
An Algorithm for Comparing Deterministic Regular Tree

Grammars

Byron Long

Abstract

An algorithm to decide inclusion for languages de�ned by deterministic regular tree gram-

mars is presented. The algorithm is shown to run in polynomial time based on the number of

constructors, constructor arity, and number of non-terminals. Correctness proofs are included.

1 Regular tree grammars

A regular tree grammar, G, is a grammar for constructing trees. Formally, G = (C;N;P; S) where:

1. C is a �nite, non-empty set of constructors. Each constructor cn is of arity n. Constants are
0-arity constructors.

2. N is a �nite, non-empty set of non-terminals where N \ C = ;.

3. P is a �nite set of productions of the form A ! cn(X1; : : : ;Xn) where A is a non-terminal,
cn is a constructor, and each Xi is a non-terminal. If the constructor is a constant, then we
write c0 as a shorthand for c0().

4. S is a special element of N called the start symbol.

A regular tree is constructed from a regular tree grammar in the following manner:

1. If A is a non-terminal, then the tree whose only node is A is a regular tree.

2. If t is a regular tree, B is an occurrence of a non-terminal in t, and there is a production
B ! cn(X1; : : : ;Xn), then the result of replacing in t the occurrence of B with a tree whose
root is cn and whose children in left to right order are X1; : : : ;Xn is a regular tree.

If the regular tree t is constructed starting from a non-terminal A then we say that A derives
t. A tree is a proper tree if it contains only constructors and is an improper tree if it contains a
non-terminal. For a grammar G = (C;N; P; S), the language generated by G, L(G), is the set of
all proper trees derivable from S.

A regular tree grammar is deterministic if for each non-terminal A and constructor cn, there
is at most one production of the form A ! cn(X1; : : : ;Xn). In this paper we will consider only
deterministic regular tree grammars and their languages.

Deterministic regular tree grammars provide a convenient way of describing recursive data.
[Liu98] presents a method of analyzing recursive data that uses these grammars as results of a �xed
point computation. A �xed point is found when consecutive grammars G1 and G2 are iterated such
that L(G2) contains L(G1).

1

This paper describes a two-part polynomial time algorithm that determines if L(G1) � L(G2)
given grammars G1 and G2. Because the main algorithm requires a grammar where each non-
terminal can derive a proper tree, we initially present a supplemental algorithm to change a grammar
to this required form. Following sections describe the main algorithm and a runtime analysis of
both supplemental and main algorithms. Correctness proofs are included for each algorithm.

2 Removing improper non-terminals

We say that a non-terminal is proper if it can derive a proper tree. Otherwise the non-terminal is
improper. If every non-terminal is proper in a given grammar then we call the grammar proper.

The algorithm we will present for deciding if L(G1) � L(G2) in the next section requires
grammars that are proper. Thus we start with an algorithm to convert a grammar G into a
proper grammar G0 such that L(G) = L(G0) by removing improper non-terminals. A bottom-up
approach is used by �rst marking as proper each non-terminal A for which there is a production
of the form A! c0. Subsequently the non-terminal B is marked as proper if there is a production
B ! cn(X1; : : : ;Xn) such that every Xi is already marked as proper.

This conversion algorithm (Figure 1) will associate with each non-terminal a list of the produc-
tions whose right hand side contains the non-terminal. If the non-terminal appears more than once
in a given production's right hand side, the production will also occur the same number of times
in the non-terminal's list. In addition, a counter will be given to each production to record the
number of improper non-terminals in that production's right hand side.

Theorem 1 Non-terminal A is marked as proper by the Conversion algorithm if and only if it is

proper.

