriate incremental program. This method has been

applied to problems in interactive systems, optimizing compilers, transformational pro-

gramming, etc. The design and implementation of a prototype system, CACHET, for

deriving incremental programs is also described.

Keywords: caching, incremental computation, incremental programs, incrementalization, pro-

gram analysis, program optimization, program transformation, programming environments, reuse

1 Introduction

Incremental programs. Given a program f and an operation �, a program f 0 is called
an incremental version of f under � if f 0 computes f(x � y) e�ciently by making use of
f(x). Below are some examples:

� Suppose f is a program sort, x is a list of numbers, and � adds a number y to the old
input x, i.e., x�y is cons(y; x). Then f 0 can be an insertion program sort0 that inserts
y at the appropriate place in the sorted list sort(x). The incremental version sort0

satis�es that, if r = sort(x), then sort0(x; y; r) = sort(cons(y; x)). While computing
sort(cons(y; x)) from scratch must take 
(n logn) time, which is the lower bound for
general sorting, doing insertion using sort0(x; y; r) takes only O(n) time.

�This work was supported in part by ONR Grant N00014-92-J-1973, NSF Grant CCR-9503319, and
NSF Grant CCR-9711253. Author's address: Computer Science Department, 215 Lindley Hall, Indiana
University, Bloomington, IN 47405. Phone: 812-855-4373; Fax -4829. Email: liu@cs.indiana.edu.
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� Suppose f is a C compiler, x is a C program, and � performs changes to the C program.
Then f 0 is an incremental C compiler that compiles a new program by updating the
old compiled code rather than compiling from scratch.

� For general iterative programs, f is a loop body, x is the induction variable, and � is
increment to the induction variable. Then f 0 is a general strength-reduced version that
computes each iteration incrementally based on the result of the previous iteration.

Incrementalization for e�ciency improvement. In essence, all nontrivial computa-
tion proceeds in certain repetitive fashion: iteration or recursion. For e�ciency, each iteration
needs to be computed incrementally using the stored results of the previous iteration. So,
here comes in incrementalization: we regard the iteration body as a program f , and we
regard the iteration increment as an operation �; then, we can use an incremental version
to replace the iteration body. As a result, we compute each iteration faster, and thus the
overall computation faster.

It is easy to see that incrementalization has wide applications: interactive systems such
as programming environments and document editing systems, reactive systems, real-time
systems, distributed systems, dynamic management of large databases, as well as general
program optimizations.

A general systematic transformational approach. This work aims at studying a gen-
eral and systematic transformational approach to incrementalization. Given a program f
and an operation �, the approach aims to derive an incremental program that computes
f(x� y) e�ciently by using

P1: the value of f(x),

P2: the intermediate results of f(x), and

P3: auxiliary information of f(x) that can be inexpensively maintained.

Using the value of f(x) gives us incrementality over computing f(x� y) from scratch; using
the intermediate results of f(x) gives us greater incrementality than using only the value of
f(x); using auxiliary information gives us even greater incrementality than using only the
return value and the intermediate results. We use P1, P2, and P3 to denote these three
subproblems.

Related work. There has been a great deal of work on incremental computation [13].
Despite various classi�cations, we separate all the work into three categories.

The �rst category consists of incremental algorithms, which includes dynamic algorithms
and on-line algorithms. They are particular algorithms manually derived to handle par-
ticular problems and particular input changes. Examples are incremental parsing, attribute
evaluation, data-
ow analysis, circuit evaluation, constraint solving, transitive closure, short-
est path, minimum spanning tree, connectivity, scheduling, etc. Since these algorithms are
manually derived to solve particular incremental problems, we say that they are ad hoc.

The second category is called incremental execution frameworks. The idea is to allow dif-
ferent application programs to run in such a framework without deriving explicit incremental
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algorithms. These are general methods for incremental problems. Examples are incremental
attribute evaluation framework [14], function caching [12], lambda reduction [1], traditional
partial evaluation [16], change detailing network [17], program abstraction [4], etc. Each
such framework gives some language for describing application programs and, in particu-
lar, �xes the classes of input changes that the framework can handle, and uses a particular
incremental algorithm to handle the input changes. Any input change to an application
program is mapped to a change that the framework can handle. Thus, these frameworks are
not always e�ective for particular applications. So we say that these frameworks have poor
specializability.

