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Abstract

Mobile computing devices intended for disconnected operation, such as laptops and personal organiz-
ers, must employ optimistic replication strategies for user �les. Unlike traditional distributed systems,
such devices do not attempt to present a \single �lesystem" semantics: users are aware that their �lesys-
tems are replicated, and that updates to one replica will not be seen in another until some point of
synchronization is reached (often under the user's explicit control). A variety of tools, collectively called
�le synchronizers, support this mode of operation.

Unfortunately, present-day synchronizers seldom give the user enough information to predict how
they will behave under all circumstances. Simple slogans like \Non-con
icting updates are propagated
to other replicas" ignore numerous subtleties|e.g., Precisely what constitutes a con
ict between updates
in di�erent replicas? What does the synchronizer do if updates con
ict? What happens when �les are
renamed? What if the directory structure is reorganized in one replica?

Our goal is to o�er a simple, concrete, and precise framework for describing the behavior of �le
synchronizers. To this end, we divide the synchronization task into two conceptually distinct phases:
update detection and reconciliation. We discuss each phase in detail and develop a straightforward
speci�cation of each. We sketch our own prototype implementation of these speci�cations and discuss
how they apply to some existing synchronization tools.

1 Introduction

The growth of mobile computing has brought to fore novel issues in data management, in particular data
replication under disconnected operation. Support for replication can be provided either transparently (with
�lesystem or database support for client-side caching, transaction logs, etc.) or by user-level tools for
explicit replica management. In this paper we investigate one class of user-level tools|commonly called �le
synchronizers|which allow updates in di�erent replicas to be reconciled at the user's request.

The overall goal of a �le synchronizer is very easy to state: it must detect con
icting updates and propagate
non-con
icting updates. However, a good synchronizer is quite tricky to implement. Subtle misunderstand-
ings of the semantics of �leystem operations can cause data to be lost or overwritten. Moreover, the concept
of \user update" itself is open to varying interpretations, leading to signi�cant di�erences in the results of
synchronization. Unfortunately, the documentation provided for synchronizers typically makes it di�cult to
get a clear understanding of what they will do under all circumstances: either there is no description at all
or else the description is phrased in terms of low-level mechanisms that do not match the user's intuitive
view of the �lesystem. In view of the serious damage that can be done by a synchronizer with unintended or
unexpected behavior, we would like to establish a concise and rigorous framework in which synchronization
can be described and discussed, using terms that both users and implementors can relate to.

We concentrate on �le synchronization in this paper and only brie
y touch upon the �ner-grained notion
of data synchronization o�ered by newer tools. But some of the fundamental issues raised here are relevant for
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both �le and data synchronization. Indeed, these issues are closely related to replication and synchronization
(while recovering from a partition) in mainstream distributed systems [DGMS85, Kis96, GPJ93, DPS+94,
etc.]. Ultimately, we hope to extend our speci�cation to encompass a wider range of replication mechanisms,
from data synchronizers [Puma, DDD+94, etc.] to those of distributed �lesystems and databases.

In our model a �le synchronizer is invoked explicitly by an action of the user (issuing a synchronization
command, dropping a PDA into a docking cradle, etc.). For purposes of discussion, we identify two cleanly
separated phases of the �le synchronizer's task: update detection|i.e., recognizing where updates have
been made to the individual �lesystem replicas since the last point of synchronization|and reconciliation|
combining updates to yield the new, synchronized state of each replica.

The update detector for each replica S computes a predicate dirtyS that summarizes the updates that
have been made to S (it is allowed to err on the side of safety, indicating possible updates where none have
occurred, but all actual updates must be reported). The reconciler uses these predicates to decide which
replica contains the most up-to-date copy of each �le or directory. The contract between the two components
is expressed by the requirement

for all paths p, :dirtyS(p) implies currentContentsS(p) = originalContentsS(p);

which the update detector must guarantee and on which the reconciler may rely. The whole synchronization
process may then be pictured as follows:

  Replication

User
Updates

User
Updates

   Reconciler

Update
Detector

dirty dirtyA B

O O

A B

A’ B’

Update
Detector

The �lesystems in both replicas start out with the same contents O. Updates by the user in one or both
replicas lead to divergent states A and B at the time when the synchronizer is invoked. The update detectors
for the two replicas check the current states of the �lesystems (perhaps using some information from O that
was stored earlier) and compute update predicates dirtyA and dirtyB . The reconciler uses these predicates
and the current states A and B to compute new states A0 and B0, which should coincide unless there were
con
icting updates. The speci�cation of the update detector is a relation that must hold between O, A (or
B), and dirtyA (or dirtyB); similarly, the behavior of the reconciler is speci�ed as a relation between A, B,
dirtyA, dirtyB , A

0, and B0.
The remainder of the paper is organized as follows. We start with some preliminary de�nitions in

Section 2. Then, in Sections 3 and 4, we consider update detection and reconciliation in turn. For update
detection, we describe several possible implementation strategies with di�erent performance characteristics.
For reconciliation, we �rst develop a very simple, declarative speci�cation: a set of four natural rules that
any synchronizer should obey. We then argue that these rules completely characterize the behavior of any
synchronizer satisfying them, and �nally show how they can be implemented by a straightforward recursive
algorithm. Section 5 sketches our own synchronizer implementation, including the design choices we made
in our update detector. Section 6 discusses some existing synchronizers and evaluates how accurately they
are described by our speci�cation. Section 7 describes some possible extensions.

Most of our development is independent of the features of particular operating systems and the semantics
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of their �lesystem operations; the one exception is, of course, in the implementation of update detectors
(Section 3.2), which are necessarily system-speci�c; our discussion there is biased toward Unix.

2 Basic De�nitions

To be rigorous about what a synchronizer does to the �lesystems it manipulates, the �rst thing we need is
a precise way of talking about the �lesystems themselves. For most programmers, the �rst idea that comes
to mind is to model �lesystems with a simple recursive datatype:

FS = F ] (N * FS)

That is, a �lesystem is either a �le or a directory, where a �le is some uninterpreted value f 2 F and a
directory is a partial function mapping names to �lesystems (of the same form).

For present purposes, though, an even simpler and more direct de�nition will su�ce:

FS = P * (F ] fdirg)

On this view, a �lesystem S is just a partial function mapping each path p to the contents of S at that
point|either a �le f 2 F or the token dir, indicating that p names a directory in S. (The contents of this
directory do not need to be indicated explicitly, since they can be recovered by evaluating S at extended
paths of the form p:x.) The advantage of this presentation is that it leads to a \
at" speci�cation, whose
properties a user can inspect directly, with no need for inductive reasoning. Of course, formal proofs of these
properties will often be inductive, but that need not concern users.

Since \updates" to a �lesystem can involve creating and deleting �les and directories, as well as modifying
existing ones, it is convenient to treat present and absent �les uniformly:

FS = P ! (F ] f?;dirg)

In other words, we think of a �lesystem S as a total function mapping a path p to what p names in S, which
can be either a �le f , a directory, or nothing at all.

