VW: A Small But Potent
Machine-Independent Text Editor

Nicholas F. Vitulli

TecunicaL ReporT No. 49

VH: A SmarLL But PoTent
MAcHINE-INDEPENDENT TEXT EDITOR

NicHorLas F, ViTuLLI

ApriL, 1976

Submitted to the faculty of the Graduate School in partial
fulfillment of the requirements for the degree Master of

Sclence in the Department of Computer Science, Indiana
University.

*

-
neto8 Jo8 [lem@®@ n WV
103158 $2x9T Fnsbnsgelnl-anlcosl

LElua fﬁ ag Lasioll

on ol Twossfl Ao il

™ETed Tol Joasd R WY
soriad TxaT Tuaamadadul -an koM

itV 3 sadaaiit

Istdzsag nl locdei sdspbeul spidto yiison sdd of Dayylimdul
%o nwedeaM sstgsb ed? oY simematiuper =43 Yo daemifliu]
ansldnl ,sonalsf «emuquel Yo tnamyesgel 43 nl sdosle

JEI et evinoill

VW: A Small But Potent
Machine-Independent Text Editor

Nicheclas F. Vitulli

May 1976

Submitted to the faculty of the Graduate School in partlal
fulfillment of the requirements for the degree Master of
Science in the Department of Computer Science, Indiana

University.

VW: ‘A Small But Potent Machine-Independent Text Editor

Nichelas Vitulli

Abstract:

An on-line interactive text-editor has been designed and
implemented, in FORTRAN, on the DEC PDP-10 and CDC 6600.
Its design advantages are ease of use, editing versatility,
and modest core requirements. It is also potentially suit-
able for use on minicomputers such as the DEC PDP-8 and the
TI 980.

- Ease of use is established by confining the command set
to a few basic commands but.permitting the range of opera-
tions to be anywhere from a single character to the entire
file contents. A versatile macro control structure is
incorporated by considering each command a predicate, associ-
ated with a tguth value indicating the success or failure of
the predicated operation. The entire PDP-10 version of the
editor is contained in only 7K 36-bit words of memory, which
includes nearly 3K of core for the unshareable data struc-

ture.

Submitted by: g

’ ; it Accq:pted by
T ol oA

Nicholas F. Vitulli Dav;d S. Wise
:/(/ ﬁi;;_ = 22%9 C;%gut¢/f/“?}%5
Date Date

/E\d;u.d’ p fbke, o

Daniel P. Prledman

A9 Gpy b (5

Date

T, Introduction

In interactive processing the creation and modifi-
cation of on-line files from a console replaces hand punching
and editing of card decks. The text editor is a utility
program which has two primary functions: to translate and
store keyed-in characters as machine readable codes, and to
permit the alteration of stored text--insertion, deletion
and movement of characters.

Although the term "editor" has been applied to programs
such as linking-loaders and formatted manuscript generators,
in this paper it refers only to programs creating and modi-
fying files through user interaétion. Existing editors can
be categorized either as line-oriented (e.g{} LINED (1)) or
character (context)-oriented (e.g., TECO (2)). In line-
oriented editors, the text of interest is located by line
number, and only complete lines may be added, deleted or
changed. The advantage of such an editor is simplicity of
use:; the disadvantage is its relative inflexibility. In
character-oriented editors, single characters (including the
end-of-line character) may Ee added, deleted or changed;
areas of interest may be located by counting the number of
characters or lines, or, alternatively, by searching for a
sequence of characters. The obvious advantage is the flexi-
bility afforded by allowing modifications to portions of a

line; the attendant disadvantage is complexity of operations.

One editbr, S0S, does attempt to combine the features of
both line- and character-oriented editors (3). While the
importance of interactive editors has long been recognized
(4,5) no standard editor has been adopted. Few have been
designed to be machine-independent (6), and the majority
rely on specific hardware configurations.

An effective editor should maximize programmer produc-
tivity by providing simple commands for trivial editing, as
well as supporting sophisticated commands for more complex
jobs, without taxing the interactive system environment. It
should also provide ease of operation, power and security,
where:

Ease of Operation requires a concise, consistent,

convenient command set which also supports easy re-
covery from typogréphic errors.

Power pertains to the ability of single commands to
perform simple editing, or for combined commands to
effect more complex modifications.

Security guarantees that changes to a file will be made
permanent only when requested by the user, and that the
file will be protected from system malfunction.

Compactness refers to minimization of demands for

critical resources made on the host system.

Design of VW

VW was designed to be a character-oriented, machine-
independent interactive text editor. Its design was strongly
influenced by two other character-oriented editors, TECO and
COMPATIBLE (7). The design goals described above were
achieved as follows:

Machine Independence: source language to be FORTRAN.

