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abstract: SRAM based FPGAs are well suited for using iterative hard-
ware/software codesign techniques to derive hardware implementations from
software algorithms. In this paper we present a case study of the Unix pass-
word encryption algorithm implemented in a FPGA using this technique. We
have found that: 1. FPGAs are cost e�ective for accelerating custom algo-
rithms such as Unix crypt, 2. SRAM based FPGA are suitable for secure im-
plementations of hardware, and 3. software algorithms can be implemented
swiftly in FPGAs using iterative codesign techniques.
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1 Introduction

Recently much attention has been given to FPGA based recon�gurable com-
puting. This paper describes a case study of how we implemented the Unix
password encryption algorithm (Unix-crypt) in a FPGA based coprocessor
using iterative hardware software codesign techniques.

We have discovered that Unix-crypt is a very cost e�ective application for
FPGAs which may have a real life application in Unix system and network
system administration.

We also believe that using SRAM based FPGA technology makes for
a more secure implementation of sensitive applications, such as encryption
technology.

Even though this project started as a design example for using VHDL
in the classroom, we discovered that several of the entry level VHDL tools
we had access to, were not able to synthesize this algorithm when presented
as a high level model. We show that using a iterative operator driven hard-
ware/software codesign methodology, staging, can be e�ective when imple-
menting complex software algorithms in hardware designs.
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2 Background

Unix password encryption (Unix-crypt) is implemented as a hash function
based on the DES algorithm. The user's password is used as a key to encrypt
a block of zeroes into an encrypted string which is stored in a system �le.
Whenever the user needs to authenticate using his/her password, this process
is repeated and the encrypted zero block is compared to the stored value.

The standard DES algorithm is modi�ed by iterating DES 25 times, mak-
ing brute-force software attacks di�cult unless a large number of computers
are used to attack a single Unix password. The function is also salted in one
of 4096 ways to prevent the use of commercial o� the shelf (COTS) DES
chips to implement hardware password crackers and make it expensive to
precompute plaintext to encoded text dictionaries [8].

A common attack on Unix systems is to obtain the system's password
�le and use a plaintext dictionary key search to attack passwords. Once
weak password have been discovered, the attacker can use this knowledge to
launch an attack on more secure systems on which users may have accounts
[6]. Using a dictionary password key search attack is one of the methods
which the Internet Worm of 1988 used to gain access to other systems [10].

The standard Unix-crypt function available in the Unix standard C li-
brary (lib-c) on domestically distributed Unix systems. Source code for the
Unix-crypt function (in C language) can be found in the source distributions
of Linux, FreeBSD and NetBSD. Also, an optimized version of Unix-crypt
(fcrypt) [5] is available in several security packages such as COPS [4] and
Crack [9].

A responsible Unix system and network administrator uses dictionary
attacks to scan stored password �les for weak passwords. These scans are
run periodically, but can take a long time when a large number of passwords
are involved [4, 9]. For example, 32000 accounts, a typical number of accounts
at a medium sized university, may take 40 hours to check against 500,000
plain texts on a 200Mhz Pentium-Pro based system.

A dictionary of 500,000 entries is small, since it would typically include
variants of the same string with di�erence case encodings. Typical scanning
runs may use dictionaries of up to 1 Million plaintext words, which are tried
with di�erent capitalizations, and sometimes substitutions for expressions
like \to",\too" and \2", and combinations of smaller words. Large dictionary
scans may take months of compute time [6]. Administrators are reluctant
to run password scanning on high end research computing facilities, whose
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facilities are typically charged for the CPU time they, themselves, consume.
In a nutshell, it takes valuable resources for system administrators to run

password scans. An attacker can get CPU cycles for free on systems which
have already been compromised.

Attempts have been made to build hardware implementations of the Unix-
crypt function in order to make password scanning more cost- e�ective for
system administrators. One such implementation by Leong and Tham is a
ECL based board level design. This machine cost about $2000 to build and
was able to run 166Kcrypt/sec.

This is compared to a software implementation running on an RS/6000,
which runs at 830crypt/sec but costs $10,000|a typical high end workstation
that a system administrator would have had access to in 1991 [7].

