
Compiler support for an RMI implementation using

NexusJava

Fabian Breg Dennis Gannon

December 16, 1997

1 Introduction

Java [7] is a portable, object oriented programming language. Its portability is obtained by
compiling Java source code into bytecode which can be directly executed by a Java Virtual
Machine (JVM) running on any host.

The main operation in the Java language is the invocation of a method on an object.
These methods perform some action after which control is returned to the invoking method.
Typically, only methods of objects residing in the same JVM can be invoked from other objects.
Communication with objects located in a di�erent JVM is a tedious programming task and
therefore error-prone.

Because, however, there is a growing demand for distributed applications, a number of dis-
tributed object models have been developed for the Java programming language that simplify
distributed programming in an object oriented environment. Examples of such distributed ob-
ject models are Voyager [9], Infospheres [4] and Java RMI [10]. While the former two aim at
a exible and highly dynamic framework, the last one aims at providing a syntax for remote
method invocation identical to the syntax for method invocation on local objects.

Another goal when designing distributed object technology is to provide inter-operability
between di�erent languages. The CORBA project [8] is designed to enable objects written in
any language to invoke methods on remote objects written in any other language.

In this report we take a look at our implementation of Java RMI on top of the Nexus commu-
nication library. This project is part of a larger project, which aims at inter-operability between
various distributed object models. Our goal is to have (a subset of) our RMI implementation
talk to remote objects written in HPC++ [1], which are built on top of the Nexus communication
library. Since Nexus and NexusJava are already fully inter-operable and both portable, these
libraries provide an excellent basis for communication in our project.

The outline of this report is as follows: Section 2 gives an overview of both Java RMI and
NexusJava. Section 3 describes the implementation of the standard RMI classes as well as
the classes that support our implementation. Section 4 describes the generation of stubs and
skeletons. Our approach to object serialization is described in Section 5. Section 6 concludes
this report.

1

Object

Stub

Client

Skeleton

Remote Object

Server HostClient Host

Registry

3

1

5

8

6

2

4

7

Server

Figure 1: RMI overview

2 Preliminaries

This section �rst gives an overview of Java RMI, describing the most important classes and
methods involved with an example. For a more rigorous description of the RMI interface we
refer to [10]. After that we will describe the NexusJava library for communication, describing
the most important classes and methods with a simple example.

2.1 Java RMI

To provide communication between objects in di�erent JVM's, the Java API contains classes
that implement the socket mechanism. Although the Java API provides a simple interface for
programming sockets, applications still have to implement a protocol for encoding and decoding
messages, which is a cumbersome and error-prone task.

Java RMI is designed to simplify the communication between two objects on separate ma-
chines by allowing an object to invoke the methods of an object on a remote machine in the
same way as methods on local objects are invoked. To invoke methods of a remote object,
a remote reference to that object has to be obtained. Since the object resides in a di�erent
name-space, a registry is used to manage remote references; RMI servers can register remote
objects at the registry after which clients can obtain a reference to these remote objects.

An overview of RMI is shown in Figure 1. First, a server creates a remote object and
registers it at the registry, which is represented by arrows (1) in the �gure. The client can
obtain references to objects stored in the registry as shown by arrows (2). When the client
invokes a method on a remote object, the method is actually invoked on a stub object, located
on the same JVM, instead (3). This stub object makes a message containing the name of the
method together with its parameters, a process called marshalling, and sends this message to
the associated skeleton object residing on the server host (4). The skeleton object extracts the

2

public interface Weather extends java.rmi.Remote
f
public String getForecast() throws java.rmi.RemoteException;

g

public class WeatherImpl extends java.rmi.server.UnicastRemoteObject implements Weather
f
public String getForecast() throws java.rmi.RemoteException
f

return "It will be a sunny day !";
g

g

public class Server
f
public static void main(String[] Args)
f

try f
System.setSecurityManager(new java.rmi.RMISecurityManager);
java.rmi.registry.LocateRegistry.createRegistry(2099);
WeatherImpl w = new WeatherImpl();
java.rmi.Naming.bind("rmi://rainier.extreme.indiana.edu:2099/WeatherService", w);

g catch(java.rmi.Exception e) f g
g

g

public class Client
f
public static void main(String[] Args)
f

try f
Weather w =

(Weather)java.rmi.Naming.lookup("rmi://rainier.extreme.indiana.edu:2099/WeatherService");
System.out.println(w.getForecast());

g catch(java.rmi.RemoteException e) f g
g

g

Figure 2: Example RMI application

method name and parameters from the message, a process called unmarshalling, and invokes
the appropriate method on the remote object with which it is associated (5). The remote object
executes the method and passes the return value back to the skeleton (6). The skeleton in its
turn marshals the return value in a message and sends this message to the stub object (7). The
stub unmarshals the return value from the message and returns this value to the client program
(8).