Proof: Assume A is marked as proper by the algorithm. It can be shown that A is proper by
induction on k, the number of iterations of the while loop of lines 18-27 performed before A is
marked as proper.

k = 0. A is marked as proper in line 14 if there is a production A! c0.
k = u + 1. Assume the lemma holds for non-terminals marked during the �rst u iterations

of the loop. A is marked as proper if there is a production A ! cn(X1; : : : ;Xn) whose counter
reaches 0 by being decremented n times. The production A ! cn(X1; : : : ;Xn) occurs a total of
exactly n times in the rhs-lists of all non-terminals, speci�cally the rhs-lists of the non-terminals
X1; : : : ;Xn. Since each Xi contains the production at least once in its rhs-list, each Xi must have
been marked as proper and placed in propagate during the �rst t iterations. By the assumption,
each Xi is indeed proper. This means that A is also proper.

Now assume that A is proper. Induction on h, the height of t, a proper tree derivable from A,
can show that A is marked as proper and placed in propagate.

h = 0. The tree t consists of the single constructor c0, and A is marked as proper and placed
in propagate in lines 13-14.

h = u + 1. Assume the lemma for non-terminals that derive proper trees of height u or less.
Let A ! cn(X1; : : : ;Xn) be the �rst production used in the derivation of t. Each Xi is of height
u or less and by the assumption, is marked as proper and placed in propagate. The production
A! cn(X1; : : : ;Xn) occurs a total of n times in the rhs-lists of non-terminals X1 : : : Xn. Since all
rhs-lists of the Xi's are examined, the counter for A! cn(X1 : : : Xn) is decremented n times. Since
the counter was initialized with n at line 4, it will reach 0, and A is marked as proper.

2

Algorithm: Conversion

input: grammar G.
output: grammar G with improper non-terminals removed.

// initialize rhs-lists and production counters
1. for-each non-terminal A do

2. set A's rhs-list to NIL
3. for-each production A! cn(X1; : : : ;Xn) do
4. set the production's counter to n

5. for-each i from 1 to n do

6. add the production to Xi's rhs-list
7. end for-each

8. end for-each

9. end for-each

// identify and collect initial proper non-terminals
10. propagate ;
11. for each non-terminal A do

12. if there is a production A! c0

13. propagate propagate [fAg
14. mark A as proper
15. else

16. mark A as improper
17. end for-each

// �nd other proper non-terminals
18. while propagate 6= ; do
19. remove B from propagate

20. for-each production A! : : : in B's rhs-list do
21. if A is marked as improper
22. decrement the production's counter
23. if the counter = 0
24. mark A as proper
25. propagate propagate [fAg
26. end for-each

27. end while

// remove productions that contain improper non-terminals
28. for-each production A! cn(X1; : : : ; Xn) in G do

29. if A is marked as improper
30. remove A! cn(X1; : : : ;Xn) from G

31. else

32. for-each Xi in A! cn(X1; : : : ;Xn) do
33. if Xi is marked as improper
34. remove A! cn(X1; : : : ;Xn) from G

35. end for-each

36. end for-each

37. return G

Figure 1: Conversion algorithm

3

Theorem 2 Let G be a grammar and G0 be the grammar derived by the Conversion algorithm.

G0 is a proper deterministic grammar such that L(G) = L(G0).

Proof: Grammar G0 is derived from G by only removing productions, so G0 is deterministic. By
Theorem 1, the non-terminals marked as improper derive only improper trees. For any tree derived
using such a non-terminal, it must be the case that the entire tree is improper, and hence is not in
L(G). Thus, removing any productions containing that non-terminal from the grammar does not
reduce the language it generates. These are exactly the productions removed in the loop of lines
28-36. Thus L(G) = L(G0), and every non-terminal in G0 can derive a proper tree.

3 Testing for inclusion

Given proper grammars, G1 and G2, the algorithm for deciding inclusion proceeds by comparing
non-terminal pairs hA1; A2i, where A1 is in G1 and A2 is in G2, and checking that every tree
derivable from A1 is also derivable from A2. This is done by comparing the productions of A1 to
the productions of A2. This comparison yields one of two results. First, it may be immediately
clear that A1 can derive a tree that A2 cannot or that A2 can derive every tree that A1 can derive.
Second, it may be the case that A2's ability to derive all of A1's trees depends on the comparison
of other non-terminal pairs. For example, there may be the productions A1 ! c2(B1; C1) and
A2 ! c2(B2; C2). In this case, if B2 can derive all trees derivable from B1, and C2 can derive all
trees derivable from C1, then A2 can derive everything that A1 derives.