In this paper we will use the metric

cps$ =
crypts

seconds � dollars

to make cost-performance comparisons of various Unix-crypt implementa-
tions. The RS/6000 mentioned above measures 0.083cps$, compared to the
ECL implementation at 83cps$. Today, a 200Mhz Pentium-Pro based system
costing $3000 runs at 14Kcrypt/sec, or 4.6cps$.

3 Implementation

Unix-crypt is based on a modi�ed DES algorithm.
The DES algorithm uses 16 iterations (rounds) to encode a 64-bit input

block into a 64-bit output block. A 56-bit input key is used to calculate 16
48-bit subkeys, one for each round, using the key schedule which we describe
later. Figure 1 shows general overview of the DES algorithm.

The 64-bit input block is �rst permuted using the IP permutation. A
permutation changes the bit ordering of the input string and is speci�ed as
a table enumerating the input position for a particular output bit. Table 1
shows the bit encoding for the IP permutation. Similarly, the output block
is divided into two 32-bit halves, which are swapped before being permuted
with the IP�1 permutation after all 16 rounds have been completed.

Each round computes on a 32-bit subblock. An E permutation expands
the 32-bit subblock into a 48-bit string by changing the bit ordering and
duplicating some of the bits. At this point, the 48-bit subkey for the current
round is XOR'ed with the expanded subblock. The resulting 48-bit product
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...
round 16

round 1

IP-1

IP

Key Generator

Key1

Output[0:63]

Input[0:63]Key[0:63]

Figure 1: Structure of the DES algorithm

{0 {1 {2 {3 {4 {5 {6 {7
0{ 58 50 42 34 26 18 10 2

1{ 60 52 44 36 28 20 12 4

2{ 62 54 46 38 30 22 14 6

3{ 64 56 48 40 32 24 16 8

4{ 57 49 41 33 25 17 9 1

5{ 59 51 43 35 27 19 11 3

6{ 61 53 45 37 29 21 13 5

7{ 63 55 47 39 31 23 15 7

Table 1: The initial permutation (IP) table.
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SBOXes

right_i-1[0:31]

P

E

key_i[0:47]

left_i-1[0:31]

right_i[0:31]left_i[0:31]

Figure 2: A single round of DES

is grouped into 8 6bit subgroups. Substitution boxes then reduce the 8 groups
of 6bits into 8 groups of 4bits. A substitution box (SBOX) is a look up table
which output a code for each input code. The results from the SBOXes are
then merged back into a 32-bit string. This string is permuted with the P
permutation before being XOR'ed with the other half of the intermediate
result from the last round. Figure 2 shows the details of a single round.

A 64-bit input key is reduced to a 56-bit key by stripping 8 parity bits
and permuting the remaining 56-bit using the Key1 permutation. This 56key
is split into 2 28-bit halves each of which can be rotated by either 1 or
2 positions for each round. The sequence of rotations, or key-schedule, is
speci�ed as a string f1; 1; 2; : : : ; 2; 1g, where each member speci�es the
number of rotations for that round. It should be noted that the sum of all
rotations is 28, thus the state of the 2 subkeys reverts to the initial state
after 16 rounds. On each round, the 2 28-bit key halves are merged into a
56-bit string and reduced to a 48-bit subkey using the key2 permutation [11].
Figure 3 shows the key calculation details.

Several chip level implementation of DES exist commercially. To prevent
the use of COTS DES chips, the Unix-crypt algorithm introduces a salted
permutation for the expanded input in each round. The salt, a 12 bit number,
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key[0:27]

key_1[0:47]
key_2[0:47]
key_3[0:47]

key_16[0:47]

key[28:55]

Figure 3: Key calculation

i

E(right[0:31])

0 23 47

Salt[i]

Figure 4: The salt box

permutes 24 bits of the 48-bit string by either swapping a pair of bits or not
depending on the value of the corresponding salt bit. Figure 4 shows the salt
box.

In addition to the salted permutation, the Unix-crypt algorithm iterates
the standard DES algorithm 25 times, i.e. 400 rounds total [8, 7].