To lighten the notation in what follows, we make some simplifying assumptions. First, we assume that,
during synchronization, the �lesystems are not being modi�ed except by the synchronizer itself. This means
that they can be treated as static functions (from paths to contents), as far as the synchronizer is concerned.
Second, we assume that, at the end of the previous synchronization, the two �lesystems were identical.
Third, we handle only two replicas. Finally, we ignore links (both hard and symbolic), �le permissions, etc.
Section 7 discusses how our development can be re�ned to relax some of these restrictions.

2.1 Paths and Files

With the foregoing intuitions in mind, we can now state our basic de�nitions formally.
The metavariables x and y range over a set N of �lenames. P is the set of paths|�nite sequences of

names separated by dots. (The dots between path components should be read as slashes by Unix users,
backslashes by Windows users, and colons by Mac users.) The metavariables p, q, and r range over paths.
The empty path is written �. The concatenation of paths p and q is written p:q. We write jpj for the length
of path p|i.e., j�j = 0 and jq:xj = jqj + 1. We write q � p if q is a pre�x of p, i.e., if p = q:r for some r.

When f is a function whose domain is the set of paths, we write f=p for the function \f after p", de�ned
as follows: (f=p)(q) = f(p:q).

2.2 Filesystems

For our purposes here, there is no need to be speci�c about exactly what �les can contain. We simply assume
that F is some set whose elements are the possible contents of �les|for example, F could be the set of all
strings of bytes. All we need to know about F is that it supports equality testing: given f; g 2 F , we can
ask whether f = g.

A �lesystem is a function S 2 P ! (F ] f?;dirg) satisfying the following conditions: (1) if S(p:x) 6= ?,
then S(p) = dir (\only directories have children") and (2) there is some depth n such that S(q) = ? for all
paths q of length greater than n (\depth is �nite"). For example, the �lesystem
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in which the root directory contains one subdirectory d, which contains two �les a (with contents f) and b
(with contents g), is represented by the function

f� 7! dir; d 7! dir; d:a 7! f; d:b 7! g; and p 7! ? for all other paths pg:

The metavariables O, S, A, B, C, and D range over �lesystems.
When S is a �lesystem, we write jSj for the length of the longest path p such that S(p) 6= ?. We write

childrenA(p) for the set of names denoting immediate children of path p in �lesystem A|that is,

childrenA(p) = fq j q = p:x for some x ^ A(q) 6= ?g:

We write childrenA;B(p) for childrenA(p) [ childrenB(p).

3 Update Detection

With these basic de�nitions in hand, we now turn to the synchronization task itself. This section focuses
on update detection, leaving reconciliation for Section 4. We �rst recapitulate the speci�cation of the
update detector outlined in the introduction (Section 3.1) and then list several implementation strategies
(Section 3.2) that satisfy this speci�cation.

3.1 Speci�cation

We place one additional requirement on the dirty predicate computed by the update detector: that it should
be upward closed|i.e., that if some path is marked dirty, then so are all of its ancestors. (This condition
makes the speci�cation of the reconciler (De�nition 4.1.2) slightly simpler.)

3.1.1 De�nition: A dirtiness predicate is an up-closed predicate on paths, i.e., a predicate � such that, if
p � q and �(q), then �(p). An immediate consequence of this de�nition is that, if � is a dirtiness predicate,
then p � q ^ :�(p) implies :�(q). We shall use this fact to streamline the speci�cation of reconciliation
below.

3.1.2 De�nition: Suppose O and S are �lesystems and dirtyS is a dirtiness predicate. Then dirtyS is said
to (safely) estimate the updates from O to S if :dirtyS(p) implies O=p = S=p, for all paths p:

A crucial property of this de�nition is that, if A, B, and O are �lesystems and dirtyA and dirtyB estimate
the updates from O to A and O to B, then :dirtyA(p) and :dirtyB(p) together imply A=p = B=p.

3.2 Implementation Strategies

Update detectors satisfying the above speci�cation can be implemented in many di�erent ways; this section
outlines a few and discusses their pragmatic advantages and disadvantages. The discussion is speci�c to
Unix �lesystems, but most of the strategies we describe would work with other operating systems too.
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3.2.1 Trivial Update Detector

The simplest possible implementation is given by the constantly true predicate, which simply marks every
�le as dirty, with the result that the reconciler must then regard every �le (except the ones that happen to be
identical in the two �lesystems) as a con
ict. In some situations, this may actually be an acceptable update
detection strategy. On one hand, the fact that the reconciler must actually compare the current contents of
all the �les in the two �lesystems may not be a major issue if the �lesystems are small enough and the link
between them is fast enough. On the other hand, the fact that all updates lead to con
icts may not be a
problem in practice if there are only a few of them. The whole �le synchronizer, in this case, degenerates to
a kind of recursive remote di�.

3.2.2 Exact Update Detector

On the other end of the spectrum is an update detector that computes the dirty predicate exactly, for
example by keeping a copy of the whole �lesystem when it was last synchronized and comparing this state
with the current one (i.e., replacing the remote di� in the previous case with two local di�s).

Detecting updates exactly is expensive, both in terms of disk space and|more importantly|in the time
that it takes to compute the di�erence of the current contents with the saved copies of the �lesystem. On the
other hand, this strategy may perform well in situations where it is run o�-line (in the middle of the night),
or where the link between the two computers has very low bandwidth, so that minimizing communication
due to false con
icts is critical.

3.2.3 Simple Modtime Update Detector

A much cheaper, but less accurate, update detection strategy involves using the \last modi�ed time" provided
by operating systems like Unix. With this strategy, just one value is saved between synchronizations in each
replica: the time of the previous synchronization (according to the local clock). To detect updates, each
�le's last-modi�ed time is compared with this value; if it is older, then the �le is not dirty.

Unfortunately, this simple strategy turns out to be wrong (under Unix). The problem is that, in Unix,
renaming a �le does not update its modtime, but rather updates the modtime of the directory containing
the �le: names are a property of directories, not �les. For example, suppose we have two �les, a and b, and
that we move a to b (overwriting b) in one replica. If we examine just the modtime of the path b, we will
conclude that it is not dirty, and, in the other replica, a will be deleted without b being created.

Similarly, it is not enough to look at a �le's modtime and its directory's, since the directory itself could
have been moved, leaving its modtime alone but changing its parent directory's modtime. To avoid the
problem completely, we must judge a �le as dirty if any of its ancestors (back to the root) has a modtime
more recent than the last synchronization. Unfortunately, this makes the simple modtime detector nearly
useless in practice, since an update (�le creation, etc.) near the root of the tree leads to large subtrees being
marked dirty.

3.2.4 Modtime-Inode Update Detector

A better strategy for update detection under Unix relies on both modtimes and inode numbers. We remember
not just the last synchronization time, but also the inode number of every �le in each replica. The update
detector judges a path as dirty if either (1) its inode number is not the same as the stored one or (2) its
modtime is later than the last synchronization time. There is no need to look at the modtimes of any
containing directories.