The third category is called incremental-program derivation approaches. This class aims
to be general, as does the second class, in that it handles any programs and any input changes;
it also aims to be e�ective on each given problem by deriving an incremental program using
special properties of the problem. Indeed, many methods for program e�ciency improvement
in optimizing compilers, transformational programming, and programming methodology do
derive e�cient incremental programs and use them in computing each iteration of an overall
computation. Examples are strength reduction in optimizing compilers [2], �nite di�erencing
in transformational programming [11, 15], and maintaining loop invariance in programming
methodology [3]. Our work falls into this category. While existing work either handles
only limited primitive operators or gives only high-level strategies, our work is more general
and systematic. It is general in that it explores the underlying principles of incremental
computation, independent of particular language constructs, and it is systematic in that it
comprises concrete program analyses and transformations, not just high-level strategies.

Outline. This rest of the paper is organized as follows. We �rst present an overview of
the approach, in particular, solutions to P1: exploiting the previous result, P2: caching
intermediate results, and P3: discovering auxiliary information. The presentation uses a
small example. More examples are given afterwards. Then, we summarize the approach and
describe the prototype system, CACHET.

2 Methods and Techniques

Language and example. We use an utterly small example to illustrate our approach.
The example is written in a �rst-order, call-by-value functional language. Each program
is a set of mutually recursive function de�nitions. The expression that de�nes a function
is built from the most commonly used language constructs: variables, data constructions,
primitive function applications, user-de�ned function applications, conditional expressions,
and binding expressions. An example program cmp is given in Figure 1. It compare sum
of odd and product of even positions of list x. We use the same language to describe
the operation �. For example, x � y = cons(y; x). Even though the language is simple, it
can express all computable functions, and it is su�ciently powerful and convenient to write
sophisticated programs f and operations �.

We use an asymptotic time cost model. Our primary goal is to reduce the asymptotic
running time of the incremental programs. Of course, caching intermediate results and
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cmp(x) = sum(odd(x)) � prod(even(x))

odd(x) = if null(x) then nil
else cons(car(x); even(cdr(x)))

even(x)= if null(x) then nil
else odd(cdr(x))

sum(x) = if null(x) then 0
else car(x) + sum(cdr(x))

prod(x) = if null(x) then 1
else car(x) � prod(cdr(x))

Figure 1: An example program.

auxiliary information takes extra space. Our secondary goal is to save space by maintaining
only information useful for the incremental computation.

P1: Exploiting the previous result. Suppose that we have computed f(x) and obtained
its result r, as depicted on the left of Figure 2, and that we want to compute f(x � y) on
the right. Clearly, all subcomputations of f(x� y) depend on either x or y. For those that
depend on y, a new parameter, we do not attempt to reuse the old result r. For those that
depend only on x, e.g., f(x) if it is included, then we avoid recomputation by replacing them
with retrievals from the old result r. Thus, the idea is to symbolically transform f(x� y) to
separate subcomputations on x from those on y and replace those on x by retrievals from r.
The resulting program f 0 may depend on x, y, and r, and it satis�es that if f(x � y) = r0

then f 0(x; y; r) = r0, as illustrated at the bottom of Figure 2. To summarize, we �rst

f(x)
...

k
r �!

f(x� y)
...

f(x)
...
+

f 0(x; y; r)

f(x) = r f(x� y) = r0 =) f 0(x; y; r) = r0

Figure 2: Exploiting the previous result.

introduce function f 0 with cached result r as an extra argument. Then, we do two things to
obtain a de�nition of the incremental version: (1) unfold (i.e., expand using de�nition) and
simplify, and (2) replace using the cached result (based on identity, for the case that f(x)
appears in the expanded f(x� y)). Finally, we replace a function call to f with a call to the
incremental version f 0.

We can do much better than only directly using the value of f(x). We exploit the
semantics of each program construct. If the return value r of f(x) is a tuple, and g(x)
is a component, then the value of g(x) can be retrieved from r, as depicted on the left of
Figure 3. Thus, a subcomputation g(x) on the right can be replaced by a retrieval from r.
Subcomputation g(x) on the right may appear in certain context, e.g., in the true branch of
a conditional expression. If f(x) can be specialized to g(x) under the same condition, then
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the value of g(x) on the right can be retrieved from r in this branch, even if it may not be
retrievable in the other branch. The transformation steps are as summarized above, except

value
retrievable
from r

f(x)
...

g(x)

k
r �!

f(x� y)
...

g(x)
...
+

f 0(x; y; r)

replace
by retrieval
from r

f(x) = r f(x� y) = r0 =) f 0(x; y; r) = r0

Figure 3: Exploiting the previous result (cont'd).

that replacements using the cached result are based also on equality reasoning and auxiliary
specialization.

