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Project Summary

Optimizing code at run time is appealing because run-time optimizations can make use of
values and invariants that cannot be exploited statically. Dynamic optimization can yield
code that is superior to statically optimal code. Recent research has shown that dynamic
compilation can dramatically improve the performance of a wide range of applications in-
cluding network packet demultiplexing, sparse matrix computations, pattern matching, and
many forms of mobile code (such as \applets").

Several obstacles have prevented the widespread use of dynamic compilation as a general-
purpose optimization technique for stand-alone programs:

� Overhead: Many traditional compilation techniques are too time consuming to perform
at run time. Dynamic optimization is pro�table only when the time spent optimizing
and compiling code is repaid by improved performance.

� Ease of use: Until recently, e�ective dynamic optimizations could be obtained only
manually, by writing code that explicitly generates code at run time. Some progress
has been made in building tools and designing languages that better support automatic
dynamic optimization, but state-of-the-art systems are still di�cult to use.

� E�ectiveness: Existing dynamic optimization systems provide a narrow range of opti-
mizations and o�er little control over the optimization process. Such systems provide
either \lightweight" or \heavyweight" dynamic optimization: they feature a single dy-
namic compilation model that o�ers either fast compilation or high-quality code, but
not both.

We intend to design and implement a compiler architecture, called Dynamo, that provides
e�ective dynamic optimization with little programmer e�ort and low run-time overhead.

An important characteristic of Dynamo will be its staged compilation model. To reduce
the overhead of dynamic compilation, it is necessary to perform some analysis, translation,
and optimization prior to execution. To achieve \lightweight" dynamic optimization, most
compilation steps are performed statically, resulting in a low-level intermediate representa-
tion that admits a few simple dynamic optimizations. \Heavyweight" dynamic optimization
employs a high-level intermediate representation and a wide range of optimizations. A staged
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compiler architecture supports a broad spectrum of optimization models (including \mid-
dleweight" optimizations) by permitting static compilation to be suspended after reaching a
high-level, mid-level, or low-level intermediate representation.

Selective dynamic optimization is also critical to obtaining good performance, since the
time spent performing unnecessary optimizations contributes to a program's overall execu-
tion time. Dynamo will incorporate a suite of automatic program analyses and pro�ling tools
to uncover opportunities for dynamic optimization in ordinary code, and a rich set of opti-
mization directives will give the programmer �ne-grained control over dynamic optimization
when necessary.

1 Introduction

Compilation is time consuming, but programmers accept its overhead because there is a nat-
ural staging at work: the one-time cost of optimization is amortized over repeated executions
of the entire program or its innermost loops. Other software systems are also staged; for
example, an operating system proceeds through a distinct \boot" stage before executing user
programs, and user programs often contain distinct stages of execution such as initialization.

Dynamic optimization exploits program staging by postponing certain optimizations until
initial stages of execution have been completed. This permits accurate prediction of the
program's future behavior and yields code that is superior to statically optimal code. Since
the subject program is staged, the overhead of dynamic optimization can be amortized over
the execution of the stages that follow. In Section 2 we survey prior research demonstrating
that run-time program optimization can dramatically improve the performance of a wide
range of applications including network packet demultiplexing, sparse matrix computations,
pattern matching, and many forms of mobile code (such as \applets").

Improving the performance of mobile code (as part of \just-in-time" compilation) is
perhaps the most obvious application of dynamic optimization. But whereas just-in-time
compilation occurs only once per program, when the code is �rst available, dynamic opti-
mization may occur both as soon as the code is available and at any time thereafter. Bene�ts
are realized in either case when the dynamically optimized portions of the program are suf-
�ciently long-running to compensate for the cost of optimization. This generally requires
that the optimized code be executed many times, which can occur even at a relatively �ne
granularity within a program, e.g., when a dynamically optimized class de�nition is instanti-
ated many times, a dynamically optimized procedure is called many times, or a dynamically
optimized loop body is iterated many times.