An example of an RMI based application is given in Figures 2. The methods of a remote
object that can be invoked remotely must be speci�ed in an interface that extends the Remote

interface, which itself is an empty interface. Every method in the interface must be declared to
throw the RemoteException in order to account for errors during the remote method invocation;
a number of subclasses of RemoteException exist which represent the various errors that can
occur.

A remote object should be declared to implement at least one remote interface and to ex-
tend RemoteServer class or one of its subclasses. Typically, the UnicastRemoteObject class
is extended, by remote object classes. After creating a remote object it has to be exported;
if the remote object is declared to extend UnicastRemoteObject the object is automatically
exported during creation, otherwise it must be explicitly exported using the static method

3

exportObject() of the UnicastRemoteObject class, providing the remote object as parame-
ter. Once created and exported, a remote object must be registered using either the bind() or
rebind() method of the Naming class, providing the remote object and an appropriate name for
it.

Creating, exporting and registering remote objects is done by a server object. The server can
either use an existing registry or create a registry itself using the createRegistry() method
of the LocateRegistry class, providing the port number to which the registry should lis-
ten. To ensure security, the server must install an RMI speci�c security manager using the
setSecurityManager() method providing an instance of the RMISecurityManager class.

The remote interface of a remote object is used as the type of the remote reference at the client
side. A remote reference can be obtained by invoking the lookup method of the Naming class,
providing the name of the desired remote object. When invoking a method through the remote
interface, the RemoteException must be caught to handle errors during the remote method
invocation. The kind of exception thrown to the client is dependent on the type of exception
that occurred during the remote method invocation. Runtime Exceptions are encapsulated in
a ServerRuntimeException, errors are encapsulated in a ServerError, remote exceptions are
encapsulated in a ServerException and exceptions thrown outside the remote method body are
encapsulated in an UnexpectedException.

After writing and compiling the remote interface and the remote object implementation, the
RMI stub/skeleton compiler, rmic, can be used to generate a stub and skeleton pair for the
remote object. This way, the stub and skeleton objects, and thus the entire communication, are
completely shielded from the programmer.

2.2 NexusJava

Nexus [5] is a communication library, providing dynamic resource management, multithreading
and multiple methods for communication, allowing it to operate in a heterogeneous environment.
NexusJava [6] is an implementation of a subset of Nexus in Java.

The Nexus interface is organized around six basic abstractions, which are illustrated in Fig-
ure 3. A node represents a physical processing resource. On a node, multiple contexts can be
running, which can be considered to be equal to a JVM. In each context, multiple threads can
be present. Communication is performed over a communication link which is created by binding
a startpoint to an endpoint. To invoke methods on user objects associated with an endpoint,
a remote service request (RSR) can be issued on the startpoint connected to that endpoint.
When an RSR is issued on a startpoint, a message containing a handler identi�er and a data
bu�er is sent over the communication link to the endpoint, after which the method speci�ed by
the handler is invoked on the user object providing the bu�er as data.

Figures 4 and 5 show how to implement a client and server in NexusJava. The server is
declared to implement the AttachApprovalInterfacewhich allows it to handle attach requests
with the attach approval()method. Implementing the HandlerInterface allows an object to
invoke the invoke handler()method to dispatch incoming messages to the appropriate objects.

Both client and server begin by creating a new object of class Nexus and initialize it by
invoking init() on it. The server than allows clients to attach by invoking allow attach() on
the nexus object with the port number to listen to, itself as the object to handle incoming attach
requests and a user object. The client attaches to the server by invoking attach() supplying the
url of the server. When an attach request arrives from a client, the attach approval() method

4

Node

Context

Thread

User Object

RSRStartpoint

Endpoint

Figure 3: Nexus abstractions

is invoked with the user object and the url of the server. This method creates an Endpoint, by
invoking endpoint init() on the nexus object, with the server as dispatcher speci�ed in the
enpointattr init(), and associates the user object with it by invoking set user object() on
the endpoint, supplying the user object. Next a Startpoint is bound to the endpoint by invoking
startpoint bind() after which the result is passed back to the client as an AttachReturn object.
The client can obtain a startpoint to the server from this AttachReturn object.

The client also creates an endpoint and associated startpoint. The client handles all incoming
messages itself, so no object is associated with the endpoint. To send an RSR to the server, the
client �rst creates a PutBuffer by invoking buffer init on the nexus object, providing the size
of the bu�er. The bu�er can now be �lled using the various put -methods from the PutBuffer
class. In this case, the bu�er only contains the startpoint to the client to which the server can
reply.

The actual RSR is initiated by invoking send rsr(), supplying the data bu�er, the server
startpoint, the handler identi�er and a ag whether the data bu�er should be destroyed af-
terwards. The message is handled at the server by the invoke handler() method which is
invoked automatically when a message arrives. The endpoint to which the request was sent,
the GetBuffer and the handler id are passed to this method. This method than invokes the
appropriate method on the user object associated with the endpoint. This method can extract
the data from the GetBuffer with the various get -methods of the GetBuffer class. Eventually,
the method returns a message to the client startpoint.