As for most program transformation techniques, it should be noted that the quality of
the resulting program depends on that of the original program. This will be illustrated with
our examples of di�erent sorting programs: insertion sort, selection sort, and merge sort.

P1: Example. Consider the given function sum and the operation � below.

sum(x) = if null(x) then 0
else car(x) + sum(cdr(x))

x� y = cons(y; x)

We introduce sum0(x; y; r), where r = sum(x), to compute sum(cons(y; x)). Unfolding
sum(cons(y; x)) yields

if null(cons(y; x)) then 0
else car(cons(y; x)) + sum(cdr(cons(y; x)))

where the condition is simpli�ed to false, the �rst operand of + is simpli�ed to y, and the
argument to sum is simpli�ed to x. Then replace sum(x) by r. We obtain

sum0(y; r) = y + r

where parameter x to sum0 is dead and eliminated. We have, if r = sum(x), then sum0(y; r) =
sum(cons(y; x)). While sum(cons(y; x)) takes O(n) time to compute, sum0(y; r) takes only
O(1) time and needs one unit of space to hold the old result.

P2: Caching intermediate results. Often, intermediate results of f(x) that are not
retrievable from the return value are useful for e�cient incremental computation. This is
illustrated in Figure 4, which is the same as Figure 3 except for the two additional boxes for
g1(x). A subcomputation g1(x) on the right may also be computed by f(x) on the left, but
its value is not retrievable from the result r. If we are given what intermediate results of f(x)
are useful for the incremental computation, then we can extend f(x) to f̂(x) that returns
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also these results in r̂, as illustrated at the bottom of Figure 4, and then an incremental
version f̂ 0 of f̂ under � can use these results in r̂ and compute the corresponding results
for f̂(x� y). The hard problem is that f(x) may compute a huge number of intermediate

value not
retrievable
from r

f(x)
...

g
1
(x)
...

g(x)

k
r �!

f(x� y)
...

g
1
(x)
...

g(x)
...
+

f 0(x; y; r)

f(x) = r f(x� y) = r0 =) f 0(x; y; r) = r0

f̂(x) = r̂ f̂(x� y) = r̂0 =) f̂ 0(x; y; r̂) = r̂0

Figure 4: Caching intermediate results.

results. How can we identify useful intermediate results? We propose a three-stage approach
called cache-and-prune:

I : cache all intermediate results of f and obtain �f ;

II : incrementalize �f under � using P1 and obtain �f 0;

III: prune �f , �f 0 using dependency in �f 0 and obtain f̂ , f̂ 0.

The approach is modular. Stage I provides all intermediate results possibly used by Stage
II. Stage II is reduced to P1. Stage III preserves only intermediate results used by Stage II.
Thus, The overall method has a kind of optimality.

The approach can be used for general program optimization via caching, by incremen-
talizing the body of a loop or recursion. This will be illustrated with the classical Fibonacci
function.

P2: Example. Consider the given function cmp and the operation � below.

cmp(x) = sum(odd(x)) � prod(even(x))

x� hy1; y2i = cons(y1; cons(y2; x))

Clearly, if we cache intermediate results sum(odd(x)) and prod(even(x)), then an incremental
version only needs to add y1 to the former and multiply y2 by the latter.

Using cache-and-prune, we obtain functions dcmp and dcmp0, such that if r̂ = dcmp(x), then
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dcmp0(y1; y2; r̂) = dcmp(cons(y1; cons(y2; x))), and cmp(x) = 1st(dcmp(x)).

dcmp(x) = let v1 = sum(odd(x)) in
let v2 = prod(even(x)) in
< v1� v2; v1; v2 >dcmp0(y1; y2; r̂) = let v1 = y1 + 2nd(r̂) in

let v2 = y2 � 3rd(r̂) in
< v1� v2; v1; v2 >

where <> denotes a tuple, and selectors 1st, 2nd, and so on select the corresponding compo-
nents of a tuple. While cmp(cons(y1; cons(y2; x))) takes O(n) time to compute, dcmp0(y1; y2; r̂)
takes only O(1) time and needs two additional units of space for two intermediate results.