Ease of Operation: simple, small command set with

clearly defined and logically consistent syntactical
structure.

Power: simple editing tasks accomplished by single
commands operating on characters or lines. Complex
tasks accomplished by combination of simple commands
into larger, macro-commands, as well as access to anl
auxiliafy memory buffer for use as a scratch pad.
Security: disjoint input and output files are used
during the editing process.

Compactness: a small linked, unshared structure driven

by a structured re-entrant program. Time is not considered
a critical resource because the editing process is

normally I/O bound.

Many editors, KRONOS EDITOR (8), for example, will not
allow the combining of commands. Because of this, an editing

task which requires more than one primitive function must be

expressiy repeated. This repetition prevents the user from
describing a complex editing operation which is to be per-
formed in many places. The two character editors, TECO and
COMPATIBLE do not share in this restriction since they both
allow combinations and repetitions of commands but in
neither case is their control structure strong enough to
search for flexible patterns in the file.

The use of sequential files is a distinct advantage
over in place or random editors in which changes are made
permanent immediately (9). In the two-file-structure changes
are made by the user in the output file without damaging the
integrity of the input file. OCnly on request is the output
renamed as the edit file, leaving the original file avail-

able to the user as a backup.

Implementation of VW

VW is an interactive character-oriented editor, imple-
mented in FORTRAN, and presently available on the CDC 6600,
DEC PDP-10, DEC PDP-11 and HARRIS 6024/4. It is supported
by any type of machine-readable sequential storage (even
paper tape) and an interactive console. The full ANSI
character set is allowed, restricted ohly by the particular
host system. Its minimal core requirements permit implemen-
tation on a mini-computer and place no burden on an inter-

active timesharing system.

The remainder of this paper is in five parts. Two
sections discuss data structure and the types of text
manipulation available. The next two sections present the
formal definition of the operating language and examples of
VW's power in solving problems.' In the concludiné section
the potential of the universal application and acceptance of

VW is discussed.

ITI. Data Structure

The single most important factor influencing the
success of a text editing system is the method used to
allocate and access work space. The input file, a sequen-
tial list of characters from external storage, is read into
this working area where it is modified by the user. To
facilitate the editing process at the character level a
linked-1ist (10) data structure containing one character per
node is used by VW. The linking is bi-directional to allow
traversal through the structure in both forward and reverse
directions. The actuél data structure employed is a "two-
way" linked list and not a doubly linked list (11), since
two link fields are not used. This technique allows space
reduction without functional loss by linking a linear list
with only one link field per node as described by D. E.
Knuth (12) and expanded in detail by D. S. Wise (13).

The top of the data structure is linked to external
sequential output (e.g., disk, magnetic tape, papertape,
etc.) and the bottom linked to sequential input. This
input, the edit file, is read into the linked memory buffer
where it is modified. The output file, the result of the
editing process, reflects the changes made.

The linked memory buffer is the window into the edit

file. Movement of the file through the window is called

nwindowing". Input text is read from the edit file and
linked into the window for editing. As additional text is
required the window expands until available space is exhaus-
ted. At this point the top portion of the window is written
to the output file, thereby freeing space for ad&itiOnal
input. This windowing process offers advantages over "paging”
(14), a method which replaces the entire window with the new
text, by retaining backwards context for the added text.

The cursor is a pointer within the window, positioned
bétween (13) two characters.l All processing performed in
the window affects the characters adjacent to the cursor.
Windowing occurs when editing is performed in the right (or
forward) direction and the cursor reaches the bottom of the
window. When reverse editing 1is requested and the cursor is
at the top of the window, additional processing is impos-
sible since the reqguired text has already been written to
the output file.

An alternate two-way linked structure called the
auxiliary window is also available to the user for text
storage and manipulation. The auxiliary window has its own
cursor and is c&nnected to an optional read-only secondary
file. It functions like the main window but has no cutput
capability. Characters may be transferred or copled between

the auxiliary and main windows.

A third two-way linked structure, called the command

buffer, is used by the VW processor to hold the current

command entered by the user.

All three structures (main window, auxiliary window,

command buffer) and their cursors share the same available

free space and because they-are linked in the same manner,

they are processed internally by the same routines, thereby

reducing implementation core size.

structures.

UPDATED
E0IT

FILE

Figure 1.