The primary obstacle to dynamic program optimization is thus its overhead: many tra-
ditional compilation techniques are generally too time consuming to perform at run time.
The time spent optimizing and compiling code at run time must be more than repaid by
improved performance in order to obtain an overall speedup. A simple observation leads to
an important technique for reducing this overhead: since the code that will be dynamically
optimized is based on statically �xed source code, preprocessing can shift much of the e�ort
from run time to compile time. For example, code can be statically compiled to a low-level
intermediate representation (such as a machine-code template [20]) that can be quickly op-
timized at run time. Preprocessing is also used to achieve fast (\just-in-time") compilation
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of mobile code written in Java: a Java compiler on the server side preprocesses Java source
into Java bytecode, and a client's browser either interprets or compiles the Java bytecode on
the y [18].

A tradeo� exists, however, between the level of preprocessing and the eventual quality of
the dynamically generated code: static compilation restricts the kinds of optimizations that
can be performed dynamically. This occurs because compilation discards information that is
useful for both high-level and low-level optimizations. For example, loop transformations are
di�cult to perform after structured control constructs (such as for loops) have been compiled
away. As another example, consider the problem of reordering assignments: two assignments
that obviously do not conict (e.g., because one assigns a global and the other a local variable)
may appear to conict after they are compiled to a low-level intermediate representation.
To achieve high-quality dynamic optimization, it is sometimes necessary to dynamically
compile a high-level intermediate representation or a low-level representation that includes
high-level auxiliary information. The development of compact high-level representations
and rapid dynamic compilation techniques for high-level code is therefore essential for peak
performance.

General-purpose dynamic optimization must also be selective: in most cases the bulk of
a program should be compiled statically, and only certain regions should be dynamically op-
timized. Automatically determining where to dynamically optimize code is an open research
problem. Until recently, selective dynamic optimizations could be obtained only manually,
by writing code that explicitly generates code at run time [31, 28, 20, 21, 25, 15, 14]. Some
early dynamic optimization systems [11, 7] were not selective at all; they simply postponed
all optimization until run time. More recent systems either rely on pro�ling information to
guide dynamic recompilation [3, 10] or employ a combination of programmer hints and simple
program analysis to determine which portions of a program to dynamically optimize [22, 2, 9].

The question of how to dynamically optimize code is also critical, since the overhead of
ine�ective optimizations harms performance. Ideally, static prediction or pro�ling informa-
tion could be used to selectively apply only those dynamic optimizations that are likely to
be bene�cial, but this is not presently done. Existing systems employ a �xed compilation
model: the same compilation techniques are applied to all dynamically optimized regions
of a program, regardless of their cost or bene�t. Dynamic optimizations can be classi�ed
according to their cost and bene�t, and range from lightweight optimizations, which are
fast but typically yield minor improvements, to heavyweight optimizations, which are time
consuming but often provide substantial performance bene�ts.

The tradeo� between optimization cost and code quality is illustrated in Figure 1, which
depicts the performance of a hypothetical program whose execution time is linear in the size
of its input.1 For small input sizes (less than i), neither form of dynamic optimization yields
an overall performance improvement because the dynamically generated code is not executed
frequently enough to justify the overhead of creating it. When the input size ranges from i to
j, lightweight optimization provides the greatest bene�t, whereas heavyweight optimization
provides substantial bene�t for large inputs (greater than j). Our previous research [22,

1This �gure assumes that the cost of dynamic optimization, while necessarily dependent upon the input
program size, is not dependent upon the input data size, which in our experience is typical though not
universal.
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Figure 1: Cost vs. Bene�t Tradeo�

23] provides preliminary evidence that some applications bene�t only from heavyweight
optimizations, whereas others bene�t only from lightweight optimizations. Supporting a
wide range of dynamic optimization models is therefore desirable.

The remainder of this report describes a compiler architecture for dynamic optimization
that addresses all of the above research issues. We �rst provide motivation for the potential
bene�ts of this technology: Section 2 presents salient examples that demonstrate how dy-
namic optimization can improve the performance of a wide range of applications. Section 3
details three key aspects of the Dynamo project. First, we propose a staged compiler archi-
tecture that employs preprocessing to reduce the overhead of dynamic optimization without
restricting the range of possible optimizations. Next, we describe how dynamic optimization
directives further reduce overhead by permitting highly selective optimization. These direc-
tives are also the foundation of an experimental test bed for exploring the use of dynamic
optimization in real-world applications. Finally, we sketch our plans for incorporating the
results of these experiments into automatic program analysis and pro�ling tools that will
largely automate the task of dynamic optimization.

