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Abstract

T. Alan Keahey

Nonlinear Magnification

In this dissertation we will explore nonlinear magnification as a generalization
of the familiar concepts of "fisheye” or "distortion-oriented” views, which produce
in-place magnification while preserving visual context. We will formalize this gen-
eralization in order to provide a rigorous basis on which to understand and develop
spatial nonlinear magnification systems. At the core of our theoretical basis for nonlin-
ear magnification lies the distinction between transformation functions which directly
transform the spatial coordinates, and magnification functions which reflect the de-
gree of magnification that is implicit within the transformation. This relationship
was previously established for 1D functions, and we will now extend this to functions
of higher dimensions. Doing so allows us to quantify the effects of transformations
from a wide variety of nonlinear magnification systems, rather than merely observing
them as visual or implementational phenomena.

We will examine two new systems for producing nonlinear magnification. The first
method uses a RISC-type approach to construct a transformation pipeline composed
of sequences of simple and modular 2D transformations. This transformation pipeline
is able to produce complex transformations, and is also very efficient computationally.
The expressiveness and efficiency of this system is greatly facilitated by the use of
piecewise linear functions which reduce complex transformations to simple table look-
up operations.

The second method introduces the nonlinear magnification field as a low-level
representation based on our formalism of the relation between transformation and

vil



magnification functions. We will see how the implicit magnification field of a trans-
formation can be computed, and will also provide an iterative method for constructing
a transformation from a specified magnification field. The scalar magnification field
representation is particularly amenable to user and program manipulation. Because
there are no restrictions of explicit foci or multi-dimensional dependencies, direct
specification of the desired magnification values is now possible.

We will also develop a general framework for describing the levels on which non-
linear magnification can be applied, and examine the issue of how to effectively syn-
chronize detail rendering functions to take advantage of the extra space produced by
nonlinear magnification transformations.

Viil
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1

Introduction

Figure 1.1: Nonlinear Magnification

We begin our exploration of nonlinear magnification with a simple visual exam-
ple, as shown above. This example shows the effect of transforming a regular grid,
and represents one of the simplest instances of nonlinear magnification, illustrating
how space can be transformed to expand and compress (magnify and demagnify) re-

gions. Nonlinear magnification offers many advantages over the traditional concept
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of magnification. The major distinguishing characteristics of nonlinear magnification

are:

enhanced resolution of areas of interest

preservation of global context

in-situ magnification (detail is shown within context, not in a separate window)

e non-occlusion (magnification of one area does not block out surrounding areas)

Traditional magnification techniques are unable to simultaneously satisfy all of
these characteristics, but nonlinear magnification is able to incorporate all of them.
An example of the application of nonlinear magnification might be a floating magni-
fication window on a computer screen which tracks the mouse cursor and magnifies

the region of the screen under the cursor, in a manner similar to that shown in Figure

1.2.

There has been a great deal of research on techniques related to nonlinear mag-
nification, much of which is described in Chapter 5. Much of the existing work is
not well-unified, but is instead a scattering of approaches to achieving similar visual
results. As evidence for the non-unified nature of research in the field, consider some
of the different terms which are used in the literature to describe the techniques:
distortion oriented presentation, fisheye views, focus+context, multi-viewpoint per-

spective display, zooming graphical interface, polyfocal projection, hyperbolic space,
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Figure 1.2: An Application of Nonlinear Magnification

pliable surfaces, alternate interface physics and stretching the rubber sheet. A formal
abstraction for describing and developing nonlinear magnification systems has been
lacking. Much of the current research is described only in terms of visual metaphors
or specific implementation details. While such descriptions might be adequate for
describing individual systems (particularly at the user level), they do not facilitate
comparisons between systems or provide a general theory of nonlinear magnification.
Conceptual rigour is needed to promote understanding and development of the core

concepts involved in nonlinear magnification.

Towards that end, the term nonlinear magnification was introduced in [IKR96c,
KR96d] to describe the effects common to all of these techniques. The focus of this
thesis will be to develop conceptual frameworks and implementations which unify

the current notions of nonlinear magnification. Two new paradigms for nonlinear
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magnification will be described in this thesis, each of which represents a different
approach to satisfying a number of design guidelines for a framework for nonlinear

magnification:

¢ provide and describe the “transformational functionality” of existing approaches

to nonlinear magnification

e identify and eliminate the shortcomings of existing approaches to nonlinear

magnification

e provide a systematic model on which to base further development and under-

standing of nonlinear magnification

e be general and flexible enough to allow extension into novel magnification tech-

niques and problem domains

e be efficient enough to allow for the application of nonlinear magnification to

real-world problem sizes

Related to the nonlinear magnification framework issues described above, this
research will also provide a framework for the different levels on which nonlinear
magnification can be applied. Much of the current research involves graph visual-
ization, a task to which nonlinear magnification is well suited; in Chapter 4 we will

examine a categorization of other levels at which these techniques can be used, such
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as image magnification and data-driven magnification. Within this framework, we
will also explore how the magnification tools developed in this thesis can be used
to facilitate the use of nonlinear magnification in ways which were not previously

possible.

1.1 Conceptual Overview

This section describes the major points of the thesis at a conceptual level. The
intent is to provide a context in which to further explore the issues relating to nonlin-
ear magnification. Full details of the points raised here will be provided in following

chapters.

1.1.1 Background

The basic concept of “nonlinear magnification” is not a new one, although the
term itself was introduced only recently in [KR96d]. As early as 1978 Kadmon and
Shlomi [KS78] described a technique called “polyfocal projection” for transforming
cartographic maps to enhance resolution at areas of interest while still preserving a
view of the global context. Although polyfocal projection was implemented only as a
FORTRAN program providing static images for a physical plotting device, in many

respects the work they described was well ahead of its time. Their system had a
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simple mathematical specification, and was able to produce expressive and complex
transformations such as were not seen within the computer graphics and visualization

community until around 1993.

As a computer interaction task, nonlinear magnification first appears in George
Furnas’ report on “fisheye views” of structured text files [Fur81]. This report de-
scribed ways in which sections of text can be collapsed to hide details, while pre-
serving a view of high level features. Although the report does not describe actual
magnification per se, it represents an early and relevant work in the field. Closely
following this report was Spence and Apperley’s “Bifocal Display” [SA82], which de-
scribed a simple two level display with a central region of high magnification and
flanking regions at a lower level of magnification. Here we begin to see the idea of
using multiple scale versions of data within a single view, an idea which was devel-
oped further 10 years later in Mackinlay, Robertson and Card’s “Perspective Wall”
[MRCI1]. The perspective wall represents the first example of a perspective-based
approach to nonlinear magnification; perspective projections of a wall in 3D space
with a central proximate region, and two wing segments which angle back from the
viewer provide a central magnified area with variably demagnified areas flanking ei-
ther side. The effect of nonlinearly magnified 2D data is produced by mapping that

data onto this 3D surface.

The three years which followed (1992-1994) produced a flurry of new techniques for
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producing nonlinear magnification effects. Work on graphical fisheye views [SB92a]
and rubber sheets [SSTR93] introduced and extended the transformation-based ap-
proach to nonlinear magnification by showing how the 2D coordinates of the underly-
ing space could be transformed directly. The document lens [RM93] was introduced
as a perspective-based approach addressing some of the shortcomings of the perspec-
tive wall. Work on hyperbolic spaces [PG92] revealed an efficient and mathematically
rigorous method for producing nonlinear magnification. A controlled user study com-
paring fisheye and full-zoom methods [SZaD%93] provided support for the suitability
of using nonlinear magnification for graph interaction tasks. Noik’s work on fisheye
views of nested networks [Noi93a, Noi93b, Noi94a, Noi94b] explored the benefits of
applying nonlinear magnification to graph layout and topology, and Pad++ [BH94a]
expanded the frontiers of document interaction from within a nonlinearly magnified

interface.

In 1994 Leung and Apperley provided the first major attempt to unify these widely
disparate techniques in “A Review and Taxonomy of Distortion-Oriented Presenta-
tion Techniques” [LA94]. This work makes major breakthroughs in explaining the
underlying causes and effects of nonlinear magnification. Perhaps the most significant
contribution of this work comes from the establishment of the relationship between
“transformation” and “magnification”. Transformation functions are used to trans-

form points within the 2D space, and the magnification function is the derivative of
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the transformation function, representing the “amount” of transformation. This dis-
tinction between transformation and magnification plays a central role in the research

described in this thesis.

Since 1994, a number of new techniques have been introduced in the literature.
Hyperbolic techniques have been extended to 3D space [MB95], and the perspective-
based approach has been been extended in new ways [CCF95a, MK97]. Of particular
note is Noik’s Ph.D. thesis [Noi96], which tied together much of his earlier work
to provide a thorough investigation and development of the systems of the time,
particularly as they relate to graph visualization tasks. Figure 1.3 shows the growth
of publications relating to nonlinear magnification over the previous 20 years, the

rapid growth shows this to be a relatively new and expanding research area.

Growth of Nonlinear Magnification Publications
T T T T

Publications
3

LH ‘
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996
Year

Figure 1.3: Growth of Nonlinear Magnification Related Publications
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It should be evident from this brief discussion that the concept of nonlinear mag-
nification touches on many widely different approaches, from simple deletion of lines
of text, to continuous spatial transformations, to transformations operating on the
topology of hierarchical graphs. Most of the research described in this dissertation
will focus on nonlinear magnification of continuous spatial domains. Many of the
other transformation domains (such as graph transformations) can be derived from
transformations to the underlying spatial coordinates [Noi94b|, and thus spatial trans-
formations represent a low level domain of general applicability to focus our attention
on. Later sections will also discuss some of the non-spatial aspects of nonlinear mag-

nification.

Now that the preceding discussion has provided a context, we are ready to begin
exploration of the ideas developed during this thesis research. The following two
sections will briefly describe two new systems for nonlinear magnification, followed
by a brief overview of some of the ways in which nonlinear magnification can be

applied.

1.1.2 Transformation-Based Magnification

The first approach to developing a nonlinear magnification system involves re-
duction of complex magnification effects to a “transformation pipeline” composed

of simple and modular transformational components. This transformation pipeline
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represents a RISC-type approach to nonlinear magnification, in which complex magni-
fication effects can be constructed from sequences of simple transformation functions.
Each individual function is typically no more complex than a simple linear inter-
polation, but by combining these functions in various ways a wide range of effects
can be produced. Since each function transforms coordinates directly, this represents
another example of the transformation-based approach to nonlinear magnification; a

more expressive and efficient successor to earlier transformation-based systems such

as [KS78, SB92a, SSTR93].

A significant contribution of the transformation-based pipeline approach described
here is the ability to increase efficiency and expressiveness through the use of piece-
wise linear functions. These piecewise linear techniques allow entire sections of the
transformation pipeline to be collapsed into table-lookup operations, with a corre-
sponding increase in efficiency. In addition, they facilitate direct manipulation by the
user and /or program, thus allowing for a far more expressive class of transformations,

and should also prove to be amenable to hardware acceleration.

1.1.3 Magnification-Based Magnification

The second approach to developing a nonlinear magnification system involves the
expression of nonlinear magnification as a scalar field of magnification values. These

nonlinear magnification fields represent perhaps the most elemental approach possible
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for dealing with nonlinear magnification effects.

The first level on which these nonlinear magnification fields can be used is for ana-
lyzing and comparing the effects of different nonlinear magnification transformations;
for any such transformation we can now compute its implicit magnification field to find
the actual magnification values that are implicit in the transformation’s expansion
and compression of regions. These fields can be viewed as magnification landscapes,
visual aids which assist viewers in perceiving the effects of complex transformations.
Additionally, implicit magnification fields are useful on a programming level, provid-
ing a numerical method for determining local magnification levels which facilitates

techniques such as level-of-detail rendering of objects within the transformed space.

The second level on which these nonlinear magnification fields can be used is as a
means for directly specifying magnification values within a domain. We will examine
an iterative method which constructs suitable transformations from a specified mag-
nification field. By isolating the magnification specification task from the mechanism
used to achieve the magnifying transformation in this way, we greatly reduce the
complexity of the specification task. Because this technique works directly with the
magnification values, rather than relying on the side-effects of transformations or per-
spective projections, it represents a new magnification-based paradigm for producing

nonlinear magnification.

We will examine a number of ways in which the ease of expression can be exploited,
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both at the user and program level. The level of expressiveness which is possible with
nonlinear magnification fields greatly exceeds what is possible with other existing
nonlinear magnification systems. Notable examples include magnification brushing
techniques which allow for subtle magnification effects (particularly useful when ap-
plied to image magnification), and data-driven magnification, which allows properties
of the data being visualized to directly and fluidly define the complex magnification

that is best suited to visualizing that same data.

1.1.4 Applications of Nonlinear Magnification

There are a number of levels on which nonlinear magnification can be applied.
We will examine three such levels and illustrate the characteristics of each level with
specific applications. In brief, the three levels are image-level, render-level and data-
level. The primary distinction between these levels is “proximity” of the magnification
routines to the data being visualized, although there can be some overlap between

levels.

For image-level applications, there is no notion of discrete data objects, rather
the magnification operates on pre-rendered data (images). Render-level applications
involve transformations of discrete object coordinates to set the location for rendering
the object, but do not affect the actual rendering of the objects themselves. Data-

level magnifications represent the closest proximity to the data; here the magnification
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actually changes the way in which the individual data objects are represented, possibly
also tying data-access routines to the level of magnification. Another example of
data-level magnifications involves using properties of the data itself to directly define

magnification.

An additional issue for applications of nonlinear magnification involves the detail-
in-context problem. How can we effectively combine complex magnification trans-
formations with rendering “detail” functions to provide enhanced detail at areas of
expansion, and reduced detail at areas of compression? To answer this problem,
implicit magnification fields can be used to effectively synchronize the transforma-
tion and detail functions. On the implementation side, we will also see how texture
mapping techniques can be used to seamlessly integrate different global views of an

information space.

1.2 Contributions of the Dissertation

The following items outline the major contributions of this thesis.

e provides a categorical framework for describing and analyzing existing nonlinear

magnification systems

¢ develops a transformation-based nonlinear magnification system that:
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— implements transformations with a RISC-type pipeline having simple mod-

ular components

— 1s more expressive that existing systems

— uses piecewise linear functions to efficiently approximate conventional con-

tinuous transformation routines

— performs orders of magnitude more efficiently than published performance

numbers for other systems with similar transformational functionality

e provides a mathematical foundation for the relation between magnification and

transformation in more than one dimension

e introduces the implicit magnification field, which:

— allows implementation-independent analysis and quantification of nonlin-
ear magnification effects across widely different systems and transforma-

tions

— provides consistent visual cues to enhance perception of nonlinear magni-

fication effects

e develops the first magnification-based system for nonlinear magnification, that:

— separates the magnification specification task from the mechanism used

to produce the transformations, thus greatly simplifying the specification
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task

— allows fluid and shifting magnification specification without restrictions
of discrete foci; transformational expressiveness goes far beyond what is

possible with existing systems.

— provides an iterative method for constructing a suitable transformation

from a given magnification specification

— serves as a basis on which to overlay customized nonlinear magnification
interfaces, from low-level node-by-node specification to application-level

constructions. two of these interfaces are particularly note-worthy:

x magnification brushing to create subtle magnification effects in images

x data-driven magnification allows properties of data to directly define

the magnification field best suited for viewing that same data

e provides a framework for describing different levels on which nonlinear magni-

fication techniques can be applied

e provides tools for synchronization of rendering detail functions with complex
nonlinear magnification transformations, thus allowing tightly integrated detail-

in-context visualizations

e introduces new applications of nonlinear magnification (in addition to the ones

already mentioned)
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— visualization of higher-dimensional clusters for data-mining

— multi-level image magnification allows seamless integration of different
global “views” of the information, with different informational content at

each level

1.3 Outline of the Dissertation

Chapter 2 will describe a pipeline-based approach to generating nonlinear magnifi-
cation via simple transformation functions. Chapter 3 introduces theory and methods
for nonlinear magnification fields, along with some applications. Chapter 4 will dis-
cuss issues involved with the application of nonlinear magnification, illustrated with
specific example applications. Chapter 5 will provide pointers to related work, and

Chapter 6 will summarize the conclusions.



2

Transformation-Based

Magnification

The distinction between transformation functions and magnification functions (in
the context of nonlinear magnification) was originally defined by Leung and Apperley
in [LA94] and expanded upon in [KR96d]. The transformation function is the function
that is used to perform the actual transformations, whereas the magnification function
(which is the derivative of the transformation function) indicates the actual degree
of magnification implicit in the transformation function. The relationship between
transformation and magnification functions in more than one dimension is a non-
trivial issue, which will be addressed in detail in Chapter 3. The focus of this chapter
will be on transformation-based magnification the manipulation of transformation
functions to achieve the magnification effect.

17
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The transformation-based approach to nonlinear magnification is the approach
that is most commonly encountered in the literature, and includes a wide range of
methods. Some of these will be mentioned here, and Chapter 5 will contain a fuller

description of these and other systems.

In this chapter we will describe the construction of transformation-based magni-
fication effects via a pipeline paradigm, similar to the rendering pipelines commonly
encountered in the computer graphics literature [FvDFH90]. This pipeline provides
a modular RISC-type approach to nonlinear magnification, reducing complex trans-
formations into their constituent components, which can be easily manipulated and
combined. By applying this transformation pipeline to a regular grid of points cov-
ering the source domain, we obtain a transformation grid 7. Viewing 7' shows the
effects of the transformation pipeline across the entire source domain. Much of the
functionality described in this chapter was originally reported in [IKR96d], although

without describing the pipeline paradigm for integrating the constituent components.