For example, if we move a on top of b, as above, then the new contents of that replica at the path b will
be a �le with a di�erent inode number than what was there before. Both a and b will be marked as dirty,
leading (correctly) to a delete and an insert in the other replica.

We have also experimented with a third variant, where inode numbers are stored only for directories, not
for each individual �le. This uses much less storage than remembering inode numbers for all �les, but is not
as accurate. Based on experience, our guess is that storing all the inode numbers is a better tradeo�, on the
whole.
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3.2.5 On-Line Update Detector

A di�erent kind of update detector|one that is di�cult to implement at user level under Unix but possible
under some other operating systems such as Windows|requires the ability to observe the complete trace of
actions that the user makes to the �lesystem. This detector will judge a �le to be modi�ed whenever the
user has done anything to it (even if the net e�ect of the user's actions was to return the �le to its original
state), so it does not, in general, give the same results as the exact update detector. But it will normally get
close, and may be cheaper to implement than the exact detector. But this presupposes the ability to track
arbitrary user actions that a�ect the �lesystem and hence is a preferred strategy for distributed �lesystems
of various kinds, for instance, Coda [Kis96, Kum94], Ficus [RHR+94, PJG+97], Bayou [TTP+95, PST+97],
and LittleWorks [HH95].

4 Reconciliation

We now turn our attention to the other major component of the synchronizer, the reconciler. We begin
by developing a set of simple requirements that any implementation should satisfy (Section 4.1). Then we
give a recursive algorithm (Section 4.2) and show (a) that it satis�es the given requirements, and (b) that
the requirements determine its behavior completely, i.e., that any other synchronization algorithm that also
satis�es the requirements must be behaviorally indistinguishable from this one (Section 4.3).

4.1 Speci�cation

Suppose that A and B are the current states of two �lesystems replicating a common directory structure,
and that we have calculated dirtiness predicates dirtyA and dirtyB , estimating the updates in A and B since
the last time they were synchronized. Running the reconciler with these inputs will yield new �lesystem
states C and D. Informally, the behavioral requirements on the synchronizer can be expressed by a pair
of slogans: (1) propagate all non-con
icting updates, and (2) if updates con
ict, do nothing. Of course, an
actual synchronization utility will typically try to do better than \do nothing" in the face of con
icting
updates: it may, for example, apply additional heuristics based on the types of �les involved, ask the user
for advice, or allow manual editing on the spot. Such cleanup actions can be incorporated in our model by
viewing them as if they had occurred just before the synchronizer began its real work.

We are already committed to a particular formalization of the notion of update (cf. Section 3): a path
is updated in A if its value in A is di�erent from its original value at the time of last synchronization.
We can formalize the notion of con
icting updates in an equally straightforward way: updates in A and B
are con
icting if the contents of A and B resulting from the updates are di�erent. If A and B are both
updated but their new contents happen to agree, these updates will be regarded as non-con
icting. (Another
alternative is to say that overlapping updates always con
ict. But this is likely to lead to more false positives
in con
ict detection.)

There are three ways, then, that synchronization can succeed for a particular path p:

1. if A and B agree at p, then there is nothing to do, and C(p) and D(p) should be the same as A(p) and
B(p);

2. if :dirtyA(p), then (since dirtyA is up-closed) the entire subtree rooted at p is unchanged in A, and
any updates in the corresponding subtree in B should be propagated to both sides; that is both C=p
(the subtree rooted at p in C) and D=p should be identical to B=p;

3. conversely, if :dirtyB(p), then we should have C=p = D=p = A=p.

On the other hand, if p has con
icting updates in A and B, we want to leave it unchanged in C and D:

4. if dirtyA(p) and dirtyB(p) and A(p) 6= B(p), then we should have C=p = A=p and D=p = B=p.

A few examples should clarify the consequences of these requirements. Suppose the original state O of the
�lesystems was
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and that we obtain the new states A and B by modifying the contents of d:a in A and d:b in B. Suppose,
furthermore (for the sake of simplicity), that we are using an exact update detector, so that dirtyA is true
for the paths d:a, d, and � and false otherwise, and dirtyB is true for d:b, d, and �. Then, according to the
requirements, the resulting states of the two �lesystems should be C and D as shown.
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D =DIR
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A = DIR
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The update in d:a in A has propagated to B and the update in d:b to A, making the �nal states identical.
Suppose, instead, that the new �lesystems A and B are obtained from O by adding a �le in A and

deleting one in B:
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D =DIR

DIR
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C =DIR
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A = DIR

DIR

g

d

b

B =

h
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h
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This is an instance of the classic insert/delete ambiguity [FM82, GPJ93, PST+97] faced by any synchro-
nization mechanism: if the reconciler could see only the current states A and B, there would be no way for
it to know that c had been added in A, as opposed to having been deleted from B (and having existed on
both sides originally); symmetrically, it could not tell whether a was deleted in A or new in B. The dirty
predicates provided by the update detector resolve the ambiguity: c is dirty only in A, while a is dirty only
in B. (Note that a less accurate update detector might also mark c dirty in B or a dirty in A. The e�ect
would then be a con
ict reported by the reconciler and no changes to the �lesystems|i.e., the speci�cation
requires that synchronization should \fail safely.")

Similarly, suppose the �le d:a is renamed, in A, to d:c, and that d:b is deleted in B. In A, the paths
marked dirty are d:a, d:c, d, and �. In B, the dirty paths are d:b, d, and �. So, reconciliation will result in
states C and D as shown.

DIR

DIR

 f

d

c

D =DIR

DIR

f

d

c

C =DIR

DIR

f

d

a

B =DIR

DIR

g

d

A =

b
 c

f
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On the other hand, suppose that d:a is modi�ed in A and deleted in B, and that d:b is updated only in
B. The dirty paths in A are d:a, d, and �; in B they are d:a, d:b, d, and �. The fourth clause above thus
applies to d:a, leaving it unmodi�ed in C and D, while the update to d:b is propagated to A as usual.
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d

b

D =DIR

DIR

f’

d

ba

C =DIR

DIR

f’ g
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ba

A = DIR

DIR

d

b
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g’ g’ g’

One small re�nement is needed to complete the speci�cation of reconciliation. In what we've said so far,
we've considered arbitrary paths p. This is actually slightly too permissive, leading to cases where two of
the requirements above make con
icting predictions about the results of synchronization. Suppose that, to
obtain A and B, we delete the directory d on one side and modify the �le a (within d!) on the other:

DIR

d

A = DIR

DIR

f’

d

ba

B =

g

What, then, should be the contents of C(d:b)? On the one hand, we have dirtyB(d:b) = false (since O(d:b) =
B(d:b) = g), so according to the third rule we should have C=d:b = B=d:b, so C(d:b) = g. But, on the other
hand, we have both dirtyA(d) and dirtyB(d), and A(d) 6= B(d), so, according to the fourth rule, we should
have C=d = A=d, from which it follows that C(d:b) = ?.

