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Abstract

Systems of mutually recursive stream equations provide a concise model of digital

hardware designs. The formal design algebra presented by Johnson illustrates the

utility of this representation for design derivation. The design derivation approach has

been mechanized by Bose and applied to signi�cant case studies. However, a design

optimization sometimes depends upon the semantics of the implemented function.

This cannot be captured within the design algebra. Design derivation needs to be

augmented with additional veri�cation strategies.

The stream equations employed in the design derivation approach are an instance

of de�nition by corecursion. Therefore, the design derivation approach may be aug-

mented using proof by coinduction. Coinduction is a useful strategy for proving that

two sequential hardware designs have the same behavior. This enables safe substi-

tution of an innovative optimization into a mature design. Furthermore, coinduction

is useful for establishing that a signals within a design satisfy invariant properties.

Such invariants, called coinductive assertions, are essential to ensure the validity of

aggressive design optimizations.

This dissertation illustrates how design derivation is augmented using the Pro-

totype Veri�cation System (PVS). A PVS library to provide the basic declarations

needed for reasoning about streams is developed. Stream equations are de�ned using

vi



corecursion, and equality between streams is proven using coinduction. The combi-

nation of derivation-based and theorem prover-based veri�cation is illustrated using

two signi�cant examples. First, a fault-tolerant clock synchronization circuit, suitable

for use in critical applications, is developed using this combined approach. A clever

optimization that reduces the chip area is veri�ed using coinductive proof within

PVS. The second example is the development of an architecture for 
oating-point

division. A number of optimizations that reduce the cycle time of the inner loop of

the algorithm are veri�ed using the combined approach.
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1

Introduction

Approaches to hardware development need to include an e�cient means to repre-

sent and reason about changes in an evolving hardware design. As a hardware design

matures, performance and area requirements evolve, also. The resulting changes

to the design typically complicate veri�cation activities. A veri�cation environment

must be 
exible enough to accommodate a changing design.

Systems of mutually recursive stream equations provide a concise model of digi-

tal hardware designs. The formal design algebra presented in Johnson's Dissertation

illustrates the utility of this representation for design derivation [Joh84]. The design

derivation approach has been mechanized by Bose and applied to signi�cant case

studies [Bos94]. However, a design optimization sometimes depends upon the seman-

tics of the implemented function. This cannot be captured within the design algebra.

Design derivation needs to be augmented with additional veri�cation strategies.

The representation of hardware via stream equations may be exploited. The

stream equations employed in the design derivation approach are an instance of de�-

nition by corecursion. Therefore, the design derivation approach may be augmented

1



1. Introduction 2

using proof by coinduction. Coinduction is a useful strategy for proving that two se-

quential hardware designs have the same behavior. This enables safe substitution of

an innovative optimization into a mature design. Furthermore, coinduction is useful

for establishing that a signals within a design satisfy invariant properties. Such invari-

ants, called coinductive assertions, are essential to ensure the validity of aggressive

design optimizations.

As technology improves it is possible to incorporate increasingly complicated func-

tions in hardware. Analysis of the resulting designs is infeasible without mechanized

support. In this research, I have used two tools: The Prototype Veri�cation System

(PVS [ORSv95]) and the Derivational Reasoning System (DRS [BTC96]). PVS is a

general purpose mechanical theorem proving system; it provides a rich speci�cation

language and a powerful interactive theorem proving environment. DRS is an inter-

active formal design tool that allows a designer to derive a hardware design from an

abstract behavioral level description. A design is produced by a series of transforma-

tions that ensure the �nal artifact is consistent with the initial behavioral description.

That is, the design is correct-by-construction. Derivation-based formalisms provide a

suitable framework for managing routine design re�nements, but cannot be expected

to cover the possible design space. General purpose theorem proving systems, on the

other hand, provide su�cient generality to capture arbitrary design re�nements, but

can be cumbersome for the more routine aspects of design. Formal design environ-

ments should accommodate both approaches.

Design veri�cation spans several levels from a mathematical statement of require-

ments to a detailed design. The veri�cation hierarchy, annotated with choice of veri-

�cation tool, is depicted in Figure 1.1. At the top level is a mathematical statement

of properties that the design should satisfy. These requirements may be expressed in

several di�erent ways, depending upon the nature of the problem. Algorithms over
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Abstract Architecture

Concrete Architecture

Abstract Specification

General Algorithm

PVS

DRS Specification

DRS

Boolean Realization

DRS / PVS

DRS / BDDs / PVS

Figure 1.1: Overview of Veri�cation Hierarchy
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abstractly de�ned datatypes are proven to satisfy the top level requirements. With-

out knowledge of what the requirements may be, the only logical choice of tool for

this veri�cation activity is a general purpose theorem proving system such as PVS.

General algorithms are transformed into behavioral level descriptions. In the �gure,

this relationship is depicted with ellipses because there is currently a semantic gap

between the algorithm de�nition in PVS and a DRS behavioral level description.

Within DRS, a behavioral description is re�ned until the designer is satis�ed with

the control structure of the design, then it is transformed into an initial architec-

tural speci�cation. At this stage, the architecture is re�ned to a concrete design.

Most architectural re�nements are performed within DRS. However, transformations

that exploit the semantics of user de�ned functions may require external justi�cation.

These are veri�ed using PVS. Finally, the abstract types in the design are instan-

tiated with bit-vector representations. This may expose additional opportunities for

re�nement and optimization, so more structural transformations may be performed

at this level. The resulting design is now entered into a commercial CAD tool for

realization in hardware.

The case studies presented in Chapters 5 and 6 explore each level of re�nement

depicted in Figure 1.1. However, the primary emphasis is on the design phase be-

tween an abstract architectural description and a concrete architecture. At this stage,

the principal design tool is DRS. The design is described by a system of mutually

recursive stream equations. Algebraic transformations on this system of equations

are used to re�ne the design to a target architecture. However, there are design op-

timizations that may not be e�ectively realized within a transformational system. In

particular, there may be re�nements that are only applicable within the context of

a speci�c design. Such transformations cannot be justi�ed on general principles. I
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adopt the terminology of Saxe, et al. [SGGH93] and refer to these as ad hoc re�ne-

ments. Justi�cation of such re�nements requires external veri�cation. Thus, there

is a need to augment the derivational approach with mechanical theorem proving

support, thereby enabling e�ective formal development of e�cient hardware.

In order augment this stage of design with theorem proving support, we need

to determine how to represent DRS circuit descriptions within PVS. There are two

approaches. A deep embedding of DRS into PVS would consist of encoding the DRS

syntax within PVS and de�ning a semantic interpretation. A shallow embedding

consists of directly encoding DRS objects as PVS objects. Deep embeddings have the

advantage of being able to support meta-level reasoning, but require working through

a layer of interpretation. The intended application of this work is to use PVS as a

veri�cation engine supporting hardware design using DRS. A shallow embedding is

a more direct way to achieve this goal.

The �nal problem is to determine how to represent DRS descriptions of sequential

systems within PVS. There are several models of sequential systems in the mechani-

cal theorem proving literature. Most use a representation similar to that advocated

by Gordon [Gor86]. Signals are represented as functions from natural numbers to the

signal type, hardware components are de�ned as relations between input and output,

and hardware structure is captured by relation composition. This representation was

considered for theorem-prover based justi�cation of ad hoc re�nements. However,

within DRS, connections between combinational logic blocks are represented by func-

tion composition and the sequential aspect of the design is captured using stream

equations. Feedback in the sequential circuit design is naturally represented by feed-

back in the stream equations. This is an instance of de�nition by corecursion [BM96].

Just as de�nition by recursion gives rise to proof by induction, the dual notion of core-

cursive de�nition gives rise to proof by coinduction. This proof technique simpli�es
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the veri�cation of sequential hardware designs.

1.1 Contributions

The primary contribution of this research is the development and demonstration

of a robust method for showing equivalence between two sequential circuits. The

approach is based upon the observation that de�nition by corecursion is a natural

representation for sequential hardware. This representation is especially useful in

mapping an abstract behavioral level description to a register-transfer level (rtl)

design. In addition, one can exploit this representation both to express and to ver-

ify properties of a design. Signals within the circuit are de�ned using corecursive

stream equations. These signals are shown to satisfy invariant properties by coin-

duction. Such invariants are called coinductive assertions. Sub-circuits are shown to

have equivalent behavior with respect to these coinductive assertions by exhibiting a

suitable stream bisimulation.

Another contribution is the exploration of the heterogeneous reasoning required

to support the application of complementary approaches to the design veri�cation

problem. Theorem proving and design derivation are just two of many tools available

for design and veri�cation. While it is possible to use a general purpose theorem

proving system to support all stages of the design process, much of the design process

consists of manipulation of large syntactic objects. These manipulations are routine,

and do not require the deductive power of a general purpose theorem prover. In ad-

dition, most general purpose theorem provers do not handle large syntactic objects in

a computationally e�cient manner. Thus we need to address the interaction between

design tools and general purpose veri�cation tools.
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In the work presented here, the design derivation tools represent sequential hard-

ware using systems of stream equations. Reasoning about systems of stream equa-

tions within a general purpose theorem prover requires construction of an appropriate

model. Within PVS, I have developed a theory of streams that allows de�nition by

corecursion and proof by coinduction. This combination of design and veri�cation

tools is illustrated on two signi�cant examples: a clock synchronization circuit and a


oating-point division unit. In both cases, coinductive proofs are employed to verify

circuit optimizations.

1.2 Outline of the Presentation

Chapter 2 provides an overview of the two mechanized reasoning systems employed

in this research. The design derivation tool DRS provides a mechanized collection of

transformations that enable a designer to develop a hardware design that is correct

by construction. The mechanical theorem proving system PVS provides reasoning

support for general results. It also enables exploration of veri�cation strategies. The

basic features of each tool are reviewed to provide a foundation for the discussion

in the remainder of the dissertation. The chapter closes with a survey of related

research.

An overview of streams, illustrated with some simple examples, is presented in

Chapter 3. The primitive operations on streams are introduced and illustrated. A

formulation of streams as a coinductive type in PVS is presented. The basic def-

initional forms are presented and coinductive proof techniques are justi�ed. The

development of a general strategy for automating coinductive proofs is illustrated

using several examples from Vicious Circles [BM96].
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Systems of stream equations provide a concise model of digital hardware. Chap-

ter 4 illustrates the use of stream equations to represent sequential hardware design

descriptions. A shallow embedding of DRS style stream equations in PVS is devel-

oped. The technique is illustrated with a few sample circuits. Chapter 4 concludes

with an illustration of basic techniques for reasoning about digital hardware using

coinduction. Several simple hardware veri�cation problems are presented.

Chapter 5 presents the development of a fault-tolerant clock synchronization cir-

cuit. This development is a multi-level veri�cation e�ort. It spans the spectrum

from abstractly stated high-level properties to a VLSI implementation. The routine

architectural re�nements are performed within DRS. Two ad hoc re�nements to the

derived architecture are veri�ed using coinductive proof in PVS. The �rst ad hoc

re�nement consists of a change in representation of the mechanism used to capture

readings from remote clocks. An abstract storage device with a list-based representa-

tion is replaced by a pair of registers. The second re�nement is a clever optimization

to the core synchronization sub-circuit. Properties of the surrounding design make

it possible to compute the same function using a more compact circuit. The chapter

concludes with an illustration of the 
exibility of the approach, by expanding the

scope of the veri�cation to explicitly include some of the surrounding design.

Chapter 6 illustrates a di�erent class of optimization in the veri�cation of a


oating-point division unit. Performance is a key concern in the development of


oating-point hardware. One way to improve performance in synchronous digital

hardware design is to minimize the critical path, that is, reduce the number of com-

binational logic gate delays between any two clocked storage elements. There are a

number of options at the designers disposal. One alternative is to re-time a design

so that the gate delays are more uniformly distributed throughout the design [LS91].

Another technique is to introduce redundant representations for certain data items to
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reduce the number of gate-delays required. Each optimization is illustrated within the

design framework depicted in Figure 1.1. Coinductive veri�cation provides a powerful

technique for justifying these optimizations.

The focus of this dissertation is hardware design veri�cation, that is, the goal

is to establish that a design expressed in a hardware description language (HDL)

is consistent with its speci�cation. When design veri�cation fails, as it did for the


oating-point divide unit of the Intel Pentium(TM) microprocessor, the cost can be

enormous. The bug in the Pentium cost Intel nearly $500 million [Pra95]. Digital

systems are increasingly being used for life-critical applications. A design error in

a system controlling an aircraft or nuclear reactor can have dire consequences. The

maiden 
ight of the Ariane-5 launch system ended prematurely in a spectacular �re-

works display. The cause was attributed to a software design error in the inertial

reference system [Ari96]. The cost of the payload lost in the mishap was estimated

at approximately $500 million [SD96]. Thus, two design errors account for a �nancial

loss approaching one billion dollars.

We need robust techniques for design veri�cation. Historically, the primary ap-

proach for design veri�cation has been simulation. An executable model of the design

is constructed, and this model is exercised with a series of test cases. However, even

for designs of moderate complexity, it is infeasible to fully test the design with this

approach. To address future design veri�cation requirements, new techniques must be

developed. In fact, Keutzer identi�es design veri�cation as the most urgent problem

in [integrated circuit (IC)] design [Keu96].

The design derivation approach provides an exceptional framework for hardware

design. The design space can be explored in a rigorous manner, secured by the knowl-

edge that the design is correct by construction. Furthermore, the representation of

hardware using corecursive stream equations allows for the augmentation of design
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derivation with coinductive veri�cation strategies. This provides an opportunity to

verify aggressive optimizations that exploit the semantics of the implemented func-

tion.



2

Related Research

2.1 Overview of Design Derivation

The design derivation tools DDD [Bos91, Bos94] and DRS [BTC96] implement

a formal design algebra for developing correct digital circuit descriptions. The de-

signer interactively transforms high level behavioral speci�cations into a description

suitable for entry into hardware synthesis tools. The top level describes the intended

behavior of the circuit using a collection of mutually recursive function de�nitions

in tail form. Each function corresponds to a control state; arguments to the func-

tions represent the visible storage elements of the design. Transformations at this

level allow the designer to modify the control structure of an architecture while pre-

serving the functional correctness, relative to synchronization constraints. Once the

control structure is determined, DRS automatically transforms the behavioral speci-

�cation into an initial architectural level description. This description is re�ned using

structural level transformations that allow the designer to reorganize the design to

correspond to typical hardware design constructs. Once the architecture is re�ned,

11
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the signals and operations are mapped to bit-vector representations. Depending upon

the target technology (e.g. Field Programmable Gate-Array or custom VLSI), addi-

tional re�nements are performed at this level to determine the physical organization

of the design.

The design derivation tools represent the structure of a digital system using a

collection of mutually recursive stream equations. A stream is an in�nite sequence of

uniformly typed values,

X = [x0; x1; x2; . . .]

The stream constructor `cs' adds an element to the front of the sequence

cs(z;X) = [z; x0; x1; x2; . . .]

Function `cs' models a storage element. The �rst argument is the current value and

the second is the input stream. Functions on values lift to sequences so that f(X;Y )

denotes [f(x0; y0); f(x1; y1); :::]. DRS uses a system of equations to de�ne a network

of streams; recursion represents feedback in the circuit. For example, the following

equation represents a loadable counter circuit.

COUNT = cs(i;MUX(S;L; INC(COUNT))) (2.1)

where i is the current integer value of the counter, INC and MUX are the increment

and selection functions lifted to streams, and streams S and L are the multiplexor

select signal and load input respectively. Within DRS, free variables in a system

of stream equations must be bound by a system level abstraction. This abstraction

de�nes the input signals for the circuit. The circuit's output is a subset of the streams

named in the system of equations.
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Several signi�cant hardware designs have been developed using DDD. In particu-

lar, Bose has formally derived the DDD-FM9001 [Bos94, BJ93] processor from Hunt's

formal speci�cation of the mechanically veri�ed FM9001 microprocessor [Hun92]. An-

other signi�cant derivation is the development of a Scheme Machine, which consists

of a garbage-collecting memory system and a CPU that executes high-level Scheme

primitives [Bur94]. During the above projects, it was recognized that a combination

of design derivation with mechanized proof support would be superior to either ap-

proach individually [JWB89]. In the current study, hardware design using DRS is

augmented using the PVS theorem proving system.

2.2 Overview of PVS

PVS is a general purpose speci�cation and veri�cation system developed at SRI

International [ORS92, ORSv95]. The PVS speci�cation language is based on higher-

order logic. Speci�cations consist of collections of theories that may be parameterized

by types and constants. Theory parameters may be constrained by conditions. PVS

has predicate subtyping and dependent types. Since types may be constrained by

an arbitrary predicate, typechecking is undecidable. When the typechecker cannot

determine if an expression is correctly typed, it automatically generates proof obliga-

tions called Type Correctness Conditions (TCCs). PVS includes typing judgements

to help reduce the frequency of TCCs. Included with PVS is the prelude, a collection

of theories containing de�nitions and basic results.

There are two primitive types: boolean and number. The type boolean has

the usual properties. The type number is di�erent from the numeric types in other

mechanical theorem proving systems. Properties of number are either declared in the
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PVS prelude or hard-coded in the PVS typechecker and prover. The type number

is declared as a nonempty, uninterpreted type. PVS recognizes all Arabic numerals

as constants of type number. In addition, the fact that distinct numerals represent

distinct numbers is hard-coded in the PVS prover. The type real is declared as a

non-empty subtype of number. There are implicit typing judgements that assert that

all Arabic numerals also have type real. The arithmetic operators and order relations

are de�ned over the reals, and are known by the PVS decision procedures. Since PVS

requires all functions to be total, the type of the division operator is constrained so

that the divisor is nonzero. This uses the predicate subtyping mechanism. The type

of nonzero reals is declared as follows:

nonzero_real: NONEMPTY_TYPE = {r: real | r /= 0} CONTAINING 1

The containing clause is not necessary, but it simpli�es the proof of the TCC that

results from this declaration. With the containing clause, this declaration generates

the proof obligation: ` 1 6= 0. This is known to the prover and is automatically

discharged. If the containing clause were omitted, this declaration would generate

the obligation: ` 9r: r 6= 0. A proof of this goal requires user interaction. The usual

properties of the real numbers are either expressed as axioms, or are coded in the

linear arithmetic decision procedures built-in to the PVS prover. The �eld axioms

are known by the decision procedures, as are the linear order axioms. The remaining

axioms are declared in the prelude theory real axioms.