2.1 Single Transformations

We begin our construction of the full transformation pipeline by first creating a
pipeline for single transformations (i.e. only one center of magnification). A schematic

diagram of the single transformation pipeline is shown in Figure 2.1. In later sections
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we will use this single-transformation pipeline as a building block for more complex
transformations. The remainder of this section will describe the construction of this
single-transformation pipeline. We begin with a description of the Warp Transform
process, which represents the core functionality for producing the nonlinear magnifi-
cation transformation. Following this we will expand the scope to include the domain

mapping processes for constructing constrained domains.

:Single Transformation

Warp Inverse

. Domain Transfom; Warp I\D/l(;;rg;wg
Domain Coord Coord \
Mappmg/' 3
World | | Point in Pass Through Transformation
Coord | Dor’?aln * > Coord

Figure 2.1: Pipeline for a Single Transformation. Point coordinates flow through
this pipeline from World Coordinates to Transformation Coordinates. Each solid
rectangular box represents a coordinate system, and the rounded rectangles represent
an action to be taken. The transformation processes between coordinates systems are

labeled edges.

2.1.1 1D Transformation Functions

The requirements for a 1D transformation function f for nonlinear magnification
are straightforward: we require that f be C” continuous, monotone and that the range

boundaries not exceed the domain boundaries in order to guarantee non-occlusion



2. Transformation-Based Magnification 20

(order preservation) over the entire domain. A desirable property for f is a smoothly
varying slope over some domain such that some sections of the curve will have slope
ratio > 1 (areas of magnification) and some other sections of the curve have slope
ratio < 1 (areas of demagnification or minification). In addition, the function chosen
should be such that a parameter exists for increasing the slope of the function in
some areas and correspondingly decreasing the slope in other areas. These properties
of the function reflect the common sense notion that “you can’t get something for
nothing”. Every extra level of magnification must incur a corresponding decrease in

magnification at some other location across the domain.

Several different choices exist for a 1D transformation function, and the hyperbolic
tangent function f(x) = tanh(z) provides a good example of a function which has the
properties described above. tanh(x) is well behaved across all domains (R — [—1,1]),
and there is no need to normalize the domain coordinates to some specific range before
applying the magnification. To this transformation function we can add a parameter
( which controls the degree of magnification, so that f(z, ) = f(xf). A mechanism
for moving the center of magnification across the domain is easily achieved: if we want
xo to be the center of magnification, we simply replace f(x) with (f(x — 2¢) + 20)
and the center of maximal magnification will translate to the desired location. Figure
2.2 shows the tanh transformation function and its associated magnification function,

alongside a version with modified /3.
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Trans Trans

Figure 2.2: Tanh Transformation/Magnification

Other choices for a 1D transformation function are possible. Sarkar and Brown
[SB94] use the fisheye function G(x) = % to perform this transformation. G(x)
is well behaved and has desirable nonlinear characteristics over the domain [0, 1], so
that G(x) : [0,1] — [0,1]. Although this function is by itself relatively inexpensive
computationally, all coordinates to be transformed by this function must first be
normalized or constrained to the [0,1] domain. Another possibility is a modified
logistic function (f(x, 3) = ﬁ —1.0) which is visually very similar to tanh, but
is computationally less expensive on many machines [KR96d]. It will also be shown
in section 2.5.1 that piecewise linear functions can be used to provide a reasonable

approximation to these 1D transformation functions. Figure 2.3 shows a comparison

of the fisheye, tanh and logistic transformation functions. Throughout the rest of
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this chapter the tanh function will be used as the 1D transformation function, unless

specified otherwise.

Trans Trans Trans

Mag Mag

(a) tanh (b) logistic (c) fisheye

Figure 2.3: 1D Transformation Functions

As will be shown in the following subsection, a 1D function can be used as the
base function for transformations in two or more dimensions. It can also be used for
magnification in one dimension only. Figure 2.4 shows horizontal and vertical appli-
cations of 1D transformation functions. For another example, a study [KM96] details
using using a 1D “magnification bar” for viewing highly structured text documents.

This application is described in greater detail in Section 4.1.2.2.
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(a) horizontal (b) vertical

Figure 2.4: One Dimensional Transformations

2.1.2 2D Transformations

By applying these simple 1D transformation functions to 2D coordinate spaces in
various ways, many different effects can be produced. In the discussion of the various
methods below, H is the center point of the magnification and P is the point (x,y) to
transform. Since all transformations are relative to H, it is also convenient to define
P = P—H for use in some parametric equations. P’ represents the transformed point.
In our pipeline diagram for single transformations (Figure 2.1), these transformations
are represented by the Warp Transform process. Figure 2.5 shows the effects of three

such transformations, described below.
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(a) orthogonal (b) radial (c) bi-radial

Figure 2.5: Two Dimensional Transformations
Orthogonal:

This is the result of applying the 1D transformation to the x and y coordinates of
a point separately, thus making the magnification in one dimension orthogonal
to magnification in other dimensions. The transformed point is P’ = (2/,y/)

where:

@' = Hz+f(Pmaﬁz) (2'1)

y = H, + f(I:)ya 53;) (2-2)

Here 3 is not a single parameter, but a vector representing degree of magnifica-
tion in the x and y directions. This transformation is similar to the orthogonal

stretching described in [SSTR93], preserving horizontal and vertical lines within
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the domain, and allows for independent control of the magnification parameters

for the x and y axes.

Radial:

The radial fisheye effect can be produced by transforming each point in the

domain as follows:

r=\P24P? (2.3)
PI:H—{—f(T7ﬂ>ﬁ) (2.4>

Here r is the radius component of the polar coordinates of P, and [ is a scalar
parameter which controls degree of magnification in all directions. This trans-
formation preserves angles relative to the center of the magnification. Addition-
ally, the fisheye effect is familiar to most users, and provides a ready analogy
for the user to relate to. The result is the same as the radial and polar transfor-
mations described in [KS78, KRB94]|, except that the parametric formulation
used here does not require computationally expensive trig functions for explicit
polar-rectangular coordinate conversion. Figure 2.6 shows how using different

1D basis transformation functions affects the 2D radial transformation.
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(a) tanh (b) fisheye

Figure 2.6: Different 1D Basis Functions for 2D Radial Transformation

Bi-radial:

Although the radial and orthogonal transformations are the most commonly
used ones, there can be many other ways in which 1D transformation functions
can be used to construct 2D transformations. One such way is the bi-radial
transformation which is a combination of the radial and orthogonal transforma-
tions. The transformation is achieved by making the direction of transformation
the same as in the radial case, however the magnitude of the displacement is
weighted by the x and y components of the distance from the center of magni-

fication as in the orthogonal transformation.

r=1/P?+ P? (2.5)



~
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P P
r = — mAfT,ﬁz +%f7’,67 2.6
o 1) ) (26)
PR
P'=H+ —P (2.7)
r

This transformation preserves angles relative to the center of magnification, and
also provides some degree of independence for x and y magnification parame-
ters. This can be used to advantage in some visualization tasks such as the
World Wide Web navigation application described in Section 4.1.2.3. This ap-
plication involves visualization of non-regularly spaced acyclic graph structures;
the bi-radial transformation allows greater control of the view of this graph, and
staggers the node labels so that they do not overlap as much as when the regular

orthogonal transformation is used.

2.1.3 N-Dimensional Transformations

The extension of these techniques to three dimensions is straightforward; an extra
z coordinate is added which is treated the same as the (2, y) coordinates. The simplic-
ity of extension to higher dimensions distinguishes these techniques from many other
nonlinear magnification systems which rely on perspective projections of 3D surfaces

to achieve the magnification affect (such as Perspective Wall [MRC91], Document
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Lens [RM93], 3D Pliable Surfaces [CCF95a] and Perspective Tunnel [MK97]). These
perspective-based systems are view dependent; they rely on a physical viewing model
in 3D space to create magnifications of 2D data. While perspective-based systems
can take advantage of accelerated graphics hardware, a dimension is a terrible thing
to waste. In contrast, the techniques presented here (among other systems) are view

independent, and do not require a physical viewing model.

Although the math extends readily to higher dimensions, additional problems
arise when we move to 3D information spaces. In particular, the problem of occlusion
arises, and areas of magnification may be blocked from view. The occlusion problem
is inherent to 3D visualizations in general, and there are many different techniques for
dealing with it. Such techniques include transparency, clipping planes and recent work
on distortion-oriented techniques [CCF96a]. There are some applications however

where occlusion does not present as much of a problem.

One example of this involves visualization of high-dimensional clusters. Typically
the data in these applications is composed of tight clusters of data in a sparse in-
formation space. Magnification of individual clusters might possibly cause occlusion
of neighbouring data, but the sparsity of the data generally means that this will
not be as much of a problem. An application involving such cluster visualizing for

data-mining is described in Section 4.1.2.4.
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2.1.4 Combined Linear/Nonlinear Transformations

An advantage of linear magnification is that it produces distortion-free zooming
when the aspect ratio is maintained. For example, a user viewing textual data would
prefer to see the letters at the area of maximal magnification without the distor-
tions presented by nonlinear transformations. This is relevant when texture mapping
[BN76] is used to fit arbitrary images (often containing text) to the transformed grid
[KRI6b]. As the grid points are transformed, the image is transformed along with

them.

We can combine the advantages of linear and nonlinear magnification by linearly
magnifying all points within a given region A, producing a magnified region A’. ~ A
is the region defined as the entire domain surrounding but not including A (i.e. the
complement of A). We perform a nonlinear transformation on all points in ~ A,
and then linearly interpolate the transformed points into the region surrounding A’.

Figure 2.7 shows a schematic representation of this process.

Note that the maximum degree of magnification that can be used in the linearly
magnified area is constrained by the size of the region A to be magnified (inversely
proportional), and the size of the target region A’ (directly proportional). In our

pipeline schema (Figure 2.1), these combined linear/nonlinear transformations are
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As

(linear
magnification
of A)

A interpolated nonlinear
magnification of ~A

Figure 2.7: Schematic Diagram for Linear/Nonlinear Combinations

represented by the single Warp Transform process. The reason why this is not bro-
ken down into smaller stages in the pipeline will become evident in the upcoming
discussion of 1D piecewise linear functions in Section 2.5.1, where we will see how

this complex operation can be collapsed into a single step.

Figure 2.8 shows two examples of this type of transformation. In the left image,
a round area is used for the linear magnification, with the surrounding points being
treated by a radial nonlinear magnification. In the right image, a rectangular area is
used for the linear magnification and the surrounding points are transformed by an

orthogonal nonlinear magnification.

Figure 2.9 shows how these linear/nonlinear combinations can be used to alleviate

the distortion of magnified texture maps containing textual information. A fuller
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Figure 2.8: Combined Linear and Nonlinear Transformations

discussion of the use of texture mapping for image magnification will be provided in

Chapter 4.
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Figure 2.9: Linear/Nonlinear Image Magnifications Contrasted

2.1.5 Bounded Transformations

It is often the case that we do not want the transformation to apply to the entire
source domain, but would rather perform non-occluding magnification on some sub-

region of the domain, constraining the transformed points to the source sub-region.
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This allows for a localized, non-occluding magnification which can be moved over
the source domain. This localization offers the benefits that the global context now
remains more static, and the boundaries of that context remain fixed even as the
center of the magnification is changed. Figure 2.10 shows examples of bounded do-
main transformations (note that the linear/nonlinear transformation is used within

the constrained domain in the example on the right).

Figure 2.10: Bounded Transformations

The mechanism for performing these constrained domain transformations is sim-
ilar to that used for the combined linear/nonlinear transformations described in Sec-
tion 2.1.4, involving simple linear interpolations between regions. Here we perform
the nonlinear transformation inside the region A, leaving all points outside of A un-
transformed. Note that it is often desirable to map the points inside A to some regular
domain (e.g. [—1,1] x [—1,1]) before performing the actual transformation on them

and then re-interpolating the transformed points back into A. These linear mappings
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are often easier to perform if we use a transformation function with a fixed range
(such as R — [—1,1]). In our pipeline diagram (Figure 2.1), the functionality for
bounded transformations is indicated by the Point in Domain? test and the Domain

and Inverse Domain mappings.

2.2 Compound Transformations

The earliest published method for nonlinear magnification (Polyfocal Projection
[KS78]) included the ability to combine multiple centers of magnification simultane-
ously in a static environment. Many subsequent interactive systems did not have this
capability, although more recently techniques have been developed to achieve such
compound transformations in various ways. This section will consider several meth-
ods for combining multiple transformations. These techniques fall into three general
categories, each with their own distinct questions and characteristics: 1) globally com-
bining the transformations (averaging), 2) restricting the transformations so they do
not overlap (partitioning), and 3) applying the transformations in succession (compo-
sition). The images in Figure 2.11 are the result of applying instances of these three
approaches to a regular two dimensional grid, we describe each of these approaches

below.
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Figure 2.11: Compound Transformations

2.2.1 Averaging

This is achieved by independently applying each transformation to a point in the
original domain, and then making the final transformed point the average of the
independent transformations. When the mean average is used, the results are similar
to those from [IKS78, MS91, KRB94]. If there are N transformations operating on a
point P, and the effect of each transformation n is represented by f,,, then the average

is straightforwardly given as:

P:%éﬂm (2.8

Alternatively we can weight the transformed points inversely proportional to the
distances between the centers of magnification (H,) and the point in the original

domain using the equation below (along with an additional test to ensure that P # H;
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for some je[1..N]), so that the weights compensate for the reduction in magnification
caused by the averaging. This enhances both degree and localization of the individual
transformations. Figure 2.12 shows a comparison of mean and weighted averaging for
compound transformations. The pipeline configuration for averaged transformations

is shown in Figure 2.13.

% fi(P)

2iP— ]

Figure 2.12: Mean and Weighted Average Compound Transformations

2.2.2 Partitioning

In this schema, each point in the domain is transformed only by the transforma-

tion whose center of magnification is closest to that point. After the transformation
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Averaged Transformation

World | _, [Broadcast » | Transformation 2 | Transformation

Accumulator
Coord

Coord Bl

Figure 2.13: Pipeline for Averaged Transformations

has been performed, the point is clipped back along the ray between itself and the
transformation center (if necessary) until the clipped point is again closer to the orig-
inal transformation center than to any other transformation center. This produces
a partitioning of the domain space similar to Voronoi diagrams from computational
geometry, so that each transformation has its own “domain of influence”. The visual
result of this method is similar to that produced by the vector blending method in
[CCF95a), except that with this system the boundaries between transformations are
independent of the degree of magnification, and each region can be magnified or de-
magnified without affecting the partitioning of the space. The pipeline configuration

for partitioned transformations is shown in Figure 2.14.

A method for achieving this effect works as follows: given N transformations, the

effect of each transformation n with center of magnification H, is represented by f,.



~
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Partitioned Transformation
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Coord Transform

Figure 2.14: Pipeline for Partitioned Transformations

To transform point P, we first find the closest H to P and label it H; (if more than
one H is equidistant to P then choose the first one encountered). Then we perform
the transformation of ¢ on P so that P’ = f;(P). Since P’ might now be closer to
some H;(j # t) than to H;, we may need to pull P’ back along the ray defined by
R = H; +t(P' —Th;). This is achieved by finding the distance between P’ and each
H;(j # 1), if the distance is less than between P" and H;, then the point is pulled back

to the intersection point between R and the half-plane Voronoi boundary between H;

and H;.

2.2.3 Composition

Here we apply each transformation in sequence to the points in the domain. This
raises issues of what order the transformations should be applied in, since the magni-

fications will in general be non-commutative. The system used to produce the images
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below allows for this through an interface to a stack of transformations, and all trans-
formations are applied to the domain in order from the bottom to the top of the stack.
The effect of this (when magnifications with bounded domains are used) is that of a
stack of lenses layered on top of the display, each of which can be controlled inde-
pendently. The pipeline configuration for composition of transformations is shown in

Figure 2.15.

Composed Transformation

World / |_> Transformation 2 : Transformation

Cood | | @ Coord

Figure 2.15: Pipeline for Composition of Transformations

2.3 Performance

Table 2.1 compares timing results for some of the typical transformations which

are possible with the transformation pipeline that has been discussed to this point.
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All timing results in this chapter were obtained on a MIPS 195 MHz R10000 pro-
cessor. The peak transformation rate found here is 3.3 million transformations per
second. This is fast enough to transform every pixel coordinate in a 640 x 480 dis-
play at an interactive 10.8 frames per second, although in normal use a much smaller
grid of about 50 x 50 nodes is sufficient to generate typical transformations (which
would be transformed at about 1300 frames per second). This represents a significant
performance increase over published performance numbers for systems having similar
transformational expressiveness (on the order of two orders of magnitude, see Chapter
5 for details). Later sections will discuss ways in which these performance results can

be significantly improved still further.

Function Time (10~°%) | Normalized (10~%) | TPS(10°)
Null 0.15 0.00 6.67
Orthogonal [2.5(a)] 0.81 0.66 1.23
Radial [2.5(b)] 0.80 0.65 1.25
Bi-Radial [2.5(c)] 1.34 1.19 0.75
Radial/Linear [2.8] 1.28 1.13 0.78
Bounded Radial [2.10] 0.30 0.15 3.33
Bounded Radial/Linear [2.10] 0.37 0.22 2.70
Averaged [2.11(a)] 4.69 4.54 0.21
Partitioned [2.11(b)] 2.91 2.76 0.34
Composition [2.11(¢c)] 1.79 1.64 0.56

Table 2.1: Transformation Pipeline Timings. Numbers in brackets are the corre-
sponding figure numbers for the transformation. Times shown are average times (in
seconds) for computing a transformation on a single point. Normalized times reflect
the difference between the time for the transformation function and a “Null” trans-
formation which returns the original point, thus eliminating overhead common to all
transformations. TPS is the number of points transformed per second (Transforma-
tions Per Second).
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2.4 Global Operations

The final stages of the transformation pipeline affect global properties of the trans-
formation grid T'. These finishing stages ensure that the transformed data points still
fit within the viewing area, and also help to preserve the spatial ordering of the trans-
formation grid. These final operations are shown within the transformation pipeline

framework in Figure 2.16.