2 The Promise of Dynamic Optimization

This section describes several distinct ways in which dynamic optimization improves perfor-
mance, and it illustrates the wide range of applications that can bene�t.

2.1 Elimination of Interpretive Overhead

The most common use of dynamic optimization is to dynamically compile programs that are
constructed at run time or provided as input to a running program. For example, in 1968 Ken
Thompson implemented a search algorithm that employed dynamic optimization, based on
the observation that a regular expression is a program that speci�es the behavior of a �nite-
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state machine [31]. Previous search algorithms were based on a regular-expression-matching
algorithm that was essentially an interpreter. However, repeatedly matching against a �xed
regular expression involves duplicated e�ort, or interpretive overhead. Thompson found that
compiling a regular expression at run-time into a native-code �nite-state machine could
amortize this overhead.

Simulation is another application domain that bene�ts from dynamic optimization. Sim-
ulators are general-purpose programs that are parameterized by values that typically remain
�xed throughout their execution. For example, a circuit simulator is supplied with a �xed
circuit description, and a cache simulator is parameterized by hardware characteristics such
as line size, associativity, and coherency policy. These �xed inputs are often tested in the
innermost loop of the simulation, resulting in signi�cant interpretive overhead. Dynamic
optimization can eliminate this overhead by specializing a simulator to its inputs [8].

Interpreters are commonly used in large-scale systems to permit extensibility without
compromising safety or reliability. For example, many Unix operating system kernels contain
an extensible packet �lter procedure that demultiplexes network packets and delivers them
to user-level processes. To avoid the overhead of context switching on every packet, a packet
�lter must be kernel resident. But kernel residence has a distinct disadvantage: it can be
di�cult for user-level processes to specify precisely the types of packets they wish to receive,
because packet selection criteria can be quite complicated. Many useless packets may be
delivered as a result, with a consequent degradation of performance.

A commonly adopted solution to this problem is to parameterize a packet �lter by a
selection predicate that is dynamically constructed by a user-level process [27, 26]. A selec-
tion predicate is expressed in the abstract syntax of a \safe" or easily veri�ed programming
language, so that it can be trusted by the kernel. But this approach has substantial over-
head: the selection predicate is reinterpreted every time a packet is received. Our previous
research [22] and related research [16] has demonstrated that dynamic optimization elimi-
nates this overhead: a packet selection predicate can be rapidly compiled into trusted native
code. More generally, dynamic optimization permits a kernel to safely and e�ciently execute
\agents" supplied by user-level processes while avoiding context switches.

2.2 Common-Case Optimizations On Demand

Another frequent application of dynamic optimization is to perform common-case optimiza-
tions on demand. Optimizing for the common case is an long-standing tenet of systems
programmers and compiler writers. This practice typically involves making optimistic as-
sumptions about program inputs and concentrating implementation e�ort or other resources
on improving the performance of the program regions that are most frequently executed.

The primary obstacle to common-case optimization is that it is often di�cult to predict
statically what the common case will be. One solution is to partially or fully case a routine,
creating specialized code for several di�erent cases. Both of these approaches can cause
substantial code growth, and unless these optimizations are automatically applied, signi�cant
programmer e�ort is required. Dynamic optimization yields the bene�ts of common-case
optimizations without either of these drawbacks because the optimization is performed on
demand: the common case(s) can be determined dynamically, and code space can be reused
if necessary.

5



Pike and colleagues [28] explored the problem of optimizing a bitblt procedure for the
Blit, a graphics terminal with no special-purpose graphics hardware. Bitblt is a general-
purpose graphics primitive that is used to copy bitmaps from one region of (screen) memory
to another, possibly combining the source bitmap with the destination according to some
operation code (such as XOR) that is also supplied as an parameter. Many special cases
must be handled by bitblt, since bitmaps may be overlapping, clipped, or non-byte aligned,
but common cases can be handled quite e�ciently. Unfortunately the number of possible
cases was found to be too large (over nineteen hundred) to allow full or partial casing. Pike
and colleagues used dynamic optimization to generate common-case code on demand and
achieved a signi�cant speedup over statically optimized code.

