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Abstract

Authentication protocols (including protocols that provide key establishment) are de-
signed to work correctly in the presence of an adversary that can (1) perform an unbounded
number of encryptions (and other operations) while fabricating messages, and (2) prompt
honest principals to engage in an unbounded number of concurrent runs of the protocol.
The amount of local state maintained by a single run of an authentication protocol is
bounded. Intuitively, this suggests that there is a bound on the resources needed to attack
the protocol. Such bounds clarify the nature of attacks on these protocols. They also
provide a rigorous basis for automated veri�cation of authentication protocols. However,
few such bounds are known. This paper de�nes a language for authentication protocols
and establishes two bounds on the resources needed to attack protocols expressible in that
language: an upper bound on the worst-case number of encryptions by the adversary, and
an exponential lower bound on the worst-case number of concurrent runs of the protocol.
The upper bound on encryptions is relative to an upper bound on the number of runs;
on-going work on proving such a bound is brie
y described.

1 Introduction

Many protocols are intended to work correctly in the presence of an adversary that can (1) perform an
unbounded number of encryptions (and other operations) while fabricating messages, and (2) prompt
honest principals to engage in an unbounded number of concurrent runs of the protocol. This includes
some protocols for Byzantine Agreement [GLR95], secure reliable multicast [Rei96, MR97], authen-
tication, and electronic payment [OPT97]. In this paper, we focus on protocols for authentication,
including key establishment. Such protocols play a fundamental role in many distributed systems,
and their correctness is essential to the correctness of those systems. Informally, authentication pro-
tocols should satisfy (at least) two kinds of correctness requirements: secrecy, i.e., certain values
(such as cryptographic keys) are not obtained by the adversary, and correspondence, i.e., a principal's
conclusion about the identity of a principal with whom it is communicating is never incorrect.

The amount of local state maintained by a single run of an authentication protocol is bounded.
Intuitively, this suggests that there is a bound on the resources needed to attack the protocol. Such
bounds provide insight into the possible kinds of attacks on these protocols. They also provide a
rigorous basis for automated veri�cation of authentication protocols. Authentication protocols are
short and look deceptively simple, but numerous 
awed or weak protocols have been published; some
examples are described in [DS81, BAN90, WL94, AN95, AN96, Low96, Aba97, LR97, FHG98]. This
attests to the importance of rigorous veri�cation of such protocols. Theorem proving requires con-
siderable expertise from the user. Systematic state-space exploration, including temporal-logic model
checking and process-algebraic equivalence checking, is emerging as a practical approach to automated
veri�cation [CES86, Hol91, DDHY92, Kur94, CS96].
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Systems containing adversaries of the kind described above have an unbounded number of reach-
able states, so state-space exploration is not directly possible. The case studies in [MCF87, Ros95,
HTWW96, DK97, LR97, MMS97, MCJ97, MSS98, Bol98] o�er strong evidence that state-space ex-
ploration of authentication protocols and other similar kinds of protocols is feasible when small upper
bounds are imposed on the size of messages and the number of runs. However, the bounds used in most
of those case studies have not yet been rigorously justi�ed. Reduction theorems are needed, which
show that if a protocol is correct in a system with certain �nite bounds on these parameters, then the
protocol is correct in the unbounded system as well. This paper de�nes languages for authentication
protocols and requirements and establishes two bounds on the resources needed to attack protocols
expressible in that language: an upper bound on the worst-case number of encryptions by the ad-
versary, and a lower bound on the worst-case number of concurrent runs of the protocol. The upper
bound on encryptions is relative to an upper bound on the number of runs; we sketch an approach to
proving such a bound.

Few other reductions of this kind are known. Authentication protocols are a good �rst target for
such reductions, because they have extremely simple control 
ow and a small repertoire of operations.
Dolev and Yao developed impressive analysis algorithms that directly verify secrecy requirements
[DY83]; however, their algorithms do not consider correspondence properties and apply to a rather
limited class of protocols, which excludes several well-known protocols, such as the Otway-Rees and
Yahalom protocols [BAN90], and is strictly included in the class of protocols we consider. Roscoe
[Ros98] has done some interesting preliminary work on using data-independence techniques to prove
reductions for authentication protocols; this has not yet led to speci�c reductions (i.e., speci�c bounds).
Lowe proved speci�c bounds for a corrected version of the Needham-Schroeder public-key protocol
[Low96] and subsequently generalized that proof to show for a class of protocols that no violations of
secrecy properties are missed when small bounds are used [Low98a, Low98b]. However, that result
does not extend to correspondence requirements [Low98a, p. 61] and does not consider known-key
attacks, and the class of protocols considered [Low98a, Sections 2.1 and 2.2] excludes some well-known
protocols, such as the Otway-Rees [OR87], Yahalom [BAN90], and Kerberos (V5) [KN93] protocols.

Section 2 de�nes our languages for authentication protocols and requirements. These languages are
based closely on Woo and Lam's model of authentication [WL93a, WL93b]; that model also underlies
[MCJ97, CMJ98]. Section 3 characterizes encryptions by the adversary that are not useful, i.e., do
not a�ect the behavior of the other principals in an execution. Section 4 shows that in executions in
which the adversary performs many nested encryptions, some of those encryptions must be useless.
Section 5 presents upper bounds on the number of operations by the adversary, speci�cally, on the
number of encryptions and concatenation (pairing) operations. The bound on encryptions assumes a
bound on the number of protocol runs. Section 6 presents an exponential lower bound on the number
of runs.