3 RMI classes

Implementing the RMI protocol involves implementing the classes from the RMI interface as
described in [10]. Most of these classes involve exceptions, which can be copied directly into our

5

class Weather
f
private final int REPLY = 0;
private Nexus nexus;
private String forecast = "It will be a nice day!";

Weather(Nexus nexus)
f

this.nexus = nexus;
g

public void getForecast(GetBuffer inbuf)
f

try f
Startpoint sp = new Startpoint(nexus, inbuf);
int bufsize = nexus.sizeof_char(forecast.length()) + nexus.sizeof_int(1);
PutBuffer outbuf = nexus.buffer_init(bufsize, 0);
outbuf.put_int(forecast.length());
outbuf.put_char(forecast.toCharArray(), 0, forecast.length());
nexus.send_rsr(outbuf, sp, REPLY, false);

g catch(Exception e) f g
g

g

public class Server implements AttachApprovalInterface, HandlerInterface
f

private final int GET_FORECAST = 0;
private Nexus nexus;
private boolean done = false;
private Weather w;

public AttachReturn attach_approval(Object userObject, String url)
f

Endpoint ep = nexus.endpoint_init(nexus.endpointattr_init(this));
ep.set_user_object(userObject);
Startpoint sp = nexus.startpoint_bind(ep);
return new AttachReturn(0, sp);

g

public void invoke_handler(Endpoint ep, GetBuffer inbuf, int handlerId)
f

switch(handlerId) f
case GET_FORECAST:

((Weather)ep.get_user_object()).getForecast(inbuf);
break;

g
g

public void run(String[] Args)
f

nexus = new Nexus();
Args = nexus.init(Args, "nx", null);
int port = nexus.allow_attach(2099, this, new Weather(nexus));

g

public static void main(String[] Args)
f

(new Server()).run(Args);
g

g

Figure 4: Example Nexus server

6

import nexus.*;

public class Client implements HandlerInterface
f
private final int REPLY = 0;
private final int GET_FORECAST = 0;

private Nexus nexus;
private String forecast;
private boolean reply_recd = false;

public synchronized void handleReply(GetBuffer inbuf)
f

try f
char[] fc = new char[inbuf.get_int()];
inbuf.get_char(fc, 0, fc.length);
forecast = new String(fc);
reply_recd = true;
notifyAll();

g catch(Exception e) f g
g

public void invoke_handler(Endpoint ep, GetBuffer inbuf, int handlerId)
f

switch(handlerId) f
case REPLY:

handleReply(inbuf);
break;

g
g

private synchronized void waitForReply()
f

try f
while(!reply_recd) f
wait();

g
g catch(Exception e) f g

g

public void run(String[] Args)
f

try
f

nexus = new Nexus();
Args = nexus.init(Args, "nx", null);
Endpoint ep = nexus.endpoint_init(nexus.endpointattr_init(this));
Startpoint mysp = nexus.startpoint_bind(ep);
Startpoint sp =

nexus.attach(new java.net.URL("", "rainier.extreme.indiana.edu", 2099, "")).sp;
PutBuffer outbuf = nexus.buffer_init(mysp.sizeof(), 0);
mysp.put(outbuf);
nexus.send_rsr(outbuf, sp, GET_FORECAST, false);
waitForReply();
System.out.println(forecast);

g catch(Exception e) f g
g

public static void main(String[] Args)
f

(new Client()).run(Args);
g

g

Figure 5: Example Nexus client

7

public class Communication
f
public static Nexus getNexus()
public static Startpoint getStartpoint(URL url) throws nexusrmi.UnknownHostException
public static Startpoint getStartpoint(HandlerInterface h, Object o)

g

Figure 6: The communication class

public interface Nexusable
f
public void resetNexusIndex();
public void nexusWrite(PutBuffer NexusBuffer, Vector SerTab) throws BufferOverrunException;
public Object nexusRead(GetBuffer NexusBuffer, Vector SerTab) throws BufferOverrunException,

LostPrecisionException;
public int nexusSizeof(Vector SerTab);

g

Figure 7: The Nexusable interface

implementation. Exception handling in our initial prototype, however, di�ers somewhat from
the way in which exceptions are handled in the original RMI version.

The rest of the classes in our implementation can be divided into classes that implement the
client-server communication and classes that implement the registry. The distributed garbage
collector has not been implemented in our initial prototype yet. Furthermore, we added some
classes that support our implementation by providing some common low level routines.

Only a subset of the original RMI classes are implemented in out initial prototype. Some
classes are provided to keep the interface consistent, but have no functionality yet. In this section
we describe the classes that we have implemented.

3.1 Support classes

3.1.1 The Communication class

The methods that the Communication class implements are shown in Figure 6. In addition a
static initializer is provided to create and initialize a Nexus object. The Nexus object can be
obtained by invoking getNexus().