Dynamic optimization was used to perform common-case optimization of interrupt han-
dling in the Synthesis kernel [25]. Rather than performing a full context switch on each
interrupt, the Synthesis kernel dynamically synthesizes customized code to save and restore
only those portions of the machine state that are used by a particular service routine. For
example, it is uncommon for interrupt handlers to issue any oating point instructions, so
there is no need to save the state of the oating point unit when servicing most interrupts.
Dynamic optimization allows this common case to be exploited, while preserving correct
behavior in the more general case.

2.3 Value-Speci�c Optimizations

Postponing optimization until run-time makes a wide range of value-speci�c optimizations
possible [21]. For example, our previous research demonstrated how a general-purpose matrix
multiplication routine can be specialized to operate e�ciently on sparse matrices using value-
speci�c optimizations [22]. Matrix multiplication is usually implemented as a triply nested
loop, where the outer two loops select vectors from the matrices, e.g., a row and a column,
and the innermost loop computes their inner product. The vector selected by the outermost
loop will be used to compute many inner products, so it is often pro�table to create a
specialized inner product routine for every such vector. If the vector is sparse, run-time
strength reduction can eliminate operations corresponding to its zero elements.

Value-speci�c optimizations can also be used to create executable data structures. Travers-
ing a data structure often requires testing and pointer chasing; this e�ort is duplicated if the
data structure is repeatedly traversed but infrequently modi�ed. The overhead of traver-
sal can be amortized by compiling a data structure into code at run time. For example,
the Synthesis kernel employed dynamic optimization to create \self-traversing" bu�ers and
queues [25]. Our prior research has demonstrated that executable data structures can be
automatically derived from ordinary code for common list operations, such as membership
and association [22].

2.4 Control Flow Optimizations

Another common use of dynamic optimization is the elimination of dynamic dispatch. In
purely object-oriented languages like Smalltalk and SELF, a method invocation often re-
quires a dynamic type check to determine which method should be used. Compilers for
such languages have employed dynamic optimization to eliminate this overhead by creating
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customized code to directly invoke methods whose receiver class is known [11, 7]. Operat-
ing systems and other interactive systems often employ dynamic dispatching to implement
event handling. In the SPIN operating system, dynamic optimization is employed to create
a specialized event dispatcher whenever a new event handler is registered [6].

Our prior research has included an investigation of the use of pro�ling information to im-
prove program control ow through dynamic recompilation [4, 3]. An e�cient edge-counting
strategy was employed to measure basic block execution frequencies, and this information
was used to dynamically reorder blocks to reduce the number of mispredicted branches and
instruction cache misses.

3 Staged Compilation

The initial phase of the Dynamo project will involve the design and implemention a com-
piler architecture that supports a wide range of dynamic optimizations on several distinct
intermediate representations. The underlying idea behind this architecture is simple: if the
compiler is staged, or structured as a sequence of independent compilation phases, dynamic
optimization can be achieved simply by postponing the remainder of compilation at a cer-
tain stage. Furthermore, the time required to dynamically optimize code can be adjusted by
choosing (for each region of code) the stage at which compilation is suspended:

� A region that might bene�t from heavyweight dynamic optimization will be partially
compiled into a high-level intermediate representation that is suitable for aggressive
optimizations such as loop unrolling and register re-allocation.

� A region that would bene�t from lightweight dynamic optimizations will be compiled
into a mid-level or low-level intermediate representation that can be improved with
simple techniques such as constant propagation and peephole optimization.

� Regions that do not bene�t from dynamic optimization will be compiled statically into
native code.