This is a case of a genuine con
icting update, and we believe the correct value for C(d:a) here is ?
(the authors of at least one commercial synchronizer would disagree|cf. Section 6.1). We can resolve the
ambiguity by stopping at the �rst hint of con
ict|i.e., by considering only paths p where all the ancestors
of p in both A and B refer to directories (and hence do not con
ict):

4.1.1 De�nition: Let A and B be �lesystems. A path p is said to be relevant in (A;B) i� either p = � or
p = q:x for some q and x, with A(q) = B(q) = dir.

With this re�nement, we are ready to state the formal speci�cation of the reconciler.

4.1.2 De�nition [Requirements]: The pair of new �lesystems (C;D) is said to be a synchronization of a
pair of original �lesystems (A;B) with respect to dirtiness predicates dirtyA and dirtyB if, for each relevant
path p in (A;B), the following conditions are satis�ed:

A(p) = B(p) =) C(p) = A(p) ^ D(p) = B(p)
:dirtyA(p) =) C=p = D=p = B=p
:dirtyB(p) =) C=p = D=p = A=p
dirtyA(p) ^ dirtyB(p) ^ A(p) 6= B(p) =) C=p = A=p ^ D=p = B=p

4.2 Algorithm

Having speci�ed the reconciler precisely, we can explore some properties of the speci�cation. In particular,
we would like to know that it is complete, in the sense that it answers all possible questions about how a
reconciler should behave, and that it is implementable by a concrete algorithm. We address the latter point
�rst.

For ease of comparison with the abstract requirements above, we present the algorithm in \purely func-
tional" style|as a function taking a pair of �lesystems as an argument and returning a fresh pair of �lesystems
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as a result. In the de�nition, we use the following notation for overwriting part of one �lesystem with the
contents of the other.

4.2.1 De�nition: Let S and T be functions on paths and p be a path. We write T [p S] for the function
formed by replacing the subtree rooted at p in T with S, de�ned formally as follows:

T [p S] = �q: if p = q:r then S(r) else T (q):

4.2.2 De�nition [Reconciliation Algorithm]: Given dirtiness predicates dirtyA and dirtyB , the algo-
rithm recon is de�ned as follows:

recon(A;B; p) =
1) if :dirtyA(p) ^ :dirtyB(p)

then (A;B)
2) else if A(p) = B(p) = dir

then let fp1; p2; : : : ; png = childrenA;B(p) (in lexicographic order)
in let (A0; B0) = (A;B)

let (Ai+1; Bi+1) = recon(Ai; Bi; pi+1) for 0 � i < n
in (An;Bn)

3) else if :dirtyA(p)
then (A[p B=p]; B)

4) else if :dirtyB(p)
then (A;B[p A=p])

5) else
(A;B).

That is, recon takes a pair of �lesystems A and B and a path p, and returns a pair of �lesystems (C;D) in
which the subtrees rooted at p have been synchronized. (Of course, a concrete realization of this algorithm
would take only p as argument and return no results, performing its task by side-e�ecting the two �lesystems
in-place. It should be obvious how to derive such an implementation from the description we give here.)

An easy induction on max(jAj; jBj) � jpj shows that recon terminates for all �lesystems A and B and
paths p. Also, observe that updates to the �lesystems A and B are performed only through the recursive
calls and the grafting function de�ned in De�nition 4.2.1; this ensures that recon(A;B; p) leaves una�ected
all parts of A and B that are outside the subtree rooted at p.

4.3 Soundness and Completeness of the Algorithm

It remains, now, to verify some properties of the requirements speci�cation and the algorithm. In particular,
we show that (1) the requirements in De�nition 4.1.2 fully characterize the behavior of the reconciler; and
that (2) our reconciliation algorithm section is sound with respect to the speci�cation, i.e., it satis�es the
requirements in De�nition 4.1.2. It is an immediate consequence that the requirements themselves are
consistent.

To facilitate the correctness arguments, we �rst introduce a re�nement of the original requirements that
allows us to focus our attention on a speci�c region of the two �lesystems.

4.3.1 De�nition: The pair of new �lesystems (C;D) is said to be a synchronization after p of a pair of
original �lesystems (A;B) if p is a relevant path in (A;B) and the following conditions are satis�ed for each
relevant path p:q in (A;B):

RA1) A(p:q) = B(p:q) =) C(p:q) = A(p:q) ^ D(p:q) = B(p:q)
RA2) :dirtyA(p:q) =) C=p:q = D=p:q = B=p:q
RA3) :dirtyB(p:q) =) C=p:q = D=p:q = A=p:q
RA4) dirtyA(p:q) ^ dirtyB(p:q) ^ A(p:q) 6= B(p:q) =) C=p:q = A=p:q ^ D=p:q = B=p:q

Note that De�nition 4.1.2 is just a special case of the above where p = �.
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4.3.2 De�nition: We write synch=p(C;D;A;B) if (1) (C;D) is a synchronization of (A;B) after p, and (2)
p 6� q implies C(q) = A(q) ^ D(q) = B(q), for all paths q.

The de�nition of the reconciler uniquely captures the notion of reconciliation, i.e., given two �lesystems
which were synchronized at some point in the past, there is at most one pair of new �lesystems that satis�es
the requirements:

4.3.3 Proposition [Uniqueness]: Let A, B, and O be �lesystems and suppose that dirtyA and dirtyB
estimate the updates from O to A and B respectively. Let p be a relevant path in (A;B). If (C1; D1) and
(C2; D2) are both synchronizations of (A;B) after p, then C1=p = C2=p and D1=p = D2=p.

Proof: We argue, by induction on max(jAj; jBj)� jp:qj, that

C1=p:q = C2=p:q ^ D1=p:q = D2=p:q

for any relevant path p:q in (A;B).
There are four cases to consider, depending on whether the path p:q is dirty or not in A and B:

� Suppose :dirtyA(p:q) ^ :dirtyB(p:q).
Then :dirtyA(p:q:r) and :dirtyB(p:q:r) for all r, since a dirtiness predicate is up-closed by de�nition.
Then A(p:q:r) = B(p:q:r) for all r, by De�nition 3.1.2. So, by (RA1), we have:

C1(p:q:r) = A(p:q:r) = B(p:q:r) = D1(p:q:r) and
C2(p:q:r) = A(p:q:r) = B(p:q:r) = D2(p:q:r):

Thus C1=p:q = C2=p:q and D1=p:q = D2=p:q:

� Suppose :dirtyA(p:q) ^ dirtyB(p:q).
Then by (RA2), we have C1=p:q = D1=p:q = B=p:q and C2=p:q = D2=p:q = B=p:q:
Thus, C1=p:q = C2=p:q and D1=p:q = D2=p:q:

� Suppose dirtyA(p:q) ^ :dirtyB(p:q).
Then we are done, by an argument symmetric to the previous case.

� Finally, suppose dirtyA(p:q) ^ dirtyB(p:q).
There are two cases to consider, depending on whether or not A(p:q) = B(p:q).