Compound
Transformation
. View )
' Transformation 1 Volume Vi Eirl‘?eor()thlr@i
World e 1 Transformation| Transform | View Rendering
Coord > o 7 77777 . > Coord »| Volume —— Coord
i Transformation 2 | Coord —

Figure 2.16: Global Pipeline

2.4.1 View Volume Operations

A problem with these magnification techniques can arise when the magnification
transformation “pushes” magnified data outside of the normal viewing volume (in 2D
this means pushing beyond the window boundaries). There are several methods for

dealing with this problem which we discuss here for the 2D case, and illustrate in
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Figure 2.17.

Crop:

This is the simplest method where every point that falls beyond the window

boundaries is simply cropped and not rendered it at all.

Constrain:

Here the transformed data are checked to see if they fall beyond the window
boundaries. If some of the data fall outside the boundary, then the window
domain is extended to incorporate all of the data. Alternatively, the data points

can be rescaled to fit within the window.

Maximal:

This uses techniques similar to the previous method to ensure that the bound-

aries of the transformed data points extend to exactly the window boundaries.

Clip:

The major disadvantage of the constrained and maximal window boundary
methods is that for bounded transformations the global context no longer re-
mains static, but instead is compressed to remain within the window boundary
when the magnification moves near the edge of the window. An alternative is to

clip points beyond the window boundary to the window boundary itself. This
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will result in a line of overlapping points, which can be smoothed out using the

filtering techniques described in the next subsection.

T

T
T
In\\\y
I

(a) crop (b) constrain (c) maximal (d) clip

Figure 2.17: View Volume Operations for Infinite and Bounded Domains

2.4.2 Smoothing Filter

Independent of the complexity of the transformations employed, it is often useful
to have a single parameter for controlling the degree to which all transformations take
effect. This can allow the user to smoothly shift between the warped and unwarped
views of the space. Such functionality can be provided through a simple filter applied

to the transformed and untransformed points, which provides a variable weighting of
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the points. Let s be the weight attached to the source point P, and d be the weight
attached to the transformed point ). We make the conditions that 0 < s < 1 and
d = 1—s. The filtered point is then sP+d(@. Figure 2.18 shows examples of changing
the single filter parameter to alter the overall effect of 2 different complex transfor-
mations. This simple method provides the user with an effective means of realizing
the relationship between normal and distorted views. In addition, this technique can
greatly facilitate construction of mappings such as the linear /nonlinear combinations
described in Section 2.1.4, the bounded transformations of Section 2.1.5, the parti-
tioning method for compound transformations in Section 2.2.2 and the view volume
operations of Section 2.4.1; points can be mapped to the extreme boundaries of a
region, and the filter will enforce the original ordering of the points, thus smoothing

out the spacing between them.

2.5 Piecewise Transformations

In addition to the continuous transformations described above, it is also possible
to approximate these transformations using piecewise linear functions. Such func-
tions offer the potential for significant performance gains and also allow for a more

expressive class of transformations (because of the ease of manipulation).
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(a) s=0.0 (b) s=10.3 (c) s=0.6 (d) s=1.0
Figure 2.18: Smoothing Filter for Radial and Compound Transformations

2.5.1 1D Piecewise Transformations

These transformations involve piecewise linear approximations of the single-variable
transformation functions which are used to drive the higher-order (2D and 3D) trans-
formations (as described in Sections 2.1.2 and 2.1.3). As an example of this, a piece-
wise approximation of tanh(x) can be used to replace that computationally expensive
function call with a simple table lookup and a linear interpolation. Since we can
easily parameterize the resolution of the piecewise approximation, it is possible to
produce a step function that is arbitrarily close to the continuous one, at a reduced
computational cost. Figure 2.19 shows piecewise linear approximations to the tanh
transformation function, along with the associated magnification functions. Table 2.2

shows some timing results for the simple radial transformations shown in Figure 2.20,
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comparing the tanh and piecewise linear transformation functions.

| Trans Trans | Trans Trans
N=4 M=8 N=16 M =32
Mag Mag Mag Mag

(a)n=4 (byn=28 (c)n=16 (d) n =32

Figure 2.19: Piecewise Linear Approximations to tanh. (n refers to the number of
magnification values, by convention there are 2 magnification values of zero — one on
each end of the transformation — that are not shown in these examples.)

(a) tanh (byn=28 (c)n=16

Figure 2.20: Radial Transformation with tanh and Piecewise Linear Approximations
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Function Time (107%) | Normalized (107%) | TPS(10)
Null 0.15 0.00 6.80
tanh 0.80 0.65 1.25
logistic 0.79 0.64 1.26
fisheye 0.59 0.44 1.71
1D Piecewise n =8 0.56 0.41 1.79
1D Piecewise n = 16 0.56 0.41 1.79
1D Piecewise n = 32 0.56 0.41 1.79

Table 2.2: Timings for Radial Transformation. (TPS = Transformations Per Second).

Note that Table 2.2 shows the time for the piecewise approximations to be just
slightly faster than the fisheye transformation time. While the expressive power of
the fisheye basis transformation is limited to altering the degree of curvature of the
function based on a single parameter, piecewise functions can transform points with
1D transformations of arbitrary complexity at no extra computational cost, and there
is no time increase for the piecewise function as the number of components in the

approximation is increased.

We can see a simple example of the additional expressiveness of the piecewise
transformation by considering the methods used for producing the combined lin-
ear /nonlinear magnification discussed in Section 2.1.4. Using a continuous warping
function such as tanh or the fisheye transformation, it is necessary to treat points in-
side the area of linear magnification as a special case. However piecewise linear trans-
formations can automatically provide the desired area of flat magnification. Figure
2.21 shows a comparison of the results of these transformations (the piecewise version

was obtained by using the piecewise radial transformation with 6 segments). Table 2.3
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shows some timing results for the different methods (the final entries in this figure and
table will be described in the following section). Note that the times for the piecewise
function are identical to the times for the simpler step radial function in Table 2.2.

These data clearly show a performance potential for the piecewise transformation as

transformation complexity increases.

(a) tanh (b) fisheye (c) 1D (d) 2D

Figure 2.21: Comparison of Combined Linear/Radial Transformations

Function Time (107%) | Normalized (107°%) | TPS(10°)
tanh 1.28 1.13 0.78
fisheye 1.06 0.91 0.94
1D Piecewise 0.57 0.42 1.77
2D Piecewise 0.62 0.47 1.63

Table 2.3: Timings for Combined Flat/Radial Transformation

In addition to the performance gains offered by such functions, however, piecewise
functions generalize much more readily to arbitrary shapes. In general we can say

that a suitable piecewise transformation function is one composed of linear segments
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having zero-order parametric continuity C? (i.e. the endpoints of adjacent segments
meet). In order to enforce non-occlusion, we also require the function to be mono-
tonically increasing. The degree of magnification provided by the function is directly
proportional to the slope of the segment at that point. There are several ways in
which such functions can be constructed. The simple piecewise functions used in this
paper were all generated through routines which sample a continuous function at a

parameterized resolution to obtain the resulting piecewise function.

It is also possible to provide an interface which allows a user to drag control points
on the piecewise transformation function and thus design customized functions with
multiple areas of magnification. Not all functions constructed in this manner will be
useful; as the loose restriction of CY continuity will allow the user to construct wildly
distorting transformations with sharp transitions rather than smooth curves. This
problem can be alleviated by enforcing monotonic ordering of the segment end points,
or by using spline functions with higher degrees of continuity to construct a “trans-
formation curve”, and then sampling the spline function to obtain an approximating

piecewise linear function.

Piecewise transformations can also be constructed through manipulation of the
values of the magnification function (which is the derivative of the transformation
function). By placing a grid over some domain and assigning suitable magnification

values (perhaps corresponding to a degree of interest) for each cell in grid, we can
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integrate over the magnification values to obtain the corresponding transformation
function. This allows the user to construct a transformation function without having
to be aware of the slope/magnification relation; instead the user is able to construct
such a function by simply expressing interest in certain areas of the domain. Since
we are integrating the magnification values to obtain the transformation function,
we automatically obtain C° continuity in the resulting transformation function. If
only positive magnification values can be specified, the integration will also produce a
monotonically increasing function. As with the transformation functions, this process

is also amenable to the use of spline functions for direct construction.

2.5.2 2D Piecewise Transformations

In the previous subsection, we explored methods for using piecewise linear func-
tions to approximate the 1D transformation functions described in Section 2.1.1. In
this subsection, we will examine a more powerful set of piecewise transformations,

where an approximation is made of a complete two dimensional transformation.

The most straightforward method to construct a 2D piecewise linear transforma-
tion of this type is to sample an existing transformation with a regular grid of two
dimensional points to construct a grid of the transformed points. After this grid
has been computed, any number of points can be transformed through table lookup

and linear interpolation on the x and y coordinates independently. The accuracy
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of the piecewise approximation is controlled by parameterizing the resolution of the

“sampling grid” that is used.

Table 2.3 shows that even for slightly complicated transformations such as the
Flat/Radial combination (Figure 2.21), construction of a 2D piecewise transformation
can result in significantly faster transformation times than for the procedural fisheye
technique. As with the 1D piecewise transform, the time required for the complex
piecewise transformation remains constant with increasing complexity of the function
and increasing grid size (within memory and cache constraints). Note however that
the 1D piecewise approach is the fastest of the three, requires much less memory than

the 2D, and would be a better choice for this particular transformation.

When we moved from continuous basis transformation functions to their 1D piece-
wise transformation counterparts, we found that a new level of expressiveness became
possible. Similarly, we can express an even richer set of transformations with a sin-
gle 2D piecewise transformation function than with a continuous 2D transformation.
There are several ways in which this potential increase in expressiveness can be re-
alized. One method that offers large performance benefits is the ability to combine
multiple transformations (as described in Section 2.2) and express them in terms of a
single 2D piecewise transformation. This can be achieved in a manner similar to that
described above for construction from a single existing transformation, the difference

being that the entire set of transformations is applied to the sampling grid before it is
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used to construct the single 2D piecewise transformation grid. This effectively allows
us to collapse the entire transformation pipeline into a simple table lookup operation.
The timing results shown in Table 2.4 indicate a magnitude of order increase in per-
formance when comparing the procedural (fisheye) and 2D piecewise approaches to

producing the transformation shown in Figure 2.22.

Figure 2.22: Compound Transformation for Table 2.4

Function Time (107%) | Normalized (107%) | TPS (109)
Fisheye 4.97 4.82 0.20
1D Piecewise 4.65 4.50 0.22
2D Piecewise 0.61 0.46 1.65

Table 2.4: Times for Compound Transformation in Figure 2.22

Direct user manipulation of 2D piecewise continuous functions poses more of a
problem than is the case with 1D piecewise functions. The transformation grid can
be manipulated directly by the user, although additional tools would likely be required

to make the task less complex than individually setting each node on the grid. Direct
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manipulation of the magnification values raises a whole set of new problems for dealing
effectively with the 2D integration to find the associated transformation grid. The

following chapter will address these issues in detail.

Because of the overhead involved in construction of 2D piecewise transformations,
they are best suited to tasks which are dynamic in time and placement rather than
in shape. Once computed, these 2D transforms can be translated over a domain (or
the domain “underneath” the transform can change through time) efficiently with-
out recomputing the transformation grid. Whenever the shape of the transformation
changes however, it becomes necessary to recompute the transformation grid, and
therefore 1D piecewise or continuous functions might be better suited to those appli-

cations where the shape of the transformation changes frequently.

2.6 Coda

This chapter has described a transformation pipeline for nonlinear magnification,
and shown how simple modular components can be combined to produce complex
magnification effects. Piecewise linear approximations can be used to reduce individ-
ual or multiple operational components into simple table lookup operations. As will
be discussed in Chapter 5, this transformation pipeline provides much faster perfor-

mance than is described in any other similar system for nonlinear magnification. The
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core concepts of this system have been adopted by other researchers as a basis for the
design of similar systems for nonlinear magnification, particularly in the application

of collaborative geographic information system browsers [CPC97].

The transformation-based approach to nonlinear magnification is by far the most
prevalent among the systems described in the literature. Although these systems
encompass a high degree of variation in the methods used, they all have two char-
acteristics in common. The first characteristic is the use of 2D transformations to
stretch and compress regions of the domain, producing implicit magnification of the
domain as a side effect of the transformations. The second characteristic is the use of
explicit centers of magnification to define regions of magnification, thus constraining
the interface to something which could perhaps be metaphorically described as a set

of “nonlinear magnifying lenses”.

In the next chapter, we will examine new methods for magnification-based nonlin-
ear magnification, in which magnification can be expressed more directly, and which
removes the requirement of explicit centers of magnification, instead allowing fluidly-

shifting fields of magnification values.



3

Magnification-Based Magnification

The focus of the previous chapter was to define a nonlinear magnification system
using simple modular components joined together to create complex magnification
effects. Although this system for nonlinear magnification transformations was suc-
cessful in reducing complex magnification effects to a set of easy to understand and
implement operations, there are some general limitations which the system still has

in common with existing nonlinear magnification systems.

The first major limitation of the existing nonlinear magnification systems could be
referred to as the “tyranny of the foci”. Although explicit centers of magnification are
clearly desirable in many cases, this also puts severe limitations on the types of mag-
nification and interaction which can be produced. Interaction becomes an exercise in
manipulation of discrete magnifying “lenses”, and additional expressiveness of mag-

nification comes primarily through additional and /or complex lenses, thus increasing

o4
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the computational cost of computing the overall transformation.

A second difficulty encountered with existing systems involves determining the
overall effect of complex transformations. A general purpose mechanism would be
useful to determine the effects of complex transformations with multiple foci, so that
the global effect of the transformations can be determined across the entire space of

a domain, rather than just at the centers of magnification or other discrete points.

Thirdly, all of the existing nonlinear magnification systems closely tie the method
for specifying the magnification to the method used to produce the transformation.
In most cases the magnification is only a side-effect of specifying a transformation.
These interdependencies create complications for each method. A system in which
the magnification values can be specified independently of the transformation mech-
anism would provide more direct control of the specification, as well as allowing the
magnification values to be analyzed, combined and manipulated in a more systematic

fashion.

In this chapter we will develop further a theory of nonlinear magnification that
addresses these issues. In particular, we reduce the concept of nonlinear magnifi-
cation to a field of scalar magnification values. Broadly speaking, these nonlinear
magnification fields provide benefits at two levels. First, they serve as a basis for an-
alyzing the effects of existing techniques, even though their underlying mechanisms

may be very different. Second, they directly define space transforming visualizations
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and can be manipulated in computationally efficient and conceptually effective ways,

thus yielding powerful visualization tools.

Defining magnification as a field of arbitrary scalar values provides a much greater
expressiveness of magnification and ease of manipulation than is possible using other
techniques. By removing the restrictions of discrete foci we allow fluidly shifting mag-
nifications of arbitrary complexity, and can factor out magnification complexity from
the time required to compute suitable transformation functions so that computation
is wndependent of the complexity of the magnification function. We will look at a
number of novel ways in which the flexibility of these nonlinear magnification fields
can be used to create effective visualizations. The techniques presented range from
low-level precise specification of magnification, through the creation of expressive
user-interface techniques, to sophisticated magnification fields constructed by appli-
cation programs. Many of the results described in this chapter are based on work

that was initially reported in [KR97a, KR97b].

This chapter has several major sections. First we will develop a formal specifi-
cation for the relationship between transformation and magnification. Then we will
see how the implicit magnification field for a given transformation can be computed.
Following this we will investigate an iterative method for computing a transformation
from a given magnification field specification, and also examine some performance as-

pects of that method. Finally we will look at some of the ways in which interfaces
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can be layered on top of these low level magnification fields.

3.1 Magnification Fields

When describing nonlinear magnification systems, it is useful to distinguish be-
tween magnification and transformation functions, as first described for the one-
dimensional case in [LA94]. The transformation function directly stretches and com-
presses the space, while the magnification function (which is the derivative of the
transformation function) represents the magnification values which are implicit in
the transformation function. This distinction is central to the work described in
this chapter. Converting between magnification and transformation functions in one
dimension is a relatively straightforward task, however the situation is much more
complicated in two or more dimensions. In the next two sections we will examine
techniques for accomplishing these conversions, after introducing some basic defi-
nitions and notation. Although this chapter presents results in 2 dimensions, the
view-independent nature of the techniques presented here allows for trivial extension

to 3 or more dimensions.

Before exploring the mathematics for determining the local 2D magnification, it
is illustrative to look at the simple 1D case, where the the relationship between trans-

formation and magnification functions was first established by Leung and Apperley
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in [LA94]. In particular, they identify magnification as the derivative of the trans-
formation function. For a transformation function y = f’(z), the derivative is given

as:

(3.1)

range length

~ domain length

Thus for the 1D case, local magnification is computed as the limit of the ratio of
lengths. A diagram of this relationship is shown in Figure 3.1. We will extend this
result to two dimensions, where instead of ratio of lengths, we will use the ratio of

areas to define magnification.

y =1(x)

AX

Figure 3.1: Transformation and Magnification Relation in 1D

Any magnification employs a transformation function ¢ which moves points of a

rectangular domain D within a frame ((u,v) = t(x,y)). t is a vector function which
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can be also be expressed as:

o= (- (43

Since we want the magnification to be non-occluding, we require that t is at least C°
continuous, one-to-one and order-preserving (given (uy,v1) = t(xy,y;) and (us, v9) =
t(xa,y2), 1 < @9 implies uy < uy, and similarly for y). For computational purposes,
we deal with ¢ only on a px ¢ integer grid G, with g : G — D (g maps the regular grid G
into the domain D). and represent a discrete approximation of ¢t with a quadrilateral
grid T (T = t o g, where 'o’ represents composition). Given a region R in D, we
represent the transformation of R via t as #(R) (also called the image of R). This

transformation is illustrated in Figure 3.2.