L_F

MAIN cunsa?\\

MAIN WINDOW

Figure 1 summarizes these

HSHORT CURSOR

/

AUXILIARY BUFFER

il

e 2 s
0GR s B
AUXILIARY CURSOS

58 sy 0 g

EDIY
O

SECONDARY
FILE

MEMORY CURSOR

S

L]

/

A ls
L. 1¥
Al
B i
(¥

4 COMMAND CURSC!

HD BUFFER

f‘E‘ﬁ‘B@E'*EQE‘—

DDDDD‘I

0

VW

VW Memory Allocation and File Organization

III. Text Manipulation

VW supports text insertion, deletion, searching (15)
and copying, all within a simple, concise command structure.
Commands and their associated arguments are ente;ed in a
syntax that has been designed for user convenience. Modi-
fiers may be used in conjunction with commands to limit
range of operations or processing sequehce. Finally, con-
ditional exeéution is available to support complex editing

tasks provided through a complete macro structure.

command Structure and Function

i

The VW command language consist of concise one-letter
commands which may take arguments. Multiple commands,
optionally separated by blanks, may be entered on a single
line. The new line character terminates command input,
signalling the VW processor to execute the completed command
string.

command action begins at the cursor location and
proceeds forward (i.e., left to right) through the file
unless otherwise specified. A repetition factor associated
with each commaﬁd indicates the number of times that command
is to be re-executed.

The first class of commands is character-oriented,

consisting of those operations which act on single

10

characters. The editing functioﬂs provided by character
commands include cursor movement, text insertion, deletion,
display and copying.

The second class of commands is line oriented. The
editing functions provided include cursor mOVemeﬁt, and
display, deletion, and copying of entire lines of text.
These functions are analogous to the character-oriented
commands, but the scope is lines rather than characters.

Additional commands provide cursor movement by means
of character string searching and character string verifi-
cation. All these commands are executable in both the main
and auxiliary windows. (Either the main or auxiliary
window may be active at any time according to user direc-
tive. The copy commands copy characters or lines from the

active window to the inactive.)

Processing Scope

A processing limit is associated with all commands.
This limitation, called command scope; restricts the amount
of text that serves as the command's operand. The scope may
encompass either the entire file, a fixed number of lines,
or all characters up to a pre-determined stopping point.
The stopping point may be an explicit marker, placed when
cursor was at that point earlier, or it may be determined by

the closing bracket which balances the open bracket found at

Lk

the current cursor position. The bracket pair (parentheses,

angle brackets, etc.) is set by the user.

Conditional Constructions and Macro Structure

Truth values are associated with all commands and are
returned by VW following command execution, indicating
whether or not the command has been successfully executed.
For example, if the repetition factor asks the cursor to be
moved beyond the scope of the command, processing halts and
a FALSE value is returned. However, if the repetition count
can be satisfied within the scope, a TRUE value is returned
and the next command in the input string is executed.
(Arguments are available to reverse or reset the truth value
to be returned.)

Commands and their associated arguments may be grouped
within parentheses to form additional editing functions. The
grouping is called a macro command. The macro may have its
own repetition factor, direction and truth operators.
Execution of a macro halts, returning FALSE as a value as
soon as one of its constituents fails. That is, when a
command within a macro fails, execution is interupted.
Arguments of the macro may reverse this value so that the

next command in input string following the macro is executed.

12

IV. VW Syntax and Semantics

We assume that the reader is familiar with BNF nota-

tion (16).

v

The following symbols are defined to mean:
is defined as
or
optional
grouping
terminal symbol
space

new line (the carriage return, line feed sequence
is considered to be one character)

13

INPUTLINES ::= INPUT ' «¢'

All commands to VW are input at the user's console. VW
prompts this action by y displaying the character ':'. The
user terminates his input instruction with the ' <«¢' character.
INPUT ::= ERRORINPUT

If an error is made while entering a command, VW

is signaled to ignore the input when the character ¥ is
included before the "<«¢'.

INPUT ::= SPECIALCMDS
SPECIALCMDS ::= REPEAT SAVE INDIRECT

There are three special commands provided for by VW
which operate on commands. Each must follow the prompt
immediately and be the only command glven. (Any other input
following will be ignored.).
REPEAT ::= '='

Re-execute the previous command.

SAVE ::= '/'

Store the previous command for future processing.

INDEIRBECT z3= "4

Process a stored command.

INPUT ::= CMDSTR
CMDSTR ::= CMD
CMDSTR ::= CMD CMDSTR

Normal input to VW is a command string which is comprised
of several commands.

CMD ::= CMDARGS CMDBODY

An individual command is generally specified in two
parts. The command arguments are used to qualify the editing
action while the command body describes the action to be
taken.

14

CMDARGS ::= (BLANKS) (TRUTHREVERSE) [CRUTHFORCE) (DIRECTION) (REPSCOPE)

Each of the command arguments is optional however if used,
the relative positional ordering must be observed.

— lAi

'A' BLANKS

Spaces may be added for command readability.: They are
ignored by the VW processor.