The rationals are a nonempty, uninterpreted subtype of the reals (and by tran-

sitivity, also a subtype of number). Again, the fact that Arabic numerals have type

rational is coded into PVS. Axioms in prelude theory rationals assert that the

rationals are closed under addition, subtraction, multiplication, and division (with

the divisor restricted to nonzero rationals). Similarly, the integers are de�ned as an
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uninterpreted subtype of the rationals (again containing the Arabic numerals). Ax-

ioms in prelude theory integers assert that the integers are closed under addition,

subtraction, and multiplication. Finally, the natural numbers are declared as the

predicate subtype of nonnegative integers.

PVS includes the usual function type constructor, as well as constructors for tuple

and record types. PVS also includes dependent forms of these. Dependent types have

a number of uses within a veri�cation system like PVS. For example, consider the


oor function which truncates a real number x to the nearest integer � x. In the

PVS prelude, this function is de�ned as follows:

floor(x:real): {i:int | i <= x & x < i + 1}

That is, 
oor is a constant with type [x:real -> fi:int | i <= x & x < i + 1g].

This type declaration uniquely de�nes the 
oor function. In PVS, this declaration

spawns the proof obligation: ` 8x: 9i: i � x < i + 1. By encoding the desired

behavior into the type, this information is available to the decision procedures. Many

standard facts about the 
oor and ceiling functions are automatically discharged by

the PVS decision procedures.

Dependent types are also quite useful in hardware veri�cation, where many func-

tions have regular structures that are parameterized by the width of the data word.

Hanna was the �rst to advocate dependent types for this purpose [HD92]. PVS al-

lows parameterized type declarations, inspired by the Veritas+ system [HDL89].

The PVS prelude includes the following parameterized type declaration:

below(i): TYPE = {s: nat | s < i}

Using this type, we can declare a bit to have type below(2). The type of n-bit words
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can be declared as:

word(n) : TYPE = [below(n) -> bit]

Use of this parameterized type is illustrated by the following declaration for byte:

byte: TYPE = word(8)

PVS also has a mechanism for de�ning recursive abstract datatypes that are freely

generated by a set of constructors [OS93]. The abstract data mechanism generates

a theory which declares an uninterpreted type constrained by a number of axioms.

These axioms correspond to the properties that would arise from the least solution

to the recursive type equations. PVS does not yet have a corresponding mechanism

for corecursive datatypes.

PVS provides an interactive theorem proving environment using a Gentzen style

sequent calculus presentation of the proof goals. At the core of PVS's prover is a col-

lection of decision procedures combined using a technique developed by Shostak [Sho78,

Sho84, CLS96]. This eases some of the more burdensome aspects of interacting with

a mechanical theorem prover. Most simple arithmetic results are discharged by in-

voking the decision procedures. The user rarely needs to direct the prover when faced

with simple facts of arithmetic. PVS has a powerful conditional rewriter. There is a

strategy language similar to LCF-style tactics. Thus, the user can de�ne high-level

proof procedures. There are several powerful strategies distributed with PVS that

automatically verify a large number of results. For example, the built-in proof strat-

egy (grind) is su�cient powerful to automatically verify many goals. The strategy

(induct-and-simplify) is the brute force strategy for automating simple proofs by

induction. PVS allows the user to prove lemmas in any order. It maintains a proof
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dependency analysis to ensure that all obligations have been discharged. Included in

the analysis is an enumeration of all axioms used by the proof chain.

There have been a number of exercises integrating various styles of reasoning

within PVS. The most recent presentation of these e�orts is reported in [ORS97].

2.3 Research in Hardware Veri�cation

There are several competing approaches for formalizing the design process. At one

end of the spectrum are general purpose mechanical theorem proving systems with

expressive languages. Frequently, these systems require human interaction to produce

machine checked proofs. At another extreme are a collection of fully automatic tools

that can be applied to specialized veri�cation problems. These tools include tautology

checking using Binary Decision Diagrams [Bry86] and, more recently, model checking

techniques for state machine veri�cation [CES86, BCM+92, BCL+94].

Theorem-Prover based System Veri�cation

There are several signi�cant examples of theorem-prover based veri�cations in the

literature. Examples include microprocessors [Hun92, SM95], dedicated hardware for

fault-tolerance [BY90, SB91], and many e�orts in 
oating-point veri�cation [BKM96,

CGZ96, RSS96, OLHA94, LO95, VCD94, Har95]. Theorem prover based veri�cations

are not always robust in the face of changes. A small change in the design may

invalidate much of the correctness proof [Wil97].

A notable e�ort is Hunt's veri�cation of the FM9001 processor using nqthm [Hun92].
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Hunt's veri�cation strategy consists of a simulation model that animates designs ex-

pressed in a hardware description language. The veri�ed design was subsequently fab-

ricated in a VLSI implementation. The veri�cation approach has subsequently been

used successfully on commercial hardware devices [BKM96]. Another signi�cant ef-

fort is the veri�cation of the microcode of a set of instructions of the Rockwell-Collins

AAMP5 microprocessor in PVS [SM95]. The AAMP5 is a modern microprocessor

designed for aerospace applications. The veri�cation activity uncovered some errors

that had been seeded in the microcode to test the e�ectiveness of theorem proving

techniques.

Prior to the design error in the Pentium processor, there were only a few activities

focussed on design veri�cation of 
oating-point hardware. The �rst e�orts targeted

veri�ed implementations of binary non-restoring algorithms. Leeser, O'Leary, et al.

present a veri�cation, using Nuprl, of a binary non-restoring square root algorithm

and its implementation [OLHA94, LO95]. Verkest, et al. present a similar veri�cation,

using nqthm, of a binary non-restoring division algorithm [VCD94]. In response to

the 
aw in the Pentium, several researchers investigated theorem prover based veri�-

cations of SRT division hardware. Clarke, German, and Zhao used the Analytica

theorem prover to verify Taylor's [Tay81] radix-4 SRT division circuit [CGZ96]. Their

veri�cation includes an abstract representation of the lookup table and a proof that

it de�nes all necessary values for the quotient selection logic. Rue�, Srivas, and

Shankar [RSS96] generalize this work using PVS. They present a general veri�ca-

tion of arbitrary radix SRT division algorithms, instantiate their theory with Taylor's

radix-4 SRT division circuit, and verify a description of the hardware. Included in

their work is a technique to verify a concrete representation of the lookup table. Miner

and Leathrum provide a further generalization to the class of subtractive division al-

gorithms and relate this class of algorithms to a 
oating-point standard [ML96]. This
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provides the entry point for the derivation activities presented in Chapter 6. Re-

cently, the microcode for the 
oating point division and square root algorithms of the

AMD5K86TM microprocessor has been mechanically veri�ed using the ACL2 theorem

prover [BKM96].

Within a general purpose theorem proving system, there are several ways to rep-

resent hardware artifacts. One of the most common is the relational style advocated

by Gordon [Gor86]. Signals are represented as functions from discrete points in time

to the signal type. Circuit components are de�ned as relations between signals; hard-

ware structure is de�ned by relation composition. Bronstein and Talcott present a

string-functional semantics for reasoning about hardware using nqthm [BT90]. This

supports describing hardware structure using a functional style similar to that used in

DRS. Paulin-Mohring has used a coinductive representation of streams in Coq to ex-

plore their application in hardware veri�cation [Pau95]. She illustrated the approach

using Gordon's multiplier circuit [Gor86]. She did not explore use of bisimulations

for showing circuit equivalence, but suggested it as an interesting possibility. Coupet-

Grimal and Jakubiec have exploited the constructive nature of Coq to extract circuits

from proofs [CJ96]. In particular, they follow the example of Hanna, Daeche, and

Longley's Veritas+ system [HDL89] and use dependent types to construct parame-

terized circuit modules.

Algebraic Approaches

A number of algebraic approaches have been proposed for formal reasoning about

digital hardware design. In addition to the design derivation tools discussed above,

there is the Ruby design algebra [She88] and the work of Harman and Tucker [HT96]
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Harman and Tucker present an algebraic model of synchronous digital hardware.

The general hardware representation is by iterated maps. Let T represent time, A be

set of states, W be a set of input values, [T !W ] be a set of input streams, and X be

a set of output values. A sequential system is modeled by function F : T �A� [T !

W ]! A�X, where:

F1(0; a; w) = a:

F1(t+ 1; a; w) = next state(F1(t; a; w); w(t));

F2(t; a; w) = out(F1(t; a; w)):

When the set of states A is �nite, this is a description of a Moore machine [Moo56].

It provides a rigorous mathematical description of synchronous hardware, and lends

itself to inductive veri�cation. However, this representation has the complication

that the current state is represented as a function of the initial state and past history

of the input stream. Frequently, the initial state of a hardware device is irrelevant.

Also, the current state of a device only depends upon a limited past history of the

input stream. My experiences in proving hardware using this representation is that

it distracts from the main veri�cation goal. This structure is similar to that used

in the PVS proofs of the clock synchronization circuit presented in [MPJ94]. In

that veri�cation e�ort, more time was spent dealing with quirks of the model than

in verifying the re�nement. The veri�cation presented in [MPJ94] has been redone

using coinduction and is presented in Chapter 5.

Ruby is a relational algebra for digital hardware design. Circuit components are

de�ned as relations between signals; systems are built up via relational composition.

The primary di�erence with other representations is that time is in�nite in both di-

rections, eliminating the distraction of an irrelevant initial state. The language was

introduced by Jones and Sheeran [JS90], and is particularly well suited to re�ning
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circuits with a regular structure. The Ruby design philosophy is similar to the un-

derlying design philosophy for DRS, in that it supports a transformational approach

to circuit design. It has been demonstrated on a number of circuit designs, including

a pipelined systolic correlator [She88]. Recently, Sharp and Rasmussen developed a

strongly typed version called T-Ruby [SR97]. It is based upon Pure Ruby [Ros90],

which consists of four basic constructs. In T-Ruby, all circuits and combinators are

built up from the pure core. Rasmussen has developed a proof system called RubyZF

using the Isabelle theorem prover [Ras96]. RubyZF enables mechanical veri�cation of

all T-Ruby transformations, and provides integrated reasoning support for verifying

proof obligations generated by T-Ruby.

The synchronous data-
ow language Lustre has been used e�ectively in the

design and veri�cation of synchronous hardware [HCRP91, TP90]. The language

was originally developed for the speci�cation and veri�cation of real-time systems

and was inspired by the data
ow language Lucid [WA85]. Lustre is a declarative

language where expressions represent sequences of values. Systems are speci�ed using

a collection of equations. The veri�cation tool Lesar provides a state exploration

technique similar to model checking.

2.4 Coinduction and Corecursion

This dissertation does not address foundational issues of coinduction or corecur-

sion, but rather focuses on a speci�c application. There are a number of foundational

treatments in the literature. One such basis is Aczel's Special Final Coalgebra Theo-

rem [Acz88]. Another is Barwise and Moss' Corecursion Theorem [BM96]. Recently,

Moss and Danner have further explored foundational issues and have suggested that
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corecursion may by justi�ed by reduction to recursion [MD97]. Research in construc-

tive type theory has also addressed the notion of types of in�nite objects. The �rst

treatments were by Mendler et al. [MPC86, Men87], with subsequent investigations

by Coquand [Coq93]and Leclerc and Paulin-Mohring [LP93].

Applications of coinduction to veri�cation have their root in process calculi such

as CCS [Mil89]. Park appears to be among the �rst to explore the use of greatest

�xed points as a veri�cation strategy [Par80, Par81]. Other applications include

programming language semantics [MT91, Pit94]. Gim�enez used coinductive types in

Coq for the veri�cation of an alternating bit protocol [Gim95]. Recently, Jacobs has

explored coinductive veri�cation techniques for class re�nement in an object-oriented

setting [Jac97].

There have been a number of recent e�orts seeking to provide mechanized rea-

soning support for coinductive veri�cation techniques. Paulson built up a framework

for inductive and coinductive datatypes in Isabelle-HOL [Pau97]. Inductive types

are expressed as least �xed points and coinductive types are expressed as great-

est �xed points. Leclerc and Paulin-Mohring have explored coinductive types using

the Coq system [LP93]. Recently, Hensel and Jacobs have provided mechanized

support for coinductive reasoning in PVS by developing a theory of �nal coalge-

bras [HJ97a, HJ97b].



3

Reasoning about Streams

Many approaches to formal veri�cation of hardware represent signals as streams,

i.e. functions from time to value, where time ranges over the natural numbers. These

previous veri�cation activities have not exploited the fact that streams are a coin-

ductively generated type and hence also allow proof by coinduction. This chapter

introduces some basic properties of streams, and illustrates the use of the mechanized

reasoning system PVS to reason about them.

3.1 Stream Basics

A stream over A is an in�nite sequence

x = [x0; x1; x2; . . .]

23
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where each xi 2 A. The constructor cs adds an element to the front of the sequence.

Take a 2 A and x as above, then

cs(a; x) = [a; x0; x1; x2; . . .]

The natural model for streams over A is N! A, with the following de�nition for cs:

cs(a; x)(n) =

8><
>:
a if n = 0

x(n� 1) otherwise

Streams may also be viewed coinductively, that is, as a greatest �xed-point of a

monotone operator. An operator F : P(U) ! P(U) is monotone if F (X) � F (Y )

whenever X � Y . The greatest �xed-point of monotone F , de�ned by

�Z:F (Z) =
[
fZjZ � F (Z)g

is the largest set Z such that Z = F (Z).

Fix a class U and cs : A � U ! U for some set A. De�ne monotone operator

CSA : P(U)! P(U) by

CSA(X) = fcs(a; x)ja 2 A & x 2 Xg

The set A1 of streams over A is de�ned as the greatest �xed-point of CSA.

A1 =̂ �Z:CSA(Z)

= fcs(a; x)ja 2 A & x 2 A1g

The constructor cs and universe U must be selected so that whenever A 6= ; then

also A1 6= ; and furthermore, there exist functions hd : A1 ! A and tl : A1 ! A1
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so that for a 2 A and x 2 A1:

hd(cs(a; x)) = a

tl(cs(a; x)) = x

cs(hd(x); tl(x)) = x

Using the standard model of streams, that is, setting U = N ! A, de�ning cs as

above, and de�ning hd(x) = x(0) and tl(x) = �n:x(n+ 1), these equations are easily

veri�ed. An elegant model of streams is found in the universe of non-well-founded

sets, where it is possible to de�ne cs(a; x) = ha; xi [BM96].

A trivial consequence of the fact that A1 =
S
fZjZ � CSA(Z)g is the following

proof principle:

Coinduction Principle: To show that x 2 A1, exhibit a Z such that x 2 Z and

Z � CSA(Z).

We use the coinduction principle to build towards a general mechanism for de�ning

streams.

Theorem 1 For g : A! A and a 2 A, if

iterg(a) = cs(a; iterg(g(a))) (3.1)

then iterg(a) 2 A1

Proof: Let

Z = fiterg(a) j a 2 Ag
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We need to show that Z � CSA(Z). Given a0 2 A, iterg(a0) 2 Z. From equation (3.1),

iterg(a0) = cs(a0; iterg(g(a0))). Since a0 2 A and iterg(g(a0)) 2 Z, we have iterg(a0) 2

CSA(Z). Since the choice of a0 was arbitrary, Z � CSA(Z).

Since for any a 2 A, iterg(a) 2 Z and Z � CSA(Z), we use the coinduction

principle to conclude iterg(a) 2 A1. a

The next question is whether a solution to equation 3.1 is unique. This requires a

principle of equality. Two streams are equal if and only if they are indistinguishable

at every �nitely accessible point. The following proof principle provides a useful tool

for demonstrating equality between streams.

De�nition A stream bisimulation is a relation R between A1 and A1 so that when-

ever s R t, then

hd(s) = hd(t) and tl(s) R tl(t)

Coinduction principle If x; y 2 A1 and x R y for some bisimulation R, then

x = y.

A proof of this principle in the universe of non-well-founded sets is on page 84

of [BM96]. Jacobs and Rutten use the fact that streams are a �nal coalgebra to

justify this principle [JR97]. Here we directly show that two streams in a stream

bisimulation are indistinguishable.

Theorem 2 For n 2 N if x; y 2 A1 and x R y for some bisimulation R, then

hd(tln(x)) = hd(tln(y)).
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Proof: By induction on n.

Base case: Since R is a bisimulation and x R y, we have

hd(tl0(x)) = hd(x) = hd(y) = hd(tl0(y))

Induction step: The induction hypothesis asserts that if x0; y0 2 A1 and x0 R y0 then

hd(tln(x0)) = hd(tln(y0)). Since R is a bisimulation and x R y, we have tl(x) R tl(y).

Using the induction hypothesis, we get hd(tln(tl(x))) = hd(tln(tl(y))). Simpli�cation

yields hd(tln+1(x)) = hd(tln+1(y)) a

Corollary 1 For any stream bisimulation R,

R � f(x; y)j8(n 2 N):hd(tln(x)) = hd(tln(y))g

If we de�ne a monotone operator on U = A1 �A1 by:

F (R) = f(x; y)jhd(x) = hd(y) and tl(x) R tl(y)g

then

�R:F (R) = f(x; y)j8(n 2 N):hd(tln(x)) = hd(tln(y))g

Now we can use the coinduction principle to show that equation 3.1 has a unique

solution.