Figure 3.2: Nonlinear Transformation of a Region

A magnification field m is a 2D scalar field of the form z = m(x, y) which gives the

regional expansion caused by ¢ around a point. As with ¢, m is normally represented
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on G by a quadrilateral mesh M (M =m o g).

Informally, we would like our measure for magnification to represent the intuition
that magnification in the real world is “how much bigger things get”. A single scalar
value indicating this would be readily analogous to the “power” commonly used for
describing lenses. The mathematics that we use to define this magnification should

serve to reflect this intuitive understanding.

The most obvious approach to measuring “how much bigger things get” is to
compare the area of a region before and after the transformation has been applied
and to make magnification the ratio of those areas:

Area(t(R))

Area(R) (3:3)

magnification =

This is a direct extension of the definition of magnification in one dimension that
provides a single scalar value reflecting the intuitive notion of magnification. We can
formulate this area-based approach more precisely in terms of limits by creating an
area-based derivative as defined below.

Area(t(R))

e (3.4)

magnification = lim
h—0
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By defining magnification in this way however, we can no longer assert that mag-
nification is the true derivative of transformation in 2D. In fact, a true derivative of
a 2D transformation function would yield multiple scalar values rather than a sin-
gle magnification value. Although it would nice if the derivative relationship carried
over directly from the 1D case, there are two major reasons why doing so would not

provide an appealing definition for magnification:

e It does not match “real world” perception of magnification as a single scalar

value.

¢ It does not reduce complexity of magnification specification in comparison to
transformation-based approaches. It will be shown throughout this chapter that

having a single scalar value for magnification greatly facilitates manipulation.

It should also be noted that by defining magnification as a single scalar value in
this way, we lose some information about the original transformation. This means
that given a transformation grid 7', if we compute the magnification M and then
construct a transformation grid 7" from M, we may not end up with identical T" and
T'. In general, there may be many possible transformations for a given magnification
specification. We will see however, that despite this loss of information about the
original grid, good results can be obtained by constructing a transformation having

the same intrinsic magnification properties.
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Related to this issue, the area-based measure for magnification that we are using
assumes that magnification is uniform locally and does not take into account scaling
differences in the o and y directions, so that when scaling a region by d in the x
direction and by % in the y direction we will sometimes obtain a magnification value
of 1 (depending on the specific area function being used). Although this may present
some problems with the local definition of magnification, we will see in Section 3.3
that the implicit gradient of magnification values within the magnification field can
provide additional information about such cases when they are part of a larger region

that is non-uniformly scaled.

Now that we have defined magnification as a ratio of areas, we must also define
how to compute the area of a nonlinearly transformed region R in order to find
that ratio. In the following section we will calculate an approximation of these areas
numerically, here we present the mathematical formulation for the continuous case.

We can compute the area of t(R) with the double (area) integral:

Arealt(R)] = // dA,, (3.5)

A theorem showing how to find this integral for a nonlinearly transformed region can

be found in Chapter 11 of [PM64], where it is used to develop the Change of Variables
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Theorem. The formulation for the solution of this integral is:

dA,, (3.6)

Arealt(R)] = / / ‘ 7(22)

R

There are a number of conditions which must be met for this integral to exist: £ must
be one-to-one and continuously differentiable over the domain D, R must be a closed
bounded region in D having some area, and the Jacobian J of ¢ must never be zero

(i.e. the transformation must be invertible).

Given the integral in Equation 3.6 for finding the area of a nonlinearly transformed
region, we can now compute the local magnification as the ratio of the areas of the

transformed and original regions:

range area

domain area

In the following section we will approximate this limit using an area-based function
m, which computes the local magnification for each node in 7. For computational
efficiency, the area-based magnification we use here actually corresponds to the square

of the linear “power” sometimes used in describing lenses.
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3.2 Transformation Grid to Magnification Field Con-

version

Conversion from a given transformation grid 7' to a magnification mesh M involves
numerically approximating an area-based derivative of T. The computation begins
with an area function a; which, for each node in T, returns an approximation of
the area defined by the neighbouring nodes. One possibility for this function simply
uses the bounding box of the 4-connected neighbours {T'(i +1,7),T(i—1,7),T(i,j +
1),T(i,j —1)}. If the distance between node T'(7,7) at coordinates (z,y) and one
of its 4-connected neighbours in an untransformed grid is A, then this area can be

W

defined as (where represents the dot product):

a(z,y) = |tz —h,y) =tz +h,y)) - (L0)] x [(t(x,y — h) —t(x,y + h)) - (0,1)]

(3.8)

We define C, to be the constant area associated with any 7'(¢, 7) in the untransformed

uniform sampling grid:

Ca=|((z =h,y) = (z+h,y)) - (1,0)| x [((x,y = h) = (x,y + h)) - (0,1)]

e (3.9)
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The approximate magnification value for a point T'(i,7) is then given by M (i,7) =
me(g(i,7)) = me(x,y) = a;(x,y)/Cy. As the mesh resolution approaches infinity, this

becomes:

ar(z.y)
me(z,y) = lim tim (3.10)

More accurate area calculations are possible, such as explicitly finding the area of
the four surrounding cells. In practice however, this increase in accuracy does not
normally change the results significantly. Coarser approximations are adequate, as

long as the area function is used consistently throughout the system.

Figure 3.3 shows an example of a transformation grid and its associated mag-
nification mesh calculated with this method. This technique allows any nonlinear
magnification system to create a landscape representation of its implicit magnifi-
cation values. Elevation-based shading can be used to provide visual cues to the
magnification level simply by mapping elevation values into a color/intensity ramp.
This is in contrast to perspective based systems such as perspective wall [MRC91],
where elevation and magnification do not correspond directly, but are also dependent

on viewing parameters.

Figure 3.4 shows another example, this time illustrating multiple bounded regions

and linear magnification; the transformation grid was generated using the techniques
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Figure 3.3: Transformation Grid and Implicit Magnification Field

described in [KR96d]. As a further example of how these techniques can be used
to determine the implicit magnification generated by existing systems, we use the
example of Perspective Wall [MRC91], which is representative of the class of nonlin-
ear magnification systems that are based on a perspective projection of 3D surfaces
(other examples include [RM93, CCF95a, MK97]). By sampling a perspective wall
transformation function with a regular grid, we obtain a transformation grid which
is used to generate the associated magnification mesh (see Figure 3.5). These exam-
ples show how transformation and magnification functions can now be tightly coupled
across entire domains even for complex transformations. This method is very general-
purpose in nature, and can be readily applied to any spatial nonlinear magnification

system.

As an example of how implicit magnification fields can be used, consider the task of
rendering node sizes proportional to the magnification produced by a complex trans-

formation. Proximity to the centers of magnification is not an effective measure on
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I

Figure 3.5: Perspective Wall Magnification

which to base node size, as it does not take into account the effects of multiple trans-
formations and domain or smoothing parameters. By sampling the region around
a node however, we can determine the local implicit magnification for that node by
finding out whether that region expands or contracts. By sampling uniformly over
a space, we create a magnification mesh and can then interpolate the magnification
values between nodes to create a continuous magnification field. Any object can be
rendered at an appropriate size or level of detail by finding its magnification value in
the field. Figure 3.6 shows a simple example where the implicit magnification field

is used to determine the size at which to render objects located within a complexly
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transformed space. Further examples of similar ways in which the implicit magnifi-
cation field can be used to determine the “detail” with which to render data objects

are described in Chapter 4.

Figure 3.6: Node Size Proportional to Implicit Magnification

3.3 Magnification Field to Transformation Grid Con-

version

While it is a relatively straightforward task to find the implicit magnification mesh
M associated with a transformation grid 7' by computing the area-based derivative,
it is a much more complex task to construct a suitable transformation grid given a
magnification mesh. Simple perspective projections of these meshes from an aerial
viewpoint are not effective because they may introduce problems of occlusion, as
shown in Figure 3.7 (which shows a perspective projection of the magnification field

in Figure 3.4).
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Figure 3.7: Occlusion from Perspective Projection

In general terms, we want to use the magnification mesh values to construct an
order-preserving transformation grid having the same implicit magnification values.
There are a number of issues which make this a difficult task. The most fundamental
problem involves finding a meaningful way to convert a single magnification value
into a two coordinate (x,y) transformation; there are usually many transformations
possible for a given magnification. In general, the transformation to magnification
conversion is inherently lossy, and hence the result of the magnification to transfor-
mation conversion is not uniquely defined. There exist direct methods for solving this
problem, but these methods are unsuited to the specific task of generating nonlin-
ear magnification transformations for visualization. Some of the major shortcomings

observed with the direct approaches are:

e bounded regions of magnification in M should produce bounded regions of trans-

formation in T to preserve a static context

o the transformation should be symmetric and centered around magnification
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maxima, and not constructed relative to some arbitrary boundary of the domain

e solutions providing only correct area in 1" do not preserve desired visual proper-
ties of the magnification, such as scale and aspect ratio within regions of linear

magnification

We can illustrate the shortcomings of these direct methods with a specific example.
Figure 3.8 shows the effect of a bounded linear /radial transformation (produced using
the methods from Chapter 2) on a checkerboard pattern, along with the associated
implicit magnification field (both with elevation shading, and with the checkerboard
overlayed). This will be our input specification for demonstrating the shortcomings
of the direct methods. Note that the actual resolution of the underlying grid is much

finer that the resolution of the checkerboard pattern in these examples.

Figure 3.8: Specified Transformation with Bounded and Linear Magnification

The first direct method involves building up a transformation grid cumulatively

by starting at one corner of the grid, and adding triangles to the grid on a row by
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row basis, one pair of triangles at a time. The location and size of each triangle can
be determined using simple trigonometry, although care must be taken to correctly
deal with the acute angles and cumulative floating point errors which quickly develop
as the algorithm progresses. Figure 3.9 shows the result of running this algorithm
on the specified magnification from Figure 3.8. Although the solution is numerically
correct (the window size has been enlarged to encompass the new boundaries), the
result suffers from all of the previously mentioned shortcomings and does not present

an effective visualization.

Figure 3.9: Cumulative Solution to Specified Magnification in Figure 3.8

The second method is based on histogram equalization techniques [GW93]. For
the case of 1D magnification to transformation conversion, it is a simple matter to
use histogram equalization to translate the magnification values into suitable trans-
formations. For a specification having n magnification values {z1,29,...,2,}, we

can compute a 1D transformation having the desired implicit magnification over grid
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points {xg, x1,... , 2, } with boundaries (min, Tmax) using the equations:

Ty = Tmin

Zi

(3.11)

T; = Ti_1 + (Tmax — Tmin) (fori={1...n})

n
Zj
2

J

We would like to be able to extend this to 2D by first applying this technique
to the rows of the mesh to compute the transformed x values, then resampling the
magnification values via linear interpolation to get the column-wise magnification
values of the partially transformed grid, and finally performing the same histogram
operation on the columns of the mesh (using the resampled magnification values) to
compute the transformed y values. Although this method does produce a transfor-
mation which reflects the relative magnification values present in the specification,
it encounters problems with non-product magnification distributions. The result of
applying this method to the non-product distribution specification of Figure 3.8 is
shown in Figure 3.10. Note that the resulting transformation fails to meet our criteria
for effective transformations for visualization, in particular the linear areas of mag-
nification do not produce linear regions of transformation, and the transformation is

not symmetric about the magnification maxima.

A fundamental problem with the performance of this method is that assuming a
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Figure 3.10: Histogram Solution to Specified Magnification in Figure 3.8

rectangular boundary condition on the entire target transformation means that the
magnification values will not be interpreted consistently between rows (or columns),
since the method of computation is dependent on the sum total of magnification
within each individual row and column. Analytical adjustment of the boundary con-
ditions might be able to account for this row and column normalization to some
extent, however that would in itself create the additional problem of having non-
uniform boundaries on the resulting transformation grid, thus trading one problem
for another. In addition there is the problem of ensuring that the local magnification
maxima computed in each row and column are properly aligned after the normaliza-
tion process, and this problem could not be fully addressed by considering boundary

conditions alone.

In order to address the shortcomings of these direct methods, we will develop an
iterative method which provides a numerical solution to this problem. By dealing

with a localized basis for computation, we can simply and directly control the overall
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behaviour of the algorithm to produce the desired final result. The general problem
is to compute an approximate transformation grid 7 from a specified magnification
mesh Mg. The key to our approach is that the ease of converting from transformation
to magnification facilitates the conversion in the opposite direction. We compute the
implicit magnification M from the transformation T, and then the magnification
error My = Mg — Mc. We then use My to further refine the approximation 7. On

a local node-by-node basis, we are trying to find a transformation ¢ such that:

at(g(lh])) = MS’(LJ) . Ca (312)

To enhance the visualization of the performance of our method, we join the z
magnification values of My to the (x,y) coordinates of Ty to create a composite
mesh M¢, so that Mg, (i,7) = (Tc(i,7), Mc(i,7)). We similarly join the My values
to Te giving My, with Mg, (i,j) = (Te(i,j), Me(i,j)). Mc, and Mp, are used for
meta-visualization of the performance of the algorithm only, and are not used in any

internal calculations.

Conceptually, the algorithm is straightforward. First we initialize T¢» to the iden-
tity transformation, then for each iteration we compute Mg on a node-by-node basis.
If Mg(i,7) > 0 then we push the neighbours of (i, ) in Ty away a little bit from

Te (i, 7). Conversely if Mp(i,j) < 0 then we pull the neighbours of (4, j) in Tr a little
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bit closer to T¢ (7, 7). Both the pushing and pulling operations are easily constrained
to preserve the ordering of nodes in T¢ (the exact method of constraining is dependent
on the specific displacement vector being used, and will be described shortly). The
listing below is a simple pseudo-code representation of the basic algorithm. Figure
3.11 shows an example of the operation of this algorithm over a few iterations (using
Mg from Figure 3.3); and Figure 3.12 shows how this method handles the multiple,

bounded and linear regions of magnification specified in Figure 3.4.

// first initialize T¢ to identity transform
// iterate over Ty until convergence
while(lconverged)
for(i :=1..s)
for(j :=1..1)
Mp(i,j) == Ms(i,j) — Mc(i,5);
H(Mp(i, j) > 0)
pushNeighboursAway(T¢, 4, j);
elsif(Mg(i, j) < 0)
pullNeighboursClose(T¢, 7, j);
endif

As mentioned previously, many different area functions can be used in these meth-
ods. The area function used will determine which neighbours should be displaced in

our algorithm (i.e. if the area function is 4-connected, then the algorithm should
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Figure 3.11: Magnification to Transformation Convergence on Iteration 1,40,80

only displace the 4-connected neighbours). Assuming 4-connected displacement, for
each p = T¢(i,7), we want to displace each of {T¢(i + 1,7),Tc(i — 1,7),Te(i,j +
1), Te(i,j — 1)}. However we will examine the displacement for only one of these
neighbours (¢ = T (i + 1, 7)), as the others will be treated similarly. There are two

main choices for determining the displacement vector along which to push or pull the

neighbours:

1. Radial: along the ray defined by p and its neighbour ¢, or the ray defined by
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Figure 3.12: M¢, and T Computed from Figure 3.4
q and the next neighbour over r = Ti (i + 2, j), expressed as’:
qd =q+ (Mg(i,j) >07d(r—q) : dlp—q)) (3.13)

where d is a parametric variable proportional to the absolute value of the error
estimate Mp(i,7). By scaling or clamping d to the range (0 < d < 1), we

constrain the pushing and pulling to preserve the ordering of the nodes in T¢.

2. Orthogonal: In the x or y direction only, depending on if the neighbouring
4-connected node is in an adjacent row or column of the current node. This
is equivalent to option 1) above, except that the x or y value is zeroed before
incrementing ¢q. For movement in the y direction only, this is can be expressed

as!?

¢ =q+(0,1)- (Mg(i,j) >07d(r—q) : dlp—q)) (3.14)

!'Using the ANSI C *?’ conditional operator [HS95].
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Most of the time the difference between these choices is barely noticeable. The first
choice creates a similar effect to the radial transformation described in the previous
chapter. The second choice causes the transformation to be slightly similar to the
orthogonal transformation from the previous chapter; however the iterative node-by-
node nature of the computation does not provide a true orthogonal transformation.
Figure 3.13 shows a comparison of these two choices on an identical Mg specification
from Figure 3.3. Other Mg specifications may produce somewhat more of a difference
between the two methods, but the overall shape of the constructed transformation Ty
remains pretty much the same regardless of which method is used. Throughout the

rest of this chapter the radial displacement vector type will be used in the examples.

a) radial b) orthogonal
(a) (b) g

Figure 3.13: Comparison of Radial and Orthogonal Displacement Vectors

Going back to our original definition of magnification as a ratio of areas, we

recall that this particular definition does not fully preserve all information about
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the original transformation. In particular, the single scalar value we use for local
magnification does not keep information about those situations where the scaling in
the  and y directions is different. In many cases however, the implicit gradient of
the magnification field drives the algorithm into a reasonably correct interpretation
of the scalar value into two dimensions. As an example of this, Figure 3.14 shows how
our algorithm performs on the input magnification from the perspective wall. Note
that the algorithm correctly places most of the expansion and compression along the
x axis, despite the fact that locally a single value is being used to represent both x

and y magnification.
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Figure 3.14: Computed Transformation for Perspective Wall
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3.3.1 Performance

To measure the convergence of the algorithm, we can use the root mean squared

error as the convergence estimate:

LSS (i) (3.15)

RMSE = \J

The algorithm converges faster if we multiply the error Mg (i, 7) by the specified
magnification Mg(i,7), so that regions of higher magnification will be more strongly
weighted. We also use a refinement coefficient C,. to scale the amount of error that
is applied to neighbouring nodes. When C, = 0 no displacement occurs, whereas
C, = 1 causes the algorithm to attempt as much displacement as possible on each
step of the iteration while still preserving ordering. To an extent, higher values of C.
cause the system to converge faster, but if C, is too high the approximation will tend
to oscillate and possibly not converge at all. The default C, = 0.3 typically provides
good results. C, can also be manipulated as the algorithm progresses; beginning with
a high value of €. and slowly reducing it to 0 as the algorithm converges can provide

a type of annealing which may allow for faster overall convergence.