{ If A(p:q) = B(p:q) then by clause (RA1),

(a) C1(p:q) = A(p:q) and D1(p:q) = B(p:q)
(b) C2(p:q) = A(p:q) and D2(p:q) = B(p:q):

Now there are three sub-cases to consider:

(i) A(p:q) = B(p:q) 2 F
(ii) A(p:q) = B(p:q) = ?
(iii) A(p:q) = B(p:q) = dir

� In cases (i) and (ii), observations (a) and (b) imply

C1(p:q) = C2(p:q) and D1(p:q) = D2(p:q):

Moreover, by de�nition of a �lesystem,

C1=p:q:r = C2=p:q:r = D1=p:q:r = D2=p:q:r = ?

for all r 6= �. So we have

C1=p:q = C2=p:q and D1=p:q = D2=p:q;

as required.
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� In case (iii), applying the induction hypothesis yields

C1=p:(q:x) = C2=p:(q:x) and D1=p:(q:x) = D2=p:(q:x)

for all x, since each p:q:x is a relevant path. This, along with (a) and (b), implies

C1=p:q = C2=p:q and D1=p:q = D2=p:q;

as required.

{ If A(p:q) 6= B(p:q) then by clause (RA4),

C1=p:q = A=p:q and D1=p:q = B=p:q

C2=p:q = A=p:q and D2=p:q = B=p:q;

which implies C1=p:q = C2=p:q and D1=p:q = D2=p:q, as required. 2

The rest of this section leads to a proof of soundness of the algorithm. To prove this, we need to show
some more properties of the speci�cation in Section 4.1.2. In particular, we claim

� that the order in which (non-overlapping) regions of a �lesystem are synchronized is irrelevant;

� that synchronizing a directory (a region) is just the result of synchronizing its contents (sub-regions).

We begin the argument with a few more de�nitions.

4.3.4 De�nition: Paths p and q are incomparable if neither is a pre�x of the other|i.e., if p 6� q ^ q 6� p.

4.3.5 Fact: Let paths p and q be incomparable. If q � r then p and r are incomparable.

Proof: This follows easily from the above de�nition. Assume p and q are incomparable and q � r. If p
and r are not incomparable, then by de�nition, either p � r or r � p. In either case, we can derive a
contradiction:

� If r � p then q � p, which contradicts the assumption p and q are incomparable.

� If p � r then either p � q or q � p, which again contradicts the assumption. 2

4.3.6 De�nition: A set P of paths is said to be pairwise incomparable if, for each p; q 2 P , either p = q or
else p and q are incomparable.

4.3.7 De�nition: Let P be a set of pairwise incomparable, relevant paths in (A;B). The pair (C;D) is
said to be a synchronization after P of original �lesystems (A;B) if (C;D) is a synchronization after p of
(A;B), for each p 2 P .

4.3.8 De�nition: We write synch=P (C;D;A;B) if:

� (C;D) is a synchronization after P of (A;B)

� for all q, :(9p 2 P: p � q) implies C(q) = A(q) ^ D(q) = B(q).

4.3.9 Lemma [Monotonicity]: Let P be a set of pairwise incomparable and relevant paths in (A;B). Let
q be a relevant path in (A;B) such that p and q are incomparable, for any p 2 P . If synch=P (C

0; D0; A;B)
and synch=q(C;D;C 0; D0) then synch=P 0(C;D;A;B) where P 0 = P [ fqg.

Proof: We prove this in three steps:

1. Let r be any relevant path in (A;B) such that q � r.
Then for any such r, (p 6� r) for any p 2 P , by Fact 4.3.5. So C 0(r) = A(r) and D0(r) = B(r) by
synch=P (C

0; D0; A;B),and conditionsRA1 throughRA4 of De�nition 4.3.1 hold by synch=q(C;D;C 0; D0).
Thus, we conclude that (C;D) is a synchronization after q of (A;B).
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2. Let r be any relevant path in (A;B) such that p � r for some p 2 P .
Then, for any such r, (q 6� r) by Fact 4.3.5. So C(r) = C 0(r) and D(r) = D0(r) by synch=q(C;D;C 0; D0),
and conditions RA1 through RA4 of De�nition 4.3.1 hold by synch=P (C

0; D0; A;B). Thus, we conclude
that (C;D) is a synchronization after P of (A;B).

3. Let r be any path such that (p0 6� r) for all p0 2 P 0.
Then C(r) = C 0(r) = A(r) and D(r) = D0(r) = B(r) by synch=q(C;D;C 0; D0) and synch=P (C

0; D0; A;B)

Finally, by (1); (2); and (3), synch=P 0(C;D;A;B). 2

4.3.10 Lemma [Permutation]: For any n, let Pn = fpi j 1 � i � ng be a set of pairwise incomparable,
relevant paths in (A;B). If

1. (A0; B0) = (A;B), and

2. synch=pi+1(Ai+1; Bi+1; Ai; Bi) for all i such that 0 � i < n,

then synch=Pn(An; Bn; A;B).

Proof: By induction on n.

� For the base case, where n = 0, it is obvious from assumption (1) that synch=fg(A0; B0; A;B).

� For the induction step, suppose n � 1. Now, if Pn is pairwise incomparable, then Pn�1 certainly is.
The induction hypothesis thus applies, yielding synch=Pn�1(An�1; Bn�1; A;B)). Moreover, we have
synch=pn(An; Bn; An�1; Bn�1). Then by Lemma 4.3.9, synch=Pn(An; Bn; A;B). 2

4.3.11 Lemma [Children]: Given �lesystems A and B, let p be any relevant path in (A;B) such that
A(p) = B(p) = dir and let P = childrenA;B(p). Then synch=P (C;D;A;B) implies synch=p(C;D;A;B).

Proof: We assume
synch=P (C;D;A;B) (C-1)

and show that

1. (C;D) is a synchronization after p of (A;B); and

2. for all q, (p 6� q) implies C(q) = A(q) ^ D(q) = B(q).

Then synch=p(C;D;A;B) would follow from (1) and (2).

� To show (2), observe that (p 6� q) implies (p:x 6� q) for all x. Then by (C-1), C(q) = A(q) and
D(q) = B(q).

� To show (1), we show that conditions (RA1) through (RA4) of De�nition 4.3.1 are satis�ed for any
relevant path of the form p:q. To show these conditions, we consider two sub-cases in turn for each
condition, depending on whether or not q = �.

{ Suppose A(p:q) = B(p:q): (A-1)

� Suppose further that q = �.
Since (p:x 6� p) for all p:x 2 P , we have C(p) = A(p) and D(p) = B(p) by (C-1) i.e.,
C(p:q) = A(p:q) and D(p:q) = B(p:q):

� Suppose instead that q = x:r for some x and r, and let p0 = p:x.
Then p0 2 P and so p0:r is relevant in (A;B). Also, A(p0:r) = B(p0:r) follows trivially from
(A-1). But synch=p0(C;D;A;B) by (C-1). So, by (RA1), we have C(p0:r) = A(p0:r) and
D(p0:r) = B(p0:r); i.e., C(p:q) = A(p:q) and D(p:q) = B(p:q).

Thus, (RA1) holds for p:q, for all q.