TRUTHREVERSE ::= 'S§'

Truth reversal is indicated by the addition of the
character 'S$'.

Semantics

All commands to VW return a truth value (TRUE or FALSE)
after processing. This value is used as a control check
during the execution of a command string. If a command
returns FALSE processing is interrupted. When the 'S§'
is included, a command which normally would return FALSE
returns TRUE, and a command which would be TRUE becomes
FALSE.

TRUTHFORCE ::= 'A'

A command will always return TRUE when preceeded by
the character 'A', read "always".

Semantics
The argument 'A' performs the command but forces the

value to be TRUE. A command whose arguments contain
both characters 'S$A' will always return FALSE.

DIRECTION ::= '-!

Direction reversal is indicated by the addition of the
character '-'.

Semantics

The editing process will normally proceed from left to
right and from top to bottom of the edit file. The
direction of process is altered to go bottom to top,
right to left with the addition of the character V=t &

k5

REPSCOPE ::= LONEREP]LONESCOPE[REPANDSCOPE

The last two command arguments specify the number of
times the editing action is to be repeated and the amount of
text which may be processed. They are referred to as the
repetition factor and scope of the command.

Semantics

The amount of text or scope is specified with each
command. If the editing action can be repeated the
requested number of times within the scope the command
returns the value TRUE. If the repetition factor cannot
be satisfied within the scope the command fails returning
FALSE. In this case however processing will be completed
within scope specified.

Quantity (*,')

Pt
QUANTITY ::= NUM|'¥*'
NUM ::= DIG
NUM ::= DIG N
DIC ::= lgl Illl]lzl |l3l‘ |l4l 1151 !tsl |r7| |'8' 1191

A repetition factor is either a number or the character
"#1'_ It is separated from the scope by the character %%
The comma may be used at all times, however, it is only

necessary if ambiguities arise without df.
Semantics

If the '*' repetition factor is used the command will
repeat as necessary until the entire scope has been
processed. When this is completed the value TRUE is
returned. This action is obvious when the v*% ag
interpreted as Kleene star which means any number of

times, even zero.

If the repetition factor is non-specified or '@' a
repetition of one is assumed.

LONESCOPE ::= ',' SCOPEQUANTITY | (','){UNTIL |BALANCE|'.'}
SCOPEQUANTITY ::= NUM('.')|'*'
UNTIL ::= 'U’
BALANCE ::= 'B'

A scope is specified by a number, a .¥; a number
followed by a '.', an '*', a 'U' (read "until®) ar a B!
(read "balanced"). Again the comma preceeding the scope is

necessary only to avoid ambiguity.
Y

16

Semantics

When scope is a number it refers to the number of v !
characters which may be processed during command execu-
tion. A scope of '@' therefore would allow processing
of the current line only since no line terminators
could be processed. A scope of 'l' allows the current
line and next line to be processed. When the '.' is
appended to the number, the scope is extended to include
the last line terminator, but not beyond. A scope of
'g.' is the present line plus its terminator. An vk
scope allows processing of the entire file. A vt
scope allows processing until a previously saved
character position. A 'B' scope allows processing to
continue over a balanced expression. (The bracketing
characters such as parentheses or angle brackets are
previously defined.) The balance count is set to @
Wwith each new command string. When a command using the
'B' scope is being executed and an open bracket is
processed the count is incremented, if a closing
bracket is processed the count is decremented. When
the count becomes § or negative processing is termi-
nated.

A non-specified scope is set to 'g'.

REPANDSCOPE ::= NUMNUM |OBVIOUSREP|OBVIOUSSCOPE

NUMNUM ::= NUM ',' NOM(".')|','

OBVIOUSREP ::= '*' (',') {SCOPEQUANTITY |'.' |[UNTIL |BALANCE }
OBVIOUSSCOPE ::= NUM (*,'){'*"'|'.' [UNTIL BALANCE }

When a repetition factor and scope are both specified
the comma is necessary only to avoid ambiguity.

CMDBODY ::= SIMPCMD '(' CMDSTR ')'

Command bodies describe the editing actions to be
taken. They are qualified by command arguments as described
above. Command bodies are of two forms: Simple and Macro.
Simple commands are single action primitive commands. A
macro command is a combination of simple commands with their
arguments grouped within the characters t()'. A macro may
have command arguments of its own and contain other macros
within it.

17

Semantics

All command arguments apply to macros with the excep-
tion of scope. If a scope is specified it is ignored.
If the direction of a macro is reversed by the character
'-' a1l commands within its bounds are reversed. The
other command arguments, repetition factor and truth
operators, apply to the macro itself. A macro fails
(return FALSE) if one of its constituents fails.