The local error Mg(i,j) can be distributed evenly over the neighbouring nodes;

however the algorithm converges faster if we weight the displacements based on the
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distances between a node and its neighbours. If Mp(i,j) > 0, we weight the displace-
ments so that closer neighbours are pushed a greater distance than farther neighbours.
If Mp(i,7) < 0, we weight the displacements to pull more distant neighbours a greater
distance than closer neighbours. By doing this, we move those nodes which are most
responsible for the absolute error the greatest amount. This also serves to balance
out the distances between a node and its neighbours, so that the distance for each
neighbour approaches the average of all the distances of the neighbours, thus tending

towards a uniform scaling in both the x and y directions.

This algorithm converges independently of the complexity of the magnification
field, although there a several ways in which complexity can be defined. There is
an intuitive visual sense for the complexity of a field which can be obtained through
simple visual inspection. As an example, for the magnification fields of Figures 3.3
and 3.4 it is quite clear which of the fields is the more complex. Although this in-
tuitive meaning of complexity is adequate for such clear-cut cases, it is not sufficient
for distinguishing between fields which are quite similar, and does not have a quan-
titative capability. We can compute something similar to the intuitive meaning of
field complexity by finding the integral of the gradient of the magnification field. In
Section 3.5 we will refer to this gradient field as the “distortion” that is implicit in
the magnification field. This integral definition for complexity does not quite capture

the true meaning of complexity that we are interested in however, and also does not
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take into account the absolute level of magnification specified.

There is another level to the complexity which is of interest however: the complex-
ity of the code and computation required in a traditional foci-based system to form the
transformation having that implicit magnification field. With existing foci-based sys-
tems for nonlinear magnification (including the one described in the previous chapter)
it is quite clear when additional complexity is involved in a transformation. Adding
multiple foci usually involves computing multiple transformations for each point and
then combining them, or else requires extra attention to the regions between foci. Cre-
ating discrete bounded domains for the transformation adds complexity by testing if
the point is in the domain and constraining the transformed point to that domain.
Making distortion-free areas of linear magnification often requires extra work as well.
The timing data of the previous chapter quantify the effect of increasing complexity
within that system. As mentioned at the beginning of this chapter, it is this meaning
of complexity that we are going to address. Although we do not have a formula for
computing this complexity, we can heuristically judge it by noting the number of foci,
bounded regions, and linear/nonlinear combinations. The timing data in this chapter
will support the statement that convergence time for this algorithm is not dependent

on this “foci-based complexity” of the transformation.

A significant determining factor of convergence speed is the volume of specified

magnification, or more precisely the volume of error in My at iteration 0. For our
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discrete magnification meshes we can approximate this by treating My as a triangular
mesh, the distance between nodes in this mesh is a constant h, and the volume for
each triangular cell (assuming that the cell does not intersect the My = 0 plane, in

which case the cell must be re-triangulated) is approximated by (with 6 € {—1,1}):

h2 |Mpg(i. g Mp(i+90.7 Mp(i. 7490
'U(i,j,(S) _ 1 E(Z7])+ E(Z+ 7.])+ E(Zuj—l_ )| (316)
2 3
and the error volume over the entire mesh is:
p—1lqg—1 P q
Ve=> > v(i,j,1)+ > > v(i,j,—1) (3.17)
=1 j=1 =2 j=2

Other measures of this “total error” having greater or lesser accuracy are possible,
in fact this discrete measure of error is nearly identical to the 1-norm for the error

mesh:

Vi = 305 M )| (3.18)

i=1j=1

In practice either of these measures seems to be sufficient for characterizing the

amount of error that needs to be reduced by the algorithm.

Figure 3.15 shows the effect of altering the overall volume of the error on con-

vergence time for a number of different transformations. For these examples, each
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series represents a single type of transformation which is timed with a varying pa-
rameter that changes the overall error volume of the transformation. For the series
which have 'F’ as the second letter, different values of the smoothing filter from 1
(null transformation) to 0 (full transformation) are used. For the series which have
‘B’ as the second letter, different values of 3 are used to increase the volume and
degree of magnification. A key to the identifier codes is in Table 3.1, and a full listing
describing each series, along with an explanation of the series letter codes, can be

found in Appendix A.

All timings in this chapter were obtained on a 195 MHz MIPS R10000 CPU.
The convergence threshold for RMSE is set to 0.05; this value represents the point
beyond which further computation does not usually result in visually distinguishable
refinements in the transformation. Occasionally lower values of RMSE are needed,

however this value is reasonable for purposes of comparing timings between series.

clip vary combination | source type | constrain
Error | Beta Average Flat/radial | Bound
None | Filter Clip Orthogonal | Unbound
Number | Overlap Radial
Single

Table 3.1: Key for Timing Series Identifiers. Each series is identified by a 5 letter

code, the meaning of each letter position is described here.

Inspection of the results shown in Figure 3.15 reveals a rough correspondence
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Unclipped Convergence for Different Transformation Types
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Figure 3.15: Effect of Error Volume (V) on Convergence Time

between error volume and convergence time, although clearly there is still a degree
of variability in that correspondence. Examination of the outliers on this graph
may provide insights into the performance of the iterative algorithm. Series NFARU
shows the greatest deviation from the performance trend; this series represents the
transformation resulting from averaging several unconstrained radial transformations,
as shown in Figure 3.16. This figure shows that the transformation has a large region
of specified demagnification (magnification value less than 1), almost the entire upper-

left quadrant has a magnification value of less than 0.5.
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Figure 3.16: Outlier Series NFARU Specification

To test the hypothesis that it is this large region of demagnification which is
causing the slow convergence, we can examine the performance of the algorithm
over a number of iterations, as shown in Figure 3.17. Note that the regions of high
magnification converge quickly; the error has been greatly reduced from those regions
by iteration 50, and almost completely eliminated by iteration 100. In contrast, the
main region of demagnification has barely changed even after 100 iterations of the
computation. This is due to the algorithm’s weighting of the computation in favour of
higher regions of magnification, based on the assumption that is those regions which
will be of greatest interest, and which will therefore be most important to compute
accurately and quickly. The second highest outlier (NFAQU) is similar to NFARU,
except that the orthogonal transformation is used instead of the radial transformation.

Both series present similar large regions of demagnification.
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(a) Tc (b) Mcy (c) Mp,

Figure 3.17: Convergence for Series NFARU on Iteration 0,50,100

There is still a possibility that it is not the region of demagnification by itself
that is causing the slow convergence, but rather the neighbouring regions of high and
low magnification. To test this, we can look at the performance of the algorithm on
an input specification which specifies demagnification across the domain with very
little variation. An example of this is shown in Figure 3.18. This transformation is
identical to the radial transformation in Figure 3.3, except that the $ parameter has

been decreased to lower the magnification values to between 0.50 and 0.52 (compared
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to between 0.53 and 1.95 in Figure 3.3). The algorithm requires 2380 iterations to
converge using the input specification from Figure 3.18, compared to 118 iterations
when the input specification from Figure 3.3 is used. This further supports the
assertion that regions of low magnification cause slow convergence for this algorithm,

and that higher regions of magnification will generally tend to converge faster.

(a) T (b) Ms

Figure 3.18: Specification of Uniform Demagnification

We can explicitly inform the algorithm of what levels of demagnification to ignore
using mesh clipping techniques. First we create an error clipping constant C, with a
default value of 0.0, and then have the algorithm ignore nodes where Mg(i,7) < C..
This causes the algorithm to converge faster because it does not have to compress
an area whose implicit magnification is greater than its specified magnification. The

result of this is that regions of demagnification are not strictly enforced, but allowed
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to remain at their original unmagnified level (excepting where magnified regions push
into those demagnified regions). This allows the resulting transformation grid to
fill up the available space more efficiently, sometimes eliminating the empty screen
regions which were outside the range of the original transformation grid. Figure 3.19
shows a few iterations on an input identical to that used for Figure 3.11, except that
error clipping with C. = 0.0 is now used. When this error clipping method is used,

we redefine our error measure as:

(Mp(ij) > C) 7 Mp(i.j)?:0)  (3.19)

RMSE = \l
1

1 p
(P X q) i

q
1j=
and observe that the primary determining factor of speed of convergence is now the
volume of My above the clipping plane defined by C.. By increasing C,. to 0.1 or

0.25, little visual difference is apparent in the resulting 7T, although substantial

performance benefits occur.

Returning our attention to the outlier series NFARU, we can see in Figure 3.20
that when error clipping is applied during the iterative method the algorithm now
converges much faster (0.311 vs. 10.231 CPU seconds, 83 vs. 1800 iterations), al-
though the result within the magnified regions is virtually identical. Figure 3.21

show how the performance of the algorithm increases when error clipping (C. = 0.0)
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(a) Tc (b) Mcy (c) Mp,

Figure 3.19: Convergence with Error Clipping on Iteration 1,40,80

is used for the examples in Figures 3.19 (NFARU) and 3.20 (NFSRU). The dashed
lines represent the performance of the algorithm on those same series when clipping is
used. Note that applying the error-clipping decreases the total volume of error, and
additionally decreases the computation time required for convergence. Notice also
that while NFARU is slower than NFSRU when clipping is not used, the situation is
reversed when clipping is used, so that EFARU is now faster that EFSRU. This is
clear support for the earlier statement that this algorithm converges independent of

the complexity of the magnification field, since EFARU is a much more complex field
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specification than EFSRU.

(a) Te (b) Mcy (¢) Mg,

Figure 3.20: Error-Clipped Convergence for Series NFARU (EFARU) on Iteration
0,50,100

In a similar fashion we can define a magnification clipping constant C),,, and make
our algorithm ignore nodes having Mg(z, 7) < C,,. Depending on the particular Mg
being used, increasing C,, to 0.5 or 0.75 can significantly increase performance with

little cost in the final visual result. Error clipping is more flexible than magnification
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Comparison of Clipped and Unclipped Convergence
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Figure 3.21: Effect of Error Clipping on Convergence Time

clipping however, because it takes into account the changes to the implicit magnifi-
cation of T~ as the algorithm progresses, and thus distributes the magnification more
evenly over the entire domain. By carefully adjusting C,, and C, for the particular
application, very significant increases in performance can be achieved, to the point
where our algorithm converges at speeds which are suitable even for interactive appli-
cations requiring high frame-rates. Table 3.2 summarizes the effect of adjusting the
clipping parameters on a 32 x 32 mesh with the radial transformation specification

from Figure 3.3.

Significant performance increases are also possible through the use of multi-resolution

mesh computation techniques. One straightforward approach to realizing this is easily
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Cpn | C. | Iterations | Time (s)
- - 154 0.826
0.00 72 0.236

0.25 50 0.104

0.75 - 73 0.220
0.00 72 0.198

0.25 50 0.072

Table 3.2: Clipping Performance Using Mg from Figure 3.3

achieved when the mesh contains (2n 4+ 1) x (2m + 1) nodes. The iterative compu-
tation can then be performed using a stride of length 2 to step through the row and
column indices, greatly reducing the number of nodes that need to be computed. Af-
ter convergence (or a given number of iterations) the remaining nodes are positioned
using linear interpolation between the computed nodes, followed by a number of it-
erations over the full mesh with stride = 1 to fill in any details which may have been
missed by earlier iterations. This method can be extended multiple levels to obtain
greater benefits, although artifacts of the coarser resolution of computation may be-
come evident unless more sophisticated methods are used to balance the computation
between levels. A clear area for further refinement of this algorithm would be to in-
corporate well-established multi-level computation techniques such as those surveyed
in [Dou96] to obtain greater performance. Figure 3.22 shows the effect of changing
stride on convergence times for an unconstrained radial transformation while varying

the smoothing filter to change the error volume.

Not unexpectedly, mesh resolution is also a significant factor in the performance
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Convergence for Unconstrained Radial Transform (Varying Filter)
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Figure 3.22: Effect of Stride on Convergence Time

of our algorithm. High resolution meshes are able to compute finer detail than lower
resolution meshes, but generally require greater computation time. We can parame-
terize the mesh resolution to tune the performance based on speed/accuracy tradeoffs,

the results are shown in 3.23 for the radial transformation with all clipping disabled.

3.3.2 Degenerate Field Specifications

Not all possible magnification specifications will have a solution; there are some
degenerate specifications which are physically impossible to satisfy without violating
the desired characteristics for nonlinear magnification. Although these physically

degenerate cases have no exact solution, our algorithm still manages to compute a
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Convergence for Unconstrained Radial Transform
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Figure 3.23: Mesh Resolution vs. Convergence Time

reasonable compromise for them. We will examine the degenerate cases below, along
with how they can be dealt with effectively. First however it should be noted that
any magnification field which is generated from a transformation meeting our stated
requirements for nonlinear magnification will by definition never be degenerate, and
our iterative method can always manage to construct a transformation grid having

the same implicit magnification field as the original transformation grid.

The first type of degenerate case occurs when the specified magnification requires
an area greater than the available area. For example a mesh specifying 2x magnifica-
tion across the entire field cannot possibly be satisfied while maintaining the desired

properties of non-occluding in-place magnification. This reflects the intuitive notion
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that every expansion should cause a corresponding compression at some other region.
Although this notion holds true in general for this algorithm, we do not as yet have
an explicit mechanism for enforcing it. In particular, we have not yet introduced
any boundary constraints on the transformed image of the domain to ensure that
boundary(D) = boundary(¢(D)). In Section 3.5.1 we will examine ways in which
boundary conditions can be enforced to ensure that ¢(D) always fits precisely into the

region defined by D.

Another related type of degenerate case involves conflicting regions of magnifica-
tion. For example when a region of very high magnification is surrounded by regions
of low magnification (a doughnut shape), it may be physically impossible to satisfy

both specifications simultaneously.

We can resolve these degenerate cases by making the assumption that regions
of high magnification (and high error) should take higher priority than regions of
low magnification. In this way C, and ), can always be adjusted so as to relax the
specification to a non-degenerate configuration. In addition, weighting My by Mg (as
described previously) will resolve degeneracies above the clipping planes by emphasiz-
ing higher magnification values. It is worth noting that we can also emphasize areas
of demagnification simply by reversing the clipping tests and weighting by the inverse
of the magnification. We will see how effective these methods can be for resolving de-

generate specifications in Section 3.5, where all of the manipulation examples involve



~
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degenerate field specifications. This ability to resolve degenerate cases is a major
feature of the satisficing iterative method; direct methods providing exact solutions
would have to be modified to produce a satisficing solution when a degenerate field is
specified (or the field would have to be constrained to non-degenerate configurations),

thus adding much greater complexity to the computation and/or specification task.

While this iterative method is robust in the presence of degenerate specifications,
the RMSE error estimate does not always converge to 0 when the algorithm has
converged to its satisficing solution on a degenerate case. The RMSE error estimate
does converge along with the algorithm however, so it is possible to monitor the change
in RMSE between iterations to determine the degree to which the computed solution
has stabilized. Although RMSE decreases monotonically during convergence in most
cases, it very occasionally increases slightly (& 0.01) after the algorithm has converged
on a satisficing solution; more divergent behaviour has not been observed with this
method. This “backspin” can be eliminated by reducing the refinement coefficient
C, as the algorithm converges on the solution. More sophisticated and expensive
error estimates might compare the actual transformation grids between iterations on
a node-by-node basis to determine the current volatility of the computation; however
it is unclear whether the increased computation required for this would result in a

significantly more accurate error estimate.
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3.4 Combining Magnification Fields and Transfor-

mation Grids

We can combine a transformation grid 7" and its implicit magnification mesh M
to enhance the visual perception of the effects of the transformation at a meta-level.
We have already seen in the previous section how the {z,y} coordinates of T can
be joined to the {z} coordinate of M to form a composite mesh M, (M,(i,j) =
(T(i,7),M(i,7))). Orthographic projections of M, from directly above allow the
elevation values to define colour gradients which provide effective visual cues to the
degree of magnification implicit in a transformation. This technique has already been

used to enhance the visualization of T in the figures shown in this chapter.

We can also produce a blend of T" and M which allows the viewer to visualize
the transformation as smoothly shifting into a perspective view of a landscape of
magnification values. The underlying mechanism is a simple linear interpolation
between 7" and M. One way this mechanism can be used is based on a viewing
model in which the view direction (lookat) is aimed at the center of the mesh, while
the angle of elevation # varies from 0 (looking at the mesh edge-on) to m/2 (looking
at the mesh from directly overhead). If we let ¢ = 260/m, and T; be an identity
transformation, then the {x,y} values of M, are given by (1 —¢)T +tT}, and the {z}

values are given by tM so that M,(i,j) = ((1 —¢)T'(¢,7) + tTi(i,7),tM(i,j)). The
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effect of this is an aerial view of the transformation grid which can be “pulled down”
to view in perspective as a landscape of magnification values. Figure 3.24 shows a

few snapshots of this operation.