P3: Discovering auxiliary information. Sometimes, auxiliary information not com-
puted by f(x) at all is useful for e�cient computation of f(x� y). However, it is di�cult to
discover such information. People have studied hard to discover various auxiliary informa-
tion for various manually derived incremental algorithms. We propose a systematic approach
that can discover a general class of auxiliary information. The idea is illustrated in Figure
5, which is the same as Figure 4 except for the additional box for h(x) on the right.

First, we transform f(x� y) to separate subcomputations on x from those on y, as done
for P1. If the value of a subcomputation, e.g., g(x) or g1(x), can be retrieved from the
return value of f(x) or an intermediate result of f(x), then it is left alone. However, if the
value of a subcomputation depending only on x, e.g., h(x), can not be retrieved from either,
then it is collected as a candidate auxiliary information. Next, to determine whether such
information can be used and maintained for e�cient incremental computation, we extend
f(x) to compute and cache this information, as well as intermediate results, incrementalize
the resulting program, and prune out useless values and computations, as done for P2, and
we obtain the resulting programs ~f and ~f 0, as shown at the bottom of Figure 5. To

f(x)
...

g
1
(x)
...

g(x)

k
r �!

f(x� y)
...

g
1
(x)
...

g(x)
...

h(x)
...
+

f 0(x; y; r)

value not
computed by
f(x) at all

f(x) = r f(x� y) = r0 =) f 0(x; y; r) = r0

~f(x) = ~r ~f(x� y) = ~r0 =) ~f 0(x; y; ~r) = ~r0

Figure 5: Discovering auxiliary information.
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summarize, we use a two-phase approach.

A: discover candidate auxiliary information using P1;

B: use candidate auxiliary information using P2.

Thus, we have reduced a di�cult problem to modular steps where solutions to previous
problems can be used.

P3: Example. Consider the given function cmp and the operation � below.

cmp(x) = sum(odd(x)) � prod(even(x))

x� y = cons(y; x)

After an input change, the sublists for the odd positions and even positions are swapped.
Caching only intermediate results is useless for the incremental computation. We need to
compute and save also the values of sum(even(x)) and prod(odd(x)). Then, an incremental
version can use and maintain each of these values by a single addition, multiplication, or
copy.

Using the two-phase approach, we obtain functions gcmp and gcmp0, such that if er =gcmp(x), then gcmp0(y; er) = gcmp(cons(y; x)), and cmp(x) = 1st(gcmp(x)).

gcmp(x) = let v1 = odd(x) in
let u1 = sum(v1) in
let v2 = even(x) in
let u2 = prod(v2) in
<u1� u2; u1; u2; sum(v2); prod(v1)>gcmp

0

(y; er) = <y + 4th(er) � 5th(er);
y + 4th(er); 5th(er); 2nd(er); y � 3rd(er)>

While cmp(cons(y; x)) takes O(n) time to compute, gcmp0(y; ~r) takes only O(1) time and
needs another two additional units of space for two pieces of auxiliary information.

3 Examples

More examples. The table summarizes the running times of both the batch versions and
the incremental versions (with respect to the given � operations) for the examples sum
and cmp seen above and three sorting programs to be seen below. For the example of
Fibonacci function, an incremental version is used in the body of the recursion to improve
the straightforward program to an optimized program.

Problem Batch Incremental

sum, cmp O(n) O(1)
insertion sort O(n2) O(n)
selection sort O(n2) O(n)
merge sort O(n logn) O(n)

Problem Straightforward Optimized

Fibonacci function O(2n) O(n)
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Insertion sort. Insertion sort takes a list, recursively sorts the tail of the list, and then
inserts the �rst element into the appropriate place in the sorted tail. Consider its de�nition
below and a change operation that adds an element y to the input list.

sort(x) = if null(x) then nil
else insert(car(x); sort(cdr(x)))

insert(i; x) = if null(x) then cons(i; nil)
else if i�car(x) then cons(i; x)
else cons(car(x); insert(i; cdr(x)))

x� y = cons(y; x)