There are two main directions for future work. The �rst is to broaden the scope of our results
by considering hash functions, timestamps, recency requirements, and key con�rmation requirements
[MvOV97, Ch. 12]. The second is to prove an upper bound on the number of runs. This is closely
related to techniques for automated analysis of systems with unbounded numbers of similar processes,
such as [CGJ95, KM95, EN96, AJ98], but those techniques are neither aimed at nor applicable to
authentication protocols. Proving an exponential upper bound is of some theoretical interest but
would be of little value for automated veri�cation. Thus, the lower bound in this paper implies
that additional restrictions on the class of protocols are needed in order to obtain a useful upper
bound. Finding syntactic restrictions that do not exclude interesting protocols seems di�cult, so we
are studying the use of \dynamic" restrictions, which (like the correctness requirements) would be
checked by state-space exploration of bounded systems. The main idea is to require that in executions
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involving at most two protocol runs, those two runs interact in limited ways, and to prove that in
arbitrary executions, runs still interact only in those same limited ways.

2 Model of Authentication Protocols

Our model of authentication is based closely on Woo and Lam's model [WL93a]. We call the language
LAP (Language for Authentication Protocols).

Woo and Lam's model incorporates some common simplifying assumptions. It assumes that the
symmetric and public-key cryptosystems are perfect (or ideal) [WL93a]; a reasonable approximation to
this can be obtained by incorporating into the encryption and decryption functions an integrity check
based on a message digest. It also assumes that messages contain explicit formatting information
su�cient for the recipient to correctly divide messages into �elds; a header specifying the starting
o�set of each �eld su�ces.

2.1 Syntax of Authentication Protocols

Let Con be a set of constants; this includes symbols representing nonces, keys, and names (of prin-
cipals). Let Name � Con be the set of names (of principals), including a distinguished name Z
for the adversary. The set Op of operators is Op = fencrypt ; pair ; key ; pubkey ; pvtkeyg. The term
encrypt(t1; t2) represents t1 encrypted with t2 and is usually written as ft1gt2 . The term pair (t1; t2)
represents t1 paired with t2 and is usually written as t1 �t2; similarly, pair (t1; pair (t2; t3)) is usually
written as t1 � t2 � t3; and so on. For x1 2 Name and x2 2 Name, the term key(x1; x2) represents a
symmetric key shared by principals x1 and x2, and the terms pubkey(x1) and pvtkey(x1) represent
x1's public and private keys respectively. Let Keysym denote the set containing constants representing
symmetric keys and terms of the form key(x1; x2). Let Keyasym denote the set containing terms of
the form pubkey(x) and pvtkey(x). Distinct elements of Keysym [Keyasym are assumed to represent
distinct keys. Let Var be a set of variables. A term is an expression composed of constants, variables,
and operators. A ground term is a term not containing variables. Let Term and TermG denote the
sets of terms and ground terms, respectively.

The kinds of statements are:

BeginInit: \Begin initiator protocol". This and the following 3 statements are included to facilitate
expression of correspondence requirements (see Section 2.3).

BeginRespond: \Begin responder protocol".

EndInit: \Successful completion of initiator protocol

EndRespond: \Successful completion of responder protocol".

NewValue(ns; v): This generates an unguessable value t (e.g., a nonce or session key) and binds
variable v to t. A value generated by NewValue is called a genval. Informally, if ns is non-empty,
then t is a secret intended to be shared only by the principals named in ns; if ns is empty, then
t is not intended to be kept secret. The genval t becomes old when every principal (ignoring Z)
in the set ns has executed Old(t); thus, if ns is empty, t is old as soon as it is generated. When a
generated value becomes old, it is automatically revealed to Z; this models known-key attacks.
The principal executing the NewValue statement is not necessarily included in ns; for example,
a server S might generate a session key for A and B by executing NewValue(fA;Bg; v), because
by the usual de�nition of known-key attacks, this key is considered vulnerable as soon as A and
B have accepted it as a session key.
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Send(x; t): This sends a message t to x. The message might not reach x; the adversary can intercept
it.

Receive(t): This receives a message t0 and binds the unbound variables in t to the corresponding
subterms of t0. This statement attempts pattern-matching between a candidate message t0 and
the term t. If there exist bindings for the unbound variables of t such that t with those bindings
equals t0, then the Receive statement executes and establishes those bindings. The Receive
statement blocks until this condition is satis�ed. Variables bound by previous statements are
not treated as pattern variables in this Receive statement; in other words, occurrences of those
variables in this Receive statement are uses, not de�ning occurrences. Note that occurrences of
the encrypt operator in Receive statements actually represent decryptions, not encryptions. We
could extend the Receive statement with another argument indicating the expected sender of
the message, but this has little bene�t (mainly because Z can forge that information).

Old(t): This indicates that a principal has �nished its part in set-up involving t, where t is a term
not containing the encrypt operator. The primary motivation for introducing this statement is
to facilitate modeling of known-key attacks.