Our initial implementation of the Unix-crypt, based on the DES algo-
rithm described by Tanenbaum [11], was done in VHDL using high level RTL
form. Several VHDL implementations of various Unix-crypt con�gurations
(sequential vs. pipelined) were successfully simulated against test vectors
derived by running a program based on the C library version of Unix-crypt
which calculated encrypted strings based on random keys.

Synthesizing a FPGA design from the VHDL did not work because our
VHDL tools were not capable of synthesizing such a complex design. This
was due to memory limitations, since some of the the expressions are very
large.

Since we were not able to synthesize an FPGA implementation from our
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VHDL model, we used an alternate method. We iteratively implemented
subcomponents of the design in hardware and used software components to
exercise the hardware components. These hardware and software codesigns
implement the complete algorithm which are tested against the C library
version by comparing vectors.

We �rst implemented the essential permutation and substitution elements
in the FPGA. Permutations were generated using a Unix awk script which
read the permutation tables and generated a netlist connecting input signal
i[0-n] to output signals o[0-m] using Xilinx buf gates. The substitution
lookup tables were implemented as Xilinx ROM cells using the memgen util-
ity supplied with the XactStep software. All the data movement and control
was done with software.

Once the individual functional units were tested, we implemented the
complete datapath of the chip. The data path consists of the a 64-bit X
register which is used to hold the input, output and intermediate block, and
a 56-bit K register, which holds the key. The datapath for the X register
can compute IP, IP-1 or one round of the modi�ed Unix crypt, f crypt().
The K register data path can compute either a 1 bit rotation or a 2 bit
rotation. There is also a S register which holds the salt value. Finally, a
control register selects the operation codes for the X and the K data path.
Software was now only used to load the registers, and then to control the
data path by loading the control register with appropriate function codes.
Figure 5 shows the block diagram the hardware implementation, and Figure
6 shows the control software component.

Finally, the control was realized in hardware as a state machine. A PLD
assembler was used to synthesize the state machine for the control. The
source level description for the assembler is essentially a one-to-one transla-
tion of the C code. The control register now implements a start command
while the status register allows the CPU to monitor the status of the hard-
ware, including when an encryption process has �nished. The software to
drive this completed hardware implementation can be seen in Figure 7.

The Unix C library crypt function was used to check the hardware and
software codesign implementation and �nally the hardware-only implemen-
tation by comparing vectors. The test vectors were calculated on random
keys using the Unix lib-c crypt(3) function. Also, some keys found to exhibit
pathological problems in the VHDL simulation were included.

The design was implemented on a Xilinx XC4010PC191-100. We used
this chip to compare the timing estimates from the XactStep software to
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Figure 5: Hardware architecture

actual measurements. Once we were satis�ed the timing speci�cation was
accurate, we generated con�gurations and extracted timing information for
various XC4010 and XC4008 chips.

The XC4010PC191-10 was interfaced to an Intel 486DX2 based worksta-
tion running BSDi, a commercial BSD Unix implementation, through it's
parallel port. The protocol used for this design is based on the Logic Engine
protocol [13] which we use in our instructional and research prototyping sys-
tem. The appliction interface enables a C (or Scheme) program to read and
write the X, K, and S registers as well as the control and status register in
the chip. Figure 8 shows the experiment.

4 Results

We have implemented the Unix-crypt algorithm in a Xilinx XC4010PG191-10
chip using hardware software staging. We have also tested its functionality
using test vectors which were generated using a reference software implemen-
tation.

The XactStep timing extractor predicted this chip to execute at 120ns
�s{�s speed. This represents the worst path through the datapath. We
have tested this chip at up to 16Mhz before it started failing the software
generated test vectors. We are con�dent that the XactStep timing estimates
are conservative and that the chip will run at the estimated speed (8.33Mhz)
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do_hwcrypt(fd,salt,key,x)

int fd;

char *key;

char *salt;

char *x;

{

int j;

/* start off with a clean slate, 0 -> x */

crypt_reset(fd);

/* load registers */

crypt_set_k(fd,key);

crypt_set_s(fd,salt);

crypt_step(fd,CMD_KEY1,CMD_HOLDX);