DHDD Duz
000 01

Figure 3.24: Blending a Transformation Grid with its Magnification Field

3.5 Magnification Field Manipulation

By isolating magnification field specification from the transformation function,
it is now possible to manipulate the magnification values directly rather than have
them change only as a side effect of changes in the transformation. We refer to
systems which rely on transformation functions to produce nonlinear magnification
as transformation-based systems. Another class of systems use a physical view-
ing model and perspective projections to produce nonlinear magnification effects
[MRCI1, RM93, CCF95a, MK97]. In general such perspective-based systems have
an irregular correspondence between elevation and magnification, and require care-

ful attention to the orthogonality of surface normals to the view vector, thus adding
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additional degrees of complexity to the magnification specification task. In contrast,
the system presented here is a true magnification-based system. Direct manipulation
of the magnification mesh makes for a system which is both simpler and more expres-
sive than previous nonlinear magnification systems. From the user and application
standpoint, the task now is simply to specify desired magnification levels in a scalar
field; the conversion techniques in Section 3.3 then construct a transformation grid
having those magnification values (assuming the case is not degenerate, and that such
a transformation grid is possible). This frees the user and application program from
the often difficult task of determining what combination of complexly interacting

transformation functions or surface normals will produce the desired magnification.

The remainder of this section will highlight some of the ways in which direct mag-
nification field manipulation can be used, from low-level node operations to high-level
global constructions. In all of these examples, we begin with a direct magnification
specification and end with a transformation reflecting that specification. The intent
is to illustrate through these examples that “magnification” is a more intuitive and
useful interface concept than “distortion”. Distortion is not the goal of this nonlin-
ear magnification system but only a by-product, although the system does allow for
explicit representation of the distortion present in any nonlinear magnification field.
Defined as the rate of change in magnification, distortion is easily computed as the

slope of the magnification field, as shown in Figure 3.25. For this specific example,
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the unsigned slope was computed as:

1
unsigned slope = = > > |M(i, ) — M(i+ Ai,j+ Aj)
Aie{—1,1} Aje{—1,1}

(3.20)

Other slope calculations such as the magnitude gradient provide similar results. These
methods of explicitly computing the distortion of a given transformation point the way
for future research into constructing transformations which minimize the distortion.
We can imagine an extension of our iterative method which also factors distortion
minimization into the local equations in order to find the transformation with the

least distortion that satisfies a given magnification specification.

(a) Transformation (b) Magnification (c) Distortion

Figure 3.25: Relationship of Transformation, Magnification, and Distortion
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3.5.1 Node-Level Specification

At the lowest level, we can control the magnification mesh on a node by node basis.
For demonstration purposes, we have implemented a simple interface which allows the
user to select single nodes or rectangular regions of nodes from the magnification mesh.
The magnification levels associated with these selected nodes can then be raised or
lowered accordingly. This provides a very fine-grained control of the magnification
specification. Of greater interest is the ability to associate logical values with the
selected nodes. For example the ability to “lock” nodes in place allows for specification
of regions which will remain unchanged in the transformation grid. This allows any
region of the domain to be excluded from the transformations, as shown in Figure
3.26; these regions can also be locked at magnification levels other than unity by
transforming them before locking them in place. In addition, it now becomes a trivial
matter to constrain the transformation to any arbitrary bounded domain simply by
locking those nodes which define that bounded domain (see Figure 3.26). Some of the
examples in this chapter used locked nodes on the mesh perimeter to ensure that the

transformed grid would still fit precisely in the original rectangular sampling area.

A major feature of this locking mechanism is that in many cases specifying
bounded regions of magnification (or non-magnification) actually reduces the com-
putation required (assuming degenerate cases are not introduced). Thus while these

bounded regions are similar to the constrained domains introduced in the previous
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chapter and the global bounding-box constraints described in [SSTR93], they differ
in that additional computation or program complexity is not required here to enforce
the fixed boundaries. This locking mechanism allows us to obtain arbitrary bounded
and excluded regions for “less than nothing” in computational cost in most cases, by

means of a trivial boolean flag check for each node in the iterative conversion process.

Figure 3.26: Excluded and Bounded Regions of Magnification

More sophisticated constraints are also possible on this node level. For example,
we can lock individual coordinates of specific nodes, so that they can only move
along a proper subset of the available transformational axes. An example where this
is useful is for locking nodes at the rectangular boundary of a domain. Having these
nodes completely locked can introduce some extra distortion near the edges; however
“floating” edge nodes allow the boundary nodes to float along the boundary edges, so
that the overall boundary is still preserved, while allowing some degree of movement

of the boundary nodes. This is illustrated in Figure 3.27
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Figure 3.27: Locked and Floating Boundary Nodes

3.5.2 Mesh-Level Operations

Our representation of magnification as a simple scalar field greatly facilitates many
operations which would be very involved (if not impossible) with non-magnification-
based systems. Given a transformation grid 7" having an implicit magnification mesh
M , it is a simple matter to compute the point-wise inverse mesh M ~!, and then find an
“inverse” transformation 7! having those inverse magnification values (see Figure
3.28). Further, although our system allows for multiple regions of magnification
within a single mesh, it is also possible to combine multiple meshes in useful ways
using simple node-by-node operations across the meshes. As examples, two meshes
can be blended with proportional averaging: M (i,j) = dM,(i,7) + (1 — d)My(i, j)
(0 < d < 1), combined: M(i,j) =Max (M,(¢,7), My(2, 7)), or composed: M(i,j) =
M, (i,7) x My(7,7). In addition to operations on the magnification values across the
meshes, it is also possible to perform operations on logical mesh values (such as the

node-locking mechanism described in the previous subsection). For example we can
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find the intersection of the non-locked regions of magnification between two meshes

simply by AND-ing their logical values.
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Figure 3.28: Inverse of Figure 3.3

3.5.3 User-Level Interfaces

The expressiveness and implementation-independent nature of this magnification
representation makes it well suited for the construction of user-interfaces which em-
ploy nonlinear magnification. By developing a nonlinear magnification interface as
an abstraction layered above our magnification field specification, the designer can

construct magnification tools and techniques which are customized to specific tasks.

Perhaps the simplest interface involves construction of a discrete “magnifying

glass” which can be moved over the domain; other possibilities are more interesting.
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For example, by making the magnification field Mg persistent outside of that same
magnifying glass, the user can effectively “paint” arbitrary regions of magnification
by stroking the glass (which might now better be described as a brush) over the
domain. By using the brush to increment the magnification rather than to set the
absolute magnification value, “stroking” a region with the brush would correspond
to painting the region with increasing levels of magnification (see Figure 3.29). By
using persistence which decays over time (or by not resetting T¢ after each movement
of the magnifying glass, since Ty, will carry some residual implicit magnification from
previous iterations), we obtain “trails” of magnification which gradually fade out
behind the magnifying glass (see Figure 3.29). This degree of expressiveness goes far
beyond anything that can be achieved with existing systems, and moves magnification

towards a commodity user-interface item, similar to color and intensity.

Figure 3.29: Magnifying Brush and Trail

An example of how the magnification brushing technique can be used to good
effect is shown in Figure 3.30. By applying texture mapping techniques to the trans-

formation grid, very sophisticated image magnification effects are possible. This leads
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to questions about the potential perceptual benefits of subtly enhancing images via
these techniques. Many techniques exist for transforming the color space of images
through colormap and intensity manipulations to enhance the perception of features
of the visual signal. A whole range of image processing techniques (such as edge de-
tection, smoothing, high-frequency filtering) also exist for enhancing or suppressing
features of the image. It seems quite possible that nonlinear magnification transfor-
mations within the planar space of the image coordinates can be used to similarly
enhance perception. An example of a more subtle enhancement is shown in Figure
3.31, which shows how an image from NASA’s Mars Pathfinder mission [Nat97] can be
enhanced to emphasize the presence and features of the rock referred to as “Barnacle
Bill” by the mission specialists. Certainly there is a potential for these magnification
techniques to produce misleading visualizations, however the same can also be said
for many of the other enhancement techniques. An interesting avenue for further
research would be to study the perceptual benefits that might be possible through

the use of these subtle image magnifications.

Figure 3.30: Magnification Brushing for Images
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Figure 3.31: Enhancement of “Barnacle Bill”. (Original image courtesy of Jet Propulsion
Laboratory. Copyright (c) California Institute of Technology, Pasadena, CA. All rights
reserved. Based on government-sponsored research under contract NAS7-1260.)

3.5.4 Data-Level Construction

Visualization is but one technique applicable to the exploration of large databases
(so-called “data mining”). The greatest potential benefit will combine higher-level
(database and semantic-related) mechanisms with low-level (rendering or presenta-
tion) ones that are the primary focus of this chapter. The most significant bridge
between these levels is to use the data to control presentation, and controlling mag-
nification is a major component of this. One major reason for implementing transfor-
mations based on an arbitrary magnification field is to allow properties of the data
itself to specify the magnification. When the magnification is entirely directed by
human commands, it is only possible to provide a small number of magnification
“lenses” which can be easily applied to an image. But much more extensive map-
ping mechanisms are required when magnification is data-driven, since the regions of

magnification may potentially have arbitrary shapes.
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Using data to indicate regions of special importance is a familiar idea; color coded
contour maps display things as concrete as altitude and as intangible as political atti-
tude. For a contour map of environmental pollution, the next step beyond displaying
pollution “hot spots” is to expand those regions in order to show the pollution sources
within those regions. The exploration of hot-spots for pollution sources can be done
by a user-controlled lens, because the situation is static and the task requires only
sequential attention to individual hot spots. Automatic magnification becomes truly
significant when the information is dynamic or the user’s attention must encompass
the entire scope at once. An application that displays both of these characteristics is
air traffic control. Figure 3.32 shows a simulated air traffic control system where re-
gions of higher traffic density are automatically magnified. As air traffic flows into and
out of the region, the number of regions and degree of magnification fluidly changes

as the magnification field reflects the movements of planes through the domain.

Figure 3.32: Data-Driven Magnification
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The air traffic control application is just one example which illustrates the fluid ex-
pressiveness possible when using magnification fields for data-driven magnifications.
Many other scenarios which use other data properties to define the magnification field
are possible. Some examples include: enhancement of image features found during
image analysis or machine vision processing (for example, expanding regions of satel-
lite photographs where missile launchers have been detected), expanding the region
around tornados or other atmospheric phenomena for weather reports to pinpoint
current location within the larger weather pattern, monitoring freeway traffic con-
gestion with magnification of areas of high traffic density or low traffic throughput.
Developing applications which are able to use this new functionality to advantage

represents a major avenue for future research.

3.6 Related Work

Leung and Apperley [LA94] provide a comprehensive review and taxonomy of
major nonlinear magnification systems. Through the introduction of the distinct
concepts of transformation and magnification functions, they describe the basic one
dimensional properties of nonlinear magnification systems in a systematic fashion. For

two dimensions, they use the metaphor of a rubber sheet to describe the behaviour
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of nonlinear magnification systems in broad terms. Although useful for conceptu-
alization, this metaphor is not rigorous enough to directly serve as the basis for a
constructive theory. One of the goals of this research has been to provide a more
rigorous treatment of some of the issues which they raise, in particular the non-trivial

magnification to transformation conversion for more than one dimension.

Space-scale diagrams [FB95] are well suited for dealing with typical pan-and-zoom
systems; however such systems do not share basic properties of nonlinear magnifica-
tion systems, such as preserving a view of the global context. The view-dependent
nature of space-scale diagrams makes them unsuitable for describing nonlinear mag-
nification systems, as the lines of sight (“great rays”) which they use may introduce
problems of occlusion for 1D functions having more than one maxima. These problems
are compounded further for 2D, and issues of converting magnifications to transfor-

mations (and vice-versa) are not addressed in this work.

The pliable surfaces described in 3DPS [CCF95a] may appear to be similar to
nonlinear magnification fields, however closer inspection reveals that the two systems
have fundamental differences. The most significant difference is that elevation and
magnification do not correspond directly in 3DPS; the perspective-based nature of
3DPS means that magnification is also dependent on the degree of orthogonality of

the surface normal to the viewing vector. The inconsistent relation between elevation
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and magnification is readily apparent when considering that with 3DPS both com-
pressed and expanded areas will have a higher elevation than undistorted areas of unit
magnification. This points to another difference between the two systems: the way
that they produce shading. 3DPS shades regions of distortion using a computation-
ally expensive 3D lighting model, whereas the system presented here shades regions
of magnification simply by mapping elevation values into a color/intensity ramp. In
addition, 3DPS uses explicit foci to define the magnification, so that increasing com-
plexity of the magnification function entails additional computation. With 3DPS
non-occlusion and confinement of data to fixed regions is not inherent, and requires
additional (unspecified) constraints on parameters, whereas by its very nature the
iterative system described here guarantees non-occlusion and confinement to any size
or shape of domain. Also worth noting is that 3DPS is a perspective-based system
which is closely tied to its own specific implementation of a physical viewing model.
In comparison nonlinear magnification fields are less implementation dependent, and
the concepts and techniques can be directly applied to a broad range of visualization

and nonlinear magnification systems.
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3.7 Coda

Nonlinear magnification fields provide a natural representation for dealing with
nonlinear magnification systems. We have seen how the magnification effects of other
continuous nonlinear magnification systems can be quantified by constructing im-
plicit magnification fields from their transformations, providing a consistent mapping
between complex transformation and magnification functions. Going in the other
direction, the iterative method allows construction of a transformation from an arbi-
trary magnification field specification. This method is simple and effective, even on
complex fields having multiple maxima, bounded regions, and areas of linear mag-
nification. It provides reasonable results even when the specified magnification is
a degenerate case. A number of parameters can be easily tuned to control overall

performance.

The abstract magnification field representation is expressive and easy to manip-
ulate. By removing the restrictions of view dependence and explicit foci, the system
provides a natural and intuitive means of specifying magnification which does not
rely on the side effects of complexly interacting transformation functions or surface
normals. This ease of manipulation can be exploited on a number of levels, from
fine-grained control at the individual node level to sophisticated user-interface tech-
niques which can be layered on top of our system. Of particular interest is the ability

to use properties of the data itself to define the magnification fields best suited to
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visualizing that data, thus opening the door to many new applications of nonlinear

magnification.

One area for further research would involve investigating the use of direct methods
for magnification to transformation conversion to produce an inital approximation
to the computed transformation, and then use a modified version of the iterative
method to enforce desired visual properties on a local basis. Another interesting area
for further research would be to explore the possibilities of extending the definition of
magnification to account for the full mathematical derivatives of the transformation.
Although this may re-introduce much of the complexity involved with foci-based
nonlinear magnification systems (the elimination of which was a major motivating
factor for the research described in this chapter), it may also be that the additional
complexity offers potential benefits for additional degrees of control over the resulting
transformation. In general a more in-depth mathematical treatment of the issues
raised through these methods may yield further insights, the focus of the research
described in this chapter is more oriented towards practical issues of programmability

and visual effectiveness.

The next chapter will illustrate some of the ways that nonlinear magnification
can be used in different applications. For some applications the transformation-based
system is best suited, for other applications the magnification-based system may

be the better choice. In general, the transformation-based system will be chosen
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for “simpler” transformations where computational efficiency is paramount, and the
magnification-based system is used where more sophisticated transformations are re-
quired. In many cases the nonlinear magnification field representation can be used

to effectively bridge the gap between these two systems.



Application of Nonlinear

Magnification

In this chapter we will examine some of the issues that arise when applying non-
linear magnification to specific tasks. The first section will develop a framework for
describing the different levels on which nonlinear magnification can be applied, illus-
trating each level with specific examples. Then we will discuss some of the problems
that come out of attempting to effectively integrate different aspects of visualization
within nonlinearly magnified spaces, and present solutions to those problems.

116
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4.1 Levels of Application

We can distinguish between three levels for the application of nonlinear magnifi-
cation, each reflecting a different degree of proximity between the magnification and
the “raw” data. This categorization is not perfect, as there is some ambiguity and
overlap between levels, but it is presented here to give some idea of the variety of ways
in which nonlinear magnification can be used. In order of increasing proximity to the
data, the three levels are Image Level, Render Level and Data Level. We will examine

each level in turn, and illustrate the concepts involved with specific examples.

4.1.1 Image Level

At the 1mage level we are applying the transformations to objects or scenes which
have already been rendered. This usually means performing transformations on a
raster of discrete pixel values, and there are no discrete objects involved other than

the individual pixels.

4.1.1.1  Image Magnification. Two examples of transformations at the image
level are magnification of digital images (gif, jpeg, etc.), and direct magnification of
the computer screen (the contents of the screen buffer). Given a spatial nonlinear
magnification system, it is a relatively straightforward task to use texture-mapping

techniques [BN76] to map such images onto the transformed spatial coordinates. As
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we magnify the image, we create space between the pixels (and also compress multiple
pixels into a single pixel at regions of demagnification). There are a number of
standard filtering operations available via texture mapping to fill in this space between
magnified pixels. One of the more common methods uses bilinear interpolation to
set those pixel values. This creates the effect of a continuous image, although the

underlying data are actually only discrete samples of a continuous image.

Texture mapping of this sort has been used extensively for mapping complete
document images onto physical surfaces for perspective-based magnification [MRC91,
RM93]|. Using nonlinear magnification within images was first described in [KR96b],
and subsequently used in [CCF96b]. Both of these systems use foci-based approaches
to magnification; much more sophisticated image magnification effects are possible
using the magnification brushing techniques described in Section 3.5.3. Several exam-
ples of image magnification have already been shown in earlier chapters (see Figures
1.2 2.9 3.30 3.31). As hardware for acceleration of texture-mapping becomes increas-

ingly common, the applicability of these techniques should become much broader.