A local protocol is a �nite sequence of statements satisfying the well-formedness requirements given
below. There are 3 kinds of local protocols. Initiator (local) protocols may contain up to one occurrence
each of BeginInit and EndInit and do not contain BeginRespond or EndRespond. Responder (local)

protocols contain up to one occurrence each of BeginRespond and EndRespond and do not contain
BeginInit or EndInit. Fixed (local) protocols do not contain any of these four kinds of statements.
When a principal x starts executing a local protocol, the variable � is automatically bound to x, and
in initiator and responder protocols, the variable p is automatically bound to an arbitrary element of
Name n fxg, identifying the partner, i.e., the principal expected to act as the responder or initiator,
respectively. A de�ning occurrence of a variable v other than � or p in a local protocol is an occurrence
of v that (1) appears in the �rst statement containing v and (2) appears in Receive or the second
argument of NewValue. There are no de�ning occurrences of � and p. All non-de�ning occurrences of
variables are called uses. For the reader's convenience, de�ning occurrences of variables are underlined
in local protocols. The well-formedness requirements are: (1) Variables are bound before they are used,
i.e., for each variable v except � and p, each statement containing uses of v is preceded by a statement
containing de�ning occurrences of v. (2) Variables are single-assignment, i.e., for each variable v, uses
of v do not occur in the second argument of NewValue statements. (3) Keys are parameterized by
names or variables, i.e., for each occurrence of key , pubkey , or pvtkey , the arguments are inName[Var .

A protocol is a pair hIK; PSi, where the initial knowledge IK is a set of ground terms and PS is
a set of pairs of the form hns; P i, where ns � (Name n fZg) and P is a local protocol. IK is the set
of terms initially known to Z. A pair hns; P i in PS means that local protocol P can be executed by
any principal in ns. Note that each run of a local protocol has its own variable bindings.

Example. In LAP, the Yahalom protocol [BAN90] is

hfkey(Z; S)g; fhfA;Bg; PI i; hfA;Bg; PRi; hfSg; PSigi; (1)

where
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PI :
0. NewValue(;; ni)
1. Send(p; ��ni)
2. Receive(fp�k �ni�nrgkey(�;S) �x)
3. BeginInit
4. Send(p; x�fnrgk)
5. EndInit
6. Old(k) 7. Old(nr)

PR:
0. Receive(p�ni)
1. NewValue(f�; pg; nr)
2. BeginRespond
3. Send(S; ��fp�ni�nrgkey(�;S))
4. Receive(fp�kgkey(�;S) �fnrgk)
5. EndRespond
6. Old(k) 7. Old(nr)

PS :
0. Receive(r �fi�ni�nrgkey(r;�))
1. NewValue(fi; rg; k)
2. Send(i; fr �k �ni�nrgkey(i;�)

�fi�kgkey(r;�))

Variables � and p have type Name (as always); x in PI has type All; the remaining variables have
type Prim. For comparison, in the concise but informal and sometimes ambiguous notation commonly
found in the security literature, the Yahalom protocol might be written as

1: A! B : A�Na

2: B ! S : B �fA�Na �NbgKbs

3: S ! A : fB �Kab �Na �NbgKas �fA�KabgKbs

4: A! B : fA�KabgKbs
�fNbgKab

Example. In LAP, the Otway-Rees protocol [OR87] is

hfkey(Z; S)g; fhfA;Bg; PI i; hfA;Bg; PRi; hfSg; PSigi; (2)

where

PI :
0. NewValue(;;m)
1. NewValue(;; n)
2. BeginInit
3. Send(r; m���p

�fn�m���pgkey(�;S))
4. Receive(m�fn�kgkey(�;S))
5. Old(k)
6. EndInit

PR:
0. Receive(m�p���x)
1. BeginRespond
2. NewValue(;; n)
3. Send(S;m�p���x�fn�m�p��gkey(�;S))
4. Receive(m�y�fn�kgkey(�;S))
5. Send(p;m�y)
6. Old(k)
7. EndRespond

PS :
0. Receive(m�i�r �fx�m�i�rgkey(i;�)

�fy �m�i�rgkey(r;�))
1. NewValue(fi; rg; k)
2. Send(r;m �fx�kgkey(i;�)

�fy �kgkey(r;�))

Example. In LAP, the Needham-Schroeder shared-key protocol [BAN90], slightly modi�ed, is

hfkey(Z; S)g; fhfA;Bg; PI i; hfA;Bg; PRi; hfSg; PSigi; (3)

where

PI :
0. NewValue(;; ni)
1. Send(S; ��p�ni)
2. Receive(fni�p�kgkey(�;S) �x)
3. Send(p; x)
4. Receive(fnrgk)
5. BeginInit
6. Send(fnr �pgk)
7. EndInit
8. Old(k)

PR:
0. Receive(fk �pgkey(�;S))
1. NewValue(;; nr)
2. BeginRespond
3. Send(p; fnrgk)
4. Receive(fnr ��gk)
5. EndRespond
6. Old(k)

PS :
0. Receive(i�r �ni)
1. NewValue(fi; rg; k)
2. Send(i; fni�r �kgkey(i;�) �fk �igkey(r;�))

The original Needham-Schroeder protocol is obtained by changing nr in line 6 of PI and line 4 of
PR to nr � 1, and by changing line 2 of PI to Receive(fna � p �k �xgkey(�;S)) and line 2 of PS to
Send(i; fna�r�k�fk�igkey (r;�)gkey(i;�)). A straightforward argument shows that correctness of the above
protocol implies correctness of the original Needham-Schroeder protocol.
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2.2 Semantics of LAP

Sequences. Sequences are represented as functions from the natural numbers or a pre�x of the
natural numbers to elements. Thus, the initial element of a sequence � is �(0); the next element is
�(1); and so on. The domain of a sequence � is de�ned by dom(�) = f0; 1; : : : ; j�j � 1g, where j�j is
the length of �. For j < j�j, �(0::j) denotes the pre�x of � of length j+1; for j � j�j, �(0::j) denotes
�.