The other two routines both create and return Startpoint objects. The �rst attaches to the
given url and returns a Startpoint for this connection. The second creates a local Endpoint
and returns a Startpoint connected to it.

3.1.2 The Nexusable interface

The Nexusable interface is shown in Figure 7. The interface and its methods are automatically
added to any object that is declared Serializable by the nexusrmis compiler. The routines
implement object serialization and are described in Section 5.

8

3.1.3 The Nexusize class

The Nexusize class contains methods used in object serialization. It contains read, write and
sizeof methods for array objects as well Strings. Since NexusJava does not provide support for
boolean primitive types, methods are supplied to convert these to byte values.

The nexusSizeofObject()method returns the size of any reference, either array or generic
object. For generic object, this method invokes the nexusSizeof() method from the ob-
ject. This method assumes complete type information to be sent over the wire. Similarly,
nexusWriteObject() and nexusReadObject() write and read references, including complete
type information. These methods are invoked in case the type of the actual object to be trans-
ferred cannot be inferred at compile time. If complete type information is available at compile
time, the compiler serializes objects directly.

Strings are the only Java system classes that can be handled in our NexusRMI. Methods
to serialize Strings are also included in this class. Strings can also be read and written with
the nexusReadObject() and nexusWriteObject() methods, allowing a String to be passed to
a formal parameter of a superclass.

3.2 Server classes

Most of the classes for the RMI server are provided in our implementation, although only a few
are actually implemented. Most of the functionality provided in the other classes is, however,
seldomly used, so leaving these out poses no restrictions on most applications. This section only
describes those classes that are implemented.

3.2.1 The RMISecurityManager class

An implementation of the RMISecurityManager class is provided which currently poses no re-
strictions at all.

3.2.2 The Remote interface

This interface is copied and not modi�ed from the standard RMI implementation.

3.2.3 The RemoteStub class

The RemoteStub class is the superclass of all stub objects, including the RegistryStub. This
class provides a table to keep track of currently executing remote method invocations. Multiple
remote invocations can occur when two threads invoke a remote method concurrently. The table
stores the current status of the invocation and the result of the invocation if available. The status
can either be busy, which means a remote invocation is in progress and no reply is available
yet, or ready, which means a reply is available but not yet handled by the stub, or free which
means the current entry is available for new remote method invocation. The result can either be
an object to be returned by the remote method or an exception thrown in the remote method.

To invoke a method on a remote object, the stub must �rst obtain a free entry from the table
by invoking getFreeEntry(). This method blocks until a free entry is available.

When a free entry is obtained, a handler that receives the reply must be created, provided
with the index of the obtained table entry. The handler object is described later in this section.

9

To enable the remote object to reply to this handler a startpoint has to be obtained for it using
the getStartpoint() method of the Communication class, providing the handler object. No
user object needs to be supplied, since it is statically known what object handles the incoming
replies.

The next step is to create and �ll a bu�er and send it with a handler identi�er to the remote
object. The waitForReply() method is than invoked with the index of the table entry. This
method waits until the status of the remote invocation indicated by index becomes ready,
indicating the arrival of a reply message. If a reply has arrived, the stub checks whether it is a
result or an exception, after which the table entry is cleaned up and the exception is thrown or
the result is returned.

The handler object, used to handle replies, is declared to implement the HandlerInterface
and thus provides a invoke handler()method. When a reply arrives for this handler, either the
reply handler corresponding to the remote invocation or the exception handler is executed.
The former sets the result object using setResult(), supplying the index of the current method
invocation and the result object. The latter creates the appropriate exception from the received
string representation by using routines from the reection classes. The exception is returned to
the stub using setException(), again providing the index and the exception object. Both the
setResult() and setException() method signal the waiting thread.

3.2.4 The UnicastRemoteObject class

The UnicastRemoteObject class maintains a table of stub information for every stub created
on this JVM. This information contains the startpoint to the corresponding skeleton and the
fully quali�ed name of the stub object. As described in Section 5, this information is sent when
transferring a remote reference, instead of a complete stub object.

The exportObject() method creates a stub and skeleton for the given remote object. The
constructor of the UnicastRemoteObject class invokes this method to automatically export
remote objects that are an instance of a subclass of the UnicastRemoteObject class. The
createStub() method creates a stub for the given remote object name and startpoint and
enters the relevant information in the stub table if not already present. The createSkeleton()
method creates a skeleton for the given remote object. The invocation of getStartpoint()
creates an endpoint for which the skeleton will handle incoming messages. The actual remote
object will be associated with the endpoint as userobject.

Both the createStub() and createSkeleton() use the reection classes to create an in-
stance of the correct Stub and Skeleton class, since the actual type of stub and skeleton is not
know to the UnicastRemoteObject class at its compile time. The getStartpoint() returns a
startpoint to a previously created stub for the given remote object, using the stub table.

3.3 Registry classes

3.3.1 The Registry interface

The Registry interface, shown in Figure 8 contains the remote methods of the registry. It is
implemented by the RegistryStub class, which serves as a stub for the registry. Note that both
RMI servers and RMI clients act as a client to the remote registry.