Although simple in concept, a number of research and design issues must be addressed
to implement such a system. Foremost is the question of how to stage the compiler. Most
conventional compilers consist of more than one compilation phase, but this staging is intro-
duced primarily to simplify implementation. Staging to support dynamic optimization must
take into account several other factors. For example, the most time-consuming analyses and
optimizations should be performed in the earliest stages, since they are least likely to be
justi�ed at run time. Where possible, optimizations should be unordered, to allow maxi-
mum exibility in choosing when each optimization is performed. Intermediate forms should
be compact and amenable to rapid compilation techniques. Each intermediate form should
support many di�erent optimizations to permit reordering of optimizations. We present an
overview of our proposed compiler architecture in Section 3.1.

An equally important consideration is the speed of the transformations and optimizations
employed by the compiler. For dynamic compilation to be e�ective, it must balance code
quality with compilation time. Traditional compilers often rely on optimizations and code
generation techniques that are too time consuming to be performed at run time. Section 3.1
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also describes our plans to incorporate state-of-the-art rapid compilation techniques into our
system.

Automatically determining how to dynamically optimize ordinary code is a challenging
problem. Part of the problem is a lack of experience: without in-depth practice at manually
making such decisions, it is di�cult to devise heuristics to automate the process. In Sec-
tion 3.2.1 we propose a uniform method for annotating source and intermediate code with
dynamic optimization directives, which will provide both the programmer and the compiler
with �ne-grained control over the dynamic optimization of individual blocks of code. This
technique will allow us to implement a system that facilitates experimentation and perfor-
mance tuning. In Section 3.2.2 we also sketch our plans for the development of automatic
program analysis and pro�ling tools that will enable the compiler to dynamically optimize
ordinary code with or without programmer assistance.

3.1 Compiler Architecture

In this section we sketch the initial design of the Dynamo compiler, which will serve as a
test bed for experimenting with methods of dynamic optimization and techniques for rapid
compilation. We anticipate that this straightforward design will undergo signi�cant re�ne-
ment as we gain a deeper understanding of the costs and bene�ts of dynamic optimization
in real-world applications.

The compiler will rely on a run-time system that provides automatic storage management
(garbage collection) and dynamic reclamation of code space. This a�ects our selection of
source languages, since garbage collection is not feasible for languages that permit unsafe
type casts and unrestricted pointer arithmetic. As part of a larger initiative to provide a
uni�ed compiler framework for advanced languages and improve their interoperability, we
plan to implement compiler front ends for Scheme, ML, and Java. This will allow us to
explore language-speci�c idioms for programmer control over dynamic optimization.

Our emphasis in this report is on the back end of the compiler, which is depicted in
Figure 2. After parsing and type checking, a source program will be represented as an
abstract syntax tree, which is the input to a static analysis and optimization stage (labeled
Alpha). This stage corrects obvious ine�ciencies (whether present in the original source
or introduced by language-dependent front ends) and performs several program analyses,
including control-ow and live-range analysis. Stage Alpha is always performed statically,
because its optimizations do not rely on dynamic information.

The resulting code is expressed in a high-level intermediate representation that supports
a wide range of analyses and optimizations. Numerous compilation stages operate on this
representation; they are depicted by a single box labeled Beta in Figure 2, and for con-
venience we shall refer to them as a single stage. Control-ow optimizations, such as loop
unrolling and procedure inlining, are performed in stage Beta. Data representations are also
optimized during this stage; such optimizations are critical to achieving good performance
in advanced languages. We anticipate employing techniques similar to those used in the TIL
compiler [30] to facilitate such optimizations.

All of the analyses and optimizations performed in stage Beta can bene�t signi�cantly
from dynamic information. For example, dynamic information is useful because:
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Figure 2: Staged Compiler Architecture
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� Dynamic method dispatch and higher-order procedures can make it impossible to de-
termine a program's control ow graph until run time;

� Dynamically allocated data structures can make static loop transformations di�cult,
e.g., array bounds may not be known at compile time;

� Separate compilation makes it di�cult to optimize data representations across module
boundaries.

It is therefore possible to postpone part or all of this stage of compilation (and those that
follow) until run time (load time or later). To keep the cost of the optimizations performed
in stage Beta low, we anticipate incorporating several proven technologies from the Chez
Scheme compiler, which employs fast linear optimization algorithms to produce optimized
programs with minimal compilation overhead.