The algorithm (Figure 2) uses two sets. The �rst set, to-test, contains non-terminal pairs for
which the algorithm will test that the trees derivable by the �rst non-terminal are derivable by
the second. The to-test set starts as a singleton containing the pair of start symbols from the two
grammars, hS1; S2i. As each pair is examined it is removed from to-test. When the decision for a
pair of non-terminals in to-test depends on other non-terminal pairs, those pairs are also placed in
to-test.

The second set, testing, is used to prevent non-terminal pairs from being placed in to-test more
than once. As each pair is removed from to-test, it is then placed in testing. It may be convenient
to think of non-terminal pairs in testing as being in the midst of testing by the algorithm (due to
their dependence on other non-terminal pairs). As such, there is no need to re-insert them into
to-test.

Pairs placed in to-test are dependencies for the original pair hS1; S2i. Thus, when a pair is found
such that the �rst non-terminal can derive a tree not derivable from the second non-terminal,
the algorithm halts indicating that S1 can derive something not derivable by S2. If to-test can
be emptied without �nding such a pair, then the algorithm stops and indicates that every tree
derivable from S1 is also derivable from S2.

Checking for membership of hA1; A2i in testing will be done in constant time by maintaining
the set as an array of boolean values indexed by the non-terminals A1 and A2.

The correctness of the algorithm can be proven by showing that the algorithm returns false if
and only if there is a tree that is derivable from S1 but not derivable from S2. In order to do this,
for each non-terminal pair hA1; A2i in to-test, the algorithm will track the path of non-terminals
and productions needed to get from S1 to A1 and from S2 to A2.

De�nition 1 For two grammars G1 and G2, a step is a triple of the form:

hA1 ! cn(X11; : : : ;X1n); A2 ! cn(X21; : : : ;X2n); ii

4

Algorithm: Inclusion

input: proper grammars G1 and G2.
output: TRUE if L(G1) � L(G2) otherwise FALSE.

// initialize testing and to-test

1. for-each non-terminal A1 in G1 do

2. for-each non-terminal A2 in G2 do

3. testing[A1; A2] FALSE
4. to-test fhS1; S2ig

// check current dependencies
5. while to-test 6= ;
6. remove hA1; A2i from to-test

7. testing[A1; A2] TRUE
// check if A2 derives all that A1 derives

8. for-each constructor cn in G1 do

9. if A1 ! cn(X11; : : : ;X1n) is in G1

10. if A2 ! cn(X21; : : : ; X2n) is in G2

// add new dependencies
11. for-each i from 1 to n do

12. if not testing[X1i; X2i]
13. to-test to-test [fhX1i;X2iig
14. end for-each

15. else

16. return FALSE
17. end for-each

18. end while

19. return TRUE

Figure 2: Inclusion algorithm

where A1 ! cn(X11; : : : ;X1n) is a production of G1, A2 ! cn(X21; : : : ;X2n) is a production of G2,

and 1 � i � n.

De�nition 2 A path is inductively de�ned as follows:
1. The empty path, symbolized by �, is a path.

2. A step is a path.

3. If s is a step, then � : s is a path where � : s is the concatenation of

the empty path and s.

4. If p is a non-empty path, whose last step is:

hA1;! cn(X11; : : : ;X1n); A2 ! cn(X21; : : : ;X2n); ii
and s is a step of the form:

hX1i ! cm(Y11; : : : ; Y1m);X2i ! cm(Y21; : : : ; Y2m); ji
then p : s is a path.