SIMPCMD ::= CHARCMD |[STRCMD |[LINECMD

Simple commands are divided into three classes: char-
acter commands, string commands and line oriented commands.

CHARCMD ::= '<'|'>'I'D'IIE|||W']'R||‘X"|Plll:lll?l
Character commands are replicated for each character.
Semantics

move cursor one character to the left.

move cursor one character to the right.

DELETE character to right of cursor.

ENGROSS one character to inactive window.

WRITE the character to the right of cursor.
RESTART VW, making all changes permanent by closing
and reopening files.

EXIT VW (normal termination).

save cursor POSITION (-P will forget the saved
position).

confirm cursor may be moved one character to right
(the ? is implied with the closing parenthesis of
a macro) .

open main window (-: will open auxiliary window) .

WX WEEOy A

~J

STRCMD ::= STRLET STRING

String commands take an addition argument called a string.

STRING ::=A sequence of characters beginning and ending with the
same character (which acts as a delimiter) but
with no other occurrence of that character. The
' «4' may be part of a string but may not be used
as a delimiter.

The characters '«}' and '+' are treated as any other
character when they are contained within a string. They do not
cause input to be terminated or aborted.

18

STRLET :':= II! IIFI |ILI |lvl ||St ||Z|_

Semantics

I/stx/ INSERT "str" into file to the left of cursor.

F/str/ FIND 'str" in rest of line.

L/stx/ LOCATE "str"in rest of file.

V/str/ VERIFY "str" is to right of cursor, without
moving the cursor.

S/stx/ SUBSTITUTE "str" for target of last F or L
command. command

D <5 SET bracket characters for B scope (default

.z2/0/) .

For F V and L COMMANDS an empty target will reuse the
last target string.

LINECMD ::= 'M'|'K'|'C'|'T’

Line mode commands process full lines at a time.

Semantics

M MOVE cursor to beginning of next line.
K KILl: rest of line.

e COPY rest of line to inactive window.
T TYPE rest of line.

Line mode commands have a default scope of the entire
file and therefore do not fail (a TRUE value is always
returned). The repetition factor specifies the number
of line to be processed. The relative line numbering
conventions are as follows: The prefix of the current
line from the cursor back to the last new line character
is line -1. The suffix, from the cursor to the next

new line in line 1. Line -2 is the previous; line 2,
the following, etc.

An '*', 'U' or 'B' are used instead of the numeric
repetition factor to indicate the following:

'*! process the entire file.

'U' process until a previously saved character
position.

'B' process a balanced expression.

19

Command Summary

B3
T
A
v
™

™ v W+ A v

e P % |

COMMANDS

COPY rest of line to inactive window

DELETE character to right of cursor

ENGROSS one character to inactive window

FIND "str™ in rest of line

type this text

INSERT "str" into file to the left of cursor

KILL rest of line

LOCATE "str" in rest of file

MOVE cursor to beginning of next line

save cursor POSITICN (see U qualifier)

RESTART VW, making all changes permanent
SUBSTITUTE "str" for target of .last F or L command
TYPE rest of line

VEREIFY"YsEr" dis to right of-curseor

WRITE the character to the right of cursor

EXIT VW (normal termination)

SET bracket characters (default 2/()/) (see B
qualifier) :

move cursor one character to the right

move cursor one character to the left

abort command string without executing any commands
confirm cursor may be moved one character to right
open main window (-: will open auxiliary window)
execute next command from auxiliary window

save last command string in auxiliary window
re-execute previous command string

QUALIFIERS

perform command in the opposite direction

perform command as many times as possible (*=infinity)
perform command 15 times (for any integer)

force command to succeed and return true

perform command for BALANCED delimiters (see Z command)
perform UNTIL memory cursor (see P command)

reverse truth value of command

allow command to process just beyond the new line e

For string COMMANDS any character may be used where the "/" was

used.

For F V and L COMMANDS an empty target will reuse the

last target.

20

Buffer Commands

As illustrated in Figure 1, the three memory structures
share common available space and are linked in the same
manner, each with its own cursor. Editing instructions,
entered at the terminal, are linked in the command buffer
where they are interpreted by the VW processor. The o
command (default) activates the main cursor and window for
the editing process. The '-:' command activates the auxiliary
cursor and buffer. Communication between the structures is
accomplished by the 'E' and 'C’ commands which copy charac-
ters from the active to the inactive buffer. This method of
data transfer allows the auxiliary buffer to be used as
temporary storage or for file merging if a secondary input
is specified.

Also, as indicated by the diagram, data may be trans-
ferred between the auxiliary and command buffers. The 5 &
command moves the previous command string from the command
buffer to the auxiliary buffer, where it may be altered or
saved for subsequent processing. Conversely, the rp
command loads the command buffer from the auxiliary buffer
and initiates execution of the string. As a result useful
VW command strings may be stdred externally and read as the

secondary file providing a library of editing macros.