Run-ids, Substitutions, and Events. A run-id is a number identifying a particular run of a local
protocol. Let ID denote the set of run-ids. For a set V of variables, let Subst(V ) denote the set of
bindings for the variables in V , i.e., the set of functions from V to ground terms. We use \binding"
and \substitution" interchangeably. The application of a substitution � to a term t is denoted t[�]. An
event is a tuple hid; l; si, where id is a run-id or Z, l is a natural number or Z, and s is a statement.
When id = Z and l = Z, this event indicates that statement s is executed by Z. Otherwise, id
indicates the run of which this event is part, and l is the line number (in a local protocol) of the
statement s being executed in this event.

Executions. Let hIK; PSi be a protocol. Let fhns1; P1i; hns2; P2i; : : : ; hnsn; Pnig = PS.1 An exe-

cution of � is a tuple h�; subst ; prin ; lprot i, where � is a sequence of events, and for each run of a local
protocol, lprot 2 (ID ! PS) indicates the local protocol being run, prin 2 (ID ! (NamenfZg)) indi-
cates the principal running the local protocol, and subst indicates the variable bindings. For id 2 ID,
subst(id) 2 Subst(vars(lprot (id))), where for a local protocol P , vars(P ) is the set of variables occur-
ring in P . For convenience, we de�ne subst(Z) to be the empty substitution, i.e., subst(Z) 2 Subst(;),
and we de�ne prin(Z) = Z. An execution must satisfy the following requirements (E1){(E8).

E1. For each id 2 ID, letting hns; P i = lprot (id), subst(id)(�) = prin(id) and prin(id) 2 ns.
E2. For each event hid; l; si in �, if id 6= Z, then s is the statement in line l of lprot(id).
E3. For each id 2 ID, the line numbers in the events in the subsequence of � containing events of

run id are a pre�x of the natural numbers. In other words, execution of a local protocol starts at line
0 and proceeds line-by-line.

E4. Every Send event hid; l;Send(x; t)i is immediately followed by a Receive event hid0; l0;
Receive(t0)i (called the corresponding Receive event)2 such that

t[subst(id)] = t0[subst(id0)] ^ (id 6= id0) ^ (id0 = Z _ prin(id0) = x[subst(id)]):

This allows Z to intercept messages and send messages that appear to be from others principals.
Furthermore, every Receive event is immediately preceded by a Send event.

E5. For each NewValue event hid; l;NewValue(ns; t)i in �, t[subst(id)] is a fresh genval, i.e., does
not appear in �(0::j � 1) or in initial condition IK, and id 6= Z.3

E6. For each id 2 ID, for each v 2 vars(lprot (id)), if v appears as an argument of key , pubkey , or
pvtkey in some statement in lprot(id), then subst(id)(v) 2 Name.

1We use phrases like \let ht1; t2i = t" to indicate that meta-variables t1 and t2 are being introduced to denote
components of t.

2Allowing the corresponding Receive event to be separated from the Send event would lead to an equivalent model,
because message delay is already modeled by the possibility of Z intercepting and later re-sending a message.

3Allowing Z to generate fresh values would not change any of our results, because inequality tests cannot be expressed
in LAP. The Receive statement can express equality tests, i.e., a local protocol can test whether two subterms of messages
it received are equal and execute a Receive statement only if they are. However, LAP cannot express inequality tests,
i.e., there is no LAP protocol that executes some statement only if two subterms of messages it received are not equal.
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E7. For each j 2 dom(�), if �(j) has Z as the run-id, i.e., �(j) is of the form hZ; l; si, then l = Z
and

(9t 2 TermG; x 2 Name : (s = Send(x; t) ^ t 2 knownZ(IK; �(0::j � 1); subst)) _ (s = Receive(t)));

where knownZ(IK; �; subst ) is the set of ground terms known to Z after the events in � with ini-
tial knowledge IK and bindings subst . Informally, Z knows t i� Z can obtain t by the following
procedure: starting with the terms in IK and that Z learned during �, Z �rst crumbles these
terms into smaller terms by un-doing pairings and encryptions and then constructs larger terms
by applying pairing and encryption operators. Let rcvdZ(�; subst) be the set of terms received
by Z in �. Let genvalsZ(�; subst) be the set of genvals n such that n is generated in � by an
event hid; l;NewV alue(ns; v)i and either: (1) Z generated n, i.e., id = Z; (2) n is intended to be
shared with Z, i.e., Z 2 ns[subst(id)]; or (3) n is old, i.e., for each principal x in ns[subst(id)] n
fZg, � contains an event of the form hid0; l0;Old(v0)i with prin(id0) = x and subst(v0) = n. Let
learnedZ(IK; �; subst ) = IK [ rcvdZ(�; subst) [ genvalsZ(�; subst). Then knownZ(IK; �; subst ) =
closure(crumble(learnedZ(IK; �; subst ))), where for a set S of ground terms, crumble(S) is the least
set C satisfying4

C = S [ ft1 j (9t2 : pair (t1; t2) 2 C _ pair (t2; t1) 2 C)g [ ft j ftgK 2 C ^K 2 C \Keysymg
[ ft j ftgpubkey(x) 2 C ^ pvtkey(x) 2 Cg [ ft j ftgpvtkey(x) 2 C ^ pubkey(x) 2 Cg

(4)

and where closure(S), the set of terms that can be constructed from the terms in S, is the least set C
satisfying

C = S [ fpair (t1; t2) j t1 2 C ^ t2 2 Cg [ fft1gK j t1 2 C ^K 2 C \ (Key sym [Keyasym)g: (5)

These de�nitions assume that the symmetric and public-key cryptosystems are perfect (sometimes
called \ideal") [WL93a].