10

public interface Registry extends Remote
f
public static final int REGISTRY_PORT = 1099;

public Remote lookup(String name) throws RemoteException, NotBoundException, AccessException;
public void bind(String name, Remote obj) throws RemoteException, AlreadyBoundException,

AccessException;
public void unbind(String name) throws RemoteException, NotBoundException, AccessException;
public void rebind(String name, Remote obj) throws RemoteException, AccessException;
public String[] list() throws RemoteException, AccessException;

g

Figure 8: The Registry interface

3.3.2 The RMIRegistry class

The registry itself is implemented in the class RMIRegistry. Constructors are provided that
allow the registry to run as a stand alone Java process or as a daemon thread created by a Java
process. After initialization, the registry allows other processes, both RMI servers and clients,
to attach as described in Section 2.2.

The registry maintains a table of remote objects, containing the name of the object as speci�ed
in the �le-name �eld of the url supplied by the clients, a Startpoint to the skeleton of the remote
object and the fully quali�ed name of the class of the remote object. The latter is needed to
create the stub object dynamically at the client, since it has no notion of the actual class name.
Recall that the type of a remote reference is the name of the remote interface, which is not
required to be related to the name of the remote object implementing it.

The main part of the registry is the dispatching routine invoke handler, which is passed a
handler identi�er, indicating which operation is to be performed, a databu�er and an endpoint.
This method performs the desired routine and returns the result, if there is one, to the client. If
an operation could not be performed by the registry, an exception message, containing the fully
quali�ed name of the exception to be thrown at the client side, is returned to the client.

The bindmethod enters the object name, startpoint and class name supplied in the bu�er into
the table. If an object with the given object name already exists in the table, an AlreadyBound

exception is returned to the client. The rebind method does the same, but does not return
an exception if an object with the given object name is already present in the table. Instead
it replaces this entry with the new one. The unbind method removes the entry with the given
object name, to the client returning a NotBoundException if no object with the given object
name is present in the table. The lookup method returns the entry with the given object name
to the client, returning a NotBoundException if no object with the given object name exists.
The list method returns a list of all object names currently stored in the table.

3.3.3 The RegistryStub class

The RegistryStub class is declared to implement the Registry and RegistryHandler interfaces.
This class acts as a stub for the client to be used when invoking methods on the remote registry
and thus extends the RemoteStub class. When an instance of this class is created, a startpoint for
the registry is obtained by invoking getStartpoint() from the Communication class supplying
the url of the registry.

11

All registry methods send a startpoint for their handler as �rst item. The lookup() method
sends an additional string, containing the url for the registry to look up. A startpoint for the
skeleton of the required object and the fully quali�ed name of the corresponding stub object is
returned by the registry. These objects are passed as parameters to the createStub()method of
the UnicastRemoteObject class, which creates a stub for the remote object. The bind()method
sends the startpoint of a skeleton for a remote object, together with the fully quali�ed name of
the remote object and the url under which the object has to be registered. The reply to this
method is an empty message. The rebind() method sends and receives the same information
as the bind() method. The unbind() method sends the url of the remote object to be unbound
and also receives an empty message. Finally, the list() method sends no information besides
the startpoint to which the reply has to be sent. It receives an array of strings containing the
names of all remote objects currently bound in the registry.

If an exception is received from the registry, the actual exception is created from the name
of the exception contained in the reply using the methods from the reection classes. These
exception objects can than be thrown to the client.

All methods use the routines from the RemoteStub class to communicate and synchronize
with their corresponding handlers as described in Section 3.2.3.

3.3.4 The LocateRegistry class

The LocateRegistry class is used to obtain an object of the RegistryImpl class, which acts
as a stub for communicating with the registry. The getRegistry() methods all return a stub
for an existing registry. The createRegistry() method �rst creates and starts a new registry
running as daemon thread and than returns a RegistryImpl object for it.

3.3.5 The Naming class

The Naming class provides methods that RMI clients and servers can use to register and query
remote objects in the registry. The actual work is done by the RegistyStub class, to which a
reference is obtained by the methods from the LocateRegistry class. The supplied url for the
registry must contain \rmi" as protocol, which is replaced within the Naming class since it is not
an o�cial protocol.

4 Stub and Skeleton generation

As in the original RMI implementation, we provide a stub compiler, which generates stubs and
skeletons for remote objects. Our �rst approach was to use the source code for a remote object
and create a stub and skeleton using only the information o�ered by the source code . We
found, however, that the source code for the remote object only did not supply us with enough
information. We will elaborate on this further in Section 5 when we explain our approach to
object serialization, which is where the main di�culties arise. Because of these problems, we
decided to construct our stubs and skeletons using the bytecode representation of the remote
object.