The next set of compilation stages, Gamma, operate on a mid-level intermediate repre-
sentation. This representation is amenable to a variety of machine-independent optimiza-
tions, such as code motion and coarse scheduling, because it retains much of the structure
of the original program. Abstract syntax trees are used to represent expressions, but most
high-level language constructs, such as object/record creation and array indexing, have been
compiled away. A number of value-speci�c optimizations [21] are performed in stageGamma,
ranging from simple constant propagation to aggressive procedure cloning. When this stage
is postponed until run time, these optimizations yield code that is specialized to speci�c
run-time values and data structures; for example, a regular-expression matcher can be cus-
tomized to a particular search pattern. Type-based specialization of polymorphic procedures
and generic methods may also be performed in this stage. Stage Gamma also performs reg-
ister allocation and code generation, yielding a low-level, machine-dependent intermediate
representation.

A key design problem is to keep the overhead imposed by stage Gamma to a minimum,
since the optimizations performed during this stage are the ones most likely to be performed
dynamically. We plan to incorporate the results of our prior research in this area, including
a fast register allocation algorithm [5] and e�cient code generation techniques [12]. We also
intend to adopt technology recently developed by researchers concentrating on \just-in-time"
compilation of mobile code.2

The �nal compilation stage, labeled Delta in Figure 2, takes a low-level, machine-
dependent intermediate representation as input and performs \lightweight" optimizations
such as code layout, constant propagation, and simple peephole optimizations. The empha-
sis in this stage is rapid generation of optimized native code. When no other dynamic opti-
mizations are performed, Delta will yield code comparable to that produced by \template-
based" run-time code generation systems [29, 6], with comparable cost (20 to 100 cycles per
dynamically generated instruction). More expensive low-level optimizations, such as �ne-
grained instruction scheduling, can also be employed when the compiler (or the programmer)
determines that their cost is repaid by improved performance.

2Stage Gamma will be augmented with an interface that permits Java Virtual Machine code [18] to be
optimized and compiled on the y, and we anticipate implementing several network applications (including
a simple Web browser) as benchmarks.
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Figure 3: Possible Optimization Models for a Program Region

Figure 2 also illustrates an alternate compilation path, labeled Epsilon, that employs
compile-time specialization to further reduce the cost of low-level optimization and code
generation. Our previous research [24, 22] has demonstrated that this cost can be reduced
by an order of magnitude by creating customized code-generators that are \hard wired" to
optimize and generate native code for particular procedures or blocks of code. Since this
customization is performed statically, its only cost is increased use of code space, which
Dynamo can dynamically reclaim.

We also plan to investigate using specialization to reduce the cost of stages Beta and
Gamma: for example, it is possible to reduce the cost of an iterative program analysis by
customizing the analysis to a �xed program or control-ow graph.

It is worth emphasizing that these compilation stages are designed to be performed either
statically (at compile time) or dynamically (at run time). Also, no global compilation model
is assumed: in practice most portions of a program will be statically compiled in full, while
the compilation of other regions will be individually suspended at one of the stages described
above. Figure 3 illustrates how this can be used to achieve a range of dynamic optimization
styles.

3.2 Selective Dynamic Optimization

Dynamic optimization must be selective to be e�ective. Time spent optimizing code at run
time contributes directly to the overall execution time of a program, so it is important to
determine accurately where and how to perform dynamic optimizations. The Dynamo com-
piler must avoid dynamically compiling program regions that do not bene�t from run-time
optimizations, and it should apply only those optimizations that will signi�cantly improve
code quality. Overly conservative strategies are not necessarily the answer, however, because
they can result in missed optimization opportunities.

Our previous research [22, 23] has demonstrated that syntactic features of programs
(such as loop nests and certain kinds of procedure de�nitions) provide useful clues that
help determine where to perform dynamic optimization. For example, if an inner loop uses a
value that is �xed by an outer loop, it can be dynamically optimized once per iteration of the
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outer loop. In this project we plan to develop additional program analyses and pro�le-driven
techniques for identifying optimization candidates. An overview of these plans is included
below, in Section 3.2.2.