There are several minor di�erences between Woo and Lam's language and semantics and ours. Our
NewValue statement is essentially the same as Woo and Lam's NewSecret and NewNonce statements;
we changed the name because we sometimes use this statement to generate values that are not secrets
(e.g., m in the Otway-Rees protocol). We introduced the special variables � and p and eliminated
the arguments of BeginInit, EndInit, BeginRespond, and EndRespond. Woo and Lam's de�nition of
execution allows Z to execute BeginInit, EndInit, BeginRespond, and EndRespond statements; our
de�nition of execution does not. Letting Z execute these statements is harmless but unnecessary. First,
note that Z executing these statements does not change the set of possible future behaviors of any
principal, including Z. Furthermore, modifying an execution by inserting or removing events in which
these statements are executed by Z cannot a�ect whether the execution satis�es a correspondence
or secrecy property. Woo and Lam's de�nition of execution also allows Z to execute the Accept
statement, which is equivalent to our Old statement. This, too, is harmless but unnecessary, because
the only e�ect of an Accept is to contribute to a secret becoming old and therefore obtainable by Z
via GetValue, but Z can only Accept a secret that it already knows. Accordingly, our de�nition of
execution does not allow Z to execute the Old statement. In Woo and Lam's semantics, Z executes a
GetValue statement to obtain an old generated value; we simplify the de�nition of execution slightly
by making old generated values immediately available to Z.

4If the public-key cryptosystem is not reversible, the last set comprehension in the de�nition of crumble should be
omitted.
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2.3 Syntax and Semantics of Requirements

We consider two kinds of correctness requirements: correspondence and secrecy. The semantics of
both kinds are given by de�ning the set of executions that satisfy a requirement. A protocol satis�es
a requirement i� every execution of the protocol satis�es the requirement.

A correspondence requirement is speci�ed by a pair, which must be hEndInit;BeginRespondi or
hEndRespond;BeginIniti. An execution h�; subst ; prin ; lprot i satis�es a correspondence requirement
ha; a0i if, for all distinct pairs hx; yi of honest principals, for all pre�xes �0 of �, the number of events
in �0 in which x executes a in a run with partner y is less than or equal to the number of events in
�0 in which y executes a0 in a run with partner x (this implies that every event of the former kind is
preceded by a distinct corresponding event of the latter kind).

The short-term secrecy requirement expresses secrecy of genvals. An execution h�; subst ; prin ; lprot i
satis�es the short-term secrecy requirement i� all genvals in knownZ(IK; �; subst ) are in genvalsZ(�; subst).

A long-term secrecy requirement expresses secrecy of long-term secrets. A term is long-term if it
contains no genvals. A long-term secrecy requirement is speci�ed by a set of long-term ground terms
not containing the encrypt or pair operators. An execution h�; subst ; prin ; lprot i satis�es a long-term
secrecy requirement S i� knownZ(IK; �; subst ) \ S = ;.

For example, the Yahalom protocol satis�es the correspondence requirements hEndInit;BeginRespondi
and hEndRespond;BeginIniti, the short-term secrecy requirement, and the long-term secrecy require-
ment

S
x2NamenfZ;Sgfkey(x; S)g.

3 Useless Encryptions

A ciphertext is a term with the encrypt operator at its root. An encryption in an execution h�; subst ; prin ; lprot i
of a protocol � = hIK; PSi is a pair hj; oci such that: �(j) is a Send event, hid; l;Send(x; t)i = �(j);
oc is a subterm of t; oc is a ciphertext ft0gK ; and if id = Z, then K 2 crumble(learnedZ(I; �(0::j �
1); subst)) (otherwise, Z must be forwarding a ciphertext that it learned).

This section identi�es encryptions that can be removed from an execution of a protocol. Informally,
an encryption in an execution is \useful" (hence cannot be easily removed) only if it is

1. performed by an honest principal,5 or

2. performed by Z and the resulting ciphertext is (2a) decrypted by an honest principal or (2b)
checked for equality with ciphertext produced by a useful encryption.

Case (2b) re
ects the transitive nature of usefulness. We illustrate this de�nition using the following
execution fragment:

: : : ; hZ;Z;Send(A; c)i ; hid0; 0;Receive(va)i ; hid0; 1;Send(B; ffvagKgkey(A;B))i ;

hid1; 0;Receive(fvbgkey(A;B))i ; hZ;Z;Send(B; ffcgKgK0)i ; hid1; 1;Receive(fvbgK0)i ; : : :
(6)

Here, c is some ciphertext, and Z is assumed to know K and K 0 but not key(A;B). The resulting
variable bindings are subst(id0)(va) = c and subst(id1)(vb) = fcgK . Based on the events shown above,
all encryptions by Z in c are useless. In the �fth shown event, Z performs two encryptions. The
encryption with K 0 is useful, because it is decrypted by the encryption by id1 in the next event (this is
case 2a). The encryption with K is also useful, because it is checked for equality with the ciphertext
produced by the encryption by id0 in the third shown event (this is case 2b). That encryption by id0
is useful, because it is performed by an honest principal (this is case 1).