In this section we will describe how stubs and skeletons are implemented in our RMI imple-
mentation. We will �rst describe the implementation of the stub and skeleton and than briey

12

describe the implementation of our stub/skeleton compiler. Although stub and skeleton also con-
tain code for marshalling and unmarshalling, we will not describe it in this section, but rather
defer it to the next section.

4.1 Stubs

The name of a stub object is derived from the name of the remote object by appending \Stub"
to it. All stubs are declared to be a subclass of the RemoteStub class. The stub implements
the remote interface belonging to the remote object which means that every method that can
be invoked on the remote object can also be invoked on the stub object. Associated with each
method from this interface is a unique handler identi�er.

Associated with each stub is a handler object, which receives the reply message from the
skeleton. The invoke handler() method mainly consist of a switch statement with a label for
every possible handler identi�er and an additional one for the exception handler.

The implementation of each of the methods from the remote interface in the stub object
consists of sending a message containing the following items (to the left of the colon is the value
written and on the right side is its type):

� (sp:Startpoint), the startpoint to the handler object to which the reply is to be sent.

� (ao:int), an array o�set, which for now is always zero. This information will become
useful when communicating with HPC++ objects.

� (handlerid:int), the handler identi�er corresponding to the method to be invoked on
the remote object.

� The value of every parameter given to the remote method, according to the format de-
scribed in Section 5.

The reply consists of the handler identi�er of the method that was invoked, followed by
the object returned by the method. If the remote method threw an exception, the excep-

tion handler id is received followed by the following items:

� (ex:byte), a number, identifying the kind of exception that has occurred and has to be
thrown to the client. A 0 denotes that the method body threw a regular exception, which is
thrown to the client directly. A 1 indicates an Errorwas thrown in the method body, which
is encapsulated in a ServerError at the client side. A 2 indicates a RemoteException has
been thrown in the method body during a remote method invocation, which is encapsulated
in a ServerException at the client side. A 3 indicates a RuntimeException has been
thrown in the method body, which is encapsulated in a ServerRuntimeException at the
client side. A 5 denotes any exception occurring in the stub or skeleton, which will be
encapsulated in a UnknownException at the client side.

� (package:String), the package name of the exception thrown at the server side.

� (exname:String), the name of the exception thrown at the server side.

The reection classes are used to create the exception to be thrown at the client from the
information supplied in the reply. Sending a message by the stub and handling the reply message
is described in Section 3.2.3, where we described the RemoteStub class.

13

4.2 Skeletons

The name of a skeleton is derived by appending \Skel" to the name of the remote object. A
skeleton is declared to implement the HandlerInterface which allows it to handle incoming
messages. The invoke handler() method starts a new thread that actually handles the in-
coming message. Creating a new thread of control prevents a deadlock in situations where two
methods of the remote object need to be handled concurrently, for instance if execution of one
method waits for a signal from another method.

The handler thread �rst extracts the startpoint, array o�set and handler identi�er from the
incoming message. Based on the handler identi�er the appropriate handler routine is executed.
This routine extracts the parameters for the remote method from the message and invokes the
method on the object associated with the endpoint for the incoming message, which is the target
remote object. The result is than put in a reply message, which is returned to the client using
the startpoint from the incoming message.

If an exception occurred when handling an incoming message the exception handler of
the handler object is executed. This handler determines the exception to be returned to the
client from the thrown exception and the status variable. The latter keeps track whether
a BufferOverrunException was thrown during unmarshalling (status = 0) or marshalling
(status = 1). The three strings as described in the previous section are than returned to the
client.

4.3 Compiler implementation

We now briey describe the implementation of javas, which is our stub/skeleton compiler. Javas
creates source code for the stub and skeleton object of a remote object by analyzing the bytecode
representation of the remote object class.

The read classes() function reads the bytecode for the remote object and for every object
directly or indirectly referenced from the remote object. It generates a data structure of class
de�nitions. Iterators to traverse all �elds, methods and interfaces of a class are supplied as well
as some query routines.

Most of the code for stubs and skeletons is generated by writing �xed code into the stub
and skeleton �le. Where speci�c code is needed for each method of the remote object the
traversal routine remote method traverse() is used, which calls a given function providing
every method in turn as parameter. To iterate over the parameters of a method the function
handle parameters() is used, which calls handle type() for every parameter in turn, supplying
the given action speci�er. A similar function handle return type is provided, which calls
handle type() for the return type. The handle type() function dumps a speci�c piece of code,
depending on the type and action supplied.

5 Object Serialization

Object serialization deals with sending the internal state of objects as a message to another
JVM and with reconstructing that object from the received message. According to the Java
RMI speci�cation, The internal state of an object consists of the values of all �elds of the object,
except for transient and static �elds.

14

The �rst problem when implementing object serialization is that private and protected

�elds are part of the internal state. Since other objects cannot access these �elds, public methods
have to be added to serializable objects which actually perform the actual serialization.

The second problem is that more information is needed in the compiler than is present in the
source code. To be able to generate e�cient code, we therefore used the bytecode representation
of the classes.