Theorem 3 Suppose I(a) = cs(a; I(g(a))), then I(a) = iterg(a)

Proof: By coinduction using relation

R = f(I(a); iterg(a))ja 2 Ag
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It is clear that I(a) R iterg(a) for all a 2 A. All that remains is to show that R is a

stream bisimulation.

Take x; y 2 A1 such that x R y. That is, there is an a 2 A such that x = I(a)

and y = iterg(a). There are two properties to be shown

1. hd(x) = hd(I(a)) = a = hd(iterg(a)) = hd(y)

2. Using equations (3.1) and the hypothesis above, we conclude that

tl(x) = tl(I(a)) = tl(cs(a; I(g(a)))) = I(g(a))

and

tl(y) = tl(iterg(a)) = tl(cs(a; iterg(g(a)))) = iterg(g(a))

Since g(a) 2 A, tl(x) R tl(y). a

Thus, equation (3.1) uniquely determines a stream for each a 2 A and any function

g : A! A. Iter provides a mechanism for de�ning several streams over A. The next

requirement is a functional to map a function f : A! B to every element of a stream

over A.

Theorem 4 For s 2 A1 and f : A! B, if

mapf (s) = cs(f(hd(s));mapf (tl(s))) (3.2)

then mapf (s) 2 B1.
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Proof: Let

Z = fmapf (s)js 2 A1g

We need to show that Z � CSB(Z). Given any s 2 A1, mapf (s) 2 Z. We know that

since s 2 A1 there are a 2 A and s0 2 A1 such that s = cs(a; s0). By the de�nition

of map we have mapf (s) = cs(f(a);mapf (s
0)). This is an element of CSB(Z), so

Z � CSB(Z).

Since mapf (s) 2 Z and Z � CSB(Z), we use the coinduction principle to conclude

mapf (s) 2 B1. a

A coinductive proof su�ces to show that map is unique.

Theorem 5 For s 2 A1, given f : A! B, if m : A1 ! B1 satis�es

m(s) = cs(f(hd(s));m(tl(s)))

then m(s) = mapf (s)

Proof: By coinduction using relation

R = f(m(s); mapf (s))js 2 A1g

It is clear that m(s) R mapf (s) for all s 2 A1. All that remains is to show that R

is a stream bisimulation.

Take x; y 2 A1 such that x R y. That is, there is an s 2 A1 such that x = m(s)

and y = mapf (s). There are two properties to be shown

1. hd(x) = hd(m(s)) = f(hd(s)) = hd(mapf (s)) = hd(y)
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2. Using equations (3.2) and the hypothesis above, we conclude that

tl(x) = tl(m(s)) = tl(cs(f(hd(s));m(tl(s)))) = m(tl(s))

and

tl(y) = tl(mapf (s)) = tl(cs(f(hd(s));mapf(tl(s)))) = mapf(tl(s))

Since tl(s) 2 A1, tl(x) R tl(y). a

Given f : A! B, g : A! A. Consider the function corec(f;g) : A! B1 de�ned by

corec(f;g)(a) =̂ mapf (iterg(a)) (3.3)

This function provides a useful tool for providing solutions to corecursive stream

equations.

Theorem 6

corec(f;g)(a) = cs(f(a); corec(f;g)(g(a))) (3.4)

Proof:

corec(f;g)(a) = mapf(iterg(a)) ; by equation (3.3)

= mapf(cs(a; iterg(g(a)))) ; by equation (3.1)

= cs(f(a);mapf (iterg(g(a)))) ; by equation (3.2)

= cs(f(a); corec(f;g)(g(a))) ; by equation (3.3)

a
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Suppose we want to �nd a solution for ca in the equation:

ca = cs(a; ca) (3.5)

We can use corec. Assume that A = B, then de�ne

ca =̂ corec(idA;idA)(a) (3.6)

Lemma 1 ca = cs(a; ca)

Proof:

ca = corec(idA;idA)(a) ; by equation (3.6)

= cs(idA(a); corec(idA;idA)(idA(a))) ; by equation (3.4)

= cs(a; corec(idA;idA)(a)) ; de�nition of idA

= cs(a; ca) ; by equation (3.6)

a

Corec may be used to de�ne a solution to equation 3.1

Fact 1 iterg(a) = corec(id;g)(a)

Proof: By coinduction, using bisimulation f(iterg(a); corec(id;g)(a))ja 2 Ag. a

Inspection of the above bisimulation shows that it is de�ned in a simple manner from

the equality to be proven. When a bisimulation is of this form, it is trivial to show that

the streams being shown equal are in the relation. This technique for constructing

bisimulations is quite common in coinductive proofs. A bisimulation constructed in
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this manner is a trivial bisimulation. The proof steps are mechanical and can be

automated.

As an additional example of verifying stream equivalence using coinduction, con-

sider the following identity. This is frequently given as an alternative de�nition for

iter.

Fact 2

iterg(a) = cs(a;mapg(iterg(a))) (3.7)

Proof: By coinduction using bisimulation f(iterg(a); cs(a;mapg(iterg(a))))ja 2 Ag a

Barwise & Moss introduce a few other stream equations and some exercises for

practicing coinductive proofs. These will be used as illustrative test cases for the PVS

streams theories presented in the next section. The de�nitions and identities are:

mapf (ca) = cf(a) (3.8)

zip(cs(a; s); cs(b; t)) =̂ cs(a; cs(b; zip(s; t))) (3.9)

zip(ca; ca) = ca (3.10)

iterf (a) = zip(iterf�f(a);mapf (iterf�f(a))) (3.11)

dmapf (s) =̂ cs(f(hd(s)); dmapf (dmapf(tl(s)))) (3.12)

recalling that iterg(a), mapf (s), and ca satisfy equations (3.1), (3.2), and (3.5), re-

spectively.
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3.2 De�ning Streams in PVS

Developing support for mechanized reasoning about streams is complicated by

the fact that it must be developed within the logic of some mechanized proof system.

Traditionally, streams over A have been represented by [N ! A]. The initial e�orts

to reason about streams in PVS [MPJ94] used this representation. However, this

choice of representation led to emphasis on proofs by induction, even though we were

modeling objects that were de�ned (within DDD) using stream equations. As shown

in the previous section, corecursive stream equations naturally lead to proofs using

coinduction.

The PVS streams library is modeled after the PVS abstract datatype mecha-

nism [OS93]. The principal de�nition of the stream codatatype is parameterized by

nonempty type �. The type of streams over � is de�ned as an uninterpreted nonempty

type. As in the PVS abstract datatype mechanism, the type is constrained by axioms

about uninterpreted constructor and accessor functions. The PVS abstract datatype

mechanism supports recursive function de�nition and proofs by induction. Similarly,

the streams library provides support for corecursive function de�nition and proofs by

coinduction. The streams library is available electronically [WWW].

The following initial fragment from PVS theory Stream cdt provides the declara-

tion of type Stream[alpha], and de�nes the type signature for Stream constructor cs

and accessors hd and tl.

Stream_cdt[alpha: TYPE+]: THEORY

BEGIN

Stream: TYPE+

cs: [alpha, Stream -> Stream]

hd: [Stream -> alpha]
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tl: [Stream -> Stream]

The constructor cs and accessors hd and tl are constrained by the usual axioms. In

the following axioms, S has type Stream[alpha] and a has type alpha.

Stream_cs_eta : AXIOM cs(hd(S), tl(S)) = S

hd_cs : AXIOM hd(cs(a, S)) = a

tl_cs : AXIOM tl(cs(a, S)) = S

Since type Stream is uninterpreted, there is no general mechanism in PVS for

proving equality between streams. We need to introduce an axiom that de�nes what

we mean by stream equality. Axiom Stream eq de�nes two streams be equal if and

only if they are indistinguishable at every �nitely accessible point.

nth((S : Stream), (n : nat)) : alpha = hd(iterate(tl,n)(S))

Stream_eq : AXIOM (X = Y) <=>

FORALL n: nth(X, n) = nth(Y, n)

Function iterate, used in the de�nition of function nth, is de�ned in the PVS

prelude. For any type T , x : T , and function g : T ! T ,

iterate(g; n)(x) = gn(x):

Thus, function nth returns the nth element of a stream.

The �nal base de�nition for the PVS Streams library is the corecursion combina-

tor:

corec : ((�! �)� (�! �))! (�! �1)
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Given f : � ! �, g : �! � and a : �, we axiomatize the behavior of the corecursion

combinator via the following PVS declaration:

corec_def: AXIOM

corec(f, g)(a) = cs(f(a), corec(f, g)(g(a)))

Given this de�nition, and the previous axioms, we prove the following two facts. The

proofs consist of rewriting with corec def and then rewriting with either hd cs or

tl cs.

hd_corec: FACT

hd(corec(f, g)(a)) = f(a)

tl_corec: FACT

tl(corec(f, g)(a)) = corec(f, g)(g(a))

For each function F : � ! �1 that is de�ned using corec, I adopt the convention

that the following three facts are also introduced and proven within PVS:

F_def: FACT

F(a) = cs(f(a),F(g(a)))

hd_F: FACT

hd(F(a)) = f(a)

tl_F: FACT

tl(F(a)) = F(g(a))

These proof obligations are easily discharged. With the exception of F def, no theo-

rems about F are proven directly from the corecursive de�nition. Establishing these

three facts about streams de�ned using corec greatly simpli�es subsequent coinduc-

tive proofs.
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The functions f and g used in corecursive de�nitions are often complicated. If we

allow function de�nitions using corec to be expanded by some of the powerful proof

strategies within PVS, it is possible that much of the proof time could be consumed by

trivial details. Thus, we desire some mechanism to hide the corecursion combinator

from the standard automatic proof strategies within PVS. The following de�nitional

scheme su�ces:

F(a): {B : Stream[beta] | B = corec(f, g)(a)}

This style of de�nition exploits the PVS dependent type mechanism. In this declara-

tion, function F : �! �1 is both uninterpreted and completely de�ned. Since there

is no body, the function cannot be expanded or rewritten. The only access to the

de�nition of this function is via the PVS proof command (typepred "F(a)"), for

some a:alpha. The equation F def is proven using the typepred command followed

by rewriting with corec def.

As an illustration of this template, here is the corecursive de�nition of map:

map((f : [alpha-> beta]), (S : Stream[alpha]))

: {B : Stream[beta] |

B = corec((lambda S : f(hd(S))),

(lambda S : tl(S)) )(S)}

map_def : FACT

map(f, S) = cs(f(hd(S)), map(f, tl(S)))

hd_map : FACT

hd(map(f, S)) = f(hd(S))

tl_map : FACT

tl(map(f, S)) = map(f, tl(S))

Facts hd map and tl map are trivial consequences of map def, hd cs, and tl cs. The
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only remaining obligation is the proof of map def. It follows from the dependent type

constraints and corec def.

The proofs justifying de�nition by corecursion have the same structure. To sim-

plify the handling of these proof obligations, I have de�ned a PVS strategy to dis-

charge goals of this form. Consider the corecursive de�nition of iter:

iter((g : [alpha -> alpha]), (a :alpha)) :

{ A : Stream[alpha] | A = corec(id[alpha], g)(a)}

iter_def : FACT

iter(g, a) = cs(a, iter(g, g(a)))

The PVS justi�cation of iter def uses the proof strategy (def-corec):

Proof: (Taken verbatim from the *pvs* proof bu�er)

iter_def :

|-------

{1} (FORALL (a: alpha, g: [alpha -> alpha]):

iter(g, a) = cs(a, iter(g, g(a))))

Rule? (def-corec)

id rewrites id[alpha](a!1)

to a!1

Justifying CoRecursive definition,

Q.E.D.

In addition, we de�ne the appropriate supporting facts concerning the head and tail

of iter.

hd_iter : FACT

hd(iter(g, a)) = a

tl_iter : FACT

tl(iter(g, a)) = iter(g, g(a))
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These facts are also simply discharged within PVS. This template is followed for all

stream de�nitions within the PVS streams library.

For a more complicated example of stream de�nition using the corecursion com-

binator, consider equation (3.9) from section 3.1. The challenge (from Barwise and

Moss [BM96]) is to show that there is a function zip:A1 � A1 ! A1 that satis�es

the equation:

zip(X,Y) = cs(hd(X), cs(hd(Y), zip(tl(X), tl(Y))))

At �rst glance, it does not appear that zip can be de�ned using corec. However,

one of the laws for zip is

zip(X,Y) = cs(hd(X), zip(Y, tl(X)))

This leads us to a correct de�nition of zip using corec

zip(X,Y):{Z | Z = corec(lambda X,Y: hd(X),

lambda X,Y: (Y,tl(X)))(X,Y)}

From this, we easily establish that zip satis�es equation (3.9).

Proof of stream equality using coinduction

Using axiom Stream eq (page 34), we can prove stream equality using function

nth and induction. However, section 3.1 demonstrated proofs of stream equality using

the coinduction principle.

The PVS de�nition of the coinduction principle for proving stream equality is

given in theorem co induct below:



3. Reasoning about Streams 39

Bisimulation: TYPE =

{R : PRED[[Stream[alpha], Stream[alpha]]] |

FORALL X, Y:

R(X, Y) =>

hd(X) = hd(Y) & R(tl(X), tl(Y))}

co_induct: THEOREM

(EXISTS (R: Bisimulation): R(X, Y)) => X = Y

Theorem co induct is a trivial consequence of Axiom Stream eq and Theorem 2. It

has be proven using PVS. The PVS theories are available electronically [WWW].

Invariants on Streams

Proof by coinduction is also used to establish invariant properties of a stream.

Relations are lifted to streams, yielding streams over the booleans. As an example,

suppose we are given two boolean streams A and B. We lift implication to these

streams yielding a boolean valued stream satisfying the equation

(A => B) = cs(hd(A) => hd(B), tl(A) => tl(B))

In this example, the symbol `=>' is overloaded. In sub-term hd(A) => hd(B) it has

(PVS) type [bool, bool -> bool] and has type [Stream[bool], Stream[bool]

-> Stream[bool]] in the other occurrences.

One way to make the assertion that 8n : nth(A;n) ) nth(B;n) is to identify

stream (A => B) with stream const(true). If this identity is true, it is easily proven

using the coinduction principle for showing stream equality. This identi�cation is

su�ciently useful that we have de�ned the abbreviation:

Invariant(A : Stream[bool]) : bool = (A = const(true))
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With this construct we de�ne a coinduction principle for verifying that streams satisfy

invariant properties.

CoInductive_Assertion: TYPE =

{ (P : PRED[Stream[bool]]) |

FORALL A: P(A) => hd(A) & P(tl(A)) }

co_induct: THEOREM

(EXISTS (P : CoInductive_Assertion): P(A)) => Invariant(A)

This is a simple consequence of the coinduction principle for stream equality. Alter-

natively, one could de�ne:

Invariant(A : Stream[bool]) : bool = FORALL (n:nat): nth(A,n)

and then prove this coinduction principle using the same proof structure as shown

for the coinduction principle for stream equality.

Coinductive Proofs using PVS

In this section we revisit some of the stream equations given in section 3.1 and

illustrate approaches for coinductive proofs using PVS. First, consider equation (3.7).

Fact 3 iter(g, a) = cs(a, map(g, iter(g, a)))

Proof: The initial PVS step strips o� the universal quanti�ers.

iter_map_def :

|-------

{1} (FORALL (a: alpha, g: [alpha -> alpha]):

iter(g, a) = cs(a, map(g, iter(g, a))))

Rule? (SKOLEM!)

Skolemizing,
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this simplifies to:

iter_map_def :

|-------

{1} iter(g!1, a!1) = cs(a!1, map(g!1, iter(g!1, a!1)))

Rewriting with theorem co induct yields

iter_map_def :

|-------

{1} (EXISTS (R: Bisimulation[alpha]):

R(iter(g!1, a!1), cs(a!1, map(g!1, iter(g!1, a!1)))))

Instantiate R with a trivial bisimulation

Rule? (inst +

"{(X,Y:Stream[alpha])|

EXISTS (a:alpha) :

X = iter(g!1, a) &

Y = cs(a, map(g!1, iter(g!1, a)))}")

this yields 2 subgoals:

The �rst subgoal is to show that the two streams are in the provided relation, the

second is to show that the relation is a bisimulation. After beta reduction, the �rst

subgoal simpli�es to

iter_map_def.1 :

|-------

{1} EXISTS (a: alpha):

iter(g!1, a!1) = iter(g!1, a)

& cs(a!1, map(g!1, iter(g!1, a!1)))

= cs(a, map(g!1, iter(g!1, a)))

The (inst?) command asks PVS to guess a value to provide for the existentially

quanti�ed variable. In this case, PVS correctly guesses a!1, resulting in a goal that

is easily proven using propositional simpli�cation.
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Rule? (inst? )

Found substitution:

a gets a!1,

Instantiating quantified variables,

this simplifies to:

iter_map_def.1 :

|-------

{1} iter(g!1, a!1) = iter(g!1, a!1)

& cs(a!1, map(g!1, iter(g!1, a!1)))

= cs(a!1, map(g!1, iter(g!1, a!1)))

Rule? (prop)

Applying propositional simplification,

This completes the proof of iter_map_def.1.

The second subgoal is to show that the given relation is a bisimulation. After the

proof steps (skosimp*)(replace*)(hide -1 -2) the resulting goal is:

iter_map_def.2 :

|-------

[1] hd(iter(g!1, a!2))

=

hd(cs(a!2, map(g!1, iter(g!1, a!2))))

& EXISTS (a: alpha):

tl(iter(g!1, a!2)) = iter(g!1, a)

&

tl(cs(a!2, map(g!1, iter(g!1, a!2))))

= cs(a, map(g!1, iter(g!1, a)))

This splits into the two standard cases for showing that a relation is a bisimulation.