21

V. VW Examples

Only single action commands are provided as primitives
in VW. Therefore, complex commands must be formed from them
via a building block process. As a result, certain tasks for
which it might be desirable to have a single command have to
be programmed. However, since there is an unlimited number
of function that one may wish to perform, this building process
permits varieéy and versatility.

The following are a set of problems which can be solved
easily with VW. The more complex of which are solvable

in existing editors only with great difficulty.

22 «

Problem. 1. Character Substitution

A most frequent editing task is to replace one character
sequence by another. The following VW macro substitutes all
occurrences of the word TECO by VW for the remainder of the
file.

*{L'TECO'S'VW")

This command string consists of one loop; the instruction
*(, starts the loop. Tﬁe command, L'TECO' finds the next
occurrence ofvthe word TECO. The following command, S'VW',
deletes the found word and inserts VW. The final parenthesis,
), completes the loop and returns control to the beginning for
repeated processing. The command stops with the cursor at

the end-of-file and with the wvalue TRUE.

Problem 2. Character Substitution at a Specific Column

Often the text to be replaced is differentiated from a
similar string of character solely by its position on the line.
The following macro replaces TECO by VW only when found at
column 5 of any line.

* (% (4>V'TECO'4DI'VW'M)M)

This macro consists of two loops. The instruction, *(,
starts the first loop. The first instruction of this loop,
*{(, initiates a second loop. The command, 4>, moves the cursor
4 characters to the right, pointing to column 5. The next
command V'TECO' checks for the word TECO. If found, 4DI'VW'
deletes it and inserts VW. The command, M, moves the cursor

to the next line and) causes the repetition of the inner loop.

23

If TECO was not found, the inner ioop is terminated and control
is transfer to the next command of the first loop, M. The
cursor is set to the next line and the) repeats the entire
command string. As in the first example, the cursor is left

at the end-of-file and the value TRUE is returnea after

execution.

24

problem 3. Truncating long lines

Many programming languages, like Fortran, are restricted
to a fixed number of characters per instruction line and, as
a result, the programmer is sometimes required to insert
continuation characters. This would normally require count-
ing characters in advance but VW enables one to type in his
program at random and edit it afterwards using the following
macro:

* (% (73 ><I" «yapanppn —'-M)M)

This instruction consists of two loops. The initial
instruction, *(, starts a loop. The first command of the
loop which is alsc *(starts the nested loop. The commands

of the inside loop, 73><I'<yapppp-'-M, will attempt to move

the cursor 73 characters on the present line, 73>.

If this succeeds there are at least 73 characters on
the line and the next command may proceed. The next command
moves the cursor back one space, <; inserts a newline charac-

ter, 5 blanks and a hyphen, I'<«ianaan-'; which has the

effect of limiting the previous line to exactly 72 characters
and starting the new line with a continuation character (-)
in column 6 followed by the remainder of the original line.
The last command of the inner loop, =M, brings us to the

beginning of the newly formed line and the closed parenthesis

25

returns.control to the beginning éf the loop for continued
processing. If the command ﬁo move the cursor 73 characters
fails, then the loop is terminated and control is passed to
the next command after the loop,'g. Since, at this time, we
know that the current line has 72 or less charactérs, we
simply want to go to the next line and the final closed
parenthesis returns control to the beginning of the loop for
. continued prodessing. It should be noted at this point that
both asterisks are repetition factors, the second allowing
the inner instruction to continue through an entire line and
the first allowing this procedure to continue through the

entire file. All processing ends at end-of-file.

26

Problem 4. Selective text replacement

Often, we want to do a string substitution over the
entire file but within restricted areas. For example,
amending last year's Fortran report program requires replac-
ing the last two digits of the previous year with the two
digits for the current year. However, since there are other
places where such a combination qf two digits could exist,
we want to limit our changes to the format statements. The
following is such an instruction:

(L'FORMAT' (*(F'75'S'76"')M5>8V"' A'))

This instruction consists of three loops. The oustide

loop *(L'FORMAT' finds the next occurrence of the keyword

"FORMAT". The second loop *(immediately starts a nested

loop. The nested loop, *(F'75'S'76', finds all occurrences

of 75 on the current line and replaces them with 76. When
this is completed, we return to the second loop M5>$V'A')
which moves us to the sixth character of the next line ready
to check to see whether or not there is a line continuation
character. If it is, we repeat the second loop until there
is no line continuation character in position six of the
following line and when this situation arises, we repeat the

first loop.