De�nition 3 The length of a path p, len(p) is inductively de�ned as follows:

1. If p is the empty path or a single step then len(p) = 0.
2. If p is of the form q : s, then the len(p) = len(q) + 1.

For non-terminal pair hX1i;X2ii, the algorithm can be modi�ed (Figure 3) to use the step

5

hA1 ! cn(X11; : : : ;X1n); A2 ! cn(X21; : : : ;X2n); ii to record the fact that X1i is derivable from
A1 and X2i is derivable from A2 using the given productions. In addition, for hX1i;X2ii a path is
used to record the sequence of ancestor non-terminals and productions used to get from S1 to X1i,
and from S2 to X2i. The Inclusion algorithm can then be modi�ed so that that the path for each
hX1i;X2ii placed in to-test is recorded.

Proposition 1 For every hA1; A2; pi placed in to-test by the Inclusion-r algorithm, p is a path.

Algorithm: Inclusion-r

input: proper grammars G1 and G2.
output: TRUE if L(G1) � L(G2) otherwise FALSE.

// initialize testing and to-test

1. for-each non-terminal A1 in G1 do

2. for-each non-terminal A2 in G2 do

3. testing[A1; A2] FALSE
4. to-test fhS1; S2; �ig

// check current dependencies
5. while to-test 6= ;
6. remove hA1; A2; pi from to-test

7. testing[A1; A2] TRUE
// check if A2 derives all that A1 derives

8. for-each constructor cn in G1 do

9. if A1 ! cn(X11; : : : ;X1n) is in G1

10. if A2 ! cn(X21; : : : ; X2n) is in G2

// add new dependencies
11. for-each i from 1 to n do

12. if not testing[X1i; X2i]
13. to-test to-test [

fhX1i;

X2i;

p : hA1 ! cn(X11; : : : ;X1n);
A2 ! cn(X21; : : : ;X2n);
iiig

14. end for-each

15. else

16. return FALSE
17. end for-each

18. end while

19. return TRUE

Figure 3: Inclusion-r algorithm

Lemma 1 Let G1 and G2 be proper grammars, and let p be a path whose last step is

hA1 ! cn(X11; : : : ;X1n); A2 ! cn(X21; : : : ;X2n); ii

6

If X1i derives a proper tree that X2i cannot, then for every step hB1 ! : : : ; B2 ! : : : ; li in p, B1

derives a proper tree that B2 cannot derive.

Proof: Induction on l, the length of p.
l = 0. Path p consists of a single step. Since G1 is proper, and G2 is deterministic, A1 derives

a proper tree not derivable by A2.
l = u + 1. Assume the lemma holds for paths of length u. Consider path p0 which consists of

the last u steps of p. Let s be the �rst step of the original path p, and let s0 be the �rst step of p0.
In path p, s is followed by s0. This means that s and s0 must respectively be of the forms hC1 !
cm(Y11; : : : ; Y1m); C2 ! cm(Y21; : : : ; Y2m); ji and hY1j ! : : : ; Y2j ! : : : ; k)i. By the inductive
assumption, Y1j can derive a proper tree that Y2j cannot. C1 can derive cm(Y11; : : : ; Y1m) and
because the grammars are deterministic, the only cm production from C2 goes to c

m(Y21; : : : ; Y2m).
Since G1 is proper, C1 can derive a proper tree that C2 cannot derive.

Proposition 2 In Inclusion-r, every triple, hA;B; pi, with non-empty path p placed into to-test
was inserted in line 13.

Lemma 2 In Inclusion-r, for every triple, hA1; A2; pi, inserted into to-test, in line 13, p contains

a step of the form hS1 ! : : : ; S2 ! : : : ; ii.

Proof: Induction on k the number of iterations of the while loop (line 5) performed when the triple
hA1; A2; pi is inserted into to-test.

k = 1. On the �rst iteration the only triple in to-test is hS1; S2; �i and hence selected in line 6.
This means that the path p of the triple hA1; A2; pi inserted into to-test in line 13 is of the form
� : hS1 ! : : : ; S2 ! : : : ; ii.

k = u+1. Assume that if a triple is inserted on the u-th iteration or before, its path contains a
step of the form hS1 ! : : : ; S2 ! : : : ; ii. If hA1; A2; pi is inserted on the u+ 1-st iteration, then p

must be of the form q : s, where q came from a triple that was already in to-test and thus inserted
on a previous iteration. By the assumption, q contains a step of the form hS1 ! : : : ; S2 ! : : : ; ii.