The �rst subgoal is to prove that the heads are equal

Rule? (split)

Splitting conjunctions,

this yields 2 subgoals:
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iter_map_def.2.1 :

|-------

{1} hd(iter(g!1, a!2))

=

hd(cs(a!2, map(g!1, iter(g!1, a!2))))

Rewriting with hd cs and hd iter discharges this goal. Leaving us with:

iter_map_def.2.2 :

|-------

{1} EXISTS (a: alpha):

tl(iter(g!1, a!2)) = iter(g!1, a)

&

tl(cs(a!2, map(g!1, iter(g!1, a!2))))

= cs(a, map(g!1, iter(g!1, a)))

In this branch, we rewrite with map def, tl cs, hd iter, and tl iter giving us the

following goal:

|-------

{1} EXISTS (a: alpha):

iter(g!1, g!1(a!2)) = iter(g!1, a)

& cs(g!1(a!2), map(g!1, iter(g!1, g!1(a!2))))

= cs(a, map(g!1, iter(g!1, a)))

The commands (inst?) and (prop) �nish o� the proof. a

Most of the steps in the proof given above are common to many coinductive

proofs. I have de�ned a PVS strategy named co-induct that handles some of the

routine aspects of a coinductive proof. In particular, it automatically discharges

the membership subgoal when presented with a trivial bisimulation. In addition, it

reduces the proof obligation that the given relation is a bisimulation into the two

standard subgoals: the heads are equal, and the tails are in the relation.
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The following PVS proof proof of equation (3.8) illustrates the (co-induct) strat-

egy.

Fact 4 map(f,const(a)) = const(f(a))

Proof:

map_const :

|-------

{1} (FORALL (a: alpha, f: [alpha -> beta]):

map(f, const(a)) = const(f(a)))

Rule? (CO-INDUCT

"{(X,Y:Stream[beta]) |

EXISTS f, a:

X=map(f,const(a)) &

Y=const(f(a))}")

this yields 2 subgoals:

map_const.1 :

|-------

{1} hd(map(f!2, const(a!2)))

= hd(const(f!2(a!2)))

Rule? (postpone)

Postponing map_const.1.

map_const.2 :

|-------

{1} EXISTS (f: [alpha -> beta]), (a: alpha):

tl(map(f!2, const(a!2)))

= map(f, const(a))

& tl(const(f!2(a!2))) = const(f(a))

Rule?
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The �rst subgoal is proven by rewriting with hd map and hd const. The second

subgoal is proven by rewriting with tl map and tl const, followed by (inst?) and

(assert). a

The information necessary to construct a trivial bisimulation is present in the ini-

tial goal. PVS provides some lisp functions that help in collecting information from

formulae in the sequent and in generating terms for use in later proof steps. Using

these, I developed a more advanced PVS strategy named simple-co-induct that au-

tomatically generates a candidate bisimulation and then invokes strategy co-induct.

Consider equation (3.10) from section 3.1.

Fact 5 zip(const(a),const(a)) = const(a)

Proof: The following sequence of commands su�ce to prove equation (3.10) using

PVS and the streams library.

(""

(SIMPLE-CO-INDUCT)

(("1" (REWRITE "hd_zip"))

("2" (REWRITE "tl_zip")

(REWRITE "tl_const")

(INST?) (ASSERT))))

a

Coinductive proofs are automated further. Recall that the template for introduc-

ing corecursive stream de�nitions includes two facts for simplifying the head and tail

of a given stream. These are installed as automatic rewrites and combined with some

of the existing brute force strategies within PVS to provide powerful strategies for

determining coinductive proofs using PVS. The most potent strategy for discovering

coinductive proofs is co-induct-and-simplify. It is su�ciently powerful to prove
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the preceding equations automatically. The following PVS proof of equation (3.3)

demonstrates the utility of strategy (co-induct-and-simplify)

Fact 6 corec(f,g)(a) = map(f,iter(g,a))

Proof: (Taken verbatim from *pvs* bu�er)

corec_alt_def :

|-------

{1} (FORALL (a: alpha,

f: [alpha -> beta],

g: [alpha -> alpha]):

corec(f, g)(a) = map(f, iter(g, a)))

Rule? (CO-INDUCT-AND-SIMPLIFY)

hd_corec rewrites hd(corec(f!2, g!2)(a!2))

to f!2(a!2)

hd_iter rewrites hd(iter(g!2, a!2))

to a!2

hd_map rewrites hd(map(f!2, iter(g!2, a!2)))

to f!2(a!2)

tl_corec rewrites tl(corec(f!2, g!2)(a!2))

to corec(f!2, g!2)(g!2(a!2))

tl_iter rewrites tl(iter(g!2, a!2))

to iter(g!2, g!2(a!2))

tl_map rewrites tl(map(f!2, iter(g!2, a!2)))

to map(f!2, iter(g!2, g!2(a!2)))

Showing equivalence by exhibiting trivial bisimulation,

Q.E.D.

The strategy co-induct-and-simplify is also useful for establishing equations (3.11)

and (3.12). To prove equation (3.11), we �rst introduce the following lemma.

Lemma 2 map(f,iter(f o f,a)) = iter(f o f,f(a))

Proof: Using PVS strategy co-induct-and-simplify. a
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Fact 7 iter(f,a) = zip(iter(f o f,a),map(f,iter(f o f,a)))

Proof: Strategy (co-induct-and-simplify) leaves us with the goal:

|-------

{1} zip(map(f!2, iter(f!2 o f!2, a!2)),

iter(f!2 o f!2, (f!2 o f!2)(a!2)))

=

zip(iter(f!2 o f!2, f!2(a!2)),

map(f!2, iter(f!2 o f!2, f!2(a!2))))

Rewriting twice with lemma 2 and once with \o" completes the proof. a

The challenge of equation (3.12) is to prove that such a function exists. De�ne

F (f; S) =̂ f(hd(S)) and G(f; S) =̂ (f � f; tl(S)), then de�ne

dmap(f,S):{ S1 | S1 = corec(F,G)(f,S)}

From this corecursive de�nition, it is trivial to establish

dmap_def: LEMMA

dmap(f,S) = cs(f(hd(S)),dmap(f o f,tl(S)))

hd_dmap : LEMMA

hd(dmap(f,S)) = f(hd(S))

tl_dmap : LEMMA

tl(dmap(f,S)) = dmap(f o f,tl(S))

All that remains is to show that this function dmap de�nes a stream that satis�es

equation (3.12).

Fact 8 dmap(f,S) = cs(f(hd(S)),dmap(f,dmap(f,tl(S))))
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Proof: Using (co-induct-and-simplify) we get the following goal:

|-------

{1} dmap(f!2,

cs(f!2(hd(tl(S!2))),

dmap(f!2 o f!2, tl(tl(S!2)))))

=

cs((f!2 o f!2)(hd(tl(S!2))),

dmap(f!2 o f!2, dmap(f!2 o f!2, tl(tl(S!2)))))

Rewriting with dmap def and \o" completes the proof. a

Advanced examples of stream de�nition

Thus far, the streams we have examined had a very simple form. In the study of

streams there are some more complicated examples. This section presents corecursive

de�nitions for two: �lter and sharp.

The �lter operator takes a predicate and a stream as arguments and returns a

stream constructed from those elements of the argument stream that satisfy the given

predicate. Filter satis�es the equation:

filter(P)(S) = IF P(hd(S)) THEN cs(hd(S), filter(P)(tl(S)))

ELSE filter(P)(tl(S)) ENDIF

Sharp collapses a stream by removing any repeated values so that the resulting stream

is such that no two adjacent positions have the same value. Its de�ning equation is:

sharp(S) = IF hd(S) /= hd(tl(S)) THEN cs(hd(S), sharp(tl(S)))

ELSE sharp(tl(S)) ENDIF
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These functionals are well-behaved if the input stream satis�es a fairness condition.

Suppose only �nitely many elements of a stream satisfy the given predicate, then the

natural result of �lter is �nite. Similarly, the natural result of sharp is �nite if the

argument is ever a constant stream. However, there is no computable function to

test whether the output of either of these functionals is �nite. For our purposes,

any solution to the above equations is su�cient. By addressing the special cases

appropriately, we have been able to de�ne streams that satisfy the above equations

using the corecursion combinator. The next two subsections present the corecursive

de�nitions of �lter and sharp. The proofs that they satisfy the de�ning equations are

available electronically [WWW].

De�nition of �lter

Let F and G be de�ned as follows:

F(P)(S): alpha =

IF (EXISTS n: P(nth(S, n)))

THEN nth(S, least({n | P(nth(S, n))}))

ELSE non(P) ENDIF

G(P)(S): Stream[alpha] =

iterate(tl, i)(S)

WHERE

i = IF (EXISTS n: P(nth(S, n)))

THEN least({n | P(nth(S, n))}) + 1

ELSE 0 ENDIF
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The term non(P) returns an arbitrary element of type alpha such that :P (non(P )).

We now de�ne

filter(P)(S) : {S1 | S1 = corec(F(P), G(P))(S)}

This has been proven to satisfy the above equation using PVS. Whenever filter(P)

is applied to a streamwhere no position satis�es P, it returns the stream const(non(P)).

De�nition of sharp

The de�nition of sharp is simpler. Let G be de�ned by

G(S): Stream[alpha] =

iterate(tl[alpha], i)(S)

WHERE

i = IF (EXISTS n: nth(S, n) /= hd(S))

THEN least({n | nth(S, n) /= hd(S)})

ELSE 0 ENDIF

then we de�ne

sharp(S): {S1 | S1 = corec(hd,G)(S)}

This has been proven in PVS to satisfy the above de�ning equation for sharp. When

sharp is given a constant stream, it behaves as the identity function.
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Streams as a representation of

Hardware

A system of stream equations provides a concise formal description of synchronous

digital hardware [Joh84]. The key observation is that the stream constructor csmodels

the standard unit delay (or D-type 
ip
op) used in digital system design. The �rst

argument to cs denotes the current contents of the register and the second argument

is its input stream. In the examples that follow, reg (for register) is synonymous with

cs.

S

a

cs(a,S)

It is well established that a synchronous digital system is determined by two

51
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functions. An output function that maps the input and current state to the out-

put, and a next-state function that maps the input and current state to the next

state. This standard model of sequential systems is often referred to as the Hu�man

model [Huf54]1 and is depicted in Figure 4.1. Using the speci�cation style developed

NS

S

a

OI
OUT

Figure 4.1: Standard model of Sequential System

by Johnson [Joh84], this standard system is described by the equations

S = cs(a;NS(I; S))

O = OUT(I; S)

Where functions NS and OUT are the next-state and output functions lifted to streams

using a two argument version of map.

1Hu�man's paper describes asynchronous sequential systems decomposed into combinational logic

and delay elements. Here we assume a synchronous system.
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It is simple to formally de�ne this standard model of a sequential system using the

corecursion combinator. In this system there are three signal types. Let TI denote

the type of the input, TO the type of the output, and TS the type of the internal

state. Given the following PVS declarations:

I: Var Stream[TI]

O: Var Stream[TO]

s: Var TS

out: Var [TI, TS -> TO]

ns : Var [TI, TS -> TS]

A generic sequential system is de�ned by the following corecursive declaration:

sequential_system(out,ns)(I,s):

{ O | O = corec(lambda I,s:out(hd(I),s),

lambda I,s:(tl(I),ns(hd(I),s))

)(I,s)}

Since this is de�ned using the corecursion combinator, the following facts are easily

established within PVS:

sequential_system_def: LEMMA

sequential_system(out,ns)(I,s) =

cs(out(hd(I),s),sequential_system(out,ns)(tl(I),ns(hd(I),s)))

hd_sequential_system: LEMMA

hd( sequential_system(out,ns)(I,s)) = out(hd(I),s)

tl_sequential_system: LEMMA

tl( sequential_system(out,ns)(I,s))

= sequential_system(out,ns)(tl(I), ns(hd(I),s))

With these de�nitions, we can set up the proof obligations necessary to show equiv-

alence between two sequential systems, even if the internal state is di�erent.
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Sometimes, however, we wish to explore properties of the internal state of a system.

To enable this, we use corec and the next state function to de�ne a single internal

stream equation.

S: Var Stream[TS]

state(ns)(I,s): { S|S = corec(lambda I,s:s,

lambda I,s:(tl(I),ns(hd(I),s))

)(I,s)}

state_def: LEMMA

state(ns)(I,s) = cs(s,state(ns)(tl(I),ns(hd(I),s)))

hd_state: LEMMA

hd(state(ns)(I,s)) = s

tl_state: LEMMA

tl(state(ns)(I,s)) = state(ns)(tl(I),ns(hd(I),s))

With this de�nition, we prove that we have streams that satisfy the de�ning equations

for a sequential system.

sequential_system_equations: THEOREM

LET S = state(ns)(I,s),

O = sequential_system(out,ns)(I,s),

OUT = lambda I,S: map2(out,I,S),

NS = lambda I,S: map2(ns,I,S)

IN

S = cs(s,NS(I,S)) &

O = OUT(I,S)

The PVS strategy (co-induct-and-simplify), presented in Chapter 3, proves the

equations for S and O.

By restricting the input and state to �nite types, these equations de�ne a Mealy

machine [Mea55]. By further restricting this model so that function out only depends

on the state, these equations de�ne a Moore machine [Moo56]. However, we are
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generally interested in countably in�nite types such as the integers, rationals, and

abstract data types. This allows use of standard properties of these abstract types

in re�ning the digital system architectures. Once the data path is determined, these

types are re�ned to bit-vector representations.

4.1 Simple Examples

To illustrate the utility of speci�cation using corecursion and veri�cation using

coinduction, I present a number of simple examples. The �rst two examples come

from Johnson's dissertation and illustrate how systems of stream equations are de�ned

using the PVS streams library. That is, the PVS streams library supports a shallow

embedding of formal representations of hardware architectures de�ned using systems

of stream equations. Subsequent examples illustrate how to use corecursion and

coinduction to represent and reason about some standard abstractions in hardware

veri�cation.

Factorial

A system of stream equations describing a hardware architecture to compute the

factorial function is [Joh84]:

X = cs(x;DCR(X))

Y = cs(1;MPY(X;Y ))

READY = ZERO?(X)

VALUE = Y
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At the �rst instant that READY is asserted, the VALUE signal contains x!. We use

map to lift the decrement, multiply, and zero? functions to streams. The stream

equation de�ning X is de�ned using iter and the de�ning equation for Y is de�ned

using state. A de�nition of this system of equations using the PVS streams library is:

dcr(x): nat = x ~ 1;

mpy(x,y): nat = x*y;

factorial_stream_equations: LEMMA

LET X = iter(dcr,x),

Y = state[nat,nat,nat](mpy)(X,1),

DCR = lambda (Z:Stream[nat]): map(dcr,Z),

MPY = lambda (W,Z:Stream[nat]): map2(mpy,W,Z),

ZERO? = lambda (Z:Stream[nat]): map[nat,bool](zero?,Z),

READY = ZERO?(X),

VALUE = Y

IN

X = cs(x,DCR(X)) &

Y = cs(1,MPY(X,Y)) &

READY = ZERO?(X) &

VALUE = Y

In PVS, ~ de�nes cut-o� subtraction. That is, when x < y, x ~ y = 0. Simple

coinductive proofs su�ce to show that the de�nitions of X and Y satisfy the given

equations. Of course, this example does not involve simultaneous recursion, so it is

simple to de�ne in PVS. Systems of mutually recursive stream equations are more dif-

�cult to de�ne using the streams library. The next example illustrates one technique

for de�ning mutually recursive stream equations.
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Fibonacci

Another simple example from Johnson's dissertation is a circuit that computes the

Fibonacci sequence. The circuit is formally de�ned by the system of stream equations:

X = cs(x;DCR(X))

Y = cs(1; Z)

Z = cs(1;ADD(Y;Z))

READY = ZERO?(X)

VALUE = Y

The de�nitions of X, READY, and VALUE are done in the same manner as for the

factorial circuit. We need a mechanism to de�ne the mutual recursion captured by

equations Y and Z. The method is to construct a stream of pairs and then project out

to a pair of streams that satisfy the set of mutually recursive stream equations. The

Streams library includes a collection of de�nitions to support transposing a stream

of pairs to a pair of streams. Let S : Stream[[T1,T2]], function L applied to S returns

a stream over T1, and R(S) has type Stream[T2]. With these functions, we de�ne the

Fibonacci stream equations as follows:

dcr(x:nat) : nat = x ~ 1;

zero?(x:nat) : bool = (x = 0);

yz(y,z:nat) : [nat, nat] = (z, y + z);

fib_stream_equations: LEMMA

LET X = iter(dcr,x),

YZ = iter(yz,(y,z)),

Y = L(YZ),

Z = R(YZ),

DCR = lambda (X:Stream[nat]):

map(dcr,X),

ADD = lambda (Y,Z:Stream[nat]):
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map2(lambda (x,y:nat): x+y, Y, Z),

ZERO? = lambda (Z:Stream[nat]):

map[nat,bool](zero?, Z),

READY = ZERO?(X),

VALUE = Y

IN

X = cs(x,DCR(X)) &

Y = cs(y, Z) &

Z = cs(z, ADD(Y, Z)) &

READY = ZERO?(X) &

VALUE = Y

Once again, the strategy (co-induct-and-simplify) was su�cient to prove that each of

the streams X, Y, and Z satisfy the corresponding recursive stream equations.

4.2 Coinductive Proofs about Hardware

Melham [Mel88] de�nes four basic abstractions used in hardware veri�cation.