27

Problem 5. Inverting the order of subscripts in a two-

dimensional array

Sometimes it is necessary after having defined your
subscripts as column, row, to change the order to row,
column. The following instruction will allow you to do

this:

* (L'ARRAY ('PF','-D-UC~UKF')'<I’','-:-C-K:-P)

This instruction consists of only one loop and is a straight
right to left instruction. Initially, we look for the name
of the array followed by an open parenthesis and save the
current position of the pointer which is situated following

the parenthesis, L'ARRAY('P. Next, find the comma separating

the two subscripts and delete it F','-D. We save the text
from our present position back to the saved pointer (the
first subscript) by copying it into the auxiliary buffer and
then delete it from the main buffer -UC-UK. We search for
the closed parenthesis and insert a comma preceding it
F')'<I','. We have just made the second subscript the first
subscript and the text of the original first subscript
remains in our auxiliary buffer. We take the text from the
auxiliary buffer and place it between the comma and the
closed parenthesis making it the second subscript, -:-C. 1In

order to complete the instruction, we kill the text in the

auxiliary buffer and release the saved pointer, -K:-P.

28

In the above example, we imposed the restrictions that
the array named must be immediately followed by the open
parenthesis and that the subscripts contained no parenthesis
or commas. These are necessary restrictions inlexisiting
editors. However, VW allows both restrictions to be removed
with a little additional coding. In fact the subscript may
contain the name of the original array and may itself be
subscripted.

Complex text can be processed with the following

command to invert the subscripts:

(L'ARRAY('P(*(S$V','SV' ('>)V' ('BM)~-UC-UKD<BM>IL",'=:=-C-K: >~BM).

Substituting L'ARRAY (' by *(L'ARRAY'*(V'A'>)SV'(')?2> will

allow for a floating open parenthesis.

29

VI. Conclusion

VW has proven itself a powerful editing tool. The use of
simple commands, coupled with a macro capability, provide
extensive text manipulation capabilities. Features, such as
the auxiliary window, the secondary input file and the balance
scope operator are the additional devices suitable for complex
problem solving. Its internal data structure and macro imple-
mentation keép core requirements low, allowing its use on the
mini-computers. For larger machines, VW can readily be made
ré—entrant as the core windows and cursors are already
localized in the one data structure.

The ease with which the FORTRAN versions of VW have been
adapted to a variety of machines brings us one step closer to
a universal editor for the interactive computer user. At
Indiana University the parallel implementation of VW on two
different systems, shared by a common group of users, has
provided preliminary proof that a universal editor does, in
fact, encourage programmer awareness of the more fundamental
aspects of computer facilities, resulting in more effective

allocation of available computer resources.

30

10.

1l

12.

REFERENCES

Digital Equipment Corporation. Decsystem 10 Lined
Software Note Books, Maynard, Mass. (1972).

Digital Equipment Corporation. Decsystem 10 TECO
Programmers Reference Manual, Maynard, Mass. {1972} .

Digital Equipment Corporation. Decsystem 10 S0S
Software Note Books, Maynard, Mass. (1975).

Van Dam, Andries, and Rice, David E. On-line text
editing: a survey. ACM COMP. SURVEYS 3, 3 (September,
1971), 93-114.

Deutsch, P. L., and Lampen, Butler, W. An on-line
editor. Comm. ACM 10, 12 (December, 1967), 793-799,
803. :

Benjamin, Arthur J. An extensible editor for a small
machine with disk storage. Comm. ACM 15, 8 (August,
1972), 742-747.

Dewar, Hamish. Compatible context editor. Computer
Science Department, University of Edinburgh, Scotland
(1972) .

Control Data Corporation. Control Data Kronos 2.1
Test Editor Reference Manual, St. Paul, Minn. (1973).

Wilkes, M. A. Scroll editing: an on-line algorithm
for manipulating long character strings. IEEE Trans-—
actions on Computers C-19, 11 (November, 1970}, 1009-1015.

Knuth, D. E. The Art of Computer Programming, Yol., 1:
Fundamental Algorithms, 2nd Ed., Addison-Wesley, Reading,
Mass. (1973). Chapter 2.2.3.

Knuth, D. E. The Art of Computer Programming, Vol. 1:
Fundamental Algorithms, 2nd Ed., Addison-Wesley, Reading,
Mass. (1973). Chapter 2.2.5.

Knuth, D. E. The Art of Computer Programming, Vol. 1l:
Fundamental Algorithms, 2nd Ed., Addison-Wesley, Reading,
Mass. (1973). Problem 2.2.4-18.

5 1

14.

15,

16.

31

Wise, D. S. Referencing_liéts by an edge. Comm. ACM,
(to appear).

Digital Equipment Corporation. Decsystem 10 TECO
Programmers Reference Manual, Maynard, Mass. (1972).
Chapter 3.9.2.