The rest of this section describes the format in which di�erent kinds of data are send over
the network, ignoring the information added by Nexus and lower layers.

5.1 Serialization of primitive types

The GetBuffer and PutBuffer class from the NexusJava library provide methods to read and
write values of primitive types from and to a Bu�er, except for boolean types. For variables of
a primitive type we just read and write the current value, where we convert boolean values to
byte values (true = 1, false = 0). For primitive types, complete type information is always
available at compile time, so no type information is included when sending primitive types.

5.2 Serialization of references

The generic format for object references is one of the following (again, the value written is on
the left side of the colon, while the right side indicates its type):

1. � (0:byte), that is a byte of value zero, for null references.

2. � (1:byte), denoting this is not a null reference, followed by

� (0:byte), denoting that this is the �rst reference to this object in the current method
invocation, followed by

� The internal state of the object.

3. � (1:byte), denoting this is not a null reference, followed by

� (1:byte), denoting that a reference to this object has been sent previously, followed
by

� (index:int), an index in a table where a reference to this object already exists. We
will see how this works shortly.

On the sending side, on every remote method invocation, a table is constructed containing
the previously encountered objects to be sent over the wire. Whenever an object has to be
packed into the bu�er, a check is made to see whether the object is already in this table. If
it is, this means that the object has previously been serialized. There are two reasons why we
do not serialize such objects again. First of all, two references to one object should yield one
object with two references to it at the receiving side. The second reason is that objects contained
within other objects are serialized recursively. In the case of circular data structures, this would
cause object serialization to loop forever. Thus, instead of writing the internal state again, we
send the index of the object in the table. Since bu�ers in NexusJava have a �rst-in-�rst-out
property for for their contents, the exact same table can be reconstructed at the receiving side,
by inserting an object in the table, whenever they are reconstructed from the received internal

15

// Writing an object
if(o == null)

buf.put_byte((byte)0);
else f

buf.put_byte((byte)1);
if(SerTab.contains(o)) f
buf.put_byte((byte)1);
buf.put_int(SerTab.indexOf(o));

g
else f
buf.put_byte((byte)0);
SerTab.addElement(o);
// Write internal state

g

// Reading an object
if(buf.get_byte() == 0)

return null;
else f

if(buf.get_byte() == 1) f

return SerTab.elementAt(buf.get_int());
g
else f

Object res = new ...;
SerTab.addElement(res);
// Read internal state and add to table
return res;

g

Figure 9: Reference serialization

state. Whenever an index is received, the reference can be set to the table entry at the index
received. Figure 9 shows how this protocol is implemented on the sending and receiving sides.
Note, that when reading a regular object from a stream, the reference has to be stored after
allocating the object, but before reading the internal state, since the internal state may have a
reference to itself, which must not be serialized again.

The internal state of an object depends on how much information the compiler has when
generating object serialization code. If the compiler encounters a class name, it cannot tell
whether an instance of this class or an instance of a subclass will be assigned to it, unless it is a
�nal class. This holds for �elds as well as parameters to remote methods. Thus, complete type
information is needed when sending references to objects, in order to reconstruct an object of
the correct type at the receiving side. Also note, that arrays are assignable to references of type
Object.

To send the internal state of any reference, the nexusSizeofObject()and nexusWriteObject()
methods are used. The former calculates the total bu�ersize needed for the whole object, the
latter actually writes the object. The nexusReadObject() method is used to reconstruct the
object from an incoming bu�er. The internal state of object references is one of the following:

1. � (0:byte), denotes a remote reference, followed by

� (stubname:String), the classname of the stub associated with the remote reference,
followed by

� (sp:Startpoint), the startpoint to the skeleton associated with the remote reference.

2. � (1:byte), denotes a String reference, followed by

� (s:String), the contents of the String (in the format dictated by the String methods
from the Nexusize class.

3. � (2:byte), denote a regular object, followed by

� (cn: String), the actual classname of the object to be transferred., followed by

� The values of each �eld recursively.

4. � (3|4|5|6|7|8|9|10:byte), denotes an array of booleans, bytes, shorts, integers,
longs, oats, doubles, or characters respectively, followed by

16

� The primitive array in the format described shortly.

5. � (11:byte), denotes an array of references, followed by

� (ct:String), the type of the components of the array, followed by

� (l:int), the length of the array.

� Each element of the array recursively.

NexusJava provides special methods to write arrays of primitive types. We use these methods
to write primitive arrays in the following format:

� (l:int), the number of elements of the array, followed by

� The contents of the array according to the NexusJava format.

If a class is declared �nal we do not send type information for it, since these classes cannot
be subclassed. In this case, the compiler knows that an instance of that object will be given
as actual argument and can thus generate type information. The same holds if a variable is
declared to be of type array. Note, however, that types contained in arrays or �nal classes may
still have to be handled dynamically.