Structural abstraction occurs when we hide the internal structure of a device and

only reason about its black-box behavior. Behavioral abstraction occurs when we

only partially specify a device's behavior. This allows one to constrain the envi-

ronment in which the device is intended to operate. Data abstraction is similar to

structural abstraction in that it allows suppression of information about how data is

represented. Temporal abstraction is used to relate two di�erent views of the passage

of time. A common example is microprocessor veri�cations where one view is that of

a sequence of instructions. Each instruction is a function that transforms the state of

the device. At a lower level, each instruction may require several cycles to complete.

Corecursion and coinduction play a role in at least two of these abstractions.

Coinductive proofs are useful for demonstration that a sequential system satis�es
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some behavioral speci�cation. Corecursion is also useful for de�ning simple temporal

abstractions. In addition, coinduction is useful for veri�cation that two sequential

systems have the same behavior. In this section, each of these is illustrated. First,

a simple hardware transformation is proven to preserve the behavior of a sequential

circuit. Then a behavioral abstraction is demonstrated. The chapter concludes with

an illustration of simple temporal abstractions.

Retiming Transformation

A retiming transformation is used to distribute registers throughout a design in

order to minimize the longest critical path delay. A shorter maximum critical path

in a design means that the maximum cycle time for the circuit is less, thus allowing

a faster clock rate.

Such transformations have been extensively studied [LS91], and have made their

way into practice. We use them here to illustrate the utility and general nature of

coinductive proofs. This example moves a unary combinational function f through a

multiplexor and a register where the register output is fed back into the mux. The

transformation is depicted in Figure 4.2.

The representation of this transformation using the PVS Streams library is:

map(f,MUX_REG(S,A,a)) = MUX_REG(S,map(f,A),f(a))

This transformation is veri�ed using PVS strategy (co-induct-and-simplify). A simple

sequence of DRS transformations also su�ces to justify this replacement. There is no

need to perform a coinductive proof each time a retiming transformation is required.

This is further illustrated in one of the derivation examples in Chapter 6.
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Figure 4.2: Simple Retiming Transformation

Behavioral Abstraction

In this example, we illustrate how to verify that a sequential system satis�es a be-

havioral speci�cation using coinduction. Although this example may seem contrived,

its relevance becomes apparent in Chapter 5. The behavioral speci�cation describes

a device that periodically behaves as a counter. The informal requirement is that

so long as a reset signal is not asserted, the device operates as a counter, that is,

the value on its output signal increases by one each clock tick. Nothing is asserted

about its value when the reset signal is asserted. We de�ne this behavior using the

predicate Invariant from the streams library and the PVS dependent type mechanism.

We de�ne the type:

C(R): TYPE =

{I : Stream[int] | Invariant(NOT R => EQ(tl(I), INC(I))) }

This type is parameterized by a stream of booleans that corresponds to a reset signal.
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Whenever the reset signal is not asserted, a signal of type C(R) behaves as a counter.

Otherwise, its behavior is unspeci�ed.

A counter circuit is depicted in Figure 4.3. This circuit has two argument streams.

S

L +1

I

i

Figure 4.3: Simple Counter Circuit

The �rst is a stream of booleans, S, that controls the select line of the multiplexor.

The second is a stream of integers, L, that is directly loaded into the register whenever

the select line is low. Finally, when the select signal is high, this circuit stores the

result of adding one to the current value, i, of the counter. Its corecursive de�nition

in PVS is:

COUNT(S, L, i):

{ I | I = corec(lambda S, L, i : i,

lambda S, L, i:

(tl(S), tl(L),

mux(hd(S),hd(L),inc(i)))

)(S, L, i)}

The usual supporting lemmas are easily discharged. It is also possible to de�ne this
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circuit using state to de�ne the stream equation. However, this requires that we

explicitly pair up the input streams, and modify the iterated function so that its type

signature matches. In general, it is easier to de�ne systems of stream equations using

corec directly.

We still need to show that the counter circuit satis�es the required behavioral

property. That is, it has type:

C(R): TYPE = {I | Invariant(NOT R => EQ(tl(I), INC(I)))}

for some boolean valued stream R. The multiplexor select line, S, seems a likely

candidate, but has the opposite truth value of what we want. If we let R be NOT S,

we are able to establish the invariant property.

COUNT_Invariant: LEMMA

Invariant( NOT NOT S => EQ(tl(COUNT(S, L, i)), INC(COUNT(S, L, i))))

JUDGEMENT COUNT HAS_TYPE

[S:Stream[bool], Stream[int],int -> C(NOT S)]

The judgement statement asserts that function COUNT applied to a boolean stream

S, an integer stream, and an integer always has type C(NOT S). The type correctness

condition generated by this judgement is alpha convertible to COUNT Invariant, and

is easily discharged by (co-induct-and-simplify).

Temporal Abstraction

Assume we have a microprocessor architecture de�ned so that each instruction

corresponds to a state transition. An implementation of this instruction set may

require a di�erent number of clock cycles for each instruction. The following temporal
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abstraction schema can be used to relate the design of the microprocessor to its

instruction level speci�cation. Function f maps each element of stream S into the

number of cycles required to correspond to the next high-level state.

temp_abs(f)(S):

{ S1 | S1 = corec(lambda S: hd(S),

lambda S: iterate(tl,f(hd(S)))(S)

)(S)}

By iterating the tl operator by f(hd(S)) cycles we relate stream S to a speci�cation

with a coarser granularity.

Another use for temporal abstractions is to relate circuits operating at di�erent

clock rates. Bronstein and Talcott [BT90] use the stuttering counter depicted in

Figure 4.4 to illustrate part of their approach for pipeline veri�cation. The goal is to

+1

i

Figure 4.4: Stuttering Counter Circuit

show that a temporal abstraction of the stuttering counter is equivalent to a simple

counter (Figure 4.5). The simple counter is just iter(inc, i). One possible correctness

criteria is to relate the simple counter to every other tick of the stuttering counter.
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i

+1

Figure 4.5: Simple Counter Circuit

Lemma 3 Let the stuttering counter be de�ned by the following stream equations:

oscillate = reg(false;:oscillate)

stutter = reg(i;mux(oscillate; stutter; stutter+ 1))

then

temp abs(�x:2)(stutter) = iter(inc; i)

Proof: In PVS by strategy (co-induct-and-simplify). a

Alternatively, the sharp function de�ned in Chapter 3 is designed to eliminate

stuttering on a stream. A correctness result using sharp is:

Lemma 4 Let the stuttering counter be de�ned by the following stream equations:

oscillate = reg(false;:oscillate)

stutter = reg(i;mux(oscillate; stutter; stutter+ 1))
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then

sharp(stutter) = iter(inc; i)

Proof: By coinduction in PVS. Strategy (simple-co-induct) generates a suitable

bisimulation. Automatic rewrites, excluding tl sharp, complete the goal for the heads

and simplify the tail case to a point where two rewrites with sharp's de�ning equation

complete the proof. a

A generalization of the stuttering counter replaces the oscillating control line with

an arbitrary fair control line. This is depicted in Figure 4.6 with the underlying

+1

i

CTL

Figure 4.6: Fair Counter

assumption that CTL is asserted in�nitely often.

One way to assert fairness on a boolean valued stream uses the �lter function. For

boolean valued stream B, de�ne

Fair(B):bool = Invariant(filter(id)(B))
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Lemma 5 Let the (fair) stuttering counter be de�ned by the following stream equa-

tion:

stutter = reg(i;mux(ctl; stutter; stutter+ 1))

If Fair(ctl) then

sharp(stutter) = iter(inc; i)

Proof: Strategy (simple-co-induct) generates a suitable bisimulation. The only di�-

cult part of the proof is coordinating �lter and sharp in the tails case. a

This last example warrants further investigation. It should be possible to simplify

proof e�orts that require synchronization between �lter and sharp.



5

Fault-Tolerant Synchronization

In the early explorations of the design framework depicted in Figure 1.1 (page 3),

we developed a hardware design of a veri�ed fault-tolerant clock synchronization

algorithm using a combination of formal design techniques [MPJ94]. These techniques

included using standard DDD transformations, an ad hoc re�nement veri�ed using

PVS, and BDD-based tautology checking. The resulting hardware description was

suitable for realization using a �eld-programmable gate-array.

However, for the PVS veri�cation of the ad hoc re�nement presented in [MPJ94],

the streams library had not yet been developed. Signals were represented by func-

tions from time to the signal carrier type. The proofs were by induction, and were

cluttered with several irrelevant proof obligations. In contrast, the veri�cation of this

replacement using coinduction focuses attention on the underlying reasons that the

replacement is justi�ed. In this chapter, the ad hoc re�nement is veri�ed using coin-

duction, as is a clever optimization to the circuit. The �rst re�nement substitutes a

pair of registers in place of a collection of clock readings captured using a list data

structure. Similar changes in data representation are common when transforming an

67
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abstractly de�ned algorithm to a concrete hardware description. The second re�ne-

ment is a clever optimization to the derived architecture. The veri�cation of each

re�nement exploits properties of the surrounding circuitry.

5.1 Top-Level Properties

In a distributed computing system, one approach to ensure coordinated activity

is to maintain synchronization of the clocks of the distributed processors. In a fault{

tolerant computer architecture, the synchronization algorithm must also tolerate a

bounded number of failures. The property that a synchronization algorithm must

ensure is that:

For any two clocks Cp and Cq that are nonfaulty at time t

jCp(t)� Cq(t)j � �

In addition, a clock must maintain an accurate measure of the passage of time. Clock

synchronization consists of periodically exchanging values and executing an averaging

function so that the above properties are guaranteed.

5.2 The Veri�ed Algorithm

Schneider [Sch87] demonstrates that many fault-tolerant clock synchronization

algorithms can be treated as re�nements of a general paradigm. Shankar [Sha92] and

Miner [Min93] have provided mechanically checked proofs of Schneider's paradigm.

Miner's veri�cation is the top-level speci�cation for the circuit developed here.
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A generalized view of the algorithm employed by each participant is:

do forever f

exchange clock values;

determine adjustment for this interval;

determine local time to apply correction;

when time, apply correction g

Schneider's paradigm is parameterized by

� R|the nominal duration of a synchronization interval. Each clock is adjusted

with a frequency approximately equal to 1=R.

� N|the number of clocks participating in the protocol, N > 0

� F|the number of faults tolerated

� A mechanism for exchanging clock values. The relationship between N and

F depends on this mechanism. For Byzantine faults, N > 3F . � denotes a

collection of readings from clocks in the system. In the mechanically veri�ed

theory, � is a function from clock indices to clock readings.

� cfn|a convergence function to compute an adjustment from this collection of

readings. The following three properties are su�cient to ensure synchronization.

{ Translation Invariance: The function depends only on the relative magni-

tude of the readings, not the absolute magnitude.

{ Precision Enhancement: For any two good clocks with similar estimates

of other clock's values, the result of computing the convergence function

is similar.
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{ Accuracy Preservation: If the readings from good clocks are su�ciently

similar, then the computed value of the convergence function is close to all

good clocks.

The fault-tolerant midpoint convergence function,

cfnMID(�) =

$
�(F+1) + �(N�F )

2

%
;

where �(m) = the mth largest value in collection �

employed in the Welch and Lynch [WL88] clock synchronization algorithm, possesses

the required properties of a convergence function [Min93].

5.3 Behavioral Speci�cation

An abstract view of the behavioral speci�cation is given in Figure 5.1 using the

ASM chart notation from [PW87] . This corresponds to a top-level DRS speci�cation.

It establishes the control of the machine and identi�es some of the registers, but leaves

architectural components abstractly speci�ed. In particular, there is not an explicit

representation for either � or cfn. The choice for cfn is the fault-tolerant midpoint

convergence function presented in section 5.2.

This presentation assumes a standard mechanism for exchanging readings. At

a �xed o�set into each synchronization interval, each participant in the protocol

transmits a signal. Upon receipt of that signal, each clock captures its estimate for

the transmitting clock. By analyzing delays in the communication mechanism we can

arrive at an estimate of what the value of the local counter, LC, should be when a

clock receives a signal from another clock that is perfectly synchronized. This is a
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Figure 5.1: ASM Chart for General Algorithm
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constant value denoted by Q. Thus, the value captured when a signal is received from

a remote clock is LC �Q.

The next step is to provide speci�cations for the functions manipulating �. The

arguments to function Update include �, a collection of N signals, and a reading,

LC�Q. Since the convergence function chooses elements of � based on their relative

magnitude, it is desirable to capture these readings in an ordered manner. Update

maintains an array of 
ags, indicating which signals have been received during the

current interval. It also maintains a list of readings using the following function:

(define update-readings

(lambda (theta reading pop-count)

(let ((new-cnt (- pop-count (length theta))))

(append theta (make-list new-cnt reading)))))

Argument pop-count (population count) represents the number of signals received

from distinct clocks during this interval. Since the argument for reading, LC � Q,

is increasing with each tick of the local counter, this function captures the readings

of the remote clocks in a sorted list.

The DRS speci�cation of the convergence function is:

(define cfn

(lambda (theta)

(floor divby2 (add (index (f+1) theta)

(index (n-f) theta)))))

(define floor divby2 (lambda (a) (floor (div a 2))))

This is a direct translation of the speci�cation given in Section 5.2. Since we have
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been careful to capture the readings in sorted order, index simply selects the (F+1)th

and (N � F )th elements of the sorted list.

This speci�cation of the synchronization algorithm is quite general. Any con-

vergence function that satis�es the required properties may be used. For many of

the published convergence functions, it is unnecessary to alter the mechanism for

capturing readings of remote clocks in a sorted list. Any of the following conver-

gence functions could be used instead of the fault-tolerant midpoint (the names are

from Schneider [Sch87]): Egocentric Average, Fast Convergence Algorithm, or Fault-

tolerant Average. Other algorithms, such as that by Srikanth and Toueg [ST87], do

not �t as cleanly into this speci�cation.

Other portions of the algorithm depend upon the choice of convergence function.

For the fault-tolerant midpoint convergence function, there are enough readings to

compute the convergence function whenever there have been signals from at least N�

F other clocks. Thus, for this design, predicate `Enough(...)?' simply corresponds

to a population count of received synchronization messages greater than N � F .

Similarly, standard hardware constructs are su�cient for computing the fault-tolerant

midpoint within a single tick. Therefore, for this design, predicate `cfn computed?'

is always true.

During normal operation, the interval index i is incremented at the end of each

interval. However, at system startup or when multiple faults occur, it may be appro-

priate to clear this index. This abstractly de�ned function is given the name NEXT in

the ASM chart. For a system that enables recovery from transient faults, NEXT also

includes a majority vote of indices received from other clocks. The elapsed time in

clock ticks from the start of the protocol is iR+ LC.

Now that the architectural components of this behavioral speci�cation have been
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de�ned, it is transformed into an initial structural description. The next step is

to re�ne the architecture. The initial architecture constructed from this behavioral

speci�cation is given in Figure 5.2.

test
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-(Q)

R

 =?

status

status

status

status

status

ADJ

CFN

UPD RST

θ

i

status

count

NEXT

signals
status pop- count

Figure 5.2: Initial Architecture

The areas enclosed by dotted lines in Figure 5.2 remains unchanged throughout

the remainder of this development. Function test generates signals to other clocks in

the system. Correct implementation requires knowledge of delays in the underlying

communication mechanism. Therefore, we defer implementing this portion of the

design until we build a complete system. Similarly, there are compelling reasons to

defer implementing the population count module and the interval index counter. In

particular, the function NEXT includes a vote of indices received from other clocks in

the system. This function can either be realized in software or can be merged with

the voter from a Byzantine agreement module.
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5.4 Initial Derivation

Since we know that the convergence function only requires two readings, it is

not necessary to generate estimates for all clocks in the system. We would like to

replace this portion of the design with a more e�cient realization. The �rst step is

to isolate the portion of the design to be transformed. This sub-circuit, after some

simpli�cation to the control structure, is depicted in Figure 5.3. The stream equations

θ

cfn

update
null

ctl

ctl

? ?

val

sel

sel

cnt

Figure 5.3: Re�ned sub-circuit prior to ad hoc transformation

corresponding to this sub-circuit (after expanding the de�nition of cfn) are:

� = reg (?; sel (ctl; null; update(�; val; cnt); update(�; val; cnt)))

sel-cfn = sel (ctl; ?; ?;

$
index(�; F + 1) + index(�;N � F )

2

%
)

It is not necessary to provide storage for readings from all the participants in the

protocol. The only readings required for computation of the convergence function are

the (F + 1)th and (N � F ) readings to arrive. The collection of clock readings, �,

is represented by a sorted list. We replace this list, which would require N registers,
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with two registers, one for each value required in the computation of the convergence

function.

The �rst step is to isolate the terms index(�; F+1) and index(�;N�F ), preserving

the context in which these values are required.

� = reg (?; sel (ctl; null; update(�; val; cnt); update(�; val; cnt)))

idx-f1 = sel (ctl; ?; ?; index(�; F + 1))

idx-nf = sel (ctl; ?; ?; index(�;N � F ))

sel-cfn = sel (ctl; ?; ?;

$
idx-f1 + idx-nf

2

%
)

The next step is to introduce stream equations de�ning the new sub-circuit:

f1 = reg (?; sel (ctl; false; (cnt � (F + 1)); (cnt � (F + 1))))

�(F+1) = reg (?; mux(f1; val; �(F+1)))

nf = reg (?; sel (ctl; false; (cnt � (N � F )); (cnt � (N � F ))))

�(N�F ) = reg (?; mux(nf; val; �(N�F )))

� = reg (?; sel (ctl; null; update(�; val; cnt); update(�; val; cnt)))

idx-f1 = sel (ctl; ?; ?; index(�; F + 1))

idx-nf = sel (ctl; ?; ?; index(�;N � F ))

sel-cfn = sel (ctl; ?; ?;

$
idx-f1 + idx-nf

2

%
)

The desired modi�cation is to is to substitute

sel (ctl; ?; ?; �(N�F ))



5. Fault-Tolerant Synchronization 77

for

sel (ctl; ?; ?; index(�;N � F ))

in the right-hand side of the de�ning equation for idx-nf. A similar substitution is

needed for idx-f1.