We introduce sort0(x; y; r), where r = sort(x), to compute sort(cons(y; x)). Unfolding
sort(cons(y; x)) yields

if null(cons(y; x)) then nil
else insert(car(cons(y; x)); sort(cdr(cons(y; x))))

where the condition is simpli�ed to false, the �rst argument of insert is simpli�ed to y, and
the argument to sort is simpli�ed to x. Then replace sort(x) by r. We obtain

sort0(y; r) = insert(y; r)

where parameter x to sort is dead and eliminated. We have, if r = sort(x), then sort0(y; r) =
sort(cons(y; x)). While sort(cons(y; x)) takes O(n2) time, sort0(y; r) takes O(n) time. This
result is easy to obtain. Function sort0 simply calls the given function insert.

Selection sort. Selection sort takes a list, selects the least element in the list, puts it in
the �rst place, and then recursively sort the rest of the list. Consider its de�nition below and
a change operation that adds an element y to the input list. It is nontrivial how selection
sort of the new list can use the previously sorted list. Our approach to P1 allows us to derive
a de�nition of insertion not given in the original program.

sort(x) = if null(x) then nil
else let k = least(x) in

cons(k; sort(rest(x; k)))

least(x) = if null(cdr(x)) then car(x)
else let s = least(cdr(x)) in

if car(x) < s then car(x) else s

rest(x; k) = if k = car(x) then cdr(x)
else cons(car(x); rest(cdr(x); k))

x� y = cons(y; x)

We introduce sort0(y; x; r) to compute sort(cons(y; x)), where r = sort(x). First, unfold
sort(cons(y; x)) and simplify:

sort(cons(y; x)) = if null(cons(y; x)) then nil
else let k = least(cons(y; x)) in

cons(k; sort(rest(cons(y; x); k)))

= let k = least(cons(y; x)) in
cons(k; sort(rest(cons(y; x); k))) (1)
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Continue. Unfold least(cons(y; x)) in (1) and simplify:

least(cons(y; x)) = if null(cdr(cons(y; x))) then car(cons(y; x))
else let s = least(cdr(cons(y; x))) in

if car(cons(y; x))<s then car(cons(y; x)) else s

= if null(x) then y
else let s = least(x) in

if y<s then y else s
(2)

and unfold (2) into (1) and simplify:

(1) = let k = if null(x) then y
else let s = least(x) in

if y<s then y else s in
cons(k; sort(rest(cons(y; x); k)))

= if null(x) then cons(y; sort(rest(cons(y; x); y)))
else let s = least(x) in

if y<s then cons(y; sort(rest(cons(y; x); y)))
else cons(s; sort(rest(cons(y; x); s)))

(3)

Continue. Unfold rest(cons(y; x); y) and rest(cons(y; x); s) in (3) and simplify:

rest(cons(y; x); y) = if y = car(cons(y; x)) then cdr(cons(y; x))
else cons(car(cons(y; x)); rest(cdr(cons(y; x)); y))))

= if y = y then x
else cons(y; rest(x; y))

= x (4)

rest(cons(y; x); s) = if s = car(cons(y; x)) then cdr(cons(y; x))
else cons(car(cons(y; x)); rest(cdr(cons(y; x)); s))))

= if s = y then x
else cons(y; rest(x; s))

(5)

and unfold (4) and (5) into (3) and simplify:

(3) = if null(x) then cons(y; sort(x))
else let s = least(x) in

if y < s then cons(y; sort(x))
else cons(s; sort(if s = y then x

else cons(y; rest(x; s))))

= if null(x) then cons(y; sort(x))
else let s = least(x) in

if y � s then cons(y; sort(x))
else cons(s; sort(cons(y; rest(x; s))))

(6)

Next, we perform equality reasoning and auxiliary specialization and replace subcomputa-
tions in (6) with retrievals from the cached result r. First, sort(x) in (6) is replaced by r.
Also, null(x) = null(r) since, using auxiliary specialization twice, we have null(x) is true if
and only if null(sort(x)) is true. Furthermore, when null(x) is false, sort(x) is specialized
to let k = least(x) in cons(k; sort(rest(x; k))) by de�nition, which means least(x) = car(r)
and sort(rest(x; least(x))) = cdr(r). Thus least(x) in (6) is replaced by car(r). Finally, re-
cursive call sort(cons(y; rest(x; s))) is replaced by sort0(y; rest(x; s); sort(rest(x; s))), where
sort(rest(x; s)) in the latter is replaced by cdr(r). We obtain

sort0(y; x; r) = if null(r) then cons(y; r)
else let s = car(r) in

if y � s then cons(y; r)
else cons(s; sort0(y; rest(x; s); cdr(r)))