{ Suppose :dirtyA(p:q): (A-2)
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� Suppose further that q = �.
Since (p:x 6� p) for any p:x 2 P , we have C(p) = A(p) and D(p) = B(p) by (C-1). But by
assumption, A(p) = B(p) = dir: So

C(p) = D(p) = B(p): (C-2)

Also :dirtyA(p:x) for all p:x, by assumption [A-2] since any dirtiness predicate is up-closed.
But synch=p:x(C;D;A;B) for all p:x 2 P by (C-1). So by (RA2), we have

C=p:x = D=p:x = B=p:x; for all p:x 2 P: (C-3)

By (C-2) and (C-3), C=p = D=p = B=p, i.e., C=p:q = D=p:q = B=p:q.

� Suppose instead that q = x:r for some x and r, and let p0 = p:x ;
Then p0 2 P and so p0:r is relevant in (A;B). Then dirtyA(p

0:r) follows trivially from (A-2).
But synch=p0(C;D;A;B) by (C-1). So by (RA2), we have C=p':r = D=p':r = B=p':r i.e.,
C=p:q = D=p:q = B=p:q

Thus, (RA2) holds for p:q for all q.

{ Suppose :dirtyB(p:q). (A-3)

Then, (RA3) holds for p:q for all q, by an argument similar to that for (RA2).

{ Suppose dirtyA(p:q) ^ dirtyB(p:q) ^ A(p:q) 6= B(p:q): (A-4)

� Suppose further that q = �.
But A(p) 6= B(p) contradicts the assumption A(p) = B(p) = dir. So q cannot be empty.

� Suppose instead that q = x:r for some x and r and let p0 = p:x.
Then dirtyA(p

0:r) ^ dirtyB(p
0:r) ^ A(p0:r) 6= B(p0:r) follows trivially from the assumption.

But synch=p0(C;D;A;B) by (C-1). So by (RA4), we have C=p0:r = A=p0:r and D(p0:r) =
B(p0:r) i.e., C=p:q = A=p:q and D=p:q = B=p:q

Thus, (RA4) holds for p:q for all q. 2

We then claim that the algorithm is sound with respect to the requirements speci�cation.

4.3.12 Proposition [Soundness]: Let A, B, and O be �lesystems and suppose that dirtyA and dirtyB esti-
mate the updates from O to A and B respectively. Then recon(A;B; p) = (C;D) implies synch=p(C;D;A;B)
for any relevant path p in (A;B).

Proof: We argue, by induction on (max(jAj; B) � jpj), that (C;D) is a synchronization of (A;B) after p.
Then synch=p(C;D;A;B) by De�nition 4.3.2.

There is one case to consider for each clause of the algorithm. In each case, we show that (C;D) is a
synchronization of (A;B) after p.

� Case 1: :dirtyA(p) ^ :dirtyB(p)
Then (C;D) = (A;B) , by algorithm recon. We readily verify that conditions (RA1) through RA4 of
De�nition 4.3.1 hold:

{ By De�nition 3.1.2, we know A(p:q) = B(p:q) for all q. The premises of clauses (RA1), (RA2),
and (RA3) in De�nition 4.3.1 now hold for all q, and the corresponding conclusions hold trivially.

{ The premise of clause (RA4) does not hold for p:q for any q.

Thus (C;D) is a synchronization of (A;B) after p.

� Case 2: (dirtyA(p) _ dirtyB(p)) ^ A(p) = B(p) = dir

Then (C;D) = (An; Bn) by algorithm recon, where if p1; p2; :::; pn is the lexicographic enumeration of
childrenA;B(p), then (An;Bn) is determined by the set of equations:

(A0; B0) = (A;B)
(Ai+1; Bi+1) = recon(Ai; Bi; pi+1)
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For each i < n, by induction hypothesis, (Ai+1; Bi+1) is a synchronization of (Ai; Bi) after pi+1. So for
each i < n, synch=pi+1(Ai+1; Bi+1; Ai; Bi), by De�nition 4.3.2. Then synch=childrenA;B(p)(An; Bn; A;B)
by Lemma 4.3.10. Finally, by Lemma 4.3.11, synch=p(An; Bn; A;B), as required.

� Case 3: (dirtyA(p) _ dirtyB(p)) ^ (A(p) 6= dir _ B(p) 6= dir) ^ :dirtyA(p)
i.e., dirtyB(p) ^ :dirtyA(p) ^ (A(p) 6= dir _B(p) 6= dir)
Then (C;D) = (A[p B=p]; B) by algorithm recon.
We check the clauses of De�nition 4.3.1 explicitly, for any arbitrary relevant path p:q. Obviously,

D=p:q = B=p:q: (i)

By De�nition 4.2.1,
C=p:q = B=p:q: (ii)

Also, we have dirtyA since any dirtiness predicate is up-closed,

:dirtyA(p:q): (iii)

Given the above observations, we show that the conditions (RA1) through (RA4) of De�nition 4.3.1
hold for p:q:

{ Now, if the premise of clause (RA1) holds for p:q, i.e., if A(p:q) = B(p:q), then by (ii), C(p:q) =
A(:q). Along with (i), this ensures that the conclusion of (RA1) holds for p:q, as required.

{ Observation (iii) implies that the premise of clause (RA2) does hold for p:q. But observations (i)
and (ii) give C=p:q = D=p:q = B=p:q as required.

{ Next, suppose that the premise of clause (RA3) holds for p:q: Then, for any r with q � r, we have
:dirtyB(p:r) . By De�nition 3.1.2, A(p:r) = B(p:r), and so A=p:q = B=p:q is true. This, along
with (i) and (ii), gives us C=p:q = D=p:q = A=p:q, as required.

{ Finally, the premise of clause (RA4) does not hold for p:q for any q, and clause (RA4) itself is
trivially satis�ed.

� Case 4: dirtyA(p) ^ :dirtyB(p) ^ (A(p) 6= dir _B(p) 6= dir)

The argument for this case is symmetric to the previous case.

� Case 5: dirtyA(p) ^ dirtyB(p) ^ (A(p) 6= dir _ B(p) 6= dir)
Then (C;D) = (A;B) by algorithm recon.
If q 6= �, then p:q is not a relevant path. So the only relevant path to be considered is p itself and it is
easily veri�ed that conditions (RA1) through (RA4) hold for p:

{ If the premise of (RA1) holds for p, then, since (C;D) = (A;B), we have C(p) = A(p) and
D(p) = B(p), as required.

{ Neither of the premises of (RA2) or (RA3) hold for p.

{ If the premise of (RA4) holds for p, then, since (C;D) = (A;B), we have C=p = A=p and
D=p = B=p, as required. 2

4.3.13 Theorem: Algorithm recon is sound and complete with the respect to the requirements speci�cation,
i.e., if (C;D) = recon(A;B; �); then (C;D) is a unique synchronization of A and B .

Proof: Propositions 4.3.12 and 4.3.3. 2
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Figure 1: User interface of our synchronizer

5 Our Implementation

Our main goal has been to understand the synchronization task clearly, not to produce a full-featured
synchronizer ourselves. However, we have found it helpful (as well as useful, for our own day to day mobile
computing) to experiment with a prototype implementation that straightforwardly embodies the speci�cation
we have described.