Both substitutions are justi�ed by exploiting properties of the surrounding design.

It is known that the stream cnt is non-decreasing between reset events. This fact,

coupled with the de�nition of the function update ensures that the length of the list

� is non-decreasing between reset events. In addition, the list grows by appending

new values to the end of the list. Therefore, once the length of � is at least n,

index(�; n) is invariant until the next (active low) reset. The primary justi�cation for

both replacements is the following result:

Theorem 7 For I; J;K 2 Z1, reset2B1, cnt 2 N1, b 2 B, i 2 Z, l 2 list[Z], if

Invariant(if reset then eq(tl(cnt),0) else tl(cnt) � cnt endif)

b = (length(l) � idx)

b ) (i = index(l; idx))

length(l) � hd(cnt);

and the stream equations are de�ned by

load = reg (b; mux (:reset; false; cnt � idx))

�(idx) = reg (i; mux(load; I; �(idx)))

� = reg (l; mux (:reset; null; update(�; I; cnt)));
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then

mux (:reset; J; mux(load; K; index(�; idx)))

= mux (:reset; J; mux(load; K; �(idx)))

Proof: The proof is by coinduction. A suitable bisimulation is suggested by the

statement of the theorem. Let X R Y if there exist I; J;K 2 Z1, reset2 B1,

cnt 2 N1, b 2 B, i 2 Z, l 2 list[Z], such that

Invariant(if reset then eq(tl(cnt),0) else tl(cnt) � cnt endif),

b = (length(l) � idx);

b ) (i = index(l; idx));

length(l) � hd(cnt);

load = reg (b; mux (:reset; false; cnt � idx));

�(idx) = reg (i; mux(load; I; �(idx)));

� = reg (l; mux (:reset; null; update(�; I; cnt)));

X = mux (:reset; J; mux(load; K; index(�; idx))); and

Y = mux (:reset; J; mux(load; K; �(idx)))

Relation R was constructed to contain the streams in the theorem. All that remains

is to show that R is a bisimulation. Suppose we have streams X and Y such that

X R Y . There are two cases to consider:

Heads: hd(X) = hd(Y ).

The goal is to show that

hd(mux (:reset; J; mux(load; K; index(�; idx))))
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= hd(mux (:reset; J; mux(load; K; �(idx))))

By rewriting with the knowledge we have about the heads of all streams in-

volved, this simpli�es to:

mux (:hd(reset); hd(J); mux(b; hd(K); index(l; idx)))

= mux (:hd(reset); hd(J); mux(b; hd(K); i))

By expanding the de�nition of mux, this simpli�es to showing that

:hd(reset)^ b) index(l; idx) = i

This is a direct consequence of the constraints on the state variables.

Tails: tl(X) R tl(Y ).

Since X R Y , we have I 0; J 0;K 0 2 Z1, reset0 2 B1, cnt0 2 N1, b0 2 B, i0 2 Z,

l0 2 list[Z], such that

Invariant(if reset0 then eq(tl(cnt)0,0) else tl(cnt)0 � cnt0 endif),

b0 = (length(l0) � idx);

b0 ) (i0 = index(l0; idx));

length(l0) � hd(cnt0);

load = reg (b0; mux (:reset0; false; cnt0 � idx));

�(idx) = reg (i0; mux(load; I 0; �(idx)));

� = reg (l0; mux (:reset0; null; update(�; I 0; cnt0)));

X = mux (:reset0; J 0; mux(load; K 0; index(�; idx))); and

Y = mux (:reset0; J 0; mux(load; K 0; �(idx)))
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The tail of a stream has the same structure, so if we rewrite with the stream

tails, we get:

tl(load) = reg (mux(:hd(reset0); false; hd(cnt0) � idx);

mux (:tl(reset0); false; tl(cnt0) � idx));

tl(�(idx)) = reg (mux(b0; hd(I 0); i0);

mux(tl(load); tl(I 0); tl(�(idx))));

tl(�) = reg (mux(:hd(reset0); null; update(l0; hd(I 0); hd(cnt0)));

mux (:tl(reset0); null; update(tl(�); tl(I 0); tl(cnt0))));

tl(X) = mux (:tl(reset0); tl(J 0);

mux(tl(load); tl(K 0); index(tl(�); idx)));

and

tl(Y ) = mux (:tl(reset0); tl(J 0); mux(tl(load); tl(K 0); tl(�(idx))))

In these equations tl(load), tl(�(idx)), and tl(�) are just identi�ers, so they are

replaced with load, �(idx), and �, respectively. Thus we instantiate the existen-

tially quanti�ed variables with tl(I 0); tl(J 0); tl(K 0); tl(reset0); tl(cnt0);

mux(:hd(reset0); false; hd(cnt0) � idx); mux(b0; hd(I 0); i0): and

mux(:hd(reset0); null; update(l0; hd(I 0); hd(cnt0))). To complete the proof, all that

remains is to show that the new state variables satisfy the appropriate invari-

ants. That is:

mux(:hd(reset0); false; hd(cnt0) � idx)

= (length(mux(:hd(reset0); null; update(l0; hd(I 0); hd(cnt0)))) � idx);

mux(:hd(reset0); false; hd(cnt0) � idx)

) (mux(b0; hd(I 0); i0)
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= index(mux(:hd(reset0); null; update(l0; hd(I 0); hd(cnt0))); idx));

and

length(mux(:hd(reset0); null; update(l0; hd(I 0); hd(cnt0))))

� hd(tl(cnt0))

When a reset occurs, the new list is set to null and these properties all follow

trivially. During normal operation (e.g. not reset), the �rst time hd(cnt0) � idx,

both i and index(l; idx) are set to hd(I 0). After that point, both remain the same

until the next reset. a

The above proof was originally developed using PVS. The strategy (co-induct-

and-simplify) automatically guessed a suitable bisimulation. The main goals of the

coinductive proof are completed by the strategy, and all that remains are sub-goals

requiring that the invariants are preserved. These are discharged using some basic

results about lists. The automated strategy focussed attention directly on the goals

required to show that the state invariants are preserved.

The following argument illustrates how this result justi�es the two replacements.

When idx = N � F ,

mux (:reset; I; mux(nf; J; K)) = sel(ctl; I; J; K)

Therefore, Theorem 7 directly justi�es the replacement. For the case when idx = F+1

mux (:reset; I; mux(f1; J; K)) = sel(ctl; I;mux(f1; J; K); K)

Thus, we need to �rst transform

idx-f1 = sel (ctl; ?; ?; index(�; F + 1))
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to

idx-f1 = sel (ctl; ?; mux(f1; ?; index(�; F + 1)); index(�; F + 1))

by instantiating the middle \?" with mux(f1; ?; index(�; F + 1)). This then allows

us to apply Theorem 7.

At this point we substitute �(F+1) for idx-f1, �(N�F ) for idx-nf, remove stream �,

and simplify, to give us:

f1 = reg (?; sel (ctl; false; (cnt � (F + 1)); (cnt � (F + 1))))

�(F+1) = reg (?; mux(f1; val; �(F+1)))

nf = reg (?; sel (ctl; false; (cnt � (N � F )); (cnt � (N � F ))))

�(N�F ) = reg (?; mux(nf; val; �(N�F )))

cfn =

$
�(F+1) + �(N�F )

2

%

sel-cfn = sel (ctl; ?; ?; cfn)

A circuit diagram corresponding to this system of stream equations is given in Fig-

ure 5.4.

5.5 An Optimization

Torres-Pomales [TP95] discovered a more e�cient realization of the core synchro-

nization circuit. The optimization trades time for space in a clever manner. Veri�-

cation of this optimization was previously presented in [MJ96]. Figure 5.5 illustrates

the core circuit computing the convergence function from Section 5.4. The signal val

is the output of a counter. The signals f1 and nf are boolean valued signals that
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Figure 5.4: Re�ned sub-circuit after ad hoc transformation
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θ(f+1) θ(n-f)

f1 nf

cfn

/2

+

val

Figure 5.5: Core Circuit for Computing Convergence Function

indicate receipt of a synchronization signal from at least F + 1 and N � F distinct

participants in the protocol, respectively.

Torres-Pomales recognized that he could exploit the time interval between the

(F + 1)th and (N � F )th signals to partially compute the convergence function.

His optimization consists of capturing the (F + 1)th reading as before, but he then

increments the captured value every other clock tick until the signal from the (N �

F )th clock arrives. At this point the stored value is exactly the required value of the

convergence function.

This next section outlines a technique to transform the previous design into Torres-

Pomales' design. The optimized convergence function is depicted in Figure 5.6. This

optimization requires assumptions about the input signals. We already know that

the integer stream val is the output of a counter, so it increases by 1 each tick of the

clock during the interval between resets. We also know that the Boolean streams f1

and nf follow the behavior shown in Figure 5.7. The next section outlines a proof
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Figure 5.6: Optimized Convergence Function
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reset
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NF

Figure 5.7: Signal Assumptions

that this re�nement is correct.

Veri�cation

The original circuit (Figure 5.5) is described by the following collection of stream

equations:

�(F+1) = reg(?;mux(f1, val, �(F+1)))

�(N�F ) = reg(?;mux(nf, val, �(N�F )))

cfn =

$
�(F+1) + �(N�F )

2

%

The optimized circuit (Figure 5.6) is described by these stream equations:

hold = reg(?, f1 ^ :hold)

carry-in = hold ^ :nf

opt = reg(?;mux(f1, val, (opt + [carry-in])))

In these equations, I adopt a notational convention from [GKP89]. For a boolean

valued expression ', ['] =̂ if ' then 1 else 0 endif.
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We wish to prove that opt = cfn, given some assumptions about the input streams

f1, nf, and val. In order to simplify the statement of the theorem (and the bisimulation

used to prove it), we introduce the following stream valued functions (where A;B 2

B1, I 2 Z1, i; j 2 Z, and a 2 B):

�(A; I; i) = reg(i;mux(A; I;�(A; I; i)))

Cfn(A;B; I; i; j) =

$
�(A; I; i) + �(B; I; j)

2

%

Hold(A; a) = reg(a;A ^ :Hold(A; a))

Opt(A;B; I; i) = reg(i;mux(A; I; [B] + Opt(A;B; I; i)))

Theorem 8 Let R; f1;nf 2 B1, val 2 Z1, i 2 Z, and b 2 B such that the following

properties hold:

Invariant(R ) EQ(tl(val); val+ 1)),

Invariant(IF R THEN :tl(f1) ELSE f1) tl(f1) ENDIF),

Invariant(IF R THEN :tl(nf) ELSE nf) tl(nf) ENDIF),

Invariant(nf ) f1),

:hd(f1),

then

Cfn(f1;nf; val; i; i) = Opt(f1;Hold(f1; b) ^ :nf; val; i)

Proof: The proof is by coinduction on streams. De�ne relation R between integer-

valued streams such that X R Y , if there exist R; f1;nf 2 B1, val 2 Z1, i; j 2 Z,

and b 2 B such that
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Invariant(R) EQ(tl(val); val+ 1)),

Invariant(IF R THEN :tl(f1) ELSE f1) tl(f1) ENDIF),

Invariant(IF R THEN :tl(nf) ELSE nf) tl(nf) ENDIF),

Invariant(nf) f1),

hd(f1) ^ :hd(nf)) (hd(val) = j + 1) ^ (b = odd?(i+ j)),

X = Cfn(f1;nf; val; i; j); and

Y = Opt(f1; (Hold(f1; b) ^ :nf); val;
�
i+ j

2

�
)

The two streams that we wish to prove equivalent are contained in relation R.

Since :hd(f1), there are no constraints on j or b. All that remains is to prove that R

is a bisimulation. Suppose we have streams X and Y such that X R Y . There are

two cases to consider

Heads: (hd(X) = hd(Y ))

hd(X) = hd(

$
�(f10; val0; i0) + �(nf0; val0; j0)

2

%
)

=

$
hd(�(f10; val0; i0)) + hd(�(nf0; val0; j0))

2

%

=

$
i0 + j 0

2

%

= hd(Y )

Tails: (tl(X) R tl(Y ))

First, simplify the tails of both X and Y .

tl(X) = tl(Cfn(f10;nf0; val0; i0; j 0)
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= Cfn(tl(f10); tl(nf0); tl(val0);

mux(hd(f10); hd(val0); i0);

mux(hd(nf0); hd(val0); j0))

tl(Y ) = tl(Opt(f10; (Hold(f10; b0) ^ :nf0); val0;

$
i0 + j0

2

%
))

= Opt(tl(f10);

(Hold(tl(f10); (hd(f10) ^ :b0)) ^ :tl(nf0));

tl(val0);

mux(hd(f10); hd(val0); [b0 ^ :hd(nf0)] +

$
i0 + j0

2

%
)

This provides us with the instantiations for the existentially quanti�ed variables.

We must now show that all the invariant properties are satis�ed. The stream

invariants are trivially satis�ed. For the state invariants, we are left with the

following goals:

mux(hd(f10); hd(val0); [b0 ^ :hd(nf0)] +

$
i0 + j0

2

%
)

=

$
mux(hd(f10); hd(val0); i0) +mux(hd(nf0); hd(val0); j0)

2

%

and

hd(tl(f10)) ^ :hd(tl(nf0))

) (hd(tl(val0)) = mux(hd(nf0); hd(val0); j 0) + 1) ^

((hd(f10) ^ :b0) =

odd?(mux(hd(f10); hd(val0); i0 +mux(hd(nf0); hd(val0); j0))))

These goals are proven by expanding with all the de�nitions and using the
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invariant properties at our disposal. a

5.6 Establishing Invariants

The veri�cation presented above is only valid if the input signals satisfy the cor-

responding invariants. These are also established using coinductive proof. The signal

val is generated by the sub-circuit shown in Figure 5.8. To justify the invariant

S

L +1

I

i

Figure 5.8: Counter Sub-Circuit

property on val in Theorem 8, we use the following result:

Lemma 6 For R 2 B1; L 2 Z1, and i 2 Z, if

val = reg(i;mux(R;L; val + 1))

then
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Invariant(R ) EQ(tl(val); val+ 1)),

Proof: In PVS, using strategy (co-induct-and-simplify). a

So for the counter sub-circuit, the only remaining environmental constraint is that

it be reset by the same control signal as the circuits generating streams f1 and nf.

These streams have additional invariant properties that they must satisfy. These are

established by the following result:

Lemma 7 For R 2 B1, cnt 2 N1, b1; b2 2 B, if

Invariant(if R then eq(tl(cnt),0) else tl(cnt) � cnt endif),

b1 ) hd(cnt) � (F + 1);

b2 ) hd(cnt) � (N � F );

b2 ) b1

f1 = reg (b1; mux (:R; false; (cnt � (F + 1)))); and

nf = reg (b2; mux (:R; false; (cnt � (N � F ))))

then

Invariant(IF R THEN :tl(f1) ELSE f1) tl(f1) ENDIF),

Invariant(IF R THEN :tl(nf) ELSE f1) tl(nf) ENDIF), and

Invariant(nf ) f1)

Proof: A suitable coinductive assertion for each conjunct is automatically gener-

ated by PVS strategy (co-induct-and-simplify), the constraints on cnt, b1, and b2 are

su�cient for brute force strategy (grind) to complete the proof. a
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In this case, justifying the invariants produces another obligation. Namely, that

input stream cnt is nondecreasing between reset events. This obligation is outside

the scope of the existing design, so it is not addressed here. A similar coinductive

veri�cation su�ces.

5.7 Another veri�cation of the optimization

In Theorem 8, the veri�cation of Torres-Pomales' optimization is localized to just

the a�ected sub-circuits. The inputs to this sub-circuit are constrained by coinduc-

tive assertions. An alternate approach is to include the surrounding circuitry in the

statement of the theorem.

Theorem 9 For R 2 B1, cnt 2 N1, L 2 Z1, i; j; k 2 Z, and b; b1; b2 2 B, if

Invariant(if R then eq(tl(cnt),0) else tl(cnt) � cnt endif),

b1 ) hd(cnt) � (F + 1);

b2 ) hd(cnt) � (N � F );

b2 ) b1;

b1 ^ :b2 ) (k = j + 1) ^ (b = odd?(i+ j));

f1 = reg (b1; mux (:R; false; (cnt � (F + 1)))); and

nf = reg (b2; mux (:R; false; (cnt � (N � F ))))

and

val = reg(k;mux(:R;L; val + 1))
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then

Cfn(f1;nf; val; i; j) = Opt(f1;Hold(f1; b) ^ :nf; val;

$
(i+ j)

2

%
)

Proof: Essentially the same as that for Theorem 8. The only real di�erence is that

some invariant properties are encoded in the state variables, as opposed to the stream

variables. PVS strategy (co-induct-and-simplify) guesses an appropriate bisimulation,

and the veri�cation reduces to showing that the state invariants are preserved. a

One advantage of Theorem 8 is that the veri�cation is independent of the number

of clocks participating in the protocol. The replacement can also be justi�ed by

including the counter sub-circuit, but leaving input streams f1 and nf abstractly

speci�ed. By pushing these signals into another portion of the design, we develop a

core circuit that may be used in a number of di�erent fault-tolerant architectures.

5.8 VLSI implementation

After incorporating the above re�nements, the circuit was further re�ned using

some basic transformations on stream equations. The resulting circuit, depicted in

Figure 5.9, has been fabricated and tested. Bob Burger participated in the develop-

ment of the layout, simulation, and initial testing of the VLSI implementation.