/* run machine */

for(j=0;j<25;j++){

crypt_step(fd,CMD_ROT1,CMD_IP);

crypt_step(fd,CMD_ROT1,CMD_FUNCX); crypt_step(fd,CMD_ROT2,CMD_FUNCX);

crypt_step(fd,CMD_ROT2,CMD_FUNCX); crypt_step(fd,CMD_ROT2,CMD_FUNCX);

crypt_step(fd,CMD_ROT2,CMD_FUNCX); crypt_step(fd,CMD_ROT2,CMD_FUNCX);

crypt_step(fd,CMD_ROT2,CMD_FUNCX); crypt_step(fd,CMD_ROT1,CMD_FUNCX);

crypt_step(fd,CMD_ROT2,CMD_FUNCX); crypt_step(fd,CMD_ROT2,CMD_FUNCX);

crypt_step(fd,CMD_ROT2,CMD_FUNCX); crypt_step(fd,CMD_ROT2,CMD_FUNCX);

crypt_step(fd,CMD_ROT2,CMD_FUNCX); crypt_step(fd,CMD_ROT2,CMD_FUNCX);

crypt_step(fd,CMD_ROT1,CMD_FUNCX); crypt_step(fd,CMD_HOLDK,CMD_FUNCX);

crypt_step(fd,CMD_HOLDK,CMD_IPINV);

}

/* read result */

crypt_read(fd,x);

}

Figure 6: The software component to control the FPGA datapath.
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do_hwcrypt(fd,salt,key,x)

int fd;

char *key;

char *salt;

char *x;

{

/* reset machine, this clears the X register.

crypt_reset(fd);

/* load the key and salt register */

crypt_set_s(fd,salt);

crypt_set_k(fd,key);

/* start machine and wait for completion */

crypt_go(fd);

while(crypt_done(fd))

;

/* read answer */

crypt_read(fd,x);

}

Figure 7: Software to drive FPGA based Unix-Crypt coprocessor.

HWSW

Logic Engine API

hw_crypt()

Parallel Port

crypt()

Unix Workstation

Parallel Port
Logic Engine I/F

Oscillator
FPGA Board

Crypt

FPGA

Figure 8: The test environment
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part cost(9/97) ffs{ffs cps cps$
XC4010-6PG191 334 69ns 34K 101
XC4010PG191-10 200 120ns 20K 100
XC4010E-2PC84 109 36ns* 69K 633*
XC4010E-3PC84 81 41ns 60K 740
XC4010E-4PC84 62 48ns 52K 838
XC4010XL-3PC84 55 41ns* 69K 1254*
*extrapolated estimates

Table 2: FPGA cost-performance comparison

CPU cost cpu�speed cps$
PentiumPro200 3000 14000 4.60
SGI Origin2000 277000 8�11820 0.34
Sparc Ultra200 12000 2�10500 1.75
Sparc Ultra170 7500 2� 7621 2.00

Table 3: CPU cost-performance comparison

over the complete temperature and Vcc range.
We have extracted timing estimates for a variety of Xilinx chips of di�er-

ent speed ratings for the XC4000E technology. Table 2 shows a comparison
of the various chips compared to their cost.

We have run reference software implementation [12] on a variety of CPUs
and list their performance and cost in Table 3.

While the design provides adequate performance, a signi�cant speedup
can be achieved when the salt function is implemented statically. Implement-
ing the salt function statically, eliminates a 2:1 MUX in the X datapath,
which speeds the design up by approximately 10 per cent. Furthermore, the
design is less complex and can be implemented in a smaller chip. Figure
4 summarizes the cost/performance improvement of implementing the salt
statically.

Using the Logic Engine API over the PC parallel port to communicate
with the chip, we have attained a sustainable transfer rate at 7Kcrypt/sec.
The we chip used runs at 20Kcrypt/sec peak; this indicates only a 20 per
cent utilization of the encryption chip in our experiment.