4.1.1.2  Multi-Level Image Magnification. Simple image magnification does not
provide any new information in the magnified areas, but only larger versions of the
existing information. Sometimes we would like to dynamically include new infor-
mation within the magnified areas of the image. The best example of this involves

magnification of road maps: as you magnify a region of a country map, it shows the
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state map, then the county map, and finally a city map at the highest magnification.
In Section 4.2 we will explore some very effective methods for using nonlinear mag-
nification to integrate multiple images (each representing a different “view” of the
information space) into a single multi-level image with smooth transitions between

levels.

4.1.2 Render Level

Most of the existing work with nonlinear magnification techniques involves the
application of transformations to the coordinates of discrete objects before the ob-
jects are rendered (the most commonly encountered examples involve some instance
of graph visualization). We refer to this method as an application of nonlinear magni-
fication at the render level. Typically at this level, the main task of the magnification
routines is to place the location of objects within the transformed coordinate space
before rendering. In some systems, an approximation of the local degree of magni-
fication is also used to determine the level of detail at which each object is to be

rendered.

4.1.2.1 MowieSpace. MovieSpace is a program which allows a user to navigate
a 2D space of movie titles and select movies of interest. The mapping of movie titles

onto the dimensions of this space might initially be something like: (x axis == movie
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title, y axis == director). The individual movies are rendered as isolated points in
the space. As the center of magnification draws near to a movie, it is rendered in
more detail (the title is shown), and the closest movie is rendered showing even more
textual information about the movie. The idea of laying out movie attributes along
x and y axes is similar to the Film Finder described in [JS94], however the use of
nonlinear magnification here allows for more preservation of global context than is
possible using the zoom-sliders introduced in that work. MovieSpace was developed
for a Multimedia Databases seminar in the Computer Science Department at Indiana

University in Spring 1995, Figure 4.1 shows a snapshot of the program in operation.

mu i nn e r s

Figure 4.1: MovieSpace

4.1.2.2  Text Browser. Given a plain text file, it is possible to lay out the entire

file in a single window, using nonlinear magnification to make some parts of the file
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readable while still showing a global view of the file. Figure 4.2 shows one simple
implementation of such a text browser, where the spacing between lines of text is
adjusted with nonlinear magnification (the size of the text characters themselves re-
mains constant). Full details of this browser are provided in [KM96], along with a user
study which provides some support for the hypothesis that this technique might prove
useful for viewing highly structured documents such as HTML pages. The intent was
to show that preserving a global view of the context would be beneficial for viewing
text documents with a high degree of visual structure, such as indentation, headings
and whitespace. The hypothesis was not statistically proven by the study however;
although users found items faster on average when using the prototype browser, there
was a 35% probability that the same increase in performance could be due to ran-
dom chance alone. The most statistically significant result of this study was that the
prototype browser was ineffective when viewing unstructured text documents, and
that users found items faster using the normal paging browser for that task. There
was also some concern that the slow text rendering routines of the prototype browser

which may have skewed the results of the study in favour of the normal paging viewer.

George Furnas originally proposed the idea of inserting and deleting lines from

a text file to obtain a type of generalized fisheye view in [Fur86]; an idea which
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Figure 4.2: Text Browsing

was refined for HTML pages in [BW96a]. More recent work has seen application of
nonlinear magnification to the visualization of text files in a groupware environment
[GGCI6Db]. This work is particularly notable in that it provides some controls for

directly specifying the 1D magnification function.

4.1.2.3  Graph Visualization — HyperLINK. HyperLink[IKR96a] is a World Wide
Web navigation aid which provides a visual representation of hypermedia traversal as
a graph structure. As the user browses through web pages with the Mosaic browser,
a graph is constructed in the HyperLink window. The user can click on any node in
the graph, and the corresponding web page will be loaded into Mosaic. A nonlinear
magnification system is used to enhance spatial separation of nodes near the current
node. One center of magnification is always tied to the current graph node, although
it is also possible to have multiple centers of magnification. Figure 4.3 shows a

snapshot of a sample web browsing session using HyperLink. Similar approaches to



4. Application of Nonlinear Magnification 123

using nonlinear magnification for WWW navigation can be found in [MB95, BHS'96,

CDJT96]

Back| 7orsasa] o] Reloac] Open. | Save As. Cone] New Window] lose Windo ,T.__J, ,,,,,,,,,,,,,,,,,, _

Figure 4.3: WWW Navigation with HyperLink

4.1.2.4  Cluster Visualization for Data Mining. The nonlinear magnification
techniques developed in this thesis allow for simple and direct extension to 3 or more
dimensions, although visualization in three dimensions inherently involves occlusion
of some portions of the data. For some applications this occlusion does not present a
great problem; one such example is cluster visualization for data-mining, where the

data is composed of dense clusters in a relatively sparse space.

The transformation-based magnification techniques from Chapter 2 have been
applied to such a task in a project at Los Alamos National Laboratory, where cluster
visualization is being used as part of a data-mining effort for detecting Medicare fraud.

Because of the relative sparsity of the data, it was possible to effectively lay out 6
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dimensions of the data in a single 3D coordinate system (with {1,y1, 21} rendered
in green, and {x9,ys, 22} rendered in blue), and then apply constrained nonlinear
magnification to selectively expand individual clusters of the data. Figure 4.4 shows

normal and magnified views of 6 dimensions of data from this application.
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Figure 4.4: Cluster Visualization

4.1.3 Data Level

Data level applications are much more tightly coupled with data access and com-
putation issues than is the case with image and render level applications. There are
essentially two ways in which the data and magnification can interact in data level:

either the magnification is controlling access to the data, or the data are controlling

the magnification.
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4.1.3.1 Data Access Based on Magnification Values. Here the magnification
values determine how the actual data is accessed (both retrieved and arranged). Data
level applications might involve interactive extraction of items from a database only
when the degree of magnification crosses a certain threshold. Noik [Noi93a] has
investigated ways in which fisheye views can open and close subgraph structures

within hierarchical graphs.

4.1.3.2  Computation Based on Magnification Values. This technique is similar
to data access based on magnification values, except that we are controlling the focus
and extent of computation, instead of retrieval from a database. An example of this
technique is a wavelet image browser: for rapid visual scanning of large databases of
images, it is often not practical to store all of the images in memory simultaneously,
and accessing images from disk will introduce problems with latency in data access.
We can alleviate this problem by storing compressed wavelet representations of the
images, and rendering them at a resolution proportional to the degree of magnifica-
tion. As the degree of magnification for an image increases or decreases, the inverse
or forward fast wavelet transform can be performed on the image incrementally to
increase/decrease the size of the image and the amount of high-frequency information
available. Figure 4.5 shows an example of this. One problem with this approach in-
volves the discrete (2" x 2™) levels of resolution which are necessary for the pyramidal

fast wavelet transform. We will see alternative methods in Section 4.2 where image
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resolution levels can be adjusted more smoothly.

Figure 4.5: Multi-Resolution Image Scanning

There are many other ways in which nonlinear magnification can be used to drive
the computation on various problems, beyond the simple wavelets example just shown.
For example, a visualization system for observing the simulation of a stress fracture
on a plate could typically involve millions of points and take hours to compute and
render. We can allow the observing scientist to specify (via specification of nonlinear
magnification) which areas of the plate he or she is most interested in, so that the
computational and rendering resources can be focussed on obtaining the final result

of greatest interest.
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4.1.3.83  Data-Driven Magnification. Data-driven magnification offers the unique
capability of allowing the data itself to control the magnification transformations. By
using properties of the data to directly define the magnification, it is possible to
construct transformations which are a “perfect match” to the data. Although some
limited degree of data-driven magnification might be possible using more conven-
tional foci-based approaches to nonlinear magnification, this is clearly a case in which
the expressive power and ease of manipulation of nonlinear magnification fields can
greatly facilitate constructing the mapping between data and magnification. We have

already seen several examples of data-driven magnification in Section 3.5.4.

4.2 Putting Detail in Context

In this section we will examine the problem of how to provide suitable detail within
magnified regions of a nonlinearly transformed domain. This will not be an exhaustive
examination of the issues involved; but rather an exploration of the difficulty of the
task, along with some methods which use the tools developed in earlier chapters to
provide effective solutions. Throughout the section we will use an “interactive travel
atlas” as an application to demonstrate the concepts involved. As regions of the atlas
are expanded with nonlinear magnification by a user, points of interest within those

regions can be displayed accordingly. For this specific example we will use an atlas of
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Scotland, with tourist information such as castles and whisky distilleries as the major

points of interest.

4.2.1 The Detail-in-Context Problem

The detail-in-context problem for visualization with nonlinear magnification sys-

tems can be stated briefly as:

How can we effectively utilize the additional space made available by
nonlinear magnification transformations to enhance the visualization of

the data or objects located in that space?

Figure 4.6 shows a diagram of the problem. Detail can be seen as an additional

axis that is orthogonal to the transformational axes.

detail

Figure 4.6: The Detail-in-Context Problem
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Our formulation of this problem is similar to a number of approaches already taken
in the literature. The Perspective Wall [MRC91] was an effort to provide “detail and
context smoothly integrated”. Researchers at Xerox PARC using hyperbolic display
for display of 2D graphs referred to their technique as a “focus+context” technique
[LRP95]. Similar terminology is scattered through much of the literature since that
time [BW96a, Hol97]. Our definition of the problem has significant differences from

these approaches.

Traditional focus+context techniques are designed to create “focus” by enlarging
spaces, and reduced “context” by compressing the surrounding spaces. This addresses
only half of the detail-in-context problem as it has been defined; it creates the space
needed for additional detail, but does not by itself provide a means for placing more

detail within that space.

This is not to say that there are no systems which provide enhanced detail within
regions of magnification; many such systems exist. The issues that we will address
in this section are of a more general nature however: how can we effectively synchro-
nize detail functions with any spatial nonlinear magnification transformation? The
techniques which we will explore here are designed to be independent of the actual

mechanism used to produce the original nonlinear transformation.
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4.2.2 Discrete Objects

The first general detail-in-context task that we will examine involves rendering
discrete objects within a nonlinearly transformed space. The problem is to deter-
mine how to render these discrete objects in a manner that is consistent with the
underlying spatial transformation. There are several ways in which this can be ap-
proached, ranging from simple object-size calculations to “embedding” objects with

the underlying space.

4.2.2.1 Object Size. The simplest method for increasing detail of objects in-
volves only increasing their size. This method is commonly used for single-foci sys-
tems such as [SB94], where object size can be based on simple Euclidean proximity

to the center of magnification.

However the task becomes more difficult when complex transformations with mul-
tiple foci and/or constrained domains are used; simple Euclidean distance is no longer
effective as a measure on which to base object size in such cases. A recent article
[CCF97] extols the benefits of separating magnification and transformation functions,
however the authors do not address the issue of how to ensure that these functions
are reasonably synchronized. All of the examples shown in that work involve either a

very simple single-focus transformation function or else a very simple magnification
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function; for such cases there is no complex interaction of transformation and magni-
fication to account for, and thus simple proximity-based approaches can be used for
determining detail. The authors of that work have also redefined the mathematical
definition of “magnification function” as originally established in [LA94] into a less

quantifiable conceptual “distinction” relating to node-size for graph visualization.

The implicit magnification fields which we developed in Chapter 3 are very well
suited for this task when complex transformations are involved. By computing the
implicit magnification field for the transformation we can find the magnification for
any object within the transformation domain, and render the object with a size
proportional to that magnification. This method is general-purpose in nature, and
does not require any special knowledge about foci-location or other facts that are
internal to the specific transformation technique used to produce the transformation.
In addition, since the implicit magnification field is C° continuous and well defined
over the entire domain it does not leave any gaps where the magnification is undefined,
as is the case for some of the other approaches for graph visualization that only define
magnification locally at the nodes of the graph. Figure 4.7 shows several examples of
how node size can be coupled effectively with implicit magnification values (a similar

example is shown if Figure 3.6).
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Figure 4.7: Synchronizing Node
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Size and Implicit Magnification

Figure 4.8 shows how object-size rendering might work for our interactive atlas;

each point of interest is rendered as an image which is uniformly magnified propor-

tionally to the implicit magnification of the transformation. Although this example

illustrates effective synchronization of detail and transformation functions, it also

shows how object size alone is not always sufficient to guarantee that the objects do

not overlap each other. In this example we sort the images by magnification level,

so that the highest-magnified image will always be completely visible. This sorting

can be performed analytically, or on a per-pixel basis using z-buffer rendering. A

more sophisticated approach to this problem which uses embedded objects will also

be described in Section 4.2.2.3.
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Figure 4.8: Interactive Atlas with Variable Object Sizing

4.2.2.2  Level of Detail. We can extend the object-size methods by incorporating
level of detail (LOD) for the rendering of the objects. Level of detail is a common
technique in 3D graphics. It is typically used to suppress details in the polygonal
representation of objects when the object is far away from the view-point, since the

detail would not be visible at the pixel level anyway.

The LOD notion can be generalized to tasks other than polygonal simplification
however, and can incorporate concepts such as semantic levels of detail. Using our
interactive atlas example, we might want to represent each castle in the atlas with
three levels of detail. At level 0 we can represent the castle by a picture of it, at
level 1 we use an iconic representation of a castle (which is shared by all castles),

and at level 2 we simply represent the castle by a colored square. Figure 4.9 shows a



4. Application of Nonlinear Magnification 134

schematic representation of these levels of detail.

level 0 level 1 level 2

Figure 4.9: Castle Levels of Detail

We can easily drive the LOD rendering of objects simply by making the level
of detail proportional to the implicit magnification produced by the transformation.
Figure 4.10 shows an example of our interactive atlas using both LOD and object size
based on implicit magnification. This is but one simple example of how LOD rendering
can be incorporated into nonlinearly magnified spaces, many other approaches are
possible; for example the Pad++ [BHP1T96] WWW navigation system uses page
thumbnails with a LOD function so that the node at the focus of the transformation

becomes an actual web page which the user can interact with (follow links, etc).

Using simple linear scaling of objects to synchronize their size with the implicit

magnification of the transformation can lead to problems of overlapping objects. In
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Figure 4.10: Interactive Atlas with LOD and Variable Object Sizing

addition, this method leads to the perception of the objects as “floating” above the
transformed space. Thus while this method binds the dimensions of scale and context
effectively, it does not reflect more complex aspects of the transformation itself within

the objects.

4.2.2.3 FEmbedded Objects. An alternative to the simple object-size approach
is to embed the objects within the transformed coordinate space. This goes beyond
simply placing the centers of objects appropriately within the transformed space, and
involves mapping the boundaries of the objects to the transformed spatial coordinates.
Embedding objects in this way produces what could be called a coherent information
space, where the objects obey the same “transformational physics” as the underlying
space. The result is a visualization that has a more tangible aspect to it; the magni-

fication produced by the transformation can now be perceived consistently on three
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different levels: the underlying space, between objects, and within individual objects.
Prominent examples of this type of embedded object are found in the Perspective
Wall [MRC91] and the Document Lens [RM93]|. Figure 4.11 shows an example of

using embedded objects for our interactive atlas.

Figure 4.11: Interactive Atlas with Embedded Objects

There are a number of problems with embedded objects. The first problem is that
magnification level for the objects is directly proportional to the implicit magnifica-
tion, and is therefore not as flexible and responsive as using object size alone, where
possibilities such as making object size proportional to the square of the implicit mag-
nification allow for a greater dynamic scaling range for the objects. Another problem

with embedded objects is that layout of the objects within the original untransformed
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space becomes more of a challenge if we want to ensure that the objects do not over-
lap at any point along their boundaries, since we need to ensure that the objects do
not overlap in the original untransformed space. This difficulty is by no means insur-
mountable, but does produce limitations on the size and location of objects within
the original coordinate space. A final problem with embedded objects is that they
may introduce distortion within the objects being magnified. This problem can be
dealt with by using transformations with linear regions of magnification to provide

uniform scaling within the magnified regions, as shown in Figure 4.12.

Figure 4.12: Interactive Atlas with Embedded Objects and Linear Magnification

4.2.2.4 Embedded Objects with Size and Level of Detail. We can combine all
of the previous techniques within a single visualization system so that we get the

advantages of each technique. We linearly scale the objects in the original layout
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based on their implicit magnification value in the transformed space (clamping the
scale factor so that they do not scale beyond the boundaries defined in the initial
layout). Then LOD filtering can be applied, and finally the boundaries of the scaled,
filtered object are mapped to the transformed coordinates to embed the object within
the transformed space. Figure 4.13 shows an example of this with our interactive
atlas. Note that the maximum size of the objects is still bounded with this system,
we can remove this restriction by allowing the objects to scale beyond the initial
layout boundaries, and using sorting based on magnification (either on a per-object
or per-pixel basis) to manage the overlapping objects. This damages the coherency
of the information space somewhat, but the extra benefits of having larger objects

may make this worthwhile.

Figure 4.13: Interactive Atlas with Variable Size, LOD and Embedded Objects
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4.2.3 Multi-Level Images

Another level on which the detail-in-context problem can be addressed involves
integrating different global “views” of the information space. The term “view” in
this context does not refer to a different viewpoint, but rather a different visual
representation of the information space. In the specific examples described here,
each view is represented by a discrete image. This does not represent a fundamental
limitation on the types of views or data that can be used, since any data can always
be rendered to an offscreen buffer and then used as an image (although this may

introduce implementation considerations).