Morris, James H. and Pratt, Vaughn. A Linear Pattern
Matching Algorityn. Report No. 40, Computing Center,
University of California at Berkeley (1970).

Naur, P. Revised report on the algorithmic language
ALGOL 60. Comm. ACM 6, 1 (January 1983) , 1-1}.

APPENDIX A
VW SEMANTIC MODEL

The follow LISP 1.6 program is presented as the Semantic
Model for the VW editing system. User input as described by
CMDSTR in chapter IV is preprocessed into a list of the form:

(CcMD1 CMD2 CMD3 .
Each element, (CMDn) is a sub-list of the following form:
(DOL. AR DIR REP " SCOPE DOT <CMDL STR)

WHERE :
DOL is T for 'S$' "CMDARG, NIL otherwise.
AA is T for 'A' CMDARG, NIL otherwise.
DIR is T for '-' CMDARG, NIL otherwise.
REP is numeric; if input was '*' REP has been
set to the maximum integer and
AA has been set to T.

SCOPE is numeric; if inpat was "*7 ,'BY',*'U"' SCOPE
has been set to the maximum integer
or left as "B or 'UY,

CMDIL is the command letter (I,D,W,E,etc.)
or a MACRO which is a CMDn. 1In
this case, the preprocessor has
inserted the '?' prior to the
closing parenthsis.

STR is a list of characters to be inserted,
located, etc. It is NIL if empty
Oor unnecessary.

PROCESSCMDSTR 1is the calling function which processes the above.

The LISP code reflects the semantics of the control
structure. Only two commands, D and I, are actually
presented below, but all commands are as easily implemented
in terms of these and the commands E, F, P, V, W, X, and >.
When information is Written to the console in the negative
direction (-W or -T) the order of the text is reversed in the
output buffer so that it is dispiayed left-to-right as
plaintext.

A={

(SETQ MAINL NIL)
(SETQ MAINR NIL)
(SETO AUXL NIL)
(SETQ AUXR NIL)
(SETD OPENL eMATINL)
(SETQ OPENR 6MAINR)
(SETQ SHUTL @AUXL) .
(SETO SHUTR #AUXR)

tDE PROCFSSCMDSTR (CMDSTR) (COND

((NULL CMDSTR) T) .

(CAPPLY ePRNCESS (CAR CMDSTR)) (PROCESSCMDSTR (CDR CMDSTR)))
g (T NIL)
)

(DE PROCESS (NNL AA DIR REP SCOPE DOT CMDL STR) (COND
(CZEROP REP) (NOT DOL))
C(NOT (ATOM CMDL)) (COND '
((PROCESSCMDSTR (FIXDIR DIR CMDL)) (PROCESS DOL AA DIR
) (SUBY{ REP) SCOPE DOT (FIXDIR DIR CMDL) STR))
' (T (TRUTHVAL DOL AA))
))

(T (COND : _
) ((EXECUTE DOL AA DIR REP SCOPE DOT CMDL STR)
(PROCESS DoL AA DIR (SUR{ REP) SCOPE
. . § DOT CMDL STR))
N €T (TRUTHVAL DOL AA))
3

) : ,

%DE TRUTHVAL (DOL AA) (COND
CAA CNOT DOL))
(T DOL)

)

tDE FIXDIR (DIR CMDSTRY (COND
(DIR (MAPLIST eREVDIR CMDSTR))
(T CMDSTR)

p

iDE REVDTIR (CMDN) (APPEND
(LIST (CAAR CMDN) (CADAR CMDN) (NOTY (CADDAR CMDN}))
(CODDAR CMDN)

3

tDE EXECUTE (DOL AA DIR REP SCOPE DOT CMDL STR)Y
(CMDL DIR REP SCOPE DOT STR))

(DE N (DIR REP SCOPE DOT STR) (COND
(DIR (SET OPENL (CDR (EVAL OPENL)IY)
(T (SET OPENR (CDR (EVAL OPENR))))
3)

A=?2

tDE 1 (DIR REP SCOPE DAT STR) (COND
(DIR (SET OPENR (APPEND STR (EVAL OPENRYI))
(T (SET OPENL (APPEND (REVERSE STR) (EVAL OPENLYI))

)

tDE : (DIR REP SCOPE DOT STR) (COND
(DIR (PROG2 (SETA OPENL eALIXLY (SETR NPENR ®AUXR)
_ (SETN SHUTL GMAINL) (SETQ SHUTR eMAINRY T))
(T (PROG2 (SETQ OPENL AMAINL) (SETQ NPENR OMAINR)
(SETO SHUTL @AUXL) (SETQ SHUTR SAUXRY T

3