Theorem 3 If Inclusion-r returns false then there is a proper tree that is derivable from S1 but

is not derivable from S2.

Proof: The algorithm returns false if it �nds a triple hA1; A2; pi in to-test such that A1 can derive a
proper tree that A2 cannot. If p is empty then the triple is hS1; S2; �i, and we are done. Otherwise
by Lemma 2, there is a step in p of the form hS1 ! : : : ; S2 ! : : : ; ii and hence by Lemma 1, there
is a proper tree that S1 can derive but S2 cannot.

Proposition 3 If Inclusion-r returns true, then every triple in to-test is examined.

Proposition 4 For every hA1; A2i in testing, hA1; A2; pi was placed in to-test for some path p.

Lemma 3 If Inclusion-r returns true, then for every path p whose �rst two steps are � : hS1 !
: : : ; S2 ! : : : ; ii and whose last step is hB1 ! cm(Y11; : : : ; Y1m); B2 ! cm(Y21; : : : ; Y2m); ki, a triple

hY1j ; Y2j ; qi is placed in to-test.

Proof: Induction on l, the length of path p.
l = 1. The path is � : hS1 ! cm(Y11; : : : ; Y1m); S2 ! cm(Y21; : : : ; Y2m); ii. The triple hS1; S2; �i

is selected by line 6 on the �rst iteration of the while loop of lines 5-18. Since the algorithm does

7

not return false, and there are productions S1 ! cm(Y11; : : : ; Y1m) and S2 ! cm(Y21; : : : ; Y2m), the
triple hY1j ; Y2j ; pi is placed in to-test.

l = u + 1. Assume the lemma holds for paths of length u. Consider the last two steps
of p, hA1 ! cn(X11; : : : ;X1n); A2 ! cn(X21; : : : ;X2n); ji and hB1 ! cm(Y11; : : : ; Y1m); B2 !
cm(Y21; : : : ; Y2m); ki where B1 is X1i and B2 is X2i. By the assumption, hX1i;X2i; qi is placed
in to-test, and, by Proposition 3, will be examined. When it is examined, hY1j ; Y2j ; q

0i is placed in
to-test if hY1j ; Y2ji is not in testing. If it is in testing, then by Proposition 4, the triple must have
already been placed in to-test and examined earlier.

Theorem 4 If there is a proper tree derivable from S1 but not from S2, then Inclusion-r returns

false.

Proof: Consider a proper tree t that is derivable from S1 but is not derivable from S2. If t can be
built from a single S1 production (i.e. there is a production S1 ! c0 but no similar production for
S2), then the algorithm will return false on the �rst iteration of its while loop.

If t cannot be built from a single S1 production, then build a path by choosing an S1 production,
S1 ! cn(X11; : : : ;X1n), such that either there is no production from S2 to the same constructor,
or there is a production S2 ! cn(X21; : : : ; X2n) where there is an i such that X1i derives a proper
tree that X2i cannot derive. Such an S1 production must exist because S1 can derive a proper tree
that S2 cannot derive.

The initial path is then � : hS1 ! cn(X11; : : : ;X1n); S2 ! cn(X21; : : : ;X2n); ii. Lengthen
the path as follows. Let the last step of the current path be hA1 ! cn(X11; : : : ;X1n); A2 !
(X21; : : : ;X2n); ji. If there is a productionX1j ! cm(Y11; : : : ; Y1m) such that there is no production
from X2j to cm, then the path is �nished and no additional step is added.