Since we will be dealing with views as images, it is illustrative to look first at
the example of nonlinear magnification of a single image. Figure 4.14 shows a simple
8 x 8 checkerboard image alongside a nonlinearly magnified version of the image.
Because the data content is static between normal and magnified versions, no ad-
ditional information is obtained through the nonlinear magnification, and the only
thing that changes is the size (and shape) of the original 8 x 8 squares. Some filtering
techniques which are commonly used in texture mapping may also allow interpolated
values between the data squares, however this does not provide any new information
to the user, but rather just a smoother transformation between normal and magnified

squares.
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Figure 4.14: Single Image Magnification

We can extend this idea of image magnification to account for multiple levels of
images (i.e. multiple views). An example application where this might be useful
involves combining state, county and city maps within a single magnified view. At
the top level the user is looking at a state map; as the user magnifies some region of
the map, the county map is “pulled in” to the magnified area to provide that detail
within the state map. Further magnification would also pull in additional detail from

the city map.

We will first examine a simple example of multi-level image magnification to il-
lustrate the issues that are involved. Consider two views of an information space, the
first view is an 8 x 8 grid, and the second view is a 16 x 16 grid. Conceptually, we
can think of this process as looking straight-on at the centers of the images, with the

8 x 8 image in front of the 16 x 16 image, and filling the entire window. As we apply
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nonlinear magnification, we effectively “punch a hole” through the 8 x 8 grid and pull
in the view of the 16 x 16 grid so that the two views are seamlessly integrated. Figure
4.15 shows an example of this operation. This differs from single image magnification
in that we are now dynamically incorporating additional detail within the context

provided by our nonlinear magnification transformation.

Figure 4.15: Multi-Level Image Magnification

Figure 4.16 shows an example of this using two different maps from the Xerox
PARC Map Server [PAR93]. Two views of the California Bay Area are provided,
with one map showing more detail (roads, railway tracks etc.) than the other. As the
simple view is magnified, additional detail is pulled in from the detailed view. Note
that the integration of the two views is seamless, and that all of the map lines are

perfectly aligned at the intersection of the simple and detailed views.
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Figure 4.16: Multi-Level Map Magnification

The implementation of multi-level image magnification can be greatly facilitated
by the use of MIP-mapping [Wil83], which is a common technique within the graphics
community for dealing with texture mapping, and is supported by hardware accelera-
tion on most graphics workstations and PCs that support hardware texture mapping.
MIP-mapping is a method for storing different resolution versions of a texture map,
so that the most appropriate resolution level can be used for the patch that the tex-
ture is being applied to. For example, an n X n texture will be stored at the original
resolution at level 0, along with a filtered n/2 x n/2 version at level 1, and a n/4 xn /4
at level 2 and so on down to a 1 x 1 version at level log,n . Figure 4.17 shows a

schematic representation of this for a single channel of an RGB texture.
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nxn
n/2 x n/2
n/4 x n/4
1x1
o o o O
level 0 level 1 level 2 level log2n

Figure 4.17: MIP-Mapping for a Single Channel

We can bypass the normal filtering construction of MIP-map levels and load any
image into the different levels of the MIP-map, as long as the image has the same
number of pixel rows and columns as are required for that level. Using our previous
example, we can load the 256 X 256 pixel image of the 8 X 8 grid into level 1, and
the 512 x 512 pixel image of the 16 x 16 grid into level 0. If we size our view-port
to the same number of pixels as the level 1 image (256 x 256), we will see only that
image; as we magnify portions of the level 1 image, the level 0 image will be pulled
into the context of the level 1 image. Although this method works very efficiently
on hardware accelerated machines, some hardware implementations also place limits
on the size of images that are allowed. This can be a limitation on the maximum
size of image (typically 512 x 512 or 1024 x 1024), or on the scale factor between
levels (most graphics library implementations restrict this to a factor of 2). Although

workarounds can usually be found for these constraints, an area for further research
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is to develop a more general formalism for describing multi-level image magnification
outside of the constrained hardware-accelerated environment, possibly with the goal
of setting requirements for a new generation of accelerated texture-mapping hardware

which is able to deal with texture levels in a more flexible manner.

4.2.4 Consistent Visual Cues

A final issue involved with the detail-in-context problem is the need to provide
consistent visual cues to the user as to what regions are being magnified or demagni-
fied by a given transformation. The implicit magnification fields we developed already
provide a quantification for the degree of magnification, our task is simply to render
the information in a way that reflects this quantification. We have already seen ex-
tensive examples in Chapter 3 where the implicit magnification values are mapped
into a 1D color ramp to provide consistent visual cues for a single surface; the situ-
ation is somewhat more complicated for textured or multiple surfaces however. One
possibility is to use multi-pass rendering and modulate all of the surfaces with the
appropriate color ramp values during one of the passes. Another simpler method
involves using fog to gradually fade out the regions of lower magnification. This

technique is illustrated for a single textured surface in Figure 4.18.



4. Application of Nonlinear Magnification 145

ffunction chosen shyy
creasing the slope of g

use a corresponding
quirements on the fu
u can’t get someth
ification must i
‘{sther location fen
5 beundaries
'k@‘?‘tjon)-

Figure 4.18: Using Fog to Indicate Magnification

4.3 Coda

This chapter has provided a general framework for the application of nonlinear
magnification. The framework does not represent a rigid formalism, but rather a
simple description of some of the levels on which nonlinear magnification can be
applied. Many of these levels are well represented with existing applications, however
further exploration of the less populated levels may provide good areas for further
research; in particular the possibilities for data-level applications have just begun to

be explored.

In this chapter we have also defined the general case for the “detail-in-context”
problem, an effort to incorporate specific approaches to the problem within a single
implementation-independent framework of general applicability. We also briefly ex-

plored some general purpose methods which could be used to address that problem.
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Related Work

This chapter will provide pointers to the most relevant research on spatial non-
linear magnification techniques. Many of the systems mentioned here have already
been discussed in greater detail in relevant sections of the preceeding chapters. A
good overview of the research up to 1994 can be found in A Review and Taxonomy of
Distortion-Oriented Presentation Techniques[LA94]. In addition, Noik [Noi94b] has
produced a substantial categorization of many systems, especially of those systems
specialized for graph visualization. It is worth noting that some of the classifica-
tion criteria in these overviews do not account very well for the new features of the
magnification-based system which we developed in Chapter 3. In particular, the dis-
tinction between single focus and multiple foci does not extend well to the direct
magnification specification system, where there are no foci in the underlying repre-

sentation (although user interfaces layered on top of that representation are able to

146
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produce the effect of any number of foci). Rather than reduplicate the material of the
earlier overviews, we will instead concentrate on the most relevant systems for spatial
nonlinear magnification, drawing on our previous definitions of transformation-based,

perspective-based and magnification-based to provide our primary categorization.

5.1 Transformation-Based Systems

The earliest and most commonly encountered systems for producing nonlinear
magnification effects are transformation-based. These systems use a 2D transforma-

tion function of the form

(u,v) = t(a,) (5.1

to directly manipulate the 2D coordinate space. In most cases these methods can be
easily extended to higher dimensions ((uy,us, ..., u,) = t(xy,z9,... ,2,)), although

additional issues of occlusion may complicate the visualization task.

Polyfocal Projection [KS78] is a program for static projections of cartographic
maps. Although non-interactive in nature, it allowed quite sophisticated transforma-
tions, including combining multiple transformations via averaging. Bifocal Display
[SA82] provides a central region of high magnification, and 2 neighbouring regions of

lower magnification. Multi-Viewpoint Perspective Display [MS91] implements radial
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and orthogonal transformations with multiple foci, as well as a “biform” level with

two discrete levels of magnification.

Graphical Fisheye Views [SB92b, SB94| provide a simple, efficient transformation
function which allows for radial transformations in graph visualization. Nodes are ren-
dered with a size and detail which is proportional to the proximity to the single center
of magnification. Hyperbolic Spaces via 4 x 4 Matrices [PG92] is a novel approach to
implementing navigation in hyperbolic space using 4 X 4 matrix transformations to

perform translations and rotations.

Rubber Sheet [SSTR93] is based on an algorithm which uses vector-pair (mor-
phing) techniques to generate transformations. It allows for constrained transforma-
tions, areas of linear magnification, and multiple transformations. Pad++ [BH94Db] is
primarily a pan-and-zoom system, although there is also some application of nonlin-
ear magnification through the use of multi-scale representations of sets of documents.
Example applications of this include directory browsing and WWW navigation. Fo-
cus + Context [LRP95] techniques for graph visualization in the hyperbolic plane
mapped to a Euclidean disk; a distinguishing characteristic of this work is that the
edges between nodes are curved to reflect the hyperbolic nature of the underlying
space. The largest graph that the authors describe using these techniques with has
1,000 nodes. 3D Hyperbolic WWW Navigation [MB95] provides a graph visualiza-

tion of WWW navigation with the graph laid out in 3D hyperbolic space. Similar
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to [LRP95], this system also allows curved edges between nodes. This system has
been refined and extended in [Mun97], and has been used effectively on hierarchies

of 20,000 nodes.

WYSIWIS Groupware [GGC96a] makes use of fisheye views of graph structures.
They also describe a “fisheye text viewer” which lays out an entire text document in
a window and allows multiple magnification bars (1 per user) to nonlinearly magnify
rows of the text. For the text viewer, each user is allowed some control of the degree
and shape of the magnification. Magnification of the text is simulated by changing the
font size. Distortion Viewing for 3D Data [CCF96a] uses gaussian-sine displacements
to build tunnels through 3D data to the region of interest. Although these tunnels are
not magnification as we have defined it, they can be used in conjunction with simple
unbounded radial and orthogonal 3D transformations. Collaborative GIS Browsers
[CPCI7] uses a technique based on the techniques in [KR96d] and Chapter 2 to

provide fisheye views of GIS systems in a groupware environment.

5.2 Perspective-Based Systems

Another approach for producing nonlinear magnification of 2D surfaces involves
mapping those surfaces onto a 3D structure, and then using a perspective projection

of that structure to create the effect of nonlinear magnification. For developers of
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such systems the magnification specification task involves mapping 2D coordinates
of the information space into a 3D coordinate space, along with careful attention to

viewing parameters

(u,v,w) = p(x,y) + view() (5.2)

Because of this view-dependence and reliance on perspective projections, these sys-

tems do not directly scale up to higher dimensions.

Perspective Wall [MRC91] uses graphics hardware to map 2D textures onto a 3D
wall with 3 panels. The center panel is perpendicular to the line of sight, and the
two adjoining panels slope away from the viewer. Perspective projections of this wall
then provide a single area of linear magnification with two areas of reduced resolu-
tion to either side. Document Lens [RM93] addresses some of the shortcomings of
Perspective Wall, and makes better use of available screen space. 2D information is
mapped onto truncated 3D pyramid; the pyramid is the viewed in perspective from
above to create the nonlinear magnification effect. 3D Pliable Surfaces [CCF95a]
uses perspective projections of suitably constructed meshes to achieve the effect of
2D nonlinear magnification. The mesh is composed of “hills and valleys”, with eleva-
tion being inconsistently proportional to magnification. In order to avoid occlusion,

the hills are slightly tilted towards the view point, although some combinations of
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parameters may still cause occlusion. The authors claim computational efficiency as
an important design goal for their work, but do not provide any actual performance
numbers. Perspective Tunnel [MIK97] maps 2D panes of information onto the interior
surface of a tunnel with rectangular cross section. Looking down the tunnel with
perspective creates the magnification effect. Interesting recursive use of tunnels to

create tunnels within the walls of tunnels.

5.3 Magnification-Based Systems

Magnification-based systems represent the most direct method available for speci-
fication of magnification. The direct scalar representation creates no multi-dimensional

dependencies:

The work described in Chapter 3 represents the only fully magnification-based
system to date for spatial nonlinear magnification. Other systems allowing simple

manipulation of 1D magnification functions are described in [GGC96a, KRI6d].
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5.4 Comparison

The following table summarizes the capabilities of some of the most relevant sys-
tems for spatial nonlinear magnification. Data is not available to complete all entries

with certainty. Those entries for which no information is available are marked with a

2

Transformation Capabilities

Bound ‘ Linear ‘ Foci ‘ Window | Manipulate ‘ Speed
Transformation-Based
Polyfocal [IKS78] . . 0 . . NA
Multi-viewpoint [MS91] : 0 0 : : ?
Graphical Fisheye [SB94] : : : o : 150
Rubber Sheet [SSTRI3] 0 ° 0 o 0 500
Focus+Context [LRP95] o 1,000
3D Hyperbolic [MB95] o 20,000
Text Viewer [GGC96a] 0 ?
Thesis (pipeline) . . 50,000
Perspective-Based
Perspective Wall [MRC91] : * : 0 : ?
Document Lens [RM93] : * : o - ?
3DPS [CCF95a] o . o 0 o ?
Magnification-Based
Thesis (field) B * | 1,500

Table 5.1: Features of Spatial Nonlinear Magnification Systems. (- = poor, o = fair,

e = good, * = best

Explanation of table categories: Bound = constrained domains. Linear =
combined linear and nonlinear magnification. Foci = multiple (or no) centers of mag-

nification. Window = deals with window boundaries. Manipulate = allows direct
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manipulation of transformation and/or magnification (beyond simple parameter ad-
justment). Speed = number of points that can be directly transformed and rendered
at interactive rates. An interactive frame rate is assumed to be 10 FPS in this the-
sis, platform descriptions are given in the relevant chapters, along with more precise
timings of the isolated transformation routines (without rendering). Refer to the

references given for details of other systems.
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Conclusions

This dissertation introduced the term nonlinear magnification to describe the ef-
fects common to a wide variety of related systems, and provided a conceptual basis,
constructive formalisms, and effective implementations for encompassing all of these

effects and more within a single well-defined framework.

We have developed a system for categorizing all of the existing spatial nonlinear
magnification systems in terms of their underlying fundamental principles. We have
also effectively bridged the gap between transformation and magnification; providing
theory and tools for converting between the two. This result allows us to quantify the
magnification effects of a wide variety of nonlinear magnification systems, reducing
nonlinear magnification from a poorly defined visual or implementational phenomenon
to a well defined scalar field of magnification values. This scalar field can then be
used to quantify other aspects of the magnification; for example, we are now able to
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explicitly compute the distortion present in a given transformation.

In terms of implementation, we have developed two new systems for producing
nonlinear magnification. Our first method uses a RISC-type approach to building a
transformation pipeline composed of sequences of simple and modular 2D transfor-
mations. This system is able to produce complex transformations, and is also very
efficient computationally, transforming points at rates which are orders of magnitude
faster than published numbers for existing systems. The expressiveness and efficiency
of this system is greatly facilitated by the use of piecewise linear functions, which
allow entire sections of the transformation pipeline to be collapsed in simple table

look-up operations.

Our second method introduced the nonlinear magnification field as a lower-level
representation for nonlinear magnification based on our mathematical formalism of
the relation between transformation and magnification functions. We showed how
the implicit magnification field of a transformation can be used to quantify the effects
of that transformation, and also provided an iterative method for constructing a
transformation from a specified magnification field. The scalar magnification field
representation is particularly easy to manipulate, as there are no explicit foci or multi-
dimensional dependencies, so that direct and fluid specification of magnification is now
possible. We illustrated how this ease of expression could be exploited effectively:

most notable among these examples was the introduction of magnification brushing
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and data-driven magnification.

We also developed a general framework detailing a number of levels on which non-
linear magnification can be applied, ranging from image magnification to data-access
tasks. We examined the issue of how to deal with the generalized detail-in-context
problem, so that we can effectively synchronize detail rendering functions to take

advantage of the extra space produced by nonlinear magnification transformations.

These contributions all taken together constitute our framework for nonlinear mag-
nification. It is expected that this framework will help bring structure and common
understanding to research in the field, and will continue to serve as a solid foundation

on which to build further developments.
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Description of Transformation

Series for Timings

This appendix shows the transformation grids and implicit magnification meshes
which were used as the input specifications for the timings of the iterative method
for computing transformation grids described in Chapter 3. Each transformation is
represented by a 5 letter code which can be interpreted to find the initial specification,
as well as a number of parameters used during the timing run. The description of
each letter in the code is described below. The first letter indicates whether or not
clipping was used in the timing, and the second letter indicates which parameter of
the transformation is being varied within the series. The remaining letters identify
the transformation type which is used as the specified input magnification. In the
figures which follow, the initial two letters are removed from the code, since each
transformation type may appear in more than one series with different parameters

varying for the series.

E - error clipping (errClip = 0.0)

157
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N - no clipping

.B - varying beta (degree of magnification) (2.0 -> 4.0 step 0.4)
.F - varying smoothing filter (0.0 -> 1.0 step 0.2)
.N - varying N (number of mesh nodes)

- averaged transform combo
clipped transform combo

- overlap (composition) combo
- single transform

0 oaQ >
1

...F - flat and radial combined
...0 - orthogonal
...R - radial

....B - bound
....U - unbound

These series are not intended to provide an exhaustive categorization of all pos-
sible inputs, rather they are meant to provide a reasonably representative sampling
of the types of input specifications that are likely to be encountered, and which ac-
count for the visual functionality of most of the other existing systems for nonlinear

magnification.

A
i (N
M 4 AN
JINN VRN
"é.‘ (XX

O
%”‘g)‘w

Figure A.1: AOU



A. Description of Transformation Series for Timings 159

P
T
)

T

B EE B BEsS 5 SuRE |

3 1 1 1 1 1 A

I

il

/ A

/ i
il ulln’,’..{\‘\\\\\\{\\
i

i

7=
{tslels efelslals slslslsls s olslslsl

L

im)

Figure A.5: CRB



A. Description of Transformation Series for Timings 160

Figure A.9: SOU
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Figure A.10: SRB
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