Eliminate dead parameter x and dead code in the corresponding argument, we obtain

sort0(y; r) = if null(r) then cons(y; r)
else let s = car(r) in

if y � s then cons(y; r)
else cons(s; sort0(y; cdr(r)))

which is exactly an insertion program.
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Merge sort. Merge sort takes a list, separates it into two sublists of roughly equal lengths,
recursively sorts both, and then merges the two sorted sublists. Consider its de�nition below
and, again, a change operation that adds an element y to the input list.

sort(x) = if null(x) then nil
else if null(cdr(x)) then x
else merge(sort(odd(x)); sort(even(x)))

odd(x) = if null(x) then nil
else cons(car(x); even(cdr(x)))

even(x) = if null(x) then nil
else odd(cdr(x))

merge(x; y) = if null(x) then y
else if null(y) then x
else if car(x) � car(y) then

cons(car(x);merge(cdr(x); y))
else cons(car(y);merge(x; cdr(y)))

x� y = cons(y; x)

If we are given that sort(cons(y; x)) equals merging a single-element list of y with the pre-
viously sorted list of x, then we can straightforwardly obtain an incremental version, which
is essentially an insertion with a constant-factor overhead.

sort0(y; r) = merge(cons(y; nil); r)

However, this equality is nontrivial. Even proving it needs a nontrivial induction. If no
additional equality is given, can we compute merge sort of the new list more e�ciently than
computing from scratch? The answer is yes, simply using cache-and-prune.

The derivation is straightforward. We illustrate the idea with the following picture,
rather than code as for selection sort. The top wider line denotes list x; the thinner line
below denotes sort(x); the two wider lines below denote odd(x) and even(x), respectively;,
and the two thinner lines below denote sort(odd(x)) and sort(even(x)), respectively. This
goes down until each list has a single element.

...

9>>>>>>>>>=>>>>>>>>>;
logn

First, cache all the intermediate results of sorted sublists, as depicted above. Then, incre-
mentalize after a new element y is added to the top wider line. Clearly, y belongs to one of
the two wider lines immediately below, which means the intermediate result for the other
winder line can be reused. This goes down until a single element is left, and comes back
up to perform merge at each level. The depth is logn, and the amount of work for each
level, from bottom to top, is 1 unit, 2 units, 4 units, ... n=2 units, with a total of O(n)
time. Finally, prune out intermediate results such as odd(x) and even(x). The resulting
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incremental merge sort is as follows:

dsort0(y; r̂) = if null(1st(r̂)) then < cons(y; nil) >
else if null(cdr(1st(r̂))) then

<merge(cons(y;nil); 1st(r̂)); <cons(y;nil)>;<1st(r̂)>>

else let u1 = dsort0(y; 3rd(r̂)) in
let u2 = 2nd(r̂) in
<merge(1st(u1); 1st(u2)); u1; u2>

where function merge is as in the given program. Note that this incremental merge sort
takes O(n logn) space rather than O(n) space. However, no additional equality is needed
for this derivation. The resulting program takes O(n) time instead of O(n logn) time. To
our knowledge, this algorithm was not known previously, probably due to its logn factor
of additional space, but it reduces the running time by a logn factor without additional
knowledge about the problem.

Fibonacci function. Fibonacci function is a classical example where powerful optimiza-
tions are needed for e�cient computation.

fib(x) = if x � 1 then 1
else fib(x�1) + fib(x�2)