There were two phases of testing. The initial tests were conducted using a Logic

Engine (LE) as the the test environment [WC91]. Test signals were generated using a

Scheme interface to the LE written by M. Esen Tuna. The test cases varied the length

of the synchronization interval, varied the arrival times of signals from remote clocks,

and exercised the full ranges of the counters on the chip. The circuit performed as

expected on all test cases.
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Figure 5.9: Core Synchronization Circuit

The second phase of testing consisted of incorporating the design in Torres-

Pomales' four node synchronization system. Three of the nodes were Torres-Pomales'

original design [TP93], the fourth was the VLSI implementation described in this

chapter. The system ran at 10Mhz. We ran the same suite of tests as Torres-Pomales

had performed on his implementation of the optimized synchronization circuit [TP95].

There are three main test cases: initialization, recovery from a single transient fault,

and recovery from massively correlated transient faults. The VLSI implementation

performed perfectly on all tests. The system maintained synchronization within 300

nanoseconds.
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Floating Point Division

In contrast to the clock synchronization circuit, where a driving factor in the design

was reducing the required chip area, current hardware for 
oating point arithmetic

seeks to improve performance. Often, by using redundant encodings for intermediate

results, cycle time can be reduced, thus increasing the speed of the operation. The

tradeo� is that these redundant representations consumemore chip area. This chapter

presents the formal development of an IEEE compliant 
oating point division unit.

The same veri�cation structure is in force. At the top level of the veri�cation hierarchy

is a formal de�nition of an IEEE standard for 
oating point arithmetic. An algorithm

for performing 
oating point division is veri�ed with respect to the standard using

PVS. This algorithm forms the behavioral speci�cation for the 
oating point division

unit. A hardware architecture is derived using DRS. Four local optimizations are

explored. The �rst is derived within DRS, with the exception of a few combinational

correctness conditions. The other optimizations are veri�ed using coinduction. Two

di�erent approaches are illustrated on the �nal optimization.

95
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6.1 IEEE Floating-Point Arithmetic

The top level in this development is a formalization of the IEEE-854 Standard for

Radix-Independent Floating-Point Arithmetic using PVS [IEE87, Min95]. This for-

malization encompasses most of the standard, including de�nition of the four round-

ing modes. The standards require support for addition, subtraction, multiplication,

division, and square root with the requirement that each operation

shall be performed as if it �rst produced an intermediate result correct to

in�nite precision and with unbounded range, and then that result rounded

according to one of the modes . . . [IEE85, IEE87]

This formalization has been extended to include a veri�cation of a standard algo-

rithm for providing IEEE compliant rounding [ML96]. The next section presents a

generalized subtractive division algorithm which, when composed with the rounding

algorithm, provides IEEE compliant division.

6.2 The Veri�ed Algorithm

The class of subtractive division algorithms consists of several generalizations of

the long division algorithm taught in elementary school. By carefully relaxing the

precision in selecting each quotient digit, it is possible to develop algorithms with

more e�cient hardware realizations. Errors introduced by the imprecision are cor-

rected by subsequent iterations of the algorithm. Ercegovac and Lang present several

interrelated factors that a�ect the design of subtractive division algorithms [EL94].

These include:
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1. Radix r|If b is the radix of the underlying 
oating-point number system, the

division radix is chosen so that r = bk for some positive integer k.

2. Quotient digit set|qi 2 f�a;�a+ 1; . . . ;�1; 0; 1; . . . ; a� 1; ag where d r�1
2
e �

a < r.

3. Representation of the partial remainder.

4. Range restriction of the divisor.

5. Quotient-digit selection function.

Of these, all but the third are de�ned as parameters to the PVS formalization of the

general division algorithm. Variations in the representation of the partial remainder

are best addressed at the hardware architecture level. This is discussed in Section 6.4.

The formal parameters for theory general division are

r : {i : posint | i > 1},

a : {i : posint | ceiling((r-1)/2) <= i & i < r},

b : {i : posint | 1 < i & i <= r},

(IMPORTING divide_types[r, a, b])

qs : qs_type

The �rst three parameters are de�ned using predicate subtypes of the positive inte-

gers. In addition, the types for a and b are constrained by the value of r. The type

signature for function qs depends on all of the previous parameters. The declaration

for type qs type is imported from theory divide types. Theory divide types declares

constant � = a

r�1
and the following types:

D_type : TYPE = {d : real | 1 <= d & d < b}
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p_type(D) : TYPE = {p : real | abs(p) <= rho*D}

dividend(D) : TYPE = {x : posreal | 1/r <= x & x < rho*D}

qs_type : TYPE =

[D : D_type, p : p_type(D) ->

{q : subrange(-a,a) | abs(r*p - q*D) <= rho*D}]

Constant � denotes the redundancy factor of the quotient-digit set. It represents a

trade-o� in design complexity between the quotient selection function and generation

of divisor multiples. The type of the divisor is constrained by D type, which is de�ned

to include the numeric range of the signi�cand of a normalized 
oating point number.

Parameterized type p type(D) encodes an invariant, dependent on divisor D, that

the partial remainder must satisfy during execution of the algorithm. The type of

the dividend, also parameterized by D, is constrained to ensure that the dividend

satis�es the constraints imposed on the partial remainder. Finally, the type of the

quotient selection function, qs type, is restricted to functions that, given a divisor D

and a partial remainder p such that jpj � � �D, return a digit q such that �a � q � a

and jr � p � q �Dj � � �D.

The subtractive division algorithms, given divisor D and dividend X, are char-

acterized by the following recurrence equations for the quotient q and the partial

remainder p:

pi = r � pi�1 � qdi �D

qi = r � qi�1 + qdi

where q0 = 0, p0 = X, and qdi is the quotient digit selected for iteration i. A PVS

speci�cation of these equations is

divide((D : D_type), (X : dividend(D)))((n : nat)) :
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RECURSIVE [# p : p_type(D), q: integer #] =

IF n=0 THEN (# p := X, q := 0 #)

ELSE (# p := r*p(divide(D,X)(n-1)) - qd_n*D,

q := r*q(divide(D,X)(n-1)) + qd_n #)

WHERE qd_n = qs(D,p(divide(D,X)(n-1))) ENDIF

MEASURE n

By using a record type for the range of the function, the de�nition is a direct translit-

eration of the recurrence equations. In addition, by declaring the partial remainder

to be of type p type(D), PVS automatically generates a proof obligation to ensure

that the invariant is satis�ed. This obligation is proven using the type constraints on

the quotient selection function.

6.3 Mapping the algorithm to a design

In order to derive division hardware, we �rst have to convert the algorithm into

tail-recursive form. We know that such a form exists, because the algorithm consists

of a simple recursion on the natural numbers. The following algorithm su�ces:

drs_div((n : nat), (D : D_type), (pr : p_type(D)), (qa : int)):

RECURSIVE [# p : p_type(D), q : integer #] =

IF n = 0 THEN

(# p := pr, q := qa #)

ELSE

drs_div(n - 1, D,

r * pr - q_sel(D, pr) * D,
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r * qa + q_sel(D, pr))

ENDIF

MEASURE n

The correctness result is:

Theorem 10 drs div(n,D,X,0) = divide(D,X)(n)

To prove this, we introduce the following result:

Lemma 8 For n 2 N, Y : � and h : �! �, let

Fh(Y )(n) =

8><
>:
Y if n = 0

h(F (Y )(n� 1))) otherwise

and

Gh(Y )(n) =

8><
>:
Y if n = 0

G(h(Y ))(n� 1) otherwise

then

F (Y )(n) = G(Y )(n)

Proof: Simple proofs by induction give us:

Fh(Y )(n) = hn(Y )

Gh(Y )(n) = hn(Y )



6. Floating Point Division 101

Both equations were veri�ed in PVS using built-in strategy (induct-and-simplify),

which automatically generates simple inductive proofs. a

Proof: (of Theorem 10) De�ne function hD

hD((# p := p1; q := q1 #)) =̂ (# p := r � p1 � qs(D; p1) �D;

q := r � q1 + qs(D; p) #)

and

f(D;X) =̂ (# p := X; q := 0 #)

then induction gives us:

divide(D;X)(n) = FhD(f(D;X))(n)

and for any p1; q1

drs div(n;D; p1; q1) = GhD((# p := p1; q := q1 #))(n)

By lemma 8, GhD (f(D;X))(n) = FhD(f(D;X))(n), therefore

drs div(n;D;X; 0) = divide(D;X)(n)

a

This algorithm was manually translated into a DRS behavioral level speci�ca-

tion. This is then immediately transformed into a structural level description using

DRS. Figure 6.1 depicts the initial partial remainder formation sub-circuit and �g-

ure 6.2 depicts the initial quotient accumulation sub-circuit. The stream equations
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Figure 6.1: Initial Partial Remainder Sub-Circuit
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Figure 6.2: Initial Quotient Accumulation Sub-Circuit
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corresponding to the partial remainder sub-circuit are:

d = reg (?; sel (ctl; new-d; d))

pr = reg (?; sel (ctl; new-p; ((r� pr)� (q� d))))

q = q-sel (d; pr)

The quotient accumulation sub-circuit consists of the stream equation:

qa = reg (?; sel (ctl; 0; ((r� qa) + q)))

Function reg is a standard unit delay element and sel is a selector function controlled

by signal ctl. The symbol ? denotes don't care. Section 6.4 presents two techniques to

optimize the partial remainder sub-circuit and section 6.5 presents two optimizations

to the quotient accumulation sub-circuit.

6.4 Partial Remainder Formation

There are two common optimizations for the partial remainder formation sub-

circuit of subtractive division algorithms. The �rst predicts the next quotient digit us-

ing an approximation of the next partial remainder. This is accomplished by pipelin-

ing the operation and computing the next quotient digit in parallel with computing

the next remainder.

Another common optimization is to use a redundant representation of the partial

remainder. This eliminates the propagation delay due to computing the carry-chain

in the adder for the inner loop of the algorithm.



6. Floating Point Division 104

Quotient Digit Prediction

The derivation of the architecture employing quotient digit prediction consists pri-

marily of standard DRS transformations. Coinductive proof techniques are not neces-

sary to complete the re�nement. The correctness conditions generated by DRS re
ect

modi�cations to the combinational logic of the sub-circuit; these are discharged di-

rectly using arithmetic decision procedures. The derivation proceeds from the stream

equations de�ning the partial remainder sub-circuit:

d = reg (?; sel (ctl; new-d; d))

pr = reg (?; sel (ctl; new-p; ((r� pr)� (q� d))))

q = q-sel (d; pr)

The �rst step is to replace new-p with the arithmetically equivalent term (new-p�0).

d = reg (?; sel (ctl; new-d; d))

pr = reg (?; sel (ctl; (new-p � 0); ((r� pr)� (q� d))))

q = q-sel (d; pr)

Next, distribute the selector through the subtraction operations, and introduce names

pp and dz for the arguments to the subtraction operator.

d = reg (?; sel (ctl; new-d; d))

pr = reg (?; (pp� dz))

q = q-sel (d; pr)

pp = sel (ctl; new-p; (r� pr))

dz = sel (ctl; 0; (q� d))
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In anticipation of the next transformation, we introduce the name d1 for the signal

loading the d register.

d = reg (?; d1)

pr = reg (?; (pp� dz))

q = q-sel (d; pr)

pp = sel (ctl; new-p; (r� pr))

dz = sel (ctl; 0; (q� d))

d1 = sel (ctl; new-d; d)

Expand with the de�nitions of d and pr in stream q.

d = reg (?; d1)

pr = reg (?; (pp� dz))

q = q-sel (reg (?; d1); reg (?; (pp� dz)))

pp = sel (ctl; new-p; (r� pr))

dz = sel (ctl; 0; (q� d))

d1 = sel (ctl; new-d; d)

Re-time stream equation q, distributing the application of q-sel through the registers

and simplify the resulting application q-sel (?; ?) to ?.

d = reg (?; d1)

pr = reg (?; (pp� dz))

q = reg (?; q-sel (d1; (pp� dz)))

pp = sel (ctl; new-p; (r� pr))

dz = sel (ctl; 0; (q� d))
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Figure 6.3: Derived Architecture

d1 = sel (ctl; new-d; d)

This system of stream equations corresponds to the derived architecture depicted

in Figure 6.3. Thus far, the derivation steps have not depended on the radix, or

the realization of the quotient selection function. The remainder of the derivation

assumes a radix-4 algorithm (r = 4), and Taylor's lookup table for the computation

of quotient digits.

At this point, we exploit the fact that the lookup table only requires an approxi-

mation of the partial remainder and replace the adder feeding the quotient selection

function with one that sums only eight bits. The signal and function names intro-

duced for the remainder of this derivation were selected to correspond to signal names

in the Clarke, German, Zhao veri�cation of Taylor's circuit [CGZ96].

The subtraction feeding the register pr is replaced with a full precision alu (dalu),
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controlled by the sign bit of the selected quotient digit. This replacement is veri�ed

using PVS strategy (grind), the de�nition of signal dz and knowledge that the di-

visor d is nonnegative. The PVS statement of the correctness conditions from this

derivation are available in the electronic repository [WWW].

d = reg (?; d1)

pr = reg (?; dalu ((q < 0); pp; jdzj))

q = reg (?; q-sel (d1; (pp� dz)))

pp = sel (ctl; new-p; (r� pr))

dz = sel (ctl; 0; (q� d))

d1 = sel (ctl; new-d; d)

Next, expand the de�nition of q-sel, revealing an invocation of a lookup table that

only uses an approximation of the partial remainder, further truncated to have only

six bits of precision to the right of the binary point.

d = reg (?; d1)

pr = reg (?; dalu ((q < 0); pp; jdzj))

q = reg (?; lookup (d1; approx-6 (approx ((pp� dz)))))

pp = sel (ctl; new-p; (r� pr))

dz = sel (ctl; 0; (q� d))

d1 = sel (ctl; new-d; d)

A two stage veri�cation in PVS su�ces to justify replacing the approximation with a

guess alu (galu), which computes an 8-bit approximation of the next partial remain-

der. Each veri�cation stage in PVS is discharged using the (grind) proof strategy.
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Each argument to galu is truncated six bits to the right of the radix point. Signal pp

requires four bits to the left of the radix point, for a total of ten bits. However, the

leading two bits of pp have no e�ect on the result, which, by the invariant property of

the partial remainder (page 99), only requires two bits to the left of the radix point.

Thus, the galu need only sum eight bits.

d = reg (?; d1)

pr = reg (?; dalu ((q < 0); pp; md))

q = reg (?; lookup (d1; galu ((q < 0); approx-6 (pp); approx-6 (md))))

pp = sel (ctl; new-p; (r� pr))

dz = sel (ctl; 0; (q� d))

d1 = sel (ctl; new-d; d)

md = jdzj

The derivation proceeds by introducing names for some of the signals, and distributing

the absolute value function through the de�nition of signal md. The stream equations

for the �nal architecture depicted in �gure 6.4 are:

d = reg (?; d1)

pr = reg (?; dalu (qsign; pp; md))

q = reg (?; lookup (d1; pr1))

pp = sel (ctl; new-p; (r� pr))

d1 = sel (ctl; new-d; d)

md = sel (ctl; 0; (jqj � d))

pr1 = galu (qsign; approx-6 (pp); approx-6 (md))

qsign = (q < 0)
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Several of the functions in this system of stream equations do not require any special

hardware to compute. Signal qsign corresponds to the sign bit of q. Also, if q is

represented using a sign-and-magnitude format, jqj corresponds to the magnitude

bits. Multiplying by radix-r is implemented using a hard-wired shift operation. In

addition, once the design is mapped to a boolean representation, the computation of

signal md is optimized. From the de�nition of the lookup table, q is restricted so that

jqj � 2. Therefore, md is either 0, d, or 2�d. This multiplication is typically realized

using a hardwired shift operation, so the computation of the multiple of the divisor

is realized using a selector. The critical path in this circuit is the cycle from pr to pr.

The delay is dominated by the computation of the carry chain in the dalu. The next

optimization illustrates how to eliminate the carry-chain in the computation of the

partial remainder.

Carry-Free Adders

For extended precision 
oating point numbers, a more e�cient optimization is to

use a redundant representation of the partial remainder. The most common redun-

dant representation is to store the partial remainder in a carry-save format. This

allows for using a faster clock, because the delay computing the combinational logic

is independent of the word length. The standard carry-propagate adder takes two

inputs and produces a single output. Carry-free adders take three inputs (x, y, and

z) and produce two outputs (c and s) such that x+ y + z = c+ s.

Within DRS we want to replace the stream equation de�ning pr (illustrated in

�gure 6.5)

pr = reg (?; sel (ctl; new-p; ((r� pr)� (q� d))))
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* r-( q * d)

+ +

CPA

pr

ctl

new-p

Figure 6.5: Partial Remainder Using a Carry-Propagate Adder

with a redundant representation of the partial remainder (�gure 6.6).

The starting point of this derivation is the following pair of streams, denoting all

cycles in the logic determining the partial remainder. The goal is to minimize the

combinational logic delay.

pr = reg (?; sel (ctl; new-p; ((r� pr)� (q� d))))

q = q-sel (d; pr)

The �rst step is to introduce the stream equations corresponding to the carry-free

adder accumulation of the partial remainder.

pr = reg (?; sel (ctl; new-p; ((r� pr)� (q� d))))

q = q-sel (d; pr)

pr1 = reg (?; sel (ctl; new-p; cfa1 (� ((q� d)); (r� pr1); (r� pr2))))

pr2 = reg (?; sel (ctl; 0; cfa2 (� ((q� d)); (r� pr1); (r� pr2))))
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Figure 6.6: Redundant Partial Remainder Using a Carry-Free Adder
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Then, replace pr with (pr1 + pr2).

q = q-sel (d; (pr1+ pr2))

pr1 = reg (?; sel (ctl; new-p; cfa1 (� ((q� d)); (r� pr1); (r� pr2))))

pr2 = reg (?; sel (ctl; 0; cfa2 (� ((q� d)); (r� pr1); (r� pr2))))

This replacement is justi�ed by the following result:

Theorem 11 For rational i; j, if

pr = reg (i+ j; sel (ctl; new-p; ((r� pr)� (q� d))));

pr1 = reg (i; sel (ctl; new-p; cfa1 (� ((q� d)); (r� pr1); (r� pr2)))); and

pr2 = reg (j; sel (ctl; 0; cfa2 (� ((q� d)); (r� pr1); (r� pr2))))

then

pr = (pr1+ pr2)

Proof: Veri�ed in PVS using strategy (co-induct-and-simplify). a

This veri�cation exploits the fact that the head of pr is a don't care. We are able to

replace it with any value, and preserve the behavior of the system. The term i+ j is

the obvious choice, and suggests the state invariant for the automatically generated

bisimulation.