After identifying potentially pro�table candidates for dynamic optimization, the compiler
will perform a cost-bene�t analysis to re�ne further the set of optimization candidates. In
addition, these analyses will determine how to dynamically optimize di�erent regions of
code. Each optimization candidate will be annotated with the stage (Beta, Gamma, etc.)
or substage at which its compilation will be suspended, based on the optimization model
suggested by cost-bene�t analysis. Section 3.2.2 describes the analysis techniques we plan
to employ for cost-bene�t analysis.

It is foolhardy to automate a process that is not well understood, however. Our intuition
can help identify some dynamic optimization candidates, but we need to experiment with
a wide range of applications to discover additional opportunities. Furthermore, it will be
di�cult to implement accurate cost-bene�t analysis without quantitative analysis of the
performance of both the compiler and the code it generates. We therefore plan to develop a
rich set of dynamic optimization directives that will supplant the need for program analysis
during the initial phase of our investigations. Support for these directives will remain in the
system to allow programmers full or partial control over dynamic optimization when desired.

3.2.1 Dynamic Optimization Directives

Initially, the programmer will annotate a program with directives (pragmas) that specify
where and how to dynamically optimize it. This will allow us to implement a test bed
that supports experimentation with a wide range of subject applications and optimization
strategies. We will then extend Dynamo with program analysis and pro�ling tools that
will automatically add such directives to ordinary code, reducing or eliminating the need
for programmer guidance. We anticipate that explicit programmer control over dynamic
optimization will continue to be useful: our previous research has indicated that domain-
speci�c knowledge is necessary to selectively optimize some applications at run time [22].
We plan to adapt existing visualization tools [32] to provide the programmer with feedback
on the costs and bene�ts of individual optimization directives.

A dynamic optimization directive is a program annotation that may be attached to
many di�erent program constructs: procedure de�nitions, class de�nitions, loops, blocks,
etc. It speci�es a number of actions that should be dynamically performed by the compiler
under certain conditions. Actions can provide high-level guidance to the compiler (such
as \apply lightweight optimizations to this procedure at run time") or they can specify
speci�c optimizations to be performed, instrumentation to be added, etc. Conditions allow
�ne-grained control over the circumstances in which actions are taken, which allows the
programmer to use dynamic information (such as the value of a variable or the execution
frequency of a procedure) to weigh the cost and bene�t of performing certain dynamic
optimizations.

For example, the following procedure, which is written in pseudo-C-code, computes the
sum the elements of a vector v of length n. It contains two dynamic optimization directives:
the �rst tells the compiler to specialize (clone) this procedure for �xed values of n (which may
allow the compiler to block the loop and optimize its index arithmetic and bounds checks).
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The second directive tells the compiler to unroll the loop completely when it estimates that
the resulting code will �t in the instruction cache.

double sum(double v[], int n)

#specialize when fixed(n)

f
int i = 0;

double result = 0.0;

#unroll when code size(sum) < icache size

for (; i < n; ++i)

result += v[i];

return(result);

g

As this example illustrates, the condition in an optimization directive is a full-edged boolean
expression that may reference the dynamic values of variables, invoke procedures, and inter-
act with the compiler and run-time system. This a�ords great exibility to the programmer:
optimization may be highly selective, based on both static and dynamic context.

Here are some additional examples that demonstrate how dynamic optimization directives
might be used in a variety of applications:

� Instrumentation can be statically compiled into a procedure, e.g., to determine the
execution frequency of its basic blocks. After it has been invoked a certain number of
times, an optimization directive can cause the procedure to be dynamically optimized
based on the results of the pro�ling|with pro�ling instrumentation removed or left in
to gather information for further optimization.

� A general-purpose matrix-multiply routine can be customized to the layout of its argu-
ments when they are sparse. The optimization condition would employ a user-de�ned
procedure to check the condition of the argument matrices.

� A string-comparison procedure can be optimized when one string will be �xed. Doing
so will be pro�table only if the number of iterations is large, however, so dynamic
optimization would be controlled by an optimization directive at its call site, which
has access to the contextual information necessary to determine whether this condition
will be satis�ed.