5For technical convenience, we classify all encryptions by principals other than Z as useful. It might be more intuitive
not to classify them, because some of them might not be genuinely useful in the functioning of the protocol.
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All encryptions that are useless (i.e., not useful) can be collectively removed from an execution e
of a protocol �, and the result is an execution e0 of �. Furthermore, for any correspondence or secrecy
requirement �, e satis�es � i� e0 satis�es �. In general, removing a single useless encryption from e does
not yield an execution of �, because the ciphertext produced by that encryption might be checked for
equality with the ciphertext produced by another useless encryption. Removing useless encryptions
from Z's Send statements requires adjusting honest principals' variable bindings in a straightforward
way. The following two theorems express the key features of useless encryptions.

Theorem 1. Let e be an execution of a protocol �. Removing all useless encryptions from e yields
an execution of �.

Proof Sketch: The only potential danger in removing useless encryptions is that some local protocol
might \block" prematurely, i.e., pattern-matching might fail for some Send event and the correspond-
ing Receive event. The de�nition of \useful" is designed exactly so that this does not occur.

Theorem 2. Removing useless encryptions from an execution preserves all correspondence and se-
crecy properties. In other words, for all protocols �, for all properties �, for all executions e of �, e
satis�es � i� the execution e0 obtained by removing all useless encryptions from e satis�es �.

Proof Sketch: For secrecy properties, this follows from the observation that useless encryptions are
performed by Z and hence are encryptions with keys known to Z, so removing these encryptions
does not a�ect the set of terms known to Z. For correspondence properties, this follows from the
observation that removing useless encryptions from an execution does not change the sequence of
BeginInit, EndInit, BeginRespond, and EndRespondevents.

4 Existence of Useless Encryptions

The encryption height (or height, for short) of a ground term t, denoted height(t), is the maximum
number of nested encryption operators in t. The following theorem establishes the existence of useless
encryptions in executions containing terms of excessive height. Recall that occurrences of the encrypt
operator in Receive statements actually represent decryptions, not encryptions.

Theorem 3. Let e = h�; subst ; prin ; lprot i be an execution of a protocol hIK; fhns1; P1i; hns2; P2i; : : : ;
hnsn; Pnigi. For each local protocol Pk, let sk be the number of runs of Pk in e; dk, the number
of occurrences of the encrypt operator in Receive statements in Pk; and ek, the number of occur-
rences of the encrypt operator in Send statements in Pk. Let �(j) be a Send event by Z, and let
hZ;Z;Send(x; t)i = �(j). If height(t) >

Pn
k=1(ek + dk)sk, then t contains a ciphertext whose source is

a useless encryption.

Proof: The proof is a fairly straightforward counting argument. Details appear in Appendix A.
We conjecture that this bound is asymptotically tight. It is natural for the bound to depend

linearly on the number of decryptions by honest principals (i.e.,
Pn

k=1 dksk). To see why the num-
ber of encryptions by honest principals (i.e.,

Pn
k=1 eksk) also matters, consider the LAP protocol

hfKg; fhfAg; PI i; hfBg; PRigi, where

PI : 0. Send(B; fffAgKgKgKAB
) PR: 0. Receive(fxgKAB

)
1. Receive(x)
2. Send(Z;KAB)
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Consider executions containing exactly one run of each local protocol. Line 2 of PR (in which B
reveals a secret) can be executed only if Z encrypts A twice with K; those encryptions are checked
by A's encryptions in line 0 or PI . Thus, such executions contain at most one decryption by honest
principals, but long-term secrecy is violated only if Z performs at least two encryptions.

One idea for prohibiting such protocols is to limit the encryption height of the arguments of
Send statements to 2. We conjecture that with this restriction, the bound in Theorem 3 and the
corresponding bound in Theorem 4 can be decreased to

Pn
k=1 ek.

5 Upper Bound on Encryption Height

Theorem 4. Let hIK; fhns1; P1i; hns2; P2i; : : : ; hnsn; Pnigi be a protocol, and let � be a correspon-
dence or secrecy property. For each Pk, let sk be a bound on the number of runs of Pk in an execution.
If any such execution of this protocol violates �, then there exists an execution violating � and in
which Z sends terms with encryption height at most

Pn
k=1(ek + dk)sk, where dk is the number of

occurrences of the encrypt operator in Receive statements in Pk, and ek is the number of occurrences
of the encrypt operator in Send statements in Pk.

Proof Sketch: This follows immediately from Theorems 1{2.

6 A Lower Bound on Number of Runs

Theorem 5. There exists a family of LAP protocols �` and property � such that the minimum
number of concurrent runs in an execution of �` that violates � is 
((`=2� 4)(`=2�4)), where ` is the
maximum number of Send statements in a local protocol of �`.