The derivation proceeds by replacing the full precision carry-propagate adder feed-

ing the quotient selection function with an 8-bit approximation, using arguments

similar to those for quotient digit prediction. The �nal system of stream equations
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is:

q = lookup (d; (approx-6 (pr1) + approx-6 (pr2)))

pr1 = reg (?; sel (ctl; new-p; cfa1 (� ((q� d)); (r� pr1); (r� pr2))))

pr2 = reg (?; sel (ctl; 0; cfa2 (� ((q� d)); (r� pr1); (r� pr2))))

6.5 Quotient Accumulation

Just as in the partial remainder formation, the carry chain is the critical path in

the quotient accumulation sub-circuit. One technique is to accumulate the magni-

tudes of the positive and negative quotient digits in separate registers using a shift-

append operation. After the �nal quotient digit is received, the absolute value of the

accumulated negative digits is subtracted from the accumulated positive digits.

A more recent strategy, on-the-
y conversion [EL94], maintains a decremented

copy of the accumulated quotient, so that the correct quotient is computed using a

shift-append operation. Each of these optimizations is veri�ed using coinduction.

Redundant Representation

The �rst technique for improving the performance of the quotient accumulation

sub-circuit was presented in Taylor [Tay81]. The quotient digits are represented using

a sign and magnitude representation. For a radix-r algorithm, jqj < r. Depending

upon the sign of the quotient digit, the magnitude is appended to either a positive or

negative shift register. This shift-append operation has a critical path that is inde-

pendent of the word length of the 
oating point numbers. The naive implementation
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uses a carry-propagate adder with a critical path of O(log2 n) gate-delays for an n-bit

word.

The goal is to replace stream equation (shown in �gure 6.2)

qa = reg (?; sel (ctl; 0; ((r� qa) + q)))

with the system of equations (shown in �gure 6.7)

neg = reg (?; sel (ctl; 0; shift-append (neg; mux ((q < 0); 0; jqj))))

pos = reg (?; sel (ctl; 0; shift-append (pos; mux ((q < 0); jqj; 0))))

qa = (pos� neg)

The replacement is justi�ed by the following result:
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Theorem 12 For i; j 2 Z, if

qa = reg (i� j; sel (ctl; 0; ((r� qa) + q)));

neg = reg (j; sel (ctl; 0; shift-append (neg; mux ((q < 0); 0; jqj)))); and

pos = reg (i; sel (ctl; 0; shift-append (pos; mux ((q < 0); jqj; 0))))

then

qa = (pos� neg)

Proof: Veri�ed in PVS using strategy (co-induct-and-simplify). a

This approach eliminates the carry chain while accumulating the quotient, but

still requires a full precision, carry-propagate operation to deliver the �nal quotient.

The standard technique for computing the �nal quotient within the constraints of the

shorter cycle time is to allow two clock cycles for the carry to propagate. This requires

modifying the controlling state-machine to introduce an additional delay, before the

result is used.

The next approach computes the accumulated quotient as each quotient digit

arrives, and completely eliminates the need for a carry-propagate adder in the quotient

accumulation logic.
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On-the-
y Quotient Accumulation

This approach for quotient accumulation is due to Ercegovac and Lang [EL94].

The idea is to maintain two registers, one containing the current value of the accumu-

lated quotient, qa, and the other containing qa�1. In order to e�ciently accumulate

the quotient digits as they arrive, we de�ne two functions:

qa-step(q; qa; qm) =

8><
>:

r � qm+ (r + q) , if q < 0

r � qa+ q , otherwise

qm-step(q; qa; qm) =

8><
>:

r � qa+ (q � 1) , if q > 0

r � qm+ (r + q � 1) , otherwise

Since jqj < r, these functions are implemented by appending the computed radix-r

digit to an appropriately selected shifted value. This is a constant time operation. It

is independent of the word length. In addition, these functions satisfy the following

equations:

qa-step(q; qa; qa� 1) = (r � qa) + q

qm-step(q; qa; qa� 1) = (r � qa) + q � 1

= qa-step(q; qa; qa� 1)� 1

Two di�erent design paths for on-the-
y conversion are presented. The �rst uses

derivation strategies to re�ne the original sub-circuit. The second approach uses a

coinductive proof to directly replace the original sub-circuit with a compact realization

of on-the-
y conversion.
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Derived on-the-
y conversion

This section illustrates how to use a derivation system to re�ne the initial quotient

accumulation sub-circuit to a more e�cient design using on-the-
y conversion.

qa = reg (?; sel (ctl; 0; ((r� qa) + q)))

The �rst step is to replace ((r� qa) + q) with qa-step (q; qa; (qa� 1)) and introduce

the name qm for (qa � 1).

qa = reg (?; sel (ctl; 0; qa-step (q; qa; qm)))

qm = (qa � 1)

Expanding with the de�nition of qa, re-timing, and lifting the selector yields

qa = reg (?; sel (ctl; 0; qa-step (q; qa; qm)))

qm = reg ((?� 1); sel (ctl; (�1); (qa-step (q; qa; qm)� 1)))

The three previous transformations strictly preserve equality, so we still have the

knowledge that qm = qa� 1. Using the properties of qa-step and qm-step (page 117)

we replace (qa-step (q; qa; qm)� 1) with qm-step (q; qa; qm)

qa = reg (?; sel (ctl; 0; qa-step (q; qa; qm)))

qm = reg ((?� 1); sel (ctl; (�1); qm-step (q; qa; qm)))

Inspection of the ctl stream justi�es replacing term (? � 1) with ?, resulting in the

following pair of stream equations de�ning the quotient accumulation logic.

qa = reg (?; sel (ctl; 0; qa-step (q; qa; qm)))
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qm = reg (?; sel (ctl; (�1); qm-step (q; qa; qm)))

This is a very e�cient circuit for quotient accumulation, but it includes some un-

necessary logic. There is no need to reset the qm register to (�1) when we initiate

a division operation. Since the division algorithm is always invoked with positive

operands, there will always be at least one positive quotient digit before there is a

negative quotient digit. Therefore, the qm register does not need to be initialized.

Justifying this optimization requires the use of coinductive veri�cation techniques.

Coinductive veri�cation

Theorem 13 Let ctl be a stream of control signals; let q be a stream of integers, such

that after each reset (controlled by ctl), the �rst nonzero digit is positive; and let qa

and qm be de�ned by the following stream equations:

qa = reg (i; sel (ctl; 0; ((r� qa) + q)))

qm = reg (j; qm-step (q; qa; qm))

such that if there has been a positive value on q since the last reset, then j = i� 1.

Then

sel (ctl; 0; ((r� qa) + q)) = sel (ctl; 0; qa-step (q; qa; qm))

This theorem allows the direct replacement of the initial quotient accumulation

sub-circuit :

qa = reg (?; sel (ctl; 0; ((r� qa) + q)))
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with the optimized on-the-
y quotient accumulation

qa = reg (?; sel (ctl; 0; qa-step (q; qa; qm)))

qm = reg (?; qm-step (q; qa; qm))

Proof: By coinduction. De�ne integer stream relation R such that I R J , if there

exists

� a stream of control signals, ctl;

� a stream of integers q, such that the �rst nonzero digit after a reset is positive;

� integers i and j, such that if there has been a positive digit on q since the last

reset, j = i� 1;

� streams qa and qm such that

qa = reg (i; sel (ctl; 0; ((r � qa) + q)))

qm = reg (j; qm-step (q; qa; qm))

such that

I = sel (ctl; 0; ((r � qa) + q)) and

J = sel (ctl; 0; qa-step (q; qa; qm))

By inspection, we have

sel (ctl; 0; ((r� qa) + q)) R sel (ctl; 0; qa-step (q; qa; qm))

To complete the coinductive proof, it is necessary to show that R is a bisimulation.

Suppose I R J . There are two cases
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Heads: [hd(I) = hd(J)] The goal is to show that

hd(sel (ctl; 0; ((r � qa) + q))) = hd(sel (ctl; 0; qa-step (q; qa; qm)))

After expanding the de�nition of qa-step, the only non-trivial case is when

hd(q) < 0. The goal is to show j = i� 1 (hd(qm) = j and hd(qa) = i). Since

hd(q) < 0, there must have been a positive quotient digit previously, so this

goal is satis�ed by the constraints on i and j.

Tails: [tl(I) R tl(J)]

tl(I) = sel (tl(ctl); 0; ((r � tl(qa)) + tl(q))) and

tl(J) = sel (tl(ctl); 0; qa-step (tl(q); tl(qa); tl(qm)))

If we satisfy the appropriate type constraints, then tl(I) R tl(J). The key step

is to show that if there has been a positive value on q, or if hd(q) > 0, then

hd(tl(qm)) = hd(tl(qa))�1. This follows directly from the de�nition of qm-step.

a

The only di�cult aspect about checking the above proof using PVS, is that the stream

semantics provide current state and future behavior. There is no access to the past

history of a stream. Thus, we cannot directly state the constraint on the stream of

quotient digits. The trick is to introduce another stream to remember whether q has

had a positive value. Let R and S have type Stream[boolean]. Then,

RS(R,S): TYPE =

{ A:Stream[boolean] |

Invariant(IF R AND (S OR A)

THEN tl(A)

ELSE NOT tl(A)

ENDIF)}
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de�nes the type of boolean valued streams that remember whether an event indicated

by stream S has occurred since the last reset signaled by stream R. This type is named

RS by way of analogy with an RS 
ip 
op. It is reset by an (active-low) signal R, and

set by signal S. Once set, it remains asserted until the next reset event. Thus, the

type RS(R; q > 0) de�nes a stream that is asserted if there has been a positive value

on stream q since the last reset event signaled by stream R.

We use this type, and PVS' dependent type system to constrain the behavior of

stream Q. Let CTL be a stream of control signals, and Q be a stream of integers. Then,

(B : RS(map(comp?,CTL),Q > const[int](0)) |

Invariant(Q < const[int](0) => B))

de�nes a boolean valued stream, B, that remembers the occurrence of a positive value

on Q since the beginning of the current execution of the algorithm, with the additional

constraint that the �rst occurrence of a positive value on Q cannot have been preceded

by a negative occurrence. The PVS statement of Theorem 13 is:

FORALL

(CTL : Stream[state]),

(Q : Stream[integer]),

(B : RS(map(comp?,CTL),Q>const[int](0)) |

Invariant(Q<const[int](0) => B)),

(i : integer),

(j : integer | hd(B) => j = i - 1):

LET

ZERO = const[int](0),

QA = QA(CTL,Q,i),

QM = QM(B,Q,QA,j)

IN

SEL(CTL,ZERO,map2(shift_add,QA,Q)) =

SEL(CTL,ZERO,map3(qa_step,Q,QA,QM))

The PVS proof begins with the strategy (co-induct-and-simplify), which guesses

an appropriate bisimulation, and simpli�es the resulting goals. The proof currently
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requires manual intervention to complete, but all the steps could be mechanized.

The only intellectual e�ort required is providing the appropriate constraint on Q and

de�ning the guarded state invariant on the initial values. This information should be

present in the designers informal arguments justifying the replacement.



7

Conclusions

In this dissertation I have explored multiple levels of interaction between design

derivation and mechanical theorem proving. The requirements for the design are ex-

pressed in the speci�cation language of the theorem proving system. Algorithms that

satisfy the requirements are veri�ed within the proof system. The veri�ed algorithms

are translated into a behavioral speci�cation for a design derivation system. Within

the derivation system the design is re�ned to an architecture that meets certain de-

sign constraints. Re�nements outside the scope of the derivation tools are veri�ed

externally using a theorem proving system.

The two main examples illustrated how general characteristics of a design are pre-

served through several layers of design re�nement. The core synchronization circuit

was designed to be independent of the number of participants in the protocol. The

implementation was tested in a four clock system, but could just as easily be used

in a ten clock system. In addition, the duration of the synchronization interval was

preserved as a parameter throughout the derivation. For the VLSI implementation,

the synchronization interval may range from 20 to 20,000 cycles of the underlying

124
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oscillator. For the 
oating point division hardware, most of the design steps were

independent of the quotient digit selection logic. For the partial remainder forma-

tion sub-circuits, the designs were re�ned so that this function was implemented by a

lookup table, but the development of the quotient accumulation logic was independent

of this function.

The two main examples also demonstrated the utility of the derivational frame-

work for exploring design options. For the clock synchronization circuit, the deriva-

tional frameworkmade it possible to isolate the sub-circuit a�ected by Torres-Pomales'

optimization, thus preserving much of the previous design e�ort. For the division de-

signs, there are two designs each of the partial remainder sub-circuit and the quotient

accumulation sub-circuit. Any of the four possible combinations of these sub-circuits

provide a veri�ed design.

7.1 Limitations of the Approach

The current framework is limited because the interface between the tools is manual

translation. This was unavoidable, because both tools underwent changes during the

course of this work. In addition, I have no direct link to the development of either

tool. At best, I can make suggestions and hope that they are re
ected in the next

release.

Many of the veri�cations required that signals within the design be annotated

with invariant properties. These requirements were maintained manually by way of

comments. There is nothing in the derivation tools to enforce these design constraints

I used the streams library to de�ne a shallow embedding of DRS stream equations
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in PVS. That is, I established an equivalence between objects in DRS and objects de-

�ned in PVS. Shallow embedding eliminates potential for verifying some meta-results

about DRS stream equations within PVS. In particular, the shallow embedding uses

PVS tuples to represent DRS tuples. PVS tuples are distinct from repeated pairing.

Since PVS does not allow quanti�cation over types, we cannot express properties

about all tuple types.

Another limitation is that the interface between PVS and DRS at the behav-

ioral level is still somewhat sketchy. Recursive functions in PVS must terminate,

because PVS requires all functions to be total. Hardware designs are generally non-

terminating. While it is certainly possibly to develop structures in PVS that faithfully

de�ne the semantics of DRS behavioral level descriptions, it would be better if we

could maintain a syntactic similarity.

7.2 Suggestions for Future Work

One obvious suggestion is to overcome the limitations enumerated in the previous

section. However, many of the suggested improvements involve modi�cations to the

tools themselves. Without input to future modi�cations to these tools, it is di�cult

to explore these options.

In Chapter 5, I presented two proofs of Torres-Pomales' optimization. One was

localized to just the modi�ed sub-circuit, with appropriate constraints placed on the

input signals. The other included some of the surrounding circuitry in the statement

of the replacement theorem. The general strategy I have followed is to provide just

enough context to justify the replacement. An interesting question is whether a

su�cient amount of context can be automatically generated at the same time DRS
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generates the correctness condition. Alternatively, the replacement command within

DRS could be modi�ed to include a context parameter, to guide generation of the

correctness condition.

Many of the replacements were justi�ed using the strategy (co-induct-and-simplify).

This suggests that it may be possible to add a function to DRS to attempt an auto-

matic veri�cation of a replacement using a trivial bisimulation. This could eliminate

the overhead of generating the PVS theories for justifying the replacement. Also, it

may be possible to discharge some of the combinational replacement conditions using

a tool such as the Stanford Validity Checker [BDL96]. For the replacements that

require more interaction, failed proof attempts often suggest appropriate invariants.

A coinductive veri�er might be improved by adding some of the recent techniques for

semi-automatic generation of invariants [GS96].

This dissertation focused on structural level re�nements and how theorem proving

support can augment derivational design at the structural level. More work needs to

be done to link behavioral level descriptions to veri�ed algorithms. This requires

development of appropriate representation for reactive systems. Perhaps the theory

developed by Jacobs and Hensel will enable more useful models of reactive systems

within PVS [HJ97a, HJ97b].

At the end of chapter 4, I suggested one way to assert a fairness constraint on

a boolean valued stream. More research is needed to determine how to express and

verify other properties on streams. More case studies are needed to determine what

properties arise in practice.
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7.3 Concluding Remarks

The problem currently facing the application of formal methods in hardware de-

sign lies not in creating the �rst design correctly, but rather in correctly incorporating

improvements and optimizations. Often a �rst design is conservative, with straight-

forward mappings from algorithms into hardware. Formal methods research has pri-

marily addressed this phase of the design cycle. Subsequent iterations in the design

life-cycle involve modi�cations to improve some aspect of the design. Such modi�ca-

tions may have no obvious relationship to earlier iterations of the design. Frequently,

a design modi�cation inadvertently violates some assumptions made in the earlier de-

sign, thus we need some mechanism to both verify re�nements and remember design

constraints.

For formal design approaches to succeed in practice, it is essential that they be

able to support the ingenuity of the designer. This requires that formal techniques be

designed so that they do not unnecessarily restrict the available design options. The

representation of hardware structures using systems of stream equations provides a

solid foundation upon which to build a formal framework for hardware design. By

viewing sequential circuits as corecursive equations, coinductive proof techniques are

e�ective for verifying arbitrary circuit optimizations. This technique combined with

the deductive capabilities of a theorem proving system such as PVS provides a robust

method for proving equivalence between two sequential systems.
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