Otherwise, choose the productions X1j ! cm(Y11; : : : ; Y1m) and X2j ! cm(Y21; : : : ; Y2m) where
there is a k such that Y1k derives a proper tree that Y2k does not derive, and add the step hX1j !
cm(Y11; : : : ; Y1m); X2j ! cm(Y21; : : : ; Y2m); ki to the end of the path, and continue to add steps to
the path.

Now assume that the algorithm returns true. By Proposition 3 and Lemma 5, this means
that the algorithm will examine the triple hX1i;X2i; pi where hA1 ! cn(X11; : : : ; X1n); A2 !
(X21; : : : ;X2n); ii is the last step of the constructed path. But this means that the algorithm
returns false because there is a production X1i ! cm(Y11; : : : ; Y1m), but no similar production from
X2i to cm. This contradicts the assumption, so the algorithm must indeed return false.

Theorem 5 On input grammars G1 and G2, the Inclusion algorithm returns true if and only if

Inclusion-r returns true.

4 Analysis

The complexity of our algorithms will be measured in terms of:
m1 the number of non-terminals in G1

m2 the number of non-terminals in G2

r the total number of constructors in G1 and G2

k the maximum arity of any constructor in G1 and G2

We will assume that for each non-terminal A of a grammar, the productions from A are stored
in a list ordered by constructor. Each list can contain up to r elements. A grammar may have as
many as m lists, one for each non-terminal.

8

4.1 Conversion

The correctness proof for the Inclusion-r algorithm requires that only G1 be proper, therefore the
complexity of the Conversion algorithm can be expressed in terms of m1, r, and k.

The body of the outer loop of lines 1-9 is executed m1 times. The middle loop's body is executed
at most times r times on each pass, and the body of the inner loop is done at most k times. A
total of O(m1rk) time is needed for lines 1-9.

For lines 11-17, the body of the for-each loop is executed m1 times. On each pass, as many as
r productions will be searched to �nd one using a 0-arity constructor. Thus O(m1r) time is used.

Each pass through the loop of lines 18-27 removes one non-terminal from propagate resulting in
at most m1 passes. On each pass, the counters for productions that contain the non-terminal are
decremented. These counters are for productions in the non-terminal's rhs-list. The length of the
list can be at most m1rk, so lines 18-27 require O(m2

1
rk) time.

The for-each loop at line 28 is iterated for each of the m1r productions. At lines 29,30,33, and
34, both examining a non-terminal's mark and removing a production can be done in constant
time. The for-each loop at line 32 is done no more than k times. Thus lines 18-25 require O(m1rk)
time.

The entire algorithm then needs O(m2
1
rk) time. However, if the number of occurrences of a

non-terminal in the right hand side is bounded by a constant, then the algorithm runs in O(m1)
time.

4.2 Inclusion

The nested loops of lines 1-3 useO(m1m2) time to generate every non-terminal pair for initialization.
On each pass through the while loop of lines 5-18, a single non-terminal pair is removed from

to-test at line 6 meaning that at most m1m2 passes are needed. The body of the for-each loop at
lines 8-17 is done at most r times. The tests of lines 9 and 10 can be done in constant time by
stepping down the list of productions of the pair of non-terminals. The body of the inner for-each
loop at lines 11-14 will be done at most k times. The inner loop body itself requires constant time.
Thus the lines 5-18 uses O(m1m2rk) time and the entire algorithm uses O(m1m2rk) time.

Combining the running time of the Conversion algorithm with the running time of the
Inclusion algorithm results in O(m1(m1 + m2)rk) time being required to compare two deter-
ministic regular tree grammars.

References

[GS84] Ferenc Gecseg and Magnus Steinb. Tree Automata. Akademiai Kiado, Budapest, 1984.

[HU79] John E. Hopcroft and Je�rey D. Ullman. Introduction to automata theory, languages, and

computation. Addison Wesley, 1979.

[Liu98] Y. A. Liu. Dependence analysis for recursive data. In Proceedings of the 1998 IEEE

International Conference on Computer Languages, Chicago, 1998. IEEE Computer Society
Press.

9