5.3 Compiler implementation

The original javar compiler [3] was developed to experiment with restructuring transformations
on Java Programs [2]. Although it does not provide a full front end (little semantic analysis is
included), it is capable of parsing a Java source �le and building a syntax tree representation
from it. Furthermore, it provides functions to traverse over the statements and expressions in
the syntax tree. A great number of functions are provided to create additional subtrees, which
can than be added to the tree or replace parts of the original tree.

We now briey indicate how we extended the javar compiler to add serialization methods to
classes. After having read a Java source �le, we traverse all classes in the syntax tree. If a class
is found, we load the corresponding bytecode representation of this class and all classes directly
or indirectly referenced from it using readclasses().

The methods and �elds we add are �rst constructed using the various make - functions from
the syntax tree, which are than added to the original tree. The methods are constructed by
iterating over all �elds of the class, using the bytecode representation, in a similar way as it is
done in javas.

Every �eld is passed to handle type expr() which produces the appropriate code for the
given �eld as described earlier in this section.

6 Conclusions

We have presented a design of the Java RMI API on top of NexusJava. We have shown that it is
possible to implement most of the RMI semantics without any special runtime support besides
what is present in the Java Core API. We have also shown that although a lot can be done by
considering just Java source code, cleaner and more e�cient code can be generated when using
bytecode.

17

Acknowledgments

We would like to thank Aart J.C. Bik who is the author of the javar compiler, which is we
used as a basis for our nexusrmis compiler, and who is also the author of the various routines
that read bytecode representations, used in both nexusrmis and nexusrmic.

18

A Nexus RMI manual

This appendix describes how a Java RMI program can be made to run on top of the NexusJava
communication library

The �rst step is to determine whether remote interfaces involved in the application do not send
objects belonging to classes of which no source code is available. The next step is to determine
whether the application uses only those RMI classes and methods that are fully supported in
our implementation. If these two restrictions are met we can start adapting the source code.

The only thing that needs to be changed in the source code are all references to classes and
interfaces from the original java.rmi package. These references now have to use the correspond-
ing classes in the nexusrmi package instead. This typically involves replacing every occurrence
of java.rmi with nexusrmi.

The next step is to compile the complete source code using the standard Java compiler javac.
Now it is time to add serialization methods to those objects that occur as parameter or return

value in a remote method invocation. Although only these classes need the serialization methods
no harm is done when the serialization methods are also added to other classes. The serialization
methods can be added by calling nexusrmis on the source �les of the objects. This command
will make a call to javar to add the methods and will than recompile the changed �les.

The last step involves the construction of a stub/skeleton pair for every remote object in the
application. This can be done by calling nexusrmic on the bytecode representation of every
remote object. This command will make a call to javas, which will generate source code for the
stubs and skeletons, and than compile these stubs and skeletons.

The external registry, if needed, can be started by running the RMIRegistry class from the
nexusrmi.registry package.

Example 1 Consider the following example, where class TestObj is sent as parameter and
class ServerImpl is the implementation of a remote object.

rainier> pwd
~/java
rainier> ls
Client.java ServerImpl.java Server.java TestObj.java

We now compile this application to run with our RMI implementation (the code has already
been adapted to use our implementation.

rainier> javac *.java
rainier> nexusrmis TestObj.java

javar -ox TestObj.java
javac TestObj.java

rainier> nexusrmic ServerImpl
javas rmitest.ServerImpl
javac *Stub.java *Skel.java

Client and server are started on school and rainier respectively:

rainier> java rmitest.ServerImpl
school> java rmitest.Client

19

References

[1] P. Beckman, D. Gannon, and E. Johnson. Portable Parallel Programming in HPC++. 1996.

[2] A.J.C. Bik and D.B. Gannon. Automatically Exploiting Implicit Parallelism in Java. Con-
currency, Practice and Experience, 9(6), 1997.

[3] A.J.C. Bik, J.E. Villacis, and D.B. Gannon. JAVARmanual. Computer Science Department,
Indiana University, 1997. This manual and the complete source of javar is made available
at http://www.extreme.indiana.edu/hpjava/.

[4] K.M. Chandy. Caltech Infospheres Project Overview: Information Infrastructures for Task
Forces. Technical Report Computer Science 256-80, California Institute of Technology, nov
1996.

[5] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing multiple communication meth-
ods in high-performance networked computing systems. Journal of parallel and Distributed
Computing, page to appear, 1997.

[6] I. Foster, G.K. Thiruvathukal, and S. Tuecke. Technologies for ubiquitous supercomputing: a
Java interface to the Nexus communication system. Concurrency: Practice and Experience,
9(6):465{475, jun 1997.

[7] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. The Java Series.
Addison-Wesley Developers Press, 1996.

[8] Object Management Group. The Common Object Request Broker: Architecture and Spec-
i�cation, jul 1995.

[9] Objectspace. Objectspace Voyager Core Package Technical Overview, 1997.

[10] Sun Microsystems. Java Remote Method Invocation Speci�cation, feb 1997.

20