First, cache all intermediate results of fib. We obtain function fib that, if run, returns a
tree of exponential size, as depicted on the left of the picture below, where fib(x) is the �rst
node on the left, and fib(x� 1) and fib(x� 2) are recursive subtrees. Then, incrementalize
to compute fib(x+1), whose computation tree is depicted on the right of the picture, where
the node fib(x+1) equals fib(x) + fib(x� 1) by de�nition, and both fib(x) and fib(x� 1)
can be retrieved from the cached results on the left. Overall, only the two leftmost nodes
need to be used and maintained for the incremental computation. Finally, all other results
are pruned.
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fib(x)
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Using this derived incremental version to form a new Fibonacci program, we obtain

fib1(x) = if x � 1 then <1; 1>
else let r1= fib1(x�1) in

<1st(r1) + 2nd(r1); 1st(r1)>

While the straightforward program takes O(2n) time, the optimized program takes only O(n)
time.
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Further examples. Below are some further examples taken from VLSI design, string pro-
cessing, graph algorithm, image processing, respectively. Each one is a nontrivial problem.
We only summarize the time complexities of the straightforward versions and the optimized
versions for them. For the square-root example, all expensive operations in hardware (multi-
plications and exponentiations) are replaced by inexpensive operations (additions, subtrac-
tions, and shifts).

Problem Straightforward Optimized

non-restoring binary integer square root k2; 2i +;�; �2; =2
string editing problem O(3n+m) O(n �m)

dag path sequence problem O(2n) O(n2)
local neighborhood problem O(n2m2) O(n2)

4 Discussion

Summary of the approach. We have given an approach for deriving incremental pro-
grams that use the old result, intermediate results, and auxiliary information. Our work is
the �rst in which these three aspects are explicitly identi�ed and put into a general frame-
work that uni�es existing methods and techniques. The approach is modular, systematic,
and powerful. Details of the analysis and transformations for P1, P2, and P3 are described in
separate papers [9, 8, 7]. These papers also contain detailed as well as additional examples.

Even though we have presented the approach and examples using programs written in a
simple functional language, the underlying principle of incrementalization is general and ap-
plies to other languages as well. For example, we have applied the approach to incrementalize
loops and aggregate array computations [6].

The incrementalization approach has a spectrum of applications, from compiler optimiza-
tions to programming methodologies:

� fully automatic for optimizing compilers;

� semi-automatic in transformational programming;

� o�-line as methodology for program e�ciency improvement and deriving incremental
algorithms.

For example, our semi-automatic implementation, CACHET [5], can be used for transfor-
mational programming; an automatic version is being implemented for use by a software
development group at Motorola. Also, the optimization of aggregate array computations [6]
is automatic and is being implemented for use in optimizing compilers.

CACHET: A prototype implementation. CACHET is a semi-automatic supporting
tool for deriving incremental programs [5]. It is implemented using the Synthesizer Generator
[14], a system for generating language-based editing environments.

Compared with other program transformation systems, such as KIDS [15] and APTS [10],
CACHET bene�ts from many existing techniques and tools built into the Synthesizer Gen-
erator, in particular, for generating attribute-grammar-based programming environments.
We can easily use many program manipulation facilities|lexical analysis, parsing, seman-
tic analysis, pretty printing, interactive editing, etc. Furthermore, program analyses can
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be speci�ed using attribute equations, and thus, with incremental attribute evaluator auto-
matically generated from these equations [14], we achieve incremental program analysis as
programs are repeatedly transformed. Major implementation e�ort is summarized as follows:

� program transformation by direct tree manipulation

built-in transformations:

8><>:
unfolding, simpli�cation, specialization
transformations enabled by equality analyses
invoking bu�ers for recursive transformations

� program analysis by attribute evaluation

attributes:

(
propagating global information, collecting context information
analyzing dependencies, reasoning about equalities

� external input as annotation

annotations:

(
information not solely depending on the tree
information too inconvenient/costly to compute from the tree

where annotations are external user inputs and are conceptually neither parts of the program
tree nor conventional attributes.

CACHET has been used to derive numerous incremental programs. In particular, we have
used it on many examples when we studied the transformations for caching intermediate
results and discovering auxiliary information, and we found it to be a very helpful tool.
Figure 6 is a snapshot of system CACHET, in the middle of incrementalizing selection sort.

Conclusion. Incremental computation is important for e�cient computation. We've given
a general systematic approach for incrementalization. Our ultimate goal is to build powerful
tools for program e�ciency improvement. This involves implementing powerful and e�cient
program analyses and transformations.

A number of improvements to the current work are needed. First, improve the e�ciency
and e�ectiveness of the program analyses and transformations used, and develop analyses
and transformations for other language features. Second, study theoretical foundations of
incremental computation, including complexity theory and classi�cation of problems by their
degree of incrementality. Third, develop specialized methods and techniques for special
applications. Finally, continue the development of CACHET as well as related program
analysis and transformation systems.
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