Our �le synchronizer is written in Java, using Java's Remote Method Invocation for networking. The
design is intended to perform well over both high- and medium-bandwidth links (e.g., ethernet or PPP).
To avoid long startup delays, it uses a modtime-inode strategy (cf. Section 3.2.4) for update detection,
requiring only minimal summary information to be stored between synchronizations. It operates entirely at
user level, without transaction logs or monitor daemons. It currently handles only two replicas at a time, and
is targeted toward Unix �lesystems (though all but the update detector could be used with any operating
system, and new change detection modules should be fairly easy to write).

The user interface (see Figure 1) displays all the �les in which updates have occurred, using a tree-browser
widget; selecting a �le from this tree displays its status in a detail dialog at the right and o�ers a menu of
reconciliation options. In the common case where a �le has been updated in only one replica, an appropriate
action is selected by default and the tree listing shows an arrow indicating which direction the update will
be propagated. If both replicas are updated, the tree view displays a question mark, indicating that the user
must make some explicit choice. When the user is satis�ed, a single keystroke �res all the selected actions.

Internally, the implementation closely follows the reconciliation algorithm in Section 4.2 (see Figure 2).
At the end of every synchronization, a summary associated with each replica is stored on the disk. The
saved information includes the time when each �le in the replica was last synchronized and its inode number
at that time. At the beginning of the next synchronization, each update detector reads its summary and
traverses the �le system to detect updates. A �le is marked dirty if its ctime1 or inode number has changed

1In Unix, a �le's ctime gets changed if the contents or the attributes(such as permission bits) of the �le are changed.
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Figure 2: Internals of our synchronizer

since the last synchronization. The reconciler then traverses the two replicas in parallel, examining the �les
for which updates have been detected on either side and posting appropriate records to a tree of pending
actions maintained by the user interface.

6 Examples

To demonstrate the usefulness of our speci�cation, we now describe some existing synchronizers in terms of
the speci�cation framework that we have developed. We do not attempt to provide a complete survey, just
a few representative examples.

6.1 Briefcase

Microsoft's Briefcase synchronizer [Bri98, Sch96] is part of Windows 95/NT. Its fundamental goals seem to
match those embodied in our speci�cation (\propagate updates unless they con
ict, in which case do nothing
by default")|indeed, even its user interface is fairly similar to ours. However, some simple experiments
revealed several cases where Briefcase's behavior does not match what is predicted by our speci�cation.

For example, suppose we have a synchronized �lesystem containing a directory (folder) a, a subdirectory
a:b, and a �le a:b:f . Now, in one replica, we delete a and all its contents; in the other we modify the
contents of a:b:f and add a new subdirectory a:c; then we synchronize. At this point, Briefcase reports that
no updates are needed. (This behavior is not really incorrect, since it leaves both replicas unchanged, as
demanded by our speci�cation, but a con
ict should certainly be reported.) Now, in the second replica,
create a new �le a:b:g, and synchronize again. This time, the synchronizer does propagate some changes: it
recreates a in the �rst replica, adds subdirectories a:b and a:c, and copies a:b:g|but not a:b:f ! This behavior
would be judged incorrect by our speci�cation, since it modi�es the �lesystems after con
icting updates.

This would appear to be a case of a system having been built without a clear speci�cation in mind. The
e�ect is that users are discouraged from trusting the system, since they cannot understand its behavior.

6.2 PowerMerge

According to the manufacturer's advertising [Pow98], the PowerMerge synchronizer from Leader Technologies
is \used by virtually every large Macintosh organization and is the highest rated �le synchronization program
on the market today." We tested the \light" version of the program, which is freely downloadable for
evaluation.

Although the description of the program's behavior in the user manual again seems to agree with the
intentions embodied in our speci�cation, we were unable to make the program behave as documented. For
example, deleting a �le on one side and then resynchronizing would lead to the �le being re-created, not
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deleted. Also, when both copies of a �le have been modi�ed, the most recent copy is propagated, discarding
the update in the other copy.

6.3 Rumor

UCLA's Rumor project [Rei97, RPG+96] has built a user-level �le synchronizer for Unix �lesystems|
probably the closest cousin to our own implementation. Although its capabilities go beyond what our
speci�cation is presently able to describe, Rumor (nearly) satis�es our speci�cation in the two-replica case.
Rumor's model of synchronization originates from the Ficus replicated �lesystem; much of our discussion
regarding Rumor also applies to the synchronization mechanisms of Ficus [RPG+96, RHR+94, GPJ93].

In Rumor, reconciliation is performed by a local process in each replica, which works to ensure that
the most recent updates to each �le are eventually re
ected in the local state of this replica. For each
�le in the replica, Rumor maintains a version vector re
ecting the known updates in all replicas. During
reconciliation, this version vector is compared with that of another replica (chosen by the user or determined
by availability) to determine which replica has the latest updates. If the remote copy dominates, then the
local copy is modi�ed to re
ect the updates; if the local copy dominates, then nothing more is done. (In
essence, reconciliation in Rumor uses a pull model: it is a one-way process.) If there is a con
ict, Rumor
invokes a resolver based on the type of the �le; for instance, updates to Unix directories are handled by
a \merge resolver"[RHR+94]. Updates eventually get propagated to all replicas by repeated \gossiping"
between pairs of replicas.

The update detection strategy in Rumor uses a combination of the Unix mtime and ctime �le attributes.
This strategy appears to satisfy our requirements for update detection in most cases. However, we are not
sure about Rumor's behavior in cases like the �nal example in Section 4.1. Rumor's reconciliation process,
on the other hand, is more general than that described by our speci�cation. However, it does appear to
satisfy our speci�cation if we consider the following special case. (1) There are exactly two Rumor replicas.
(2) Both replicas are reconciled at the same time, each treating the other as the source for reconciliation. (3)
Overlapping updates are handled by a simple equality check for �les (by default, Rumor considers updates
to the same �le in di�erent replicas as a con
ict, even if they result in equal contents), and a recursive merge
resolver for directories.

6.4 Distributed Filesystems

Not surprisingly, our model of synchronization has some striking similarities to the replication models un-
derlying mainstream distributed �lesystems such as Coda [Kis96, Kum94], Ficus [RHR+94, PJG+97], and
Bayou [DPS+94, TTP+95]. Related concepts also have a long history in distributed databases (e.g., [Dav84]).

These systems di�er from user-level �le synchronizers|and from each other|along numerous dimensions,
such as continuous reconciliation vs. discrete points of synchronization, distinguishing or not between client
and server machines, eager vs. lazy reconciliation, use of transaction logs vs. immediate update propagation,
etc. In particular, since explicit points of synchronization are not part of the user's conceptual model of
these systems, our speci�cation framework is not directly applicable. On the other hand, their underlying
concepts of optimistic replication and reconciliation are fundamentally very similar to ours. The intention
of synchronization|whenever and however it happens|is (eventually) to propagate noncon
icting updates
and to detect and repair con
icting updates. Our speci�cation can therefore be viewed as a �rst step toward
a more general framework in which such systems can be described and compared.