Proof Sketch: We take �` to be �`;`
h , where the family of protocols ��;�

h is de�ned in Appendix

B. Intuitively, protocol ��;�
h performs two depth-�rst traversals of an �-ary tree of height � before

violating �. Each non-leaf node of the tree corresponds to a run of a local protocol. A run of
PI corresponds to the root. Runs of PR correspond to the non-root non-leaf nodes. Runs of PS
correspond to the leaves. It is necessary to perform two depth-�rst traversals to force all the runs of
PR to be concurrent. During the �rst traversal, messages sent from a parent to a child have the form
fvgk, and messages sent from a child to its parent have the form fv�wgk . During the second traversal,
messages sent from a parent to a child have the form fv �w�0gk , and messages sent from a child to its
parent have the form fv �w�1gk .

The long-term secrecy requirement fkey(A;B)g is violated i� PI runs to completion. PI can run
to completion only in executions containing 
(���1) concurrent runs of PR (the runs of PS need not
be concurrent). If a run id of PR is aborted after line 3�+ 3 and one tries to use a new run id0 of PR
(instead of run id) in the second traversal, messages from the �rst traversal can be replayed to bring
id0 up to line 3�+ 4 with the correct bindings for k, k0, and v, but id0 would get stuck at line 3�+ 4,
because id and id0 have di�erent bindings for v0. Thus, the runs of PR corresponding to nodes of the
tree must be concurrent.

6.1 Towards An Upper Bound on Number of Runs

Finding a natural set of restrictions that prohibits protocols like �h and allows useful authentication
protocols (e.g., those in [MvOV97]) is an open problem. After seeing �h, a natural idea is to impose
a termination requirement, such as: in an execution including exactly one run of each local protocol,
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it is possible for each run id to terminate, i.e., to execute the last line of local protocol lprot (id). This
requirement does prohibit �h. However, it seems not to get at the root of the problem, because �h

can be modi�ed to satisfy it, at the cost of increasing the number of local protocols by a small constant
(e.g., from 3 to 6). The idea is to break PI and PR into pieces, each of which starts by receiving a
ciphertext encoding the \current" local state and ends by sending a ciphertext encoding the \next"
local state. This is essentially the same idea already used to break up the tree traversal in �h. As
mentioned in Section 1, we are currently studying dynamic restrictions that will lead to small upper
bounds on the number of runs.
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A Proof of Theorem 3

We formalize the necessary concepts and then prove the theorem.
A decryption in an execution h�; subst ; prin ; lprot i is a pair hj; oci such that: �(j) is a Receive

event, hid; l;Receive(x; t)i = �(j); oc is a subterm of t; oc is a ciphertext; and id 6= Z (decryptions by
Z are not of interest here).

An encryption or decryption hj; oci is performed by the principal prin(id), where we let hid; l; si =
�(j).

Let t be a ground term, and let t0 be a term (think of t as a message and of t0 as the \pattern" in a
Receive statement). Suppose there exists a substitution � such that t = t0[�]. Then there is a natural
correspondence between subterms of t and (occurrences of) subterms of t0. We say that a subterm of
t0 covers the corresponding subterms of t. For example, if t = (N1 �(N2 �N3)) and t0 = N1 �v2, then
the occurrence of N1 in t0 covers the occurrence of N1 in t, and the occurrence of v2 in t0 covers the
occurrences of N2, N3, and (N2 �N3) in t.

Each occurrence of each ciphertext in each variable binding and each occurrence of each ciphertext
in each Send event by Z is produced by some encryption, called the source of that occurrence. The
source of a ciphertext c is uniquely determined in a straightforward way (details omitted) by the data-

ow in the execution,6 except that the source of an occurrence of a ciphertext c might not be uniquely
determined if c was sent by Z and there are multiple events through which Z learned c. For example,
suppose Z doesn't know K1 and Z receives fNgK1

from A, then receives fNgK1
from B, and then

sends fNgK1
to S, who binds the received ciphertext to v. Assuming A and B each encrypted their

own message, it is undetermined whether A's encryption or B's encryption should be regarded as the

6If hj; oci is an encryption in a Send event by Z, then hj; oci is its own source.
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source of the ciphertext in v. For our purposes, it makes no di�erence which encryption is chosen as
the source in such cases.

An encryption hj; oci is decrypted if it matches with a decryption in the corresponding Receive
event, or if some ciphertext with source hj; oci matches with a decryption in some Send/Receive pair
of events. Formally:

� Let hid; l;Send(x; t)i = �(j) and hid0; l0;Receive(x0; t0)i = �(j + 1). If id0 6= Z and the subterm
of t0 that covers oc is a ciphertext (not a variable), then hj; oci is decrypted.

� If there exists a Send event �(j0) such that, letting hid; l;Send(x; t)i = �(j0) and
hid0; l0;Receive(x0; t0)i = �(j0 + 1), id0 6= Z and there exists an occurrence ov of a variable v
in t such that there exists an occurrence oc1 of a ciphertext in subst(id)(v) such that hj; oci
is the source of oc1 and the subterm of t0 that covers the occurrence of oc1 in t produced by
instantiation of ov is a ciphertext (not a variable), then hj; oci is decrypted.