11



part cost (9/97) ffs{ffs cps cps$
XC4010-6PG191 334 61ns 40K 122
XC4010E-3PC84 81 39ns 64K 791
XC4010E-4PC84 62 41ns 60K 983
XC4008E-3PC84 69 38ns 65K 953
XC4008E-4PC84 53 41ns 60K 1132

Table 4: Cost performance estimates for static salt.

5 Conclusions

We found that Xilinx XactStep timing estimates are conservative and very
consistent. We were able to duplicate the timing estimates in several place&route
runs, each of which was initialized with a di�erent seed. Overall, we found
the XactStep core package to be very robust running under SunOS on Sun
Sparcs.

FPGAs are well suited for cost e�ectively implementing custom software
algorithms. In this case, the FPGA implementation drastically outperforms
CPU implementations. The most cost e�ective software implementation
tested is 4.6cps$, while the most cost e�ective Xilinx FPGA implementa-
tion we have evaluated was 1254cps$.

In our performance comparisons, we compare a CPU based system to a
FPGA chip. We feel that this is a fair comparison. A high performance CPU
chip, such as as Pentium, needs support hardware such as cache memory and
memory in order to function. A FPGA implementation, however, could run
independently with little support hardware, e.g. if doing a brute force key
search.

While library driven high level VHDL synthesis works for standard de-
signs, such as DSP applications and CPU datapaths, etc., it still has some
trouble for large random logic designs, such as encryption or encoding chips.
For these design, a netlist style VHDL implementation would be easier to
synthesize.

We have discovered that for this design example, using a staging approach
to do hardware synthesis resulted in an implementation which was correct
and had acceptable performance. The time was spent actually synthesizing
and testing the design components, rather than tweaking the model to make
an automatic synthesizer generate a design which passed.
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We have been working on tools which can formalize an operator driven
iterative synthesis by verifying each derivation. These tools have been used
to synthesize object as complex as a 32-bit RISC CPU [2, 3]. Derivation
Systems Inc, is currently working on derivations of this chip as well as PCI
cores using their formal derivation system, DRS.

For this application, the SRAM based FPGA may represent a more se-
cure implementation than a hard-wire implementation or the software im-
plementation. In this scheme, the con�guration for the FPGA is stored in
encrypted form on the hard disk of the machine which interfaces to the en-
cryption hardware. An operator would have to be present in order to provide
a key/password to con�gure the FPGA. Once the FPGA has been con�g-
ured and readback has been disabled, it would be di�cult to reverse engineer
the design from the FPGA, or obtain the crypt machine for illicit purposes
with the design still intact. I.e. once the power to the FPGA has been
lost, it needs to be recon�gured using the key/password which protects the
con�guration �le.

SRAM based FPGAs are suitable for optimizing solutions by parame-
terizing designs into several simpler designs and dynamically recon�guring
the hardware. In this application, a more optimized version of this machine
with static salt functions can be implemented and stored on disk. When the
machine for a speci�c salt is needed, it is simply con�gured. It is possible to
prebuild all 4096 implementations of the Unix-crypt, one for each salt, and
store them on a CDROM.

The PC parallel port protocol we currently use is not optimized for Unix-
crypt type applications. A Unix-crypt speci�c protocol may be able to reach
transfer speeds at up to 37Kcrypt/sec. Even at this speed, the parallel port
would present bottle neck for hardware based Unix-crypt implementation.
We are investigating a PCI or ISAbus implementation of this design.

The implementation described in this paper is very straightforward and
naive. We would like to investigate how techniques such as oor planning
and new parallel bit serial algorithms as presented in [1] e�ect the cost of
Unix-crypt and other password encryption or hash algorithms on FPGA
implementations. This will also present us with more case studies to use in
our research and classroom.

Finally, since it is reasonable to assume that if the good guys (us) are
looking at FPGA implementations of Unix-crypt for password scanning pur-
poses, the bad guys are probably also looking at it for cracking purposes.
A $3000 investment in FPGA hardware, equivalent to a high end Pentium
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system, would allow someone to launch a brute force key search attack on
a single password of 6 alphanumeric characters (626) in approx 4.0 hrs. . . .
Make sure you choose those strong passwords that your system administra-
tors have been bugging you about!
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