Dynamic optimization directives provide an important separation of concerns in our
research plans. By initially relying on the programmer to indicate where and how code
should be optimized at run time, we can concentrate on implementing an infrastructure
that supports a wide range of dynamic optimizations. Our design will be evolutionary: by
experimenting with real-world applications we expect to discover additional opportunities
for dynamic optimization, which can be rapidly incorporated into our compilation system
for further experimentation.
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3.2.2 Analysis and Pro�ling for Selective Dynamic Optimization

Automatically determining where and how to optimize code at run time is a di�cult task, but
it must be addressed in order to make dynamic optimization widely applicable. We intend
to develop a set of analysis and pro�ling techniques that will automatically add dynamic
optimization directives to ordinary code; these techniques will also be used to re�ne existing
programmer directives. We also plan to adapt existing visualization and performance analysis
tools [32] to provide the programmer with feedback on the costs and bene�ts of manually
directed dynamic optimizations.

Static program analysis and pro�ling are complementary techniques. Static program
analysis has the advantage that it introduces no run-time overhead: the selection of opti-
mization candidates is performed at compile time, based on estimates of the cost and bene�t
of dynamic optimization. Its disadvantage is a lack of precision: program analysis is con-
servative and may mispredict the actual dynamic behavior of a program. Pro�ling provides
more precise information about a program's behavior, and it also permits exact information
about the cost and bene�t of dynamic optimization to be collected. When pro�le-guided
optimization is performed \on the y," however, the overhead of pro�ling will contribute
at least marginally to the overall execution time of the program even if instrumentation is
removed upon recompilation; its cost must therefore be weighed against its bene�t.

We plan to employ program analysis and pro�ling to solve two problems: candidate
selection and cost-bene�t analysis. Candidate selection locates program regions that might
bene�t from dynamic optimization. Pro�ling simpli�es candidate selection by identifying
\hot spots," or program regions that are frequently executed. Relatively minor improvements
in such regions can yield a large overall performance gain, and it is easier to amortize the cost
of dynamically optimizing frequently executed code. The compiler will also employ static
ow analysis [1] to gain a high-level understanding of a program's control ow. This allows
the compiler to estimate execution frequency statically, and it also reveals opportunities
for optimization. For example, if the compiler detects that an inner loop uses a variable
whose value is �xed in an outer loop, dynamic optimization may yield improvements that
are impossible to achieve with traditional loop-invariant removal. Other recent research
on static program analyses, such as alias analysis [13] and shape analysis [17], has direct
relevance to the problem of candidate selection.

It is relatively straightforward to implement cost-bene�t analysis using pro�ling tech-
niques. The time required to perform certain dynamic optimizations on certain regions of
code can be measured, and the improvement (or lack thereof) in the dynamically generated
code can quantitatively observed. This technique is highly speculative, since optimizations
are attempted without a priori knowledge of their costs or bene�ts; this overhead is likely
to be repaid only in long-running programs.

Static estimation of the cost of dynamic optimization has not been previously investi-
gated. We believe that a detailed performance analysis of an early prototype of our compiler
will reveal a straightforward relationship between the size and structure of a program and
the costs incurred by dynamic optimization and code generation. The experimental frame-
work we propose is well suited to this endeavor: in the initial phases of our investigation,
programmer-supplied directives will provide the necessary control over the kinds of dynamic
optimizations that are performed.
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In contrast, we anticipate di�culty in achieving accurate static estimation of the bene�ts
of dynamic optimization. Because the values that will be used to optimize code will not
be available until run time, a \try it and see" optimization strategy cannot be employed at
compile time. Instead, each dynamic optimization will require a static analogue: given an
optimization candidate and information about which values will be �xed, the analogue will
estimate what kinds of code improvements can be made. In most cases this can be done
with a simple dependency or binding-time analysis [19]. Achieving precise results from such
an analysis is di�cult, because some optimizations (such as constant propagation) enable
additional optimizations (such as constant folding). A further complication is that it can be
di�cult to estimate the actual execution time of code expressed in a high-level intermediate
representation; this complicates determining whether certain low-level optimizations will be
bene�cial. Programmer experience and intuition can be exploited in such matters, and our
experimental framework will facilitate programmer involvement in cost-bene�t estimation.
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