An encryption hj; oci is checked by an encryption hj0; oc0i if there is a ciphertext oc1 with source
hj; oci that is received by a principal who checks it for equality with a ciphertext oc01 with source
hj0; oc0i; the equality check is represented by oc01 occurring (in an appropriate position) in the binding
of a variable v such that v covers oc1 in the pattern-matching for a Receive event. Formally, hj; oci
is checked by hj0; oc0i if there exists a Send event �(j00) such that, letting hid; l;Send(x; t)i = �(j00)
and hid0; l0;Receive(x0; t0)i = �(j00 + 1), id0 6= Z and there exists an occurrence ov of a variable v in t
and an occurrence ov0 of a variable v0 in t0 such that there exists an occurrence oc1 of a ciphertext in
subst(id)(v) and an occurrence oc01 of a ciphertext in subst(id0)(v0) such that hj; oci is the source of oc1,
and hj0; oc0i is the source of oc01, and in the matching of t[subst(id)] with t0[subst(id0)], oc1 corresponds
to oc01.

An encryption hj; oci is useful if there exists a sequence es of encryptions such that: (1) es(0) =
hj; oci; (2) es(jesj � 1) is decrypted or performed by a principal other than Z; and (3) if jesj > 1, then
for all k from 0 to jesj � 2, es(k) is checked by es(k + 1).

Proof of Theorem 3: The number of decryptions in e is bounded by nd =
Pn

k=1 dksk. The number of
encryptions in e performed by principals other than Z is bounded by ne =

Pn
k=1 eksk. By hypothesis,

height(t) > ne + nd.
Consider a longest sequence ocs of nested ciphertexts in t such that ocs(0) contains a single oc-

currence of the encrypt operator and for all k from 0 to jocsj � 2, ocs(k) is an occurrence of a proper
subterm of ocs(k + 1). Note that jocsj = height(t), so by hypothesis, jocsj > ne + nd. How many
elements of ocs have useful sources? The de�nition of \useful" implies that if the source of ocs(k) is
useful, then there is a witness es(k). So, the number of elements of ocs with useful sources is bounded
by wd +we, where wd is the number of elements of ocs with useful sources such that the witness ends
with an encryption that is decrypted, and we is the number of elements of ocs with useful sources such
that the witness ends with an encryption performed by a principal other than Z.7 It su�ces to show
that wd � nd and we � ne, because then we can conclude that there are at least height(t)� (ne + nd)
elements of ocs having sources that are not useful.

We show �rst that wd � nd. For each decryption in e, there is at most one encryption that
is decrypted by that decryption. For each encryption hj; oci in e, there is at most one element of
ocs having hj; oci as its source, because all occurrences of ciphertexts having the same source are
occurrences of the same term, while each element of ocs is an occurrence of a distinct term. It follows

7We say \bounded by" rather than \equal to", because these two categories of witnesses are not necessarily disjoint:
an encryption can be both decrypted and performed by a principal other than Z.
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from these two facts that, for each decryption, there is at most one element of ocs whose witness ends
with that decryption, so wd � nd.

We now show that we � ne. Observe that, for all encryptions hj; oci and hj0; oc0i, if hj; oci is
checked by hj0; oc0i, then oc and oc0 are occurrences of the same term. So, by transitivity of equality,
for each element ocs(k) of ocs with a witness es(k) in this second category, the last element of es(k)
is an occurrence of the same term as ocs(k). Since each element of ocs is an occurrence of a distinct
term, we conclude that for each encryption in e performed by a principal other than Z, there is at
most one element of ocs whose witness ends with that encryption, so we � ne.

B A Lower Bound on Number of Runs

We describe a family �h of LAP protocols that require many runs to attack. �h can be expressed in
Woo and Lam's language [WL93a]; it is not an artifact of our modi�cations. The family of protocols has
two positive integer parameters, � and �. To express the family of protocols compactly, we introduce
a for-loop macro. For given values of � and �, the for-loop macro is unrolled (by a conceptual pre-

processor), yielding a particular protocol ��;�
h in the family.

Let K0;K1; : : : be constants in Keysym . �h can easily be modi�ed to use session keys produced

by NewValue instead of these long-term keys. In P �
I , the second tree traversal starts at line � + 3; in

P�
R , the second traversal starts at line 3�+ 4. Protocol ��;�

h is

hfkey(Z; S)g; fhfA;Bg; P�
I i; hfA;Bg; P

�
Ri; hfSg; PSigi; (7)

where

P�
R :

0. Receive(fk �k0gkey(A;B))

1. Receive(fvgk)
for a := � downto 1
3(��a)+2. NewValue(;; va)
3(��a)+3. Send(p; fvagk0)
3(��a)+4. Receive(fva �wagk0)

3�+2. NewValue(;; v0)
3�+3. Send(p; fv �v0gk)
3�+4. Receive(fv �v0 �0gk)
for a := � downto 1
5��2a+5. Send(p; fva �wa �0gk0)
5��2a+6. Receive(fva �wa �1gk0)

5�+5. Send(p; fv �v0 �1gk)

P �
I :

for b := � downto 1
��b. Send(p; fKb �Kb�1gkey(A;B))

�. NewValue(;; v)
�+1. Send(p; fvgK�

)

�+2. Receive(fv �wgK�
)

�+3. Send(p; fv �w�0gK�
)

�+4. Receive(fv �w�1gK�
)

�+5. Send(p; key(A;B))

PS :
0. Receive(fvgK0

)
1. Send(A; fv �0gK0

)
2. Receive(fv0 �w0 �0gK0

)
3. Send(A; fv �w0 �1gK0

)
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