7 Extensions

We close by sketching some extensions of our framework.

7.1 Partially Successful Synchronization

If it recognizes con
icting updates, the synchronizer may halt without having made the �lesystems identical.
Then, the next time the synchronizer runs, there will not be one original �lesystem, but two. In general,
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particular regions of the �lesystem may have been successfully synchronized at di�erent times. We can easily
re�ne our speci�cation to handle this case. (Our implementation also handles this re�nement.)

Instead of assuming that the replicas had some common stateO at the end of the previous synchronization,
we introduce into the speci�cation a new �lesystem �, which records the contents of each path p at the last
time when p was successfully synchronized.

The speci�cation of the update detector remains the same as before, except that the dirty predicate is
de�ned with respect to �. That is, dirtyS(p) must be true whenever p refers in S to something di�erent from
what it referred to at the end of the last successful synchronization of p.

The reconciler is now extended with an additional output parameter: besides calculating the new states
C and D of the two replicas, it returns a predicate success that indicates which paths it has succeeded in
synchronizing. Formally, we say that the triple (C;D; success) is said to be a synchronization of a pair of
original �lesystems (A;B) with respect to dirtiness predicates dirtyA and dirtyB if, for each relevant path p
in (A;B), the following conditions are satis�ed:

A(p) = B(p) =) C(p) = A(p) ^ D(p) = B(p) ^ success(p)
:dirtyA(p) =) C=p = D=p = B=p ^ success(p)
:dirtyB(p) =) C=p = D=p = A=p ^ success(p)
dirtyA(p) ^ dirtyB(p) ^ A(p) 6= B(p) =) C=p = A=p ^ D=p = B=p ^ :success(p)

The success predicate is used after each synchronization step to compute a new \last consistent state", say
�0(p), for each path p:

�0(p) =

�
C(p) if success(p)
�(p) if :success(p):

This �lesystem �0 becomes the � that is used by the update detector for the next round of synchronization.

7.2 Multiple Replicas

In general, one may wish to synchronize several replicas on di�erent hosts, not just two. We can generalize
our requirements speci�cation to handle multiple replicas in a fairly straightforward way.

First, we relax the up-closedness condition in our original description of dirtiness predicates: intuitively,
we write dirty@S(p) to mean that S has been updated exactly at p, rather than somewhere below p. We say
that a dirtiness predicate dirty@S estimates the updates from O to S if :dirty@S(p) implies O(p) = S(p),
for all paths p.

Now, let Id = f1; 2; : : : ; ng be a set of tags identifying the n replicas to be synchronized. Let the set
of original replicas to be synchronized be denoted by FS = fSi j i 2 Idg. For any path p, let Dp;S be
the set of identi�ers of replicas that are dirty at p|i.e., Dp;S = fi j dirty@Si(p)g. A set of new replicas
FR = fRi j i 2 Idg is said to be a synchronization of FS with respect to dirtiness predicates dirty@Si if, for
each relevant path p in FS , the following conditions are satis�ed:

8i; j2Id: Si(p) = Sj(p) =) 8i2Id: Ri(p) = Si(p)
Dp;S 6= ; ^ 8i; j2Dp;S : Si(p) = Sj(p) =) 8i2Id: Ri(p) = Sj(p) for some j2Dp;S

9i; j2Dp;S : Si(p) 6= Sj(p) =) 8i2Id: Ri(p) = Si(p)

It is interesting to note that Coda's reconciliation strategy depends on a requirement similar to the one above.
Coda has a certi�cation mechanism which ensures that reconciliation is safe to proceed. Kumar [Kum94,
pages 58-61] proves that, if certi�cation succeeds at all servers, then for each data item d, either (i) d is not
modi�ed in any partition, (ii) the �nal value of d in each partition is equal to the pre-partition value, or
(iii) d is modi�ed in exactly one partition. Conditions (i) and (ii) are subsumed by the premise of the �rst
condition of our speci�cation above. The third condition is subsumed by the premise of the second condition
of our speci�cation. (The third condition of our speci�cation handles the case when reconciliation fails.)

In a multi-replica system, the process of reconciliation may in general only involve a subset of the replicas
at one time. To describe the intended behavior in this case, we would need to re�ne the above speci�cation
along the lines described in the previous subsection.
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7.3 Synchronizing Within Files

Much of the engineering e�ort in commercial synchronizers(see for instance Intellisync [Puma, Pumb]) goes
into merging updates to the same �le in di�erent replicas using speci�c knowledge of the structure of the �le
based on its type (address book, calendar, etc.). This line of research has long been pursued in distributed
database systems [Dav84]) and has resulted in products like Oracle's Symmetric Replication [DDD+94].
One way of extending our framework to this additional level of detail would be to generalize the notion of
�lesystem paths to include names for individual records within �les (e.g., p = usr.bcp.phonebook.record13 or
perhaps even p = usr.bcp.phonebook.flastname=Smith,�rstname=Johng).

7.4 Additional Filesystem Properties

A related generalization o�ers a natural means of extending our rather naive picture of the �lesystem to
include properties like read/write/execute permissions, timestamps, type information, symbolic links, etc.
For example, a symbolic link can be regarded as a special kind of �le whose contents is the target of the link.
Similarly, to handle permission bits for �les, we take the contents of the �le to include both proper contents
and permission bits. This amounts to generalizing our de�nition of �lesystems to

FS = P ! F
F = Reg(Contents;Perms) j Dir(Perms) j SymLink(Target) j ?

where Contents, Perms, and Target are some uninterpreted sets.
Recall that the predicate dirty@S is said to (safely) estimate the updates from O to S if :dirty@S(p)

implies O(p) = S(p), for all paths p. Also, de�ne dirty �S (p) as 8q:dirty@S(p:q): With these re�nements,
we can restate the formal spec�cation of the reconciler as follows:

7.4.1 De�nition [Requirements]: The pair of new �lesystems (C;D) is said to be a synchronization of a
pair of original �lesystems (A;B) with respect to predicates dirty@A and dirty@B if, for each relevant path
p in (A;B), the following conditions are satis�ed:

A(p) = B(p) =) C(p) = A(p) ^ D(p) = B(p)
:dirty �A (p) =) C=p = D=p = B=p
:dirty �B (p) =) C=p = D=p = A=p
:dirty@A(p) ^ dirty@B(p) =) C(p) = D(p) = B(p)
dirty@A(p) ^ :dirty@B(p) =) C(p) = D(p) = A(p)
dirty@A(p) ^ dirty@B(p) =) C(p) = A(p) ^ D(p) = B(p)

Hard links are more di�cult to handle, especially if it is possible to create a hard link from inside a
synchronized �lesystem to some unsynchronized �le. However, if this case is excluded, it seems reasonable
to handle hard links by annotating each �lesystem with a relation describing which �les are hard-linked
together and taking this additional information into account in the update detector and reconciler.
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