Output Driven Interpretation of Recursive Programs, or

Writing Creates and Destroys Data Structures¥*

Daniel P. Friedman
David S. Wise
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNicAL ReporT No. 50

QuTtPuT DRIVEN INTERPRETATION OF RECURSIVE PROGRAMS, OR
WRITING CREATES AND DESTROYS DATA STRUCTURES

DaNIEL P, FRIEDMAN
DaviD S, WisE

Jury, 1976

¥Research reported herein was supported (in part) by the National
Science Foundation under grants numbered DCR75-06678 and MCS75-08145.

Output Driven Interpretation of Recursive Programs, or

Writing Creates and Destroys Data Structures#

Daniel P. Friedman
David S. Wise
Computer Science Department
Indiana University
Bloomington, Indiana 47401
Abstract - We relate the methodologies of recursive and iterative
programming by describing an interpretation scheme for recursive
programs which in many cases requires run-time space resources
comparable to those of the corresponding iterative code. The
measure of space resource includes the representation of all
environments which are created along the computation path. The
side-effect-free language pure LISP is used as a model language
for our interpretation scheme. Examples are given of non-terminating
programs (the list of natural numbers and Pascal's triangle) which
run and provide the desired output within time and space resources

of corresponding iterative programs (0(1l) and 0(n) space, respectively).

Keywords and Phrases - suspended evaluation, reference counts, stack,

L1SP, cons.

CR Categories - 4.13, 4,22, 4,12,

¥Research reported herein was supported (in part) by the National
Science Foundation under grants numbered DCR75-06678 and MCS75-08145.

Introduction

Much recent work has been directed at reconciling programming
methodeclogies of recursion and iteration [1,3,8,9,10,11]. Some
work has also been directed at transforming recursive code to
iterative code [3,5,18,22], and some has emphasized the ability
of recursive code to clearly express iterative processes [12,20,21].
Theoretical results pointing the way to an equivalence of recursion
and iteration are available as well [4,17,22]. It is our thesis
that a stylized form of recursive programming offers an expressive
and conceptually simple way to program efficlently. In this paper
we argue the issue of efficiency by demonstrating how the semantics
of a recursive language like pure LISP can be changed to make the
interpreter behave as if it were executing iterative code. This
behavior does not result from any transformation on the user's

program; rather it depends on a modification of the interpreter.

LISP

We use a variant of pure LISP [16] as a communication language
since it is the best known of the purely recursive programming
languages. The notation used throughout the paper for form invocation
is the S-expression. A list is written using the parenthesis
notation; whether the interpreter accesses it as an expression rather
than as a value determines whether evaluation will occur. We have
made a notational change in the syntax of conditional expressions.
MeCarthy's cond requires its tail to be structured as a series of

lists of two elements which are often called "cond-palrs." Rather

than introduce the redundant extra parentheses which make the
pairings explicit, we use the commenting keywords 4, Lhen, else,
and efseif to sroup the expressions and to enhance readability.
The user who wishes to interpret an invocation of cond should
ignore the commenting keywords.

The language pure LISP is side-effect-free in that bindings
may only be effected by lambda and label. Although these facilities
do not explicitly exist in our model, bindings are still restricted
in such a way that any environment will remain intact for the
duration of its existence. The programmer must live with the
constraints imposed on his programming style (i.e. no assignment
statements and no property lists). LISP is call-by-value so that
the user need never worry about how or when actual parameters are
evaluated. No cycles can occur in this side-effect-free system.
Thus, the data structures, including environments, which can be
built at run-time are directed ordered acyclic graphs (doags).

As a result the standard LISP garbage collector has been replaced
by a reference count scheme [5,23] in our implementation. The
reference count in a record indicates the number of structures
that share it. If a visit to a node is part of the last traversal
of a particular structure, liberation of storage may be built into
the traversal. Space requirements may become comparable to those

of a good iterative program as a result.

Definitions

Fundamental to our use of reference counts is our reinterpretation
of the classic semantics for cons [8]. Let us introduce the term
manifest to describe a structure which is actually extant in its
vltimate form, occupying as many records as it would under McCarthy's
semantics for LISP. A data structure which is not completely
manifest is said to be promised. At the implementation level,
promised structures are characterized by the presence of some
references which are suspended. A suspended reference consists
of a pointer to a form (within the program definition) and one to
an environment. That information is sufficient to coerce the
reference to its ultimate value whenever appropriate, with the help
of the system evaluator. A manifest structure has had all internal
references coerced.

Promised structures are implemented by changing the definition
of three of the five LISP primitives. Cons allocates a fresh record
and fills it with suspensions of 1ts arguments instead of with
evaluated arguments. The probing functions car and cdr distinguish
(using a "suspended" bit in every record) between suspensions and
coerced values within the record which is their argument. (Figure 1
gives PASCALesque [13] type declarations and the code of car for
our implementation.) If a suspension is uncovered, a value is
required, and the evaluator is invoked upon the designated form
within the referenced environment. The value which is returned

as a result of the probing function is planted back in the record

in place of the suspension. This scheme provides at most one
reference to a suspension since suspensions are destroyed as

they are coerced. The references to environments preserved

within suspensions are likewise released; the structure representing

an environment other than the global environment will be destroyed

with the last suspension referring to it.

The ability to promise structures provides LISP with new
semantics. For instance, the user can specify an infinite vector [9]
to be printed, which is presented to the output routine in promised
form. The output traversal uses the functions car and cdr to
traverse the vector, printing as it goes. As a result the prefix
of the vector, that part which can be successfully coerced, can
be displayed on the output device, whereas under the classic
semantics for LISP nothing would be displayed but an error message
indicating that the structure could not be completely manifested
before printing.

Other authors have made suspensions availlable at the explicit
request of the programmer. Landin [15] and Burge [1] provide a
constructor which suspends one argument. POP-2 [2] allows a
generating function to be converted into a suspended list.
Henderson and Morris [10] describe an interpreter for LISP with

behavior similar to ours based on elementary code transformations.

Burning your bridges behind you

The system we have described computes answers in suspended
form, maintains brief and disjoint environments with suspensions,
and depends only on reference counts for memory management of the
space used to store both environment and user structure. In this
section we shall demonstrate how the traversal algorithm of the
output driver not only manifests the structure of the answer but
also destroys it. The effect is a drastic reduction in the space
required to interpret the recursive code.

Fischer [7] gives a powerful result for the programmer's
data structure, pointing out that the only structure which need
be manifested is that which is printed. However, his analysis
does not allow for the cost of manifesting environments within
the interpreter. Our space utilization analysis includes the
cost of that structure as well. In terms of LISP our space analysis
includes the recursion stack and all current environments
(association lists).

It is clear how a traversal manifests a structure using the
new interpretations for the functions car and cdr. To see that
destruction is also possible requires another look at the global
environment of the interpreter. This is composed of permanent
bindings for the system functions and system constants. The

interpreter allows the user to add his own functions and constants

to those globally bound, but not to alter them. This is
accomplished through a define facility. Before and after
any function evaluation these are the only bindings extant
in the entire system. Unless the user is dumping the wvalue
of one of these global bindings, the structure which he is
printing will not survive to the next top-level evaluation
except on the paper in his teletype.

Destruction of the data structure can occur as part of
the print traversal if there is only one reference to the
(perhaps promised) structure before printing. That single
reference is held by the top-level of the system as the answer
which exists solely to be printed; after the answer has been
delivered to the output device (even though it is not yet
manifested or printed) it is lost to the system.

Under a reference-count storage manager [5] the system
admits a recursive traversal algorithm which adjusts the
reference counts as it goes, and liberates all records and
atoms whose reference count drops to zero as the printing
traversal passes. In LISP terminology, we can destroy much of a

(singly referenced) structure as soon as traversal passes in the

CDR direction, but passage in the CAR direction implies a
parenthesized subexpression for which some memory is required just
until the closing parenthesis is on the output file. The
algorithm in Figure 2 traverses and coerces a data structure
in double order (Problem 2.3.1-21 [14]) releasing an unshared
node as soon as the traversal passes except for the first
node on a list, which is preserved until the sublist is
completely printed. No extra space is needed for a recursion
stack because links from preserved nodes are inverted between
the two visits of the traversal. This trick was used in [19]
and is at the root of Knuth's problem; it requires an extra bit,
in this case the "suspended" flag, to indicate which link 1s
inverted.

The language used in Figure 2 is based on the language
PASCAL [13] with enhancements to the control structure described
in [24]. The whife-untif loop is a sequential control structure
which evaluates its contents in order (itebatively): until the
predicate following the whife (or the untif) evaluates to FALSE
(respectively, TRUE); that Boolean value is the value of the loop
itself. We use related notation from [24] as well. The function
true (or false) takes statements as arguments; it evaluates all
statements and returns the value TRUE (respectively, FALSE). The
conditional expression is taken from ALGOL 60 and has the form
Af...then...else... ; a conditional statement has the form

£fsosthen...else.. L or 4Lf...then...4§i . The Boolean operator &

is conjunction as in LISP; if its first operand is FALSE then its

gsecond is not evaluated.

The procedure dispose belongs to PASCAL; it releases only the

referenced node. The procedure print?dispose is introduced to

print the pname of an atom and,in traversing the atomic structure
while printing, to dispose of it if its reference count 1is zero.

Let us consider a simple example:

(numbersupto n) = (cond
L4 (zerop n) then []

else (cons n (numbersupto (subl n)))).

Under a classic LISP interpreter this code would require time O(n)
and space 0(n) for the linear recursion. Under the interpreter
using suspending cons and the space-recovering output traversal
algorithm proposed here, it would still require O(n) time, but only
0(1) or constant space. These are the resources required by the
"best" iterative code for similar output. Only constant space is
required because at most one suspension at a time is coerced and
each environment is used for only two coercions. A new environment
is created at the second and final use of the old one so that as
much space is released as is required for creation of the new one.
The 1list of n numbers is only manifested one record at a time during
the interpretation of (numbersupto n) at the top level, so only

constant space is required (including all global bindings).

Observation 1: Pure LISP code can be interpreted so that some

constructing functions with apparent recursion depth n (where

n depends on input) require only constant space.

10

More simply, pure LISP code can be interpreted so that some
functions with recursion depth apparently dependent on input
require space proportional to that required by refined iterative
code. This result can be extended to infinite structures,
yielding (potentially) infinite output from constant memory

allocation:
(successors n) = (cons (addl n) (successors (addl n))).

The interpreter proposed would evaluate (successors 0) printing
2ll the natural numbers until the program was interrupted. It
would not stop before printing with the recursion stack exhausted, as
does any classic LISP interpreter, nor would it stop with that
stack exhausted after printing a prefix of the list, as does the
interpreter described in our earlier paper [8]. In fact, the
amount of memory allocated at any time during interpretation would
remain uniformly small (bounded by a constant) just as in a tight

iterative loop doing the same thing:
§or n := 1 step 1 while TRUE do write(n) .

From the operating system's perspective the interpreted LISP code
is indistinguishable from (rather slow) good iterative code;
the resources consumed do not reflect the fact that the code

being interpreted is recursive.

i {0

Let us now turn to a problem which requires 0(n) space
€ven under an efficient iterative program. The problem is an
algorithm for printing Pascal's triangle of binomial coefficients.
A good iterative Program uses a vector of length n (perhaps
n/2 if row Symmetries are used) which is initialized to the
vector of length 1 with contents 1. on each iteration
the current row is printed and the next row is computed.
Here is a version of the generative code for Pascal's

triangle [9] which prints the entire (infinite) structure:

(pascal row) = (cons row (pascal (cons (car row) (pairsum row))));
(pairsum row) = (cond
44 (null (edr row)) then roy

else (cons (sum (car row) (car (cdr row))) (pairsum (cdr row))).

The outermost call for printing the infinite structure is
(pascal (econs 1 ()))
where the 0O(n) space claim is based on resources requilred
for printing the first n rows of the structure:
(prefixofsize n (pascal (cons 1 ()))).
Although this generation of Pascal's triangle was not designed
for any particular run-time behavior it is interesting that it, too,
~requires only 0(n) space and 0(n?) time to give the desired output.
The occurences of cons act very much like basis conditions, stopping

the evaluator until the traversal within the print routine coerces

12

suspensions while manifesting the rows of the infinite array
returned by the function pascal. Because the printing traversal
follows the order in which the rows are generated, and because
the generation of a-new row depends only on the values 1n the
previous row manifested by the print traversal before the new
rost 1s coerced, references into at most two rows are the most
ever bound in any extant environment. Moreover, the recursion
pattern requires at most two environments for any of these
functions at once. The space bound follows; the time bound for

both algorithms is trivially dependent on output size.

Observation 2: The Pascal triangle problem is solved recursively

within the same resource bounds (up to a constant factor) as the

"begt" iterative solution.

How little was required of the recursive programmer in
designing his algorithm is significant. In particular, an explicit
data structure was not required before the design of the algorithm.
Nor were flow of control or conflicting variable biﬁdings of any
concern. All these problems were handed to the interpreter of the

recursive code which suddenly exhibits a run-time behavior very

much like iterative code.

13

Conclusion

We have proposed a scheme in which the top-level control of
a recursion interpreter is driven by the appetite of the output
device. Restriction to a pure form of bindings guarantees the
integrity of environments for a constructor function which
suspends evaluation of its arguments. This ensures the independence
of environments so that their lifetime is well controlled, and
leads to a doag data structure, thus admitting reference counts
for storage management. Then the output driver can manifest and
recover all structures. An iterative output driver which uses
constant space, such as out, then replaces the recursion stack
when the recurring operation is the construction of a structure.
The results recorded here are part of a project which originally
had as its goal the compilation of stylized recursive code, in
which the constructor played an important role, into stackless
iterative code. It now appears that the interpretation scheme
proposed here solves the problem of stackless interpretation of
code keyed on such constructors, when the constructors can be
suspended and treated very similarly to basis conditions. Under
this scheme such stylized code can be interpreted within time and
space resources that differ from the requirements of iterative
code by at most a constant factor. The goal of efficient execution
of recursive source code is now closer, surprisingly because of
a result on literal interpretation of such code Prather than

because of an insightful transformation.

14

Acknowledgements: We thank Cynthia A. Brown for her careful

reading and suggestions.

References

1) W.H. Burge. Recursive Programming Techniques, Addison-Wesley,
Reading, MA (1975).

2) R.M. Burstall, J.S. Collins & R.J. Popplestone. Programming
in POP-2, Edinburgh Univ. Press, Edinburgh (1971).

3) R.M. Burstall & U. Darlington. Some transformations for deve op-
ing recursive programs. Proc. of Intl. Conf. on Reliable Soft-
ware, ACM SIGPLAN Notices 10, 6 (June, 1975), Lb5-L72.

4) A. Chandra. Efficient compilation of linear recursive programs.
STAN-CS-72-282, Stanford Artificial Intelligence Project.

5) G.E. Collins. A method for overlapping and erasure of lists.
Comm. ACM 3, 12 (December, 1960), 655-657.

6) J. Darlington & R.M. Burstall. A system which automatically
improves programs. Acta Informat. 6, 1 (March, 1976), 41-60.

7) M.J. Fischer:. Lambda calculus schemata. Proc. ACM Conf. on
Proving Assertions about Programs, ACM SIGPLAN Notices 7, 1
(January, 1972), 10L4-109.

8) D.P. Friedman and D.S. Wise. CONS should not evaluate its
arguments. In S. Michaelson and R. Milner (eds.), Automata,
Languages and Programming, Edinburgh University Press, Edin-
burgh (1976), 257-284.

9) D.P. Friedman, D.S. Wise and M. Wand. Recursive Programming
through table look-up. Proc. ACM Symposium on Symbolic and
Algebraic Computation (1976), 85-89.

10) P. Henderson & J. Morris, Jr. A lazy evaluator. Proc. 3rd
ACM Symp. on Principles of Programming Languages (January,
1976) s 95-103,

11) C. Hewitt, P. Bishop, R. Steiger, I. Grief, B. Smith, T. Matson,
& R. Hale. DBehavioral semantics of nonrecursive control struc-
tures. Proc. Collog. sur la Programmation, Springer-Verlag,
Berlin (1974), 385-L407.

12) C.E. Hewitt & B. Smith. Towards a programming apprentice, IEEE
Trans. Software Engineering SE-1, 1 (March, 1975), 26-45,

13)

14)

15)

16)

173

18)

19)

20)

21)

237

24)

L5

K. Jensen & N. Wirth. PASCAL User Manual and Report (2nd Ed.),
Springer-Verlag, New York (1975).

D.E. Knuth. Fundamental Algorithms (2nd Ed., 2nd Printing),
Addison-Wesley, Reading, MA (1975), 330-331, 412, 562.

P.J. Landin. A correspondence between ALGOL 60 and Church's
lambda notation, part I. Comm. ACM 8, 2 (February, 1965), 89-101.

J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, & M. E.
Levin. LISP 1.5 Programmer's Manual, M.I.T. Press, Cambridge,
MA (1962), Chapter 1.

A.R. Meyer & D.M. Ritchie. The complexity of loop programs.
Proc. ACM Natl. Conf., Thompson, Washington (1967), 465-469.

T. Risch. REMREC--a program for automatic recursion removal
in LISP. Dept. of Comp. Sci., Uppsala Univ., Sweden (1973).

H. Schorr & W.M. Waite. An efficient machine-independent
procedure for garbage collection in various list structures.
Comm. ACM 10, 8 (August, 1967), 501-506.

G.L. Steele, Jr. & G.J. Sussman. LAMBDA the ultimate impera-
tive. A.I. Memo 353, M.I.T. Artificial Intelligence Lab (1976).

G.J. Sussman & G.L. Steele, Jr. SCHEME: an interpreter for
extended lambda calculus. A.I. Memo 349, M.I.T. Artificial
Intelligence Lab (1976).

S.A. Walker & H.R. Strong. Characterizations of flowchartable
recursions. J. Comput. Systems Sci. 7, 4 (August, 1973), 404-407.

J. Welzenbaum. Symmetric list processor. Comm. ACM 6, 9
(September, 1963), 524-544,

D.S. Wise, D.P. Friedman, S.C. Shapiro & M. Wand.
Boolean-valued loops. BIT 15, 4 (December, 1975), 431-451.

TYPE pointer = tnode;
node = PACKED RECORD

suspended: BOOLEAN;

refct: O..memsize;

CASE atom: BOOLEAN OF
T pname: chars);
FALSE(ar, dr: pointer)

END

END

FUNCTION car(Q: pointer): pointer;
VAR P: pointer;
IF NOT Qt.art.suspended THEN car := borrow(Qt.ar)
ELSE P := Qt.ar;
car := Q+.ar := borrow(eval(P+.ar,P+.d4r));
erase(P)
FI

Figure 1. Node structure and the LISP function car (cdr is
similar). The functions borrow and erase are
from [5]. The function eval is from [16] with
changes from [8].

PROCEDURE out (Q: pointer);
VAR STACK, P: pointer;
IE Q@ = NIL THEN write(*()')
ELSE
Q4 .refct := Qt.refet - 1;
IF Qt.atom THEN print?dispose(Q)
ELSE
write((' J:
STACK := NIL;
REPEAT
IF REPEAT
P = Qs

Q := car(P);
WHILE Q # NIL;

IF Pt.refct =0 THEN Q@t.refet = @ft.vefel — 1 FI;

UNTIL Qt.atom;
writel('(');

P+.ar := STACK;
STACK := P
TAEPER

THEN print?dispose(Q)
ELSE write('()')
FI; -
UNTIL REPEAT
€ o= pde{ P ;
WHILE IF Q@ = NIL THEN true(Q := P)
ELSE true(if Pt.refet = 0
THEN Qt.refet := @f.refet - 1;
dispose(P)
ELSE P*.suspended := TRUE;
P#+.dzr := STACK
FI
) & IF Qt.atom
THEN true(write(' . ');
print?dispose(Q)

.)
gl.sg Talgelwritel * ' J))s
weital 23)i
UNTIL REPEAT
UNTIL STACK = NIL;
B = STACK;
WHILE P#*.suspended;
STACK ;= P%.dr;
P4.suspended := FALSE;
P+.dr := Q;
g =P
TAEPER
STACK := P+.ar;
iF Pt.refet # 0 THEN Pt.ar := Q F]
TAEPER
TAEPER
FI
FI

Figure 2. The printer/coercer/storage manager which drives
the